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Abstract

We approach attrition in field experiments with baseline data as an identification problem in a

panel model. A systematic review of the literature indicates that there is no consensus on how

to test for attrition bias. We establish identifying assumptions for treatment effects for both the

respondent subpopulation and the study population, and propose procedures to test their sharp

implications. We then relate our proposed tests to current empirical practice, and demonstrate

that the most commonly used test in the literature is not a test of internal validity in general.

We illustrate the relevance of our analysis using several empirical applications.
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1 Introduction

Randomized control trials (RCTs) are an increasingly important tool of applied economics since,

when properly designed and implemented, they can produce internally valid estimates of causal

impact.1 Non-response on outcome measures at endline, however, is an unavoidable threat to

the internal validity of many carefully implemented trials. Long-distance migration can make

it prohibitively expensive to follow members of an evaluation sample. Conflict, intimidation or

natural disasters sometimes make it unsafe to collect complete response data. In high-income

countries, survey response rates are often low and may be declining.2 The recent, increased focus

on the long-term impacts of interventions has also made non-response especially relevant. Thus,

researchers often face the question: How much of a threat is attrition to the internal validity of a

given study?

In this paper, we approach attrition in field experiments with baseline data as an identification

problem in a nonseparable panel model. We focus on two identification questions generated by

attrition in this setting. First, does the difference in mean outcomes between treatment and con-

trol respondents identify the average treatment effect for the respondent subpopulation (ATE-R)?

Second, is this estimand equal to the average treatment effect for the study population (ATE)?3 To

answer these questions, we examine the testable implications of the relevant identifying assump-

tions and propose procedures to test them. Our results provide insights that are relevant to current

empirical practice.

We first conduct a systematic review of 96 recent field experiments with baseline outcome data

in order to document attrition rates and understand how authors test for attrition bias. Attrition and

attrition tests are both common in published field experiments. Although we find wide variation

in the choice and implementation of attrition tests in the literature, we are able to identify two

main types: (i) a differential attrition rate test that determines if attrition rates are different across

1Since in the economics literature the term “field experiment” generally refers to a randomized controlled trial, we
use the two terms interchangeably in this paper. We do not consider “artefactual” field experiments, also known as
“lab experiments in the field,” since attrition is often not relevant to such experiments.

2See, for example, Meyer, Mok and Sullivan (2015) and Barrett, Levell and Milligan (2014).
3We refer to the population selected for the evaluation as the study population.
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treatment and control groups, and (ii) a selective attrition test that attempts to determine if the mean

of baseline observable characteristics differs across the treatment and control groups conditional on

response status. While authors report a differential attrition rate test for 79% of field experiments,

they report a selective attrition test only 61% of the time. In addition, for a substantial minority

of field experiments (36%), authors conduct a determinants of attrition test for differences in the

distributions of respondents and attritors.

Next, we present a formal treatment of attrition in field experiments with baseline outcome

data. Specifically, we establish the identifying assumptions in the presence of attrition for two

cases that are likely to be of interest to the researcher. For the first case, in which the researcher’s

objective is internal validity for the respondent subpopulation (IVal-R), the identifying assumption

is random assignment conditional on response status (IVal-R assumption). This implies that the

difference in the mean outcome across the treatment and control respondents identifies the ATE-R,

a local average treatment effect for the respondents.4 In the second case, where internal validity

for the study population (IVal-P) is of interest, the identifying assumption is that the unobservables

that affect response and outcome are independent in addition to the initial random assignment of

the treatment (IVal-P assumption). If this identifying assumption holds, the ATE for the study pop-

ulation is identified. This second case is especially relevant in settings where the study population

is representative of a larger population.

We then derive testable restrictions for each of the above identifying assumptions. If treatment

effects for the respondents are the researchers’ object of interest, they can implement a test of the

IVal-R assumption. The null hypothesis of the IVal-R test consists of two equality restrictions on

the baseline outcome distribution; specifically, for treatment and control respondents as well as

treatment and control attritors. Alternatively, if the researchers are interested in treatment effects

for the study population, they can test the restriction of the IVal-P assumption. The hypothesis of

the IVal-P test is the equality of the baseline outcome distribution across all four treatment/response

subgroups. We show that these testable restrictions are sharp, meaning that they are the strongest

4For brevity, we use a “difference in means” to refer to a “difference in population means”. To distinguish it from
its sample analogue, we refer to the latter as a “difference in sample means”.
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implications that we can test given the available data.5 We also propose randomization proce-

dures to test the sharp distributional restrictions implied by each identifying assumption as well

as regression-based procedures to test their mean counterparts. We illustrate the intuition of the

IVal-R and IVal-P tests by applying them to the randomized evaluation of the Progresa program,

in which the study population is representative of a broader population of interest.

Given their relevance to current empirical practice, we also provide a formal treatment of the

differential attrition rate test. In order to understand the role of differential attrition rates for internal

validity, we apply the framework of partial compliance from the local average treatment effect

(LATE) literature to potential response.6 We demonstrate that even though equal attrition rates are

sufficient for IVal-R under additional assumptions, they are not a necessary condition for internal

validity in general. We illustrate using an analytical example and simulations that it is possible to

have differences in attrition rates across treatment and control groups while internal validity holds

not only for the respondent subpopulation but also the study population.

We also examine the use of covariates in testing the IVal-R and IVal-P assumptions. This

approach is useful for settings where baseline outcome is not observed or is degenerate by design.

Covariates can also aid in detecting violations of internal validity when the relationship between

the outcome and its determinants changes over time. Building on our framework, we introduce two

types of covariates that are appropriate to include in the tests: (i) determinants of the outcome, and

(ii) “proxy” variables which are determined by the same variables as the outcome in question. In

cases where covariates are appropriate for a given setting, we recommend that authors pre-specify

a limited number of covariates to use in their attrition test. We illustrate the use of covariates in

attrition tests using the Progresa example.

Finally, we demonstrate the empirical relevance of our results by applying our tests to four

published field experiments with high attrition rates.7 For this exercise, we implement our attrition

5Sharp testable restrictions are the restrictions for which there are the smallest possible set of cases such that
the testable restriction holds even though the identifying assumption does not. The concept of sharpness of testable
restrictions was previously developed and applied in Kitagawa (2015), Hsu, Liu and Shi (2019), and Mourifié and Wan
(2017).

6See the foundational work in the LATE literature (Imbens and Angrist, 1994; Angrist, Imbens and Rubin, 1996).
7We choose the four published field experiments from our review that have the highest attrition rates subject to

3



tests using baseline outcome only. Based on that approach, for about two-thirds of the outcomes,

we neither reject the IVal-R nor the IVal-P assumption, which is consistent with the identification

of treatment effects for the study population. For the remaining outcomes, however, our tests

reject the IVal-P but not the IVal-R assumption. In other words, for those outcomes, the researcher

would reject the internal validity of the corresponding treatment effect for the study population,

but would not reject the assumption that ensures the internal validity of the treatment effect for

the respondent subpopulation. An important takeaway from our analysis is that researchers should

consider an outcome-specific approach to testing for attrition bias. Our empirical results also

support the limitations of the differential attrition rate test highlighted by the theoretical analysis.

For about one-third of the outcomes, our test results are consistent with the conditions under which

this test would not control size as a test of internal validity.

This paper has several implications for current empirical practice. First, our theoretical and

empirical results imply that the most widely used test in the literature, the differential attrition rate

test, may overreject internal validity in practice. The second most widely used test, the selective

attrition test, is implemented using a variety of approaches. Most such tests constitute IVal-R tests,

although those typically use respondents only. Our theoretical results indicate, however, that the

implication of the relevant identifying assumption is a joint test that uses all of the available infor-

mation in the baseline data, and thus includes both respondents and attritors. In addition, while the

majority of testing procedures pertain to IVal-R and not IVal-P, the use of determinants of attrition

tests suggests that some researchers may be interested in implications of the estimated treatment

effects for the study population. More generally, this paper highlights the importance of under-

standing the implications of attrition for a broader population when interpreting field experiment

results for policy.8 Finally, we note that our paper contributes to a debate in the literature about the

value of collecting baseline data by highlighting its importance for testing internal validity in the

presence of attrition (Muralidharan, 2017; Carneiro, Lee and Wilhelm, 2019).

data availability.
8External validity can be assessed in a number of ways (see, for example, Andrews and Oster (2019) and Azzam,

Bates and Fairris (2018)). In our setting, we note that if IVal-R holds but not IVal-P, we may be able to draw inference
from the local average treatment effect for respondents to a broader population.
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This paper contributes to a growing literature that considers methodological questions rele-

vant to field experiments.9 Given the wide use of attrition tests, we formally examine the testing

problem here. Our focus complements a thread in this literature that outlines various approaches

to correcting attrition bias in field experiments (Horowitz and Manski, 2000; Lee, 2009; Huber,

2012; Behagel et al., 2015; Millán and Macours, 2021; Ghanem et al., 2022).10 These correc-

tions build on the vast sample selection literature in econometrics going back to Heckman (1976,

1979).11 While the latter literature is broadly concerned with population objects, work that is rele-

vant to program evaluation proposes corrections for objects pertaining to subpopulations (e.g. Lee,

2009; Huber, 2012; Chen and Flores, 2015a). Our paper provides tests of identifying assumptions

emphasizing the distinction between the (study) population and the respondent subpopulation. Fi-

nally, the randomization tests we propose contribute to recent work that examines the potential use

of randomization tests in analyzing field experiment data (Young, 2018; Athey and Imbens, 2017;

Athey, Eckles and Imbens, 2018; Bugni, Canay and Shaikh, 2018).

We also build on other strands of the econometrics literature. Recent work on nonparamet-

ric identification in nonseparable panel data models informs our approach (Altonji and Matzkin,

2005; Bester and Hansen, 2009; Chernozhukov et al., 2013; Hoderlein and White, 2012; Ghanem,

2017). Specifically, the identifying assumptions in this paper fall under the nonparametric corre-

lated random effects category (Altonji and Matzkin, 2005). Furthermore, we build on the literature

9This literature addresses many aspects of experimental design (both optimal choice thereof as well as appropri-
ate methods of analysis), including: randomization methods (Bruhn and McKenzie, 2009); the number of follow-ups
(McKenzie, 2012); spillovers (Baird et al., 2018; Vazquez-Bare, 2020; Viviano, 2023); waitlists (de Chaisemartin
and Behaghel, 2018); endogeneous stratification (Abadie, Chingos and West, 2018); factorial designs (Muralidha-
ran, Romero and Wüthrich, 2019); dynamic treatment assignment (Kasy and Sautmann, 2020); pre-analysis plans
(Anderson and Magruder, 2022).

10Other work considers corrections for settings with sample selection and noncompliance. Chen and Flores (2015a)
rely on monotonicity restrictions to construct bounds for average treatment effects in the presence of partial compliance
and sample selection. Fricke et al. (2015) consider instrumental variables approaches to address these two identifica-
tion problems. Huber (2014) examines the identification of treatment effects in the presence of sample selection and
non-random selection into treatment.

11Nonparametric Heckman-style corrections have been proposed for linear and nonparametric outcome models (e.g.
Ahn and Powell, 1993; Das, Newey and Vella, 2003). Inverse probability weighting (Horvitz and Thompson, 1952;
Hirano, Imbens and Ridder, 2003; Robins, Rotnitzky and Zhao, 1994) is another important category of corrections for
sample selection bias, frequently used in the field experiment literature. Attrition corrections for panel data have also
been proposed (e.g. Hausman and Wise, 1979; Wooldridge, 1995; Hirano et al., 2001). Finally, nonparametric bounds
is an alternative approach relying on weaker conditions (Horowitz and Manski, 2000; Manski, 2005; Lee, 2009; Kline
and Santos, 2013).
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on randomization tests for distributional statistics (Dufour, 2006; Dufour et al., 1998).

The paper proceeds as follows. Section 2 presents the review of the field experiment literature.

Section 3 formally presents the identifying assumptions and their sharp testable restrictions. It

also includes a formal treatment of differential attrition rates. Section 4 discusses implications for

empirical practice, including the role of covariates in testing internal validity. Section 5 presents

the results of the empirical application exercise. Section 6 concludes. Sections A and B present

the randomization and regression-based procedures to test the IVal-R and IVal-P assumptions for

completely, stratified and cluster randomized experiments.

2 Attrition in the Field Experiment Literature

We systematically reviewed 93 recent articles published in economics journals that report the re-

sults of 96 field experiments.12 The objective of this review is to understand both the extent to

which attrition is observed and the implementation of tests for attrition bias in the literature.13

Our categorization imposes some structure on the variety of different estimation strategies used

to test for attrition bias in the literature.14 In keeping with our panel approach, we focus on field

experiments in which the authors had baseline data on at least one main outcome variable.15

We review reported overall and differential attrition rates in field experiment papers and find

that attrition is common.16 As depicted in Panel A in Figure 1, even though 22% of field exper-

12We included articles from 2009 to 2015 that were published in the top five journals in economics as well as five
highly regarded applied economics journals that commonly publish field experiments: American Economic Review,
American Economic Journal: Applied Economics, Econometrica, Economic Journal, Journal of Development Eco-
nomics, Journal of Human Resources, Journal of Political Economy, Review of Economics and Statistics, Review of
Economic Studies, and Quarterly Journal of Economics. Section SA1.1 in the online appendix includes additional
details on the selection of papers and relevant attrition rates. Section SA7 in the online appendix contains a list of all
the papers included in the review.

13The review complements the review in Millán and Macours (2021) by comprehensively identifying and cataloging
the range of approaches that authors use to test for attrition bias. Millán and Macours (2021) provides a particularly
useful review of the use of attrition corrections. Notably, we find similar overall attrition rates, despite differences in
the inclusion criteria for the experiments in our sample on a number of factors (such as the years of publication and
types of units of analysis in the study).

14We identify fifteen estimation strategies used to conduct attrition tests (see Section C in the appendix).
15We exclude 62 field experiments that were published during that time period, since they lack baseline data for

any outcome mentioned in the abstract. Of those, slightly less than half (47%) are experiments for which the baseline
outcome is the same for everyone by design and hence is not informative (see Section SA1.1 in the online appendix).

16To understand the extent of attrition that is relevant to the main outcomes in the paper, we focus on attrition rates
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Figure 1: Attrition Rates Relevant to Main Outcomes in Field Experiments

Panel A. Overall Attrition Rate Panel B. Differential Attrition Rate

Notes: We report one observation per field experiment. Specifically, the highest attrition rate relevant to a
result reported in the abstract of the article. The Overall rate is the attrition rate for the full sample, which is
composed of the treatment and control groups. The Differential rate is the absolute value of the difference
in attrition rates across treatment and control groups. The blue (orange) line depicts the average overall
(differential) attrition rate in our sample of field experiments. Panel A includes 93 field experiments and
Panel B includes 76 experiments since the relevant attrition rates are not reported in some articles.

iments have less than 2% attrition overall, the distribution of attrition rates has a long right tail.

Specifically, 45% of reviewed field experiments have an attrition rate higher than the average of

15%.17 Of the experiments that report a differential attrition rate, Panel B in Figure 1 illustrates

that a majority have little differential attrition for the abstract results: 63% have a differential rate

that is less than 2 percentage points, and only 11% have a differential attrition rate that is greater

than 5 percentage points.18

that are relevant to outcomes reported in the abstract (i.e. “abstract results"). Most papers report attrition rates at
the level of the data source or subsample, rather than at the level of the outcome. Since the number of data sources
and/or subsamples that are relevant to the abstract results vary by experiment, we include one attrition rate per field
experiment for consistency. Specifically, we report the highest attrition rate relevant to an abstract result. Authors do
not in general report attrition rates conditional on baseline response.

17A noteworthy finding from Table SA3 in the online appendix is that attrition rates are higher on average for
experiments in high-income countries. We also note that the average attrition rate for the studies in our review is
slightly higher than the average attrition rate of the studies that do not have baseline data for any main outcome, and
thus are excluded from our review. Of these 62 excluded studies, 56 report information on survey-level attrition.
Thirty-eight percent of these articles have less than 2% attrition and the average rate across the excluded studies is
12.1%.

18It is possible, however, that these numbers reflect authors’ exclusion of results with higher differential attrition
rates than those that were reported or published.
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We then study how authors test for attrition bias. Notably, attrition tests are widely used in

the literature: 92% of field experiments with an attrition rate of at least 1% for an outcome with

baseline data conduct at least one attrition test. We first identify two main types of tests that aim

to determine the impact of attrition on internal validity: (i) a differential attrition rate test, and (ii)

a selective attrition test. A differential attrition rate test determines whether the rates of attrition

are statistically significantly different across treatment and control groups. In contrast, a selective

attrition test aims to determine whether, conditional on being a respondent and/or attritor, the mean

of observable characteristics is the same across treatment and control groups.19 We find that there

is no consensus on whether to conduct a differential attrition rate test or a selective attrition test,

however (Panel A in Table 1). In the field experiments that we reviewed, the differential attrition

rate test is substantially more common (79%) than the selective attrition test (61%). In fact, 29%

of the articles that conducted a differential attrition rate do not conduct a selective attrition test.20

We further consider if selective attrition tests include both respondents and attritors or if they

include either only respondents or only attritors (Panel B in Table 1). Conditional on having

conducted any type of selective attrition test, authors include both respondents and attritors in only

28% of those field experiments. Instead, authors conduct a selective attrition test on the sample of

respondents in most cases (68%). Although our review is limited to experiments in which baseline

outcome data is available, covariates are typically included in attrition tests along with the baseline

outcome. In particular, 96% of field experiments that report a selective attrition test include more

than one baseline variable in that test.21 A key issue that arises with the inclusion of covariates is

how to approach the issue of multiple testing. We find that 76% of the experiments that implement

a selective attrition test conduct it on an average of 17 variables, and none of those implement a

multiple testing correction (Table SA4 in online appendix). Only a minority of authors conduct a

19See Section C for more details on the empirical strategies used in the field experiment literature to conduct each
of these tests.

20We also consider some potential determinants of the use of selective attrition tests: overall attrition rates, differ-
ential rates, year of publication, journal of publication. We do not find any strong correlations given the available
data.

21Although identifying which variables are outcomes or covariates is beyond the scope of this paper, we note that
in 92% of the experiments the selective attrition test includes at least one variable that we can easily identify as a
covariate (such as age or gender).
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Table 1: Distribution of Field Experiments by Attrition Test

Panel A: Differential and Selective Attrition Tests

Proportion of field experiments that conduct:
Selective attrition test

No Yes Total

Differential attrition rate test
No 10% 10% 21%
Yes 29% 51% 79%

Total 39% 61% 100%

Panel B: Types of Selective Attrition Test

Conditional on conducting a selective attrition test:

Test using respondents and attritors 28%
Test using respondents only 68%
Test using attritors only 4%

Total† 100%

Panel C: Determinants of Attrition Tests

Proportion of field experiments that conduct:
Determinants of attrition test

Yes No Total

Differential attrition rate test only 12% 17% 29%
Selective attrition test only 1% 9% 10%
Differential & selective attrition tests 21% 29% 50%
No differential & no selective attrition test 1% 9% 10%

Total 36% 64% 100%

Notes: Panel A and C include 77 field experiments that have an attrition rate of at
least 1% for an outcome with baseline data. Panel B includes 47 of those experi-
ments that conducted a selective attrition test (†). For details on the classification
of the empirical strategies, see Section C in the appendix.

joint test across all of the baseline variables included in the test (24%).

Another important aspect of testing for attrition bias is testing for differences in the distributions

of respondents and attritors. Such tests can illustrate the implications of the main results of the

experiment for the study population. We define a determinants of attrition test as a test of whether

baseline outcomes and covariates correlate with response status and find that authors conduct such

a test in approximately one-third of field experiments (Panel C of Table 1). Table 1 illustrates that

conducting the determinants of attrition test does not have a one-to-one relationship with either

conducting a differential attrition rate test or conducting a selective attrition test.22

22Approximately half of the determinants of attrition tests are conducted using the same regression used to test for
differential attrition rates. We categorize this strategy as both types of tests since authors typically interpret both the
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3 Testing Attrition Bias Using Baseline Data

This section presents a formal treatment of attrition in field experiments with baseline outcome

data.23 First, we motivate the problem with an example from the Progresa evaluation. Then, we

present the identifying assumptions in the presence of non-response and show their sharp testable

implications when baseline outcome data is available for both completely and stratified randomized

experiments. We further examine the role of the widely-used differential attrition rate test and

discuss the implications of our theoretical analysis for empirical practice.

3.1 Motivating Example

To illustrate the problem of attrition in field experiments, we use data collected for the randomized

evaluation of Progresa, a social program in Mexico that provides cash to eligible poor households

on the condition that children attend school and family members visit health centers regularly

(Skoufias, 2005). The evaluation of Progresa relied on the cluster-level random assignment of

320 localities into the treatment group and 186 localities into the control group. These localities,

which constitute the study population, were selected to be representative of a larger population of

6396 eligible localities across seven states in Mexico.24 The surveys conducted for the experiment

include a baseline and three follow-up rounds collected 5, 13, and 18 months after the program

began.25 We examine two outcomes of the evaluation that have been previously studied: (i) current

school enrollment for children 6 to 16 years old, and (ii) paid employment for adults in the last

week.

coefficients on treatment and the baseline covariates.
23Our framework focuses on cases where non-response is only an issue at follow-up. In practice, attrition at baseline

is common. This non-response issue does not affect the validity of our framework if the survey were completed before
treatment was assigned. Since the study population is defined by the baseline respondents, baseline attrition may
affect the interpretation of internal validity for the study population. This is a concern if the baseline sample was
intended to be representative of a larger population and the baseline attritors are substantively different from the
baseline respondents.

24Localities were eligible if they ranked high on an index of deprivation, had access to schools and a clinic, and
had a population of 50 to 2500 people. See INSP (2005) for details about the experiment. For this analysis, we use
the evaluation panel dataset, which can be found on the official website of the evaluation at https://evaluacion.
prospera.gob.mx/es/eval_cuant/p_bases_cuanti.php.

25The baseline was collected in October 1997 and the three follow-ups were collected in October 1998, June 1999,
and November 1999.
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Table 2: Summary Statistics for the Outcomes of Interest for Progresa

Full Sample Respondent Subsample at Follow-up

Round N Control
Mean T −C p-value Attrition

Rate
Control
Mean T −C p-value

Panel A. School Enrollment (6-16 years old)

Baseline 24353 0.824 0.007 0.455
Pooled 0.183 0.793 0.046 0.000
1st 0.142 0.814 0.043 0.000
2nd 0.234 0.829 0.046 0.000
3rd 0.174 0.740 0.047 0.000

Panel B. Employment Last Week (18+ years old)

Baseline 31237 0.471 -0.006 0.546
Pooled 0.161 0.464 0.014 0.002
1st 0.096 0.460 0.016 0.016
2nd 0.196 0.459 0.009 0.138
3rd 0.192 0.472 0.018 0.001

Notes: T and C refer to treatment and control group, respectively. T −C is the difference in sample means between the
treatment and control groups and the p-value is estimated with a regression of outcome on treatment that clusters standard
errors at the locality level. The attrition rates reported are conditional on responding to the baseline survey. Pooled refers to
data from all three follow-ups combined.

In Table 2, we report the initial sample size and summary statistics for each outcome by treat-

ment group at baseline and follow-up. The failure to reject the null hypothesis of the equality

of means across the treatment and control groups at baseline is suggestive evidence that the ran-

domization of localities into treatment and control was implemented correctly. In the context of

treatment randomization and absence of attrition, the difference in a mean outcome across treat-

ment and control groups at follow-up would identify the average treatment effect for the study

population.26 Pooling data from the three follow-up rounds, we would conclude that the impact

of Progesa on school enrollment (adult employment) is an increase of 4.6 (1.4) percentage points.

The attrition rate, however, varies from 10% to 24% depending on the outcome and the follow-up

round. These attrition rates raise the question of whether these treatment effect estimates are unbi-

ased for at least one of two objects of interest: (i) the average treatment effect for the respondent

subpopulation (ATE-R) or (ii) the average treatment effect for the entire study population (ATE).

In order to understand whether attrition affects the internal validity of this experiment, we in-

spect the mean baseline outcomes across the four treatment-response subgroups. For the outcome

of school enrollment, there are two distinct patterns. First, baseline school enrollment is similar

26Here we follow our convention of referring to a “difference in population means” as a “difference in means.”
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across treatment and control respondents as well as treatment and control attritors. Second, we

find meaningful differences when we compare respondents and attritors: baseline school enroll-

ment is around 87% for the respondents and 61% for the attritors in the pooled follow-up sample.

Taken together, these two patterns suggest that while the unobservables that affect the outcome

are correlated with response, they are still independent of the treatment within respondents and

within attritors. As we formalize in the next section, independence between treatment status and

the unobservables that affect the outcome conditional on response status constitutes the identify-

ing assumption of internal validity for the respondents (IVal-R assumption). We show that the

IVal-R assumption implies the identification of treatment effects for the respondent subpopulation

and that its testable implication is that the distribution of a baseline outcome is identical across

treatment and control respondents as well as treatment and control attritors. Applying this test to

school enrollment in Column 7 of Table 3, we do not reject the IVal-R assumption.27 If the IVal-R

assumption does hold for this outcome, then the difference in means across treatment and control

respondents at follow-up identifies an average treatment effect for the respondents (ATE-R).

Table 3: Internal Validity in the Presence of Attrition for Progresa

Follow-up
Sample Attrition Rate Mean Baseline Outcome by Group Test of

IVal-R
Test of
IVal-P

C Differential TR CR TA CA p-value p-value
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. School Enrollment (6-16 years old)

Pooled 0.187 -0.007 0.878 0.874 0.615 0.605 0.836 0.000
1st 0.150 -0.013 0.875 0.871 0.550 0.554 0.810 0.000
2nd 0.244 -0.017 0.901 0.897 0.590 0.595 0.824 0.000
3rd 0.168 0.009 0.859 0.856 0.697 0.663 0.217 0.000

Panel B. Employment Last Week (18+ years old)

Pooled 0.157 0.007 0.463 0.468 0.472 0.486 0.698 0.132
1st 0.100 -0.007 0.464 0.471 0.472 0.473 0.825 0.860
2nd 0.195 0.001 0.463 0.465 0.474 0.496 0.566 0.058
3rd 0.175 0.027 0.463 0.469 0.471 0.481 0.769 0.503

Notes: The mean baseline outcomes correspond to the groups of treatment respondents (TR), control respondents (CR), treatment
attritors (TA), and control attritors (CA). Pooled refers to all the three follow-ups. The tests of internal validity were conducted using
the regression tests proposed in Section B. All regression tests use clustered standard errors at the locality level.

27Note that the two outcomes we examine here are binary, so the equality of means is equivalent to a distributional
equality. It is worth noting that a multiple testing correction would not change the decisions of any of the tests in our
example. For instance, applying the Bonferroni correction for each outcome would yield a significance level for each
hypothesis of 0.63% to control a family-wise error rate of 5% across the eight tests we conduct.
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Next, we examine the second outcome, adult employment, as observed at baseline. In contrast

to school enrollment, adult employment is similar across all four treatment-response subgroups.

This pattern indicates that the unobservables that determine the outcome are independent of treat-

ment and response status. This is consistent with the identifying assumption for internal validity

for the study population (the IVal-P assumption), which we formally define in the next section.

We then show that under random assignment the IVal-P assumption implies the identification of

treatment effects for the study population and its testable implication is indeed that the distribution

of baseline outcome is identical across all four treatment-response subgroups. When we formally

test the implication of the IVal-P assumption for adult employment, we do not reject it (Column 8

of Table 3). Thus, we do not reject the assumption that ensures that the difference in mean employ-

ment rates between treatment and control respondents at follow-up identifies not only the ATE-R

but also the average treatment effect (ATE). For the outcome of school enrollment, however, we do

reject the IVal-P assumption (Column 8 of Table 3), and thus the estimated treatment effect cannot

be interpreted as internally valid for the study population. This is consistent with our previous

observation that the children that are observed in the follow-up data are substantially different at

baseline from those that are not.

Understanding treatment effects for the study population is especially relevant to understanding

the impact of large-scale programs such as Progresa, where the study population is representative

of a larger population. In this type of study, if we do reject the IVal-P assumption but not the

IVal-R assumption for an outcome such as school enrollment, we can still draw inferences about

an average treatment effect on a larger population. That average treatment effect, however, is a

local average treatment effect for the type of participants for which there would be follow-up data

available for a given outcome.

3.2 Internal Validity in the Presence of Attrition

In this section, we derive the testable implications of our distributional and mean identifying as-

sumptions. We also present the extension of the results to stratified randomization and heteroge-
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neous treatment effects, formally defined as conditional average treatment effects.

3.2.1 Internal Validity and its Testable Restrictions

In a field experiment with baseline outcome data, we observe individuals i = 1, . . . ,n over two time

periods, t = 0,1. We will refer to t = 0 as the baseline period, and t = 1 as the follow-up period.

Individuals are randomly assigned in the baseline period to the treatment and control groups. We

use Dit to denote treatment status for individual i in period t, where Dit ∈ {0,1}.28 Hence, the

treatment and control groups can be characterized by Di ≡ (Di0,Di1) = (0,1) and Di = (0,0),

respectively. For notational brevity, we let an indicator variable Ti denote the group membership.

Specifically, Ti = 1 if individual i belongs to the treatment group and Ti = 0 if individual i belongs

to the control group.

For each period t = 0,1, we observe an outcome Yit , which is determined by the treatment status

and a dU ×1 vector of time-invariant and time-varying variables, Uit ≡ (α ′
i ,η

′
it)

′,

Yit = µt(Dit ,Uit). (1)

Given this structural function, we can define the potential outcomes Yit(d) = µt(d,Uit) for d = 0,1.

We use structural notation here since it is more common in the panel literature. This notation also

allows us to refer to the unobservables that affect the outcome, which play an important role in

understanding internal validity questions in our problem. To simplify illustration, we postpone the

discussion of covariates to Section 4.2.

Consider a properly designed and implemented RCT such that by random assignment the treat-

ment and control groups have the same distribution of unobservables. That is, (Ui0,Ui1)⊥ Ti, which

can be expressed as (Yi0(0),Yi0(1),Yi1(0),Yi1(1))⊥ Ti using the potential outcomes notation. This

implies that the control group provides a valid counterfactual outcome distribution for the treatment

group, i.e. Yi1(0)|Ti = 1 d
= Yi1|Ti = 0, where d

= denotes the equality in distribution. In this case,

any difference in the outcome distribution between treatment and control groups in the follow-up
28The extension to the multiple treatment case is in Section SA4 of the online appendix.
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period can be attributed to the treatment. The ATE can be identified as the difference in mean

outcomes between the treatment and control group,

E[Yi1(1)−Yi1(0)]︸ ︷︷ ︸
AT E

= E[Yi1|Ti = 1]−E[Yi1|Ti = 0]. (2)

We now introduce the possibility of attrition in our setting. We assume that all individuals

respond in the baseline period (t = 0), but there is possibility of non-response in the follow-up

period (t = 1). Response status in the follow-up period is determined by the following equation,29

Ri = ξ (Ti,Vi), (3)

where Vi denotes a vector of unobservables that determine response status and potential response

can be defined as Ri(τ) = Ri(τ,Vi) for τ = 0,1. If individual i responds, then Ri = 1, otherwise it is

zero. As a result, instead of observing the outcome for all individuals in the treatment and control

groups at follow-up, we can only observe the outcome for respondents in both groups. Random

assignment in the presence of attrition, (Ui0,Ui1,Vi)⊥ Ti, does not ensure that comparisons between

treatment and control respondents are solely attributable to the treatment, since these comparisons

are conditional on being able to observe individuals at follow-up (Ri = 1).30

Two questions arise in this setting. First, do the control respondents provide an appropriate

counterfactual for the treatment respondents, Yi1|Ti = 0,Ri = 1 d
=Yi1(0)|Ti = 1,Ri = 1? This would

imply that we can obtain internally valid estimands for the respondent subpopulation, such as the

ATE-R, E[Yi1(1)−Yi1(0)|Ri = 1]. Second, do the outcome distributions of treatment and control

respondents in the follow-up period identify the potential outcome distribution of the study popu-

lation with and without the treatment, Yi1|Ti = τ,Ri = 1 d
= Yi1(τ) for τ = 0,1? This would imply

that we can obtain internally valid estimands for the study population, such as the ATE.

29Since non-response is only allowed in the follow-up period, we omit time subscripts from the response equation
for notational convenience.

30We use a random assignment condition similar to Lee (2009). Using potential outcome and response notation, we
can express the random assignment condition as (Yi0(0),Yi0(1),Yi1(0),Yi1(1),Ri(0),Ri(1))⊥ Ti which is similar to Lee
(2009).
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The next proposition provides sufficient conditions to obtain each of the aforementioned equal-

ities as well as their respective sharp testable restrictions. Restrictions are sharp when they are the

strongest implications that can be tested given the available data (see Figure 4). Part a (b) of the

following proposition refers to the case where we can obtain valid estimands for the respondent

subpopulation (study population). The proof of the proposition is given in Section SA2 of the

online appendix.

Proposition 1. Assume (Ui0,Ui1,Vi)⊥ Ti.31

(a) If (Ui0,Ui1)⊥ Ti|Ri holds, then

(i) (Identification) Yi1|Ti = 0,Ri = 1 d
= Yi1(0)|Ti = 1,Ri = 1

(ii) (Sharp Testable Restriction) Yi0|Ti = 0,Ri = r d
= Yi0|Ti = 1,Ri = r for r = 0,1.

(b) If (Ui0,Ui1)⊥ Ri|Ti holds, then

(i) (Identification) Yi1|Ti = τ,Ri = 1 d
= Yi1(τ) for τ = 0,1.

(ii) (Sharp Testable Restriction) Yi0|Ti = τ,Ri = r d
= Yi0 for τ = 0,1, r = 0,1.

Proposition 1(a) relies on the assumption of random assignment conditional on response sta-

tus (IVal-R assumption).32 This assumption implies that the outcome distributions of treatment

and control respondents at endline would have been the same if the treatment status had never

been assigned. We refer to this equality (a.i) as internal validity for the respondent subpopulation

(IVal-R). When IVal-R holds, the difference in means between treatment and control respondents

identifies the ATE-R. IVal-R cannot be tested directly, however, since treatment was in fact as-

signed. Thus, we derive a sharp testable restriction (a.ii) of the IVal-R assumption, which exploits

31The random assignment condition can be expressed as (Yi0(0),Yi0(1),Yi1(0),Yi1(1),Ri(0),Ri(1)) ⊥ Ti in potential
outcome and response notation.

32Under random assignment, the IVal-R assumption implies (Ui0,Ui1)|Ri(0) = 1 d
= (Ui0,Ui1)|Ri(1) = 1. Proposition

3 provides different sets of primitive conditions on the distribution of unobservables of different potential response
subpopulations and attrition rates that imply the IVal-R assumption.
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the information in the baseline data.33 This restriction implies that the appropriate attrition test

(when the object of interest is the treatment effect on the respondent subpopulation) is a joint test

of the equality of the baseline outcome distribution between treatment and control respondents as

well as treatment and control attritors.34

The assumption in Proposition 1(b), under random assignment, implies that treatment and re-

sponse status are jointly independent of the unobservables in the outcome equation.35 As a result,

in the absence of treatment, all four treatment-response subgroups would have the same outcome

distribution. We refer to this case as internal validity for the study population (IVal-P) and the

assumption in (b) as the IVal-P assumption. When IVal-P holds, the ATE is identified, and so

are quantile and other distributional treatment effects for the study population. The sharp testable

restriction of the IVal-P assumption under random assignment is given in (b.ii).36

3.2.2 Mean Tests of Internal Validity

The vast majority of selective attrition tests implemented in the literature are based on restrictions

on the mean of the baseline variables in question. The IVal-R and IVal-P assumptions we present

33While it is theoretically possible for identification to hold while the testable restriction is violated, it is not an
interesting case empirically. If a field experimentalist finds violations of the testable implication of the IVal-R (or
IVal-P) assumption at baseline, it is highly unlikely that they will discount this evidence and argue that identification
of the ATE-R (or ATE) remains possible from a simple difference of means between treatment and control respondents.

34If IVal-R is of interest, a natural question is whether one should simply test the implication of (Ui0,Ui1)⊥ Ti|Ri =
1 in lieu of the IVal-R assumption ((Ui0,Ui1) ⊥ Ti|Ri). This would be empirically relevant if it is plausible that
(Ui0,Ui1)⊥ Ti|Ri = 1 holds while (Ui0,Ui1)⊥ Ti|Ri = 0 is violated. Using the subgroups defined by potential response

status, we note that a primitive condition for this to hold is (Ui0,Ui1)|(Ri(0),Ri(1))
d
= (Ui0,Ui1)|max{Ri(0),Ri(1)}.

This condition is not empirically plausible since it implies that the unobservable distribution is the same for always-
responders, treatment-only and control-only responders, but different for the never-responders.

35This implies missing-at-random as defined in Manski (2005). In the cross-sectional setup, the missing-at-random
assumption is given by Yi|Ti,Ri

d
= Yi|Ti. Manski (2005) establishes that this assumption is not testable in that context.

We obtain the testable implications by exploiting the panel structure. It is important to emphasize that this definition
of missing-at-random is different from the assumption in Hirano et al. (2001) building on Rubin (1976), which would
translate to Yi1 ⊥ Ri|Yi0,Ti in our notation. Finally, while we do not distinguish between observables and unobservables
here, it is worth noting that Assumption 3 in Huber (2012) provides a set of conditions that imply the assumption in
Proposition 1(b).

36We can use a similar version of these tests to understand the implications of attrition for the internal validity
of the intent-to-treat analysis in the presence of imperfect treatment compliance. Developing tests of the identifying
assumptions for LATE-type objects in the presence of both attrition and noncompliance is beyond the scope of the
present paper. For researchers interested in corrections in this setting, the bounding approaches for LATE-type objects
proposed in Chen and Flores (2015b) may be useful.
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above ensure the identification of distributional treatment effects in addition to average treatment

effects. In some experiments, however, researchers may be solely interested in average treatment

effects. Here, we discuss the weaker conditions required to identify these objects and their sharp

testable implications. Section B presents regression-based tests for these restrictions.

If the researcher is interested in mean impacts for the respondent subpopulation, then the IVal-

R assumption in Proposition 1(a), while sufficient, is stronger than required. A weaker condition

that ensures that the average potential outcome without the treatment is identical for treatment and

control respondents as well as treatment and control attritors, specifically

E[Yit(d)|Ti,Ri] = E[Yit(d)|Ri], d = 0,1, t = 0,1, (Mean IVal-R Assumption) (4)

implies the identification of the ATE-R. Its testable implication is the mean version of the testable

restriction in Proposition 1(a.ii),

E[Yi0|Ti,Ri] = E[Yi0|Ri], (5)

so it also includes testable restrictions on attritors and respondents. We will refer to a test of the

mean equality restrictions in (5) as a mean IVal-R test.

Similarly, if the object of interest is the ATE for the study population, then the relevant identi-

fying assumption is

E[Yit(d)|Ti,Ri] = E[Yit(d)], d = 0,1, t = 0,1, (Mean IVal-P Assumption) (6)

which ensures that the average potential outcomes are identical across the four treatment-response

subgroups. The testable restriction of this assumption,

E[Yi0|Ti,Ri] = E[Yi0], (7)

18



involves all treatment-response subgroups as its distributional version in Proposition 1(b.ii). We

will refer to a test based on (7) as a mean IVal-P test.

In Section SA5 of the online appendix, we conduct a simulation exercise to analyze the perfor-

mance of the mean and distributional tests of the IVal-R and IVal-P assumptions under different

scenarios of internal validity. The results illustrate that the tests control size and behave according

to our theoretical analysis.

3.2.3 Heterogeneous Treatment Effects and Stratified Randomization

In this section, we extend our analysis to discuss heterogeneous treatment effects and stratified

randomization. Heterogeneous treatment effects, more formally referred to as conditional average

treatment effects (CATE), are of interest in many experiments. Stratified randomization is also

common in empirical practice. Sometimes it is a necessity of the design, such as when the study

is randomized within roll-out waves or locations. At other times, it is included in the experimental

design with the aim of increasing precision and reducing bias of both average and heterogeneous

treatment effects. The results in this section are relevant both for stratified randomized experiments

and for completely randomized experiments that estimate heterogeneous treatment effects.37

In the following, let Si denote the stratum of individual i which has support S , where |S | <

∞.38 To exclude trivial strata, we assume that P(Si = s)> 0 for all s ∈ S throughout the paper. In

a stratified randomized experiment, random assignment is defined by (Ui0,Ui1,Vi)⊥ Ti|Si, whereas

in a completely randomized experiment this conditional independence assumption holds as an

implication of simple randomization ((Si,Ui0,Ui1,Vi)⊥ Ti). As a result, the following proposition

applies to both completely and stratified randomized experiments.

Proposition 2. Assume (Ui0,Ui1,Vi)⊥ Ti|Si.

(a) If (Ui0,Ui1)⊥ Ti|Si,Ri, then

37This framework can also be extended to test unconfoundedness assumptions, which motivate IPW-type attrition
corrections (Huber, 2012), using baseline data. While interesting, this issue is outside the scope of the present paper.

38The finiteness of the number of strata motivates the finite-support assumption on S . It is worth noting, however,
that the results in the proposition hold for continuous conditioning variables as well.
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(i) (Identification) Yi1|Ti = 0,Si = s,Ri = 1 d
= Yi1(0)|Ti = 1,Si = s,Ri = 1, for s ∈ S .

(ii) (Sharp Testable Restriction) Yi0|Ti = 0,Si = s,Ri = r d
= Yi0|Ti = 1,Si = s,Ri = r for r =

0,1, s ∈ S .

(b) If (Ui0,Ui1)⊥ Ri|Ti,Si, then

(i) (Identification) Yi1|Ti = τ,Si = s,Ri = 1 d
= Yi1(τ)|Si = s, for τ = 0,1, s ∈ S .

(ii) (Sharp Testable Restriction) Yi0|Ti = τ,Si = s,Ri = r d
=Yi0(0)|Si = s for τ = 0,1, r = 0,1,

s ∈ S .

The equality in (a.i) implies that we can identify the average treatment effect conditional on S

for respondents as the difference in mean outcomes between treatment and control respondents in

each stratum,

E[Yi1(1)−Yi1(0)|Ti = 1,Si = s,Ri = 1]

=E[Yi1|Ti = 1,Si = s,Ri = 1]−E[Yi1|Ti = 0,Si = s,Ri = 1]. (CATE-R) (8)

Alternatively, the ATE-R can then be identified by averaging over Si, i.e. ∑s∈S P(Si = s|Ri =

1)(E[Yi1|Ti = 1,Si = s,Ri = 1]−E[Yi1|Ti = 0,Si = s,Ri = 1]). The testable restriction in (a.ii) is

the identity of the distribution of baseline outcome for treatment and control groups conditional on

response status and stratum. In other words, the equality of the outcome distribution for treatment

and control respondents (as well as for treatment and control attritors) conditional on stratrum is

the sharp testable restriction of the IVal-R assumption in the case of block randomization. The

results in part (b) of the proposition refer to IVal-P in the context of block randomization. Thus,

they are also conditional versions of the results in Proposition 1(b).

Randomization and regression-based tests of the restrictions in Proposition 2(a.ii) and (b.ii) are

provided in Sections A and B, respectively. The key distinction between the tests for stratified and

completely randomized experiments is that in the former permutations are performed within strata.
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3.3 Differential Attrition Rates and Internal Validity

The differential attrition rate test is the most widely used according to our review. Thus, we

examine the relationship between internal validity and differential attrition rates (P(Ri = 0|Ti =

1) ̸= P(Ri = 0|Ti = 0)). Our goal in this section is to formally understand the properties of the

differential attrition rate test as a test of internal validity.

We first adapt the LATE framework (Imbens and Angrist, 1994; Angrist, Imbens and Ru-

bin, 1996) to potential response. Specifically, in order to understand how treatment and con-

trol respondents and attritors consist of different response types, we modify the four types from

the LATE literature: never-takers, always-takers, compliers and defiers. We establish four sim-

ilar types as shown in Figure 2: never-responders ((Ri(0),Ri(1)) = (0,0)), always-responders

((Ri(0),Ri(1)) = (1,1)), treatment-only responders ((Ri(0),Ri(1)) = (0,1)), and control-only re-

sponders ((Ri(0),Ri(1)) = (1,0)).

Figure 2: Respondent and Attritor Subgroups

Control
(Ti = 0)

Treatment
(Ti = 1)

Attritors
(Ri = 0)

Treatment-only responders
Never responders

Control-only responders
Never responders

Respondents
(Ri = 1)

Control-only responders
Always responders

Treatment-only responders
Always responders

We can now examine the attrition rates in the treatment and control group and how they relate to

the different response types. By random assignment, the distribution of response types is identical

across treatment and control groups, (Ri(0),Ri(1))⊥ Ti. In other words, the treatment and control

groups consist of the same proportion of never responders, treatment-only responders, control-only

responders and always responders, which we denote by p00, p01, p10 and p11, respectively. With

the aid of Figure 2, we note that the attrition rate in the control group equals the proportion of

never-responders and treatment-only responders, whereas the attrition rate in the treatment group
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equals the proportion of never-responders and control-only responders, specifically

P(Ri = 0|Ti = 0) = p00 + p01, P(Ri = 0|Ti = 1) = p00 + p10. (9)

The difference in attrition rates across groups depends on the difference between the proportion of

treatment-only and control-only responders, i.e. P(Ri = 0|Ti = 0)−P(Ri = 0|Ti = 1) = p01 − p10.

Thus, attrition rates are equal if the proportions of treatment-only and control-only responders are

equal.

Next, we illustrate the relationship between differential attrition rates and the IVal-R assump-

tion (Proposition 1(a)), (Ui0,Ui1)⊥ Ti|Ri. The proof of the proposition is given in Section SA2 of

the online appendix.

Proposition 3. Suppose, in addition to (Ui0,Ui1,Vi)⊥ Ti, one of the following is true,

(i) (Ui0,Ui1)⊥ (Ri(0),Ri(1)) (Unobservables in Y ⊥ Potential Response)

(ii) Ri(0)≤ Ri(1) (wlog), (Monotonicity)

& P(Ri = 0|Ti) = P(Ri = 0) (Equal Attrition Rates)

(iii) (Ui0,Ui1)|Ri(0),Ri(1)
d
= (Ui0,Ui1)|Ri(0)+Ri(1) (Exchangeability)

& P(Ri = 0|Ti) = P(Ri = 0) (Equal Attrition Rates)

then (Ui0,Ui1)⊥ Ti|Ri.

The main takeaway from the above proposition is that equal attrition rates alone do not consti-

tute a sufficient condition for internal validity. Proposition 3(i) provides a case in which equal at-

trition rates are not necessary for internal validity. The assumption requires that all four treatment-

response subgroups have the same unobservable distribution, which not only implies IVal-R, but

also IVal-P, under random assignment. In the two other cases, (ii) and (iii), equal attrition rates to-

gether with an additional assumption imply the IVal-R assumption. The monotonicity assumption

in (ii) is from Lee (2009) and rules out control-only responders. The exchangeability restriction
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allows for both treatment-only and control-only responders, but it assumes that these two types

have the same distribution of (Ui0,Ui1). This assumption may be plausible in experiments with

two treatments.

Using these insights, we now provide two simple examples that illustrate that differential attri-

tion rates can coincide with internal validity (Example 1) and that equal attrition rates can coincide

with a violation of internal validity (Example 2). In Section SA5 of the online appendix, we design

simulation experiments that mimic both examples to illustrate these points numerically.

Example 1. (Internal Validity & Differential Attrition Rates)

Assume that potential response satisfies monotonicity, i.e. p10 = 0, and all response types have

the same unobservable distribution, (Ui0,Ui1)⊥ (Ri(0),Ri(1)). Panel A of Figure 3 illustrates the

resulting distribution of Uit . By the above proposition, IVal-P holds under random assignment,

since (Ui0,Ui1) ⊥ (Ri(0),Ri(1)) ⇒ (Ui0,Ui1)|Ti,Ri
d
= (Ui0,Ui1). Suppose that there is a group of

individuals for whom it is too costly to respond if they are in the control group, so they only

respond if assigned the treatment. Due to the presence of these treatment-only responders (p01 >

0), the attrition rates in the treatment and control groups are not equal, specifically P(Ri = 0|Ti =

1) = p00, and P(Ri = 0|Ti = 0) = p00 + p01. This example thereby provides a case where we

have differential attrition rates even though not only IVal-R but also IVal-P holds. Under these

conditions, the differential attrition rate test would not control size as a test of internal validity as

we illustrate in the simulation section in the appendix.

Example 2. (Equal Attrition Rates & Violation of Internal Validity)

Assume that potential response violates monotonicity, such that there are treatment-only and control-

only responders,39 but their proportions are equal (p10 = p01 > 0), which yields equal attrition

39Violations of monotonicity in response are especially plausible in settings where we have two treatments, but they
are also likely in settings with a single treatment if multiple factors are influencing attrition. For example, reciprocity
may increase the propensity to respond for treated individuals inducing treatment-only responders. Treatment may
also increase the opportunity cost of time for some study participants if they are more likely to be employed or their
businesses are more successful, which would lead to control-only responders. Another example of a violation is given
in Glennerster and Takavarasha (2013). Suppose the treatment is a remedial program for public schools targeted
toward students that have identified deficiencies in mathematics. Response in this setting is determined by whether
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Figure 3: Distribution of Uit for Different Response Types
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Notes: The above figure illustrates the distribution of Uit for the different subpopulations in Examples 1 and 2,
where we assume Uit |(Ri(0),Ri(1)) = (r0,r1)

i.i.d.∼ N(δr0r1 ,1) for all r0,r1 ∈ {0,1}2 for t = 0,1. Panel A represents
Example 1 where we assume (Ui0,Ui1) ⊥ (Ri(0),Ri(1)), hence δ00 = δ01 = δ11. Panel B represents Example 2
where δr0r1 is unrestricted for (r0,r1) ∈ {0,1}2.

rates across treatment and control groups.40 If (Ui0,Ui1) ̸⊥ (Ri(0),Ri(1)), then the different re-

sponse types will have different distributions of unobservables, as illustrated in Panel B of Fig-

ure 3. As a result, the distribution of (Ui0,Ui1) for treatment and control respondents defined in

(SA2.2)-(SA2.3) will be different and hence IVal-R is violated.

A further limitation of the focus on the differential attrition rate test in empirical practice is

that we cannot use it to test IVal-P, even in cases where the differential attrition rate test is a valid

test of IVal-R. For instance, consider the case in which monotonicity holds and the attrition rates

are equal across groups. We can then identify the ATE-R, since the respondent subpopulation is

composed solely of always-responders as pointed out above. If the researchers are interested in

identifying the treatment effect for the study population, however, they would have to rely on our

proposed tests of the IVal-P assumption, specifically Proposition 1(b.ii).

students remain in the public school, which depends on their treatment status and initial mathematical ability, Vi. On
one side, low-achieving students would drop out of school if they are assigned to the control group, but would remain
in school if assigned the treatment. On the other side, parents of high-achieving students in the treatment group may
be induced to switch their children to private schools because they are unhappy with the larger class sizes, while in the
control group those students would remain in the public school.

40In the multiple treatment case, equal attrition rates are possible without requiring any two response types to have
equal proportions in the population. See Section SA3 in the online appendix for a derivation.
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4 Implications for Empirical Practice

Our theoretical analysis has multiple implications for empirical practice. For one, it underscores

the importance of the object of interest in determining the appropriateness of an attrition test.

Hence, explicitly stating the object of interest, whether it is the ATE-R, ATE, CATE-R or CATE,

is important to justify a particular attrition test.

Our results further clarify the interpretation of attrition tests in the field experiment literature.

The differential attrition rate test, which is implemented in 79% of papers in our review, is not

based on a necessary condition of IVal-R, and is not designed to test IVal-P. The selective attrition

tests, used in 61% of the papers, are implemented with substantial heterogeneity.

The null hypotheses of the selective attrition tests in the literature are largely implications of

the IVal-R assumption. The most common version of this test (42% of all papers) uses respondents

only; and hence, it does not exploit all the information in the baseline sample, specifically the

attritors.41 In contrast, the null hypothesis of our proposed IVal-R test is a joint hypothesis of the

equality of the baseline outcome distribution between the treatment and control respondents as

well as the treatment and control attritors.42 Seventeen percent of papers do implement a selective

attrition test that includes both respondents and attritors, suggesting that some authors are aware of

the value of this information.43 Some of the null hypotheses they use, however, do not constitute

IVal-R or IVal-P tests. This is perhaps unsurprising given the wide range of null hypotheses tested.

Although authors do not in general conduct a direct test of IVal-P, the inclusion of respondents and

41See Section C.2 in the online appendix for details on the empirical strategies used in the field experiment literature
to conduct this test. In addition to the null hypotheses used, an important distinction between our proposed approach
to attrition testing and the approach taken in the literature is the role of baseline covariates. For a discussion of these
issues, see Section 4.2.

42The regression versions of our tests are in Section B.
43The implementation of the tests that include respondents and attritors fall broadly into two categories. The first

relies on regressions of the baseline variables on a fully saturated regression model of response and treatment (see
Section C). While the regression model is the one we use in our regression test in Section B, the null hypothesis we
found in the literature only tests the equality of means between the treatment and control respondents. The second
category of tests relies on a linear probability model of response on treatment, baseline variables and their interactions.
However, there is a variety of null hypotheses used which are provided in Section C. Some of the null hypotheses test
whether response is independent of treatment conditional on baseline variables, while others test whether response
is independent of treatment and all baseline variables. This second category of tests relies on a parametric model
of response that will likely suffer from misspecification bias due to the use of the linear specification with a binary
outcome. In contrast, our proposed tests are nonparametric.
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attritors in some selective attrition tests as well as the use of determinants of attrition tests suggest

that some authors are likely interested in internally valid estimates for the study population.

While the focus in the literature on testing for internal validity for the respondents is natural

given that it is the first-order consideration for internal validity, an important question remains:

in what settings are the respondents a policy-relevant population? In answering this question, the

researchers may first consider whether there is likely to be treatment effect heterogeneity along

response status, and what the implications of that heterogeneity might be. For example, if more

educated people benefit more from a job training program due to human capital complementarities,

and also are more likely to respond to surveys, then the ATE-R may be larger than the ATE.

In such a circumstance, the question that the researcher must consider is whether the program

can and should be targeted to the respondent subpopulation or if it should still be targeted to the

study population. To answer this question, attrition corrections can uncover a range of plausible

values for the ATE, and those values can be weighed against the potential cost-effectiveness of

the program when targeted either to the respondents or to the study population. In other cases,

however, the ATE-R may suggest a null result when the ATE could be positive. For example,

if everyone who benefits from a human capital intervention migrates, then the ATE-R may not

be the local average treatment effect of interest. Thus, researchers should combine contextual

understanding with findings from attrition corrections.

It is also relevant to consider the role of interpreting the ATE-R or the ATE with regards to

external validity. Many RCTs rely on samples of convenience. Thus, if researchers reject internal

validity for the study population, but not for the respondents, then the researcher will assess exter-

nal validity from a somewhat different sample of convenience than originally intended. In some

cases, however, including the Progresa example, the study population is randomly selected from

a larger population of interest. In these cases, we would argue, the ATE is always an object of

interest. That said, the ATE-R is still potentially an object of interest in these settings, since the

respondents are still representative in such cases of a larger population of potential respondents.
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Figure 4: Graphical Illustration of Sharp Testable Restriction
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4.1 Attrition Tests as Identification Tests

Our approach emphasizes that attrition tests are identification tests. While rejection of such tests

is clear evidence against the identifying assumption in question, it is possible to fail to reject

such tests when the assumption is in fact violated. This is because in general we can only test

identifying assumptions by implication. In other words, their testable restrictions are necessary,

but not sufficient for the identifying assumption to hold.44 Figure 4 graphically presents this issue.

The light gray area represents cases where the identifying assumption is violated yet the sharp

testable restriction holds true.

Figure 4 also illustrates that the sharp testable restriction is the strongest testable implication of

the identifying assumption. Basing a test of the identifying assumption on another implication (C)

leads to more cases where the implication holds yet the identifying assumption fails, represented

by the dark gray area. Using sharp testable restrictions eliminates the cases in the dark gray area.

The cases in the light gray area, which are unavoidable in general, complicate the interpretation of

non-rejection of any identification test. Fortunately, our framework allows us to characterize the

set of conditions under which this may or may not be a concern.

44In Footnote 33, we elaborate on why the theoretical case where the testable restriction is violated while identifi-
cation holds is not empirically relevant in our setting.
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For both the IVal-R and IVal-P assumptions, there is a set of conditions in our setup under which

identification and the testable implication hold jointly. These conditions consist of time homogene-

ity of the structural function and the unobservable distribution for the different treatment-response

subpopulations (Chernozhukov et al., 2013).45 This assumption may be plausible in some field

experiments where researchers do not expect the structural function or the determinants of the out-

come to vary between the baseline and follow-up surveys. To provide a simple example, suppose

that the outcome equation is determined by ability (U1
i ) and the opportunity cost of time (U2

i ),

where the super-script is an index for the unobservables. We assume that both unobservables are

time-invariant here to simplify notation. For a more general example with time-varying variables,

see Section SA2.1 in the online appendix. Now suppose that ability fulfils the IVal-R assumption

(U1
i ⊥ Ti|Ri), whereas the cost of time does not (U2

i ̸⊥ Ti|Ri). If ability and the cost of time both

enter the baseline and follow-up outcomes, for instance,

Yi0 =U1
i +U2

i

Yi1 =U1
i +U2

i +Ti(U1
i +U2

i )

then comparisons between treatment and control respondents at follow-up would not be solely

attributable to the treatment. Baseline outcome data would allow us to detect a violation of internal

validity by comparing treatment and control respondents as well as treatment and control attritors.

Now let us consider a case where baseline outcome data would not help us detect such a viola-

tion of internal validity. This would require baseline outcome to only be a function of ability and

not the cost of time, which only determines the outcome in the follow-up period,

Yi0 =U1
i

Yi1 =U1
i +U2

i +Ti(U1
i +U2

i ).

Since ability fulfils the IVal-R assumption, when comparing baseline outcome data of treatment

45Formally, µ0(d,u) = µ1(d,u) and Ui0|Ti,Ri
d
=Ui1|Ti,Ri.
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and control respondents as well as treatment and control attritors, we would not detect any sub-

stantial differences between these subgroups, even though internal validity is violated.46 While

we focus the example on the IVal-R assumption, similar arguments can be made for the IVal-P

assumption.

A practical implication of our analysis is that when interpreting non-rejection of tests of the

IVal-R or IVal-P assumptions, practitioners should consider whether the relationship between the

outcome and its determinants may have changed over the time span between baseline and follow-

up periods.

4.2 The Role of Covariates

The baseline outcome is a function of the same time-invariant and time-varying unobservables as

the follow-up outcome.47 Thus, our approach to attrition testing as an identification problem in a

panel model yields testable restrictions of the IVal-R and IVal-P assumptions on the baseline out-

come data. Furthermore, in practice, baseline outcome is often the most informative determinant of

future outcomes in various datasets (Bruhn and McKenzie, 2009). As discussed in Section 4.1, this

approach is particularly relevant in field experiments where researchers do not expect the relation-

ship between the outcome and its determinants to vary much between the baseline and follow-up

surveys.

An important question that arises in empirical practice, however, is whether to include covari-

ates in attrition tests. In our review of field experiments, we find that most authors use covariates

in their tests. Furthermore, there are settings where using covariates may be the only way to test

attrition bias. In some experiments, it may not be possible to collect baseline outcome data. Other

experiments target populations for which the baseline outcome (almost) always takes on the same

value by design. For example, job training programs are typically targeted to unemployed people

46An interesting case that we illustrate in Section SA2.1 of the online appendix is that if the cost of time only
interacts with the treatment, the difference in mean outcome between treatment and control respondents identifies an
internally valid estimand that is not equal to the ATE-R.

47Since our framework is explicit about the possibility that the structural function is varying across time, it is
possible that baseline and follow-up outcomes depend on different unobservables as we discuss in Section 4.1.
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and employment may be the main outcome.

The use of covariates in attrition tests is also appropriate in settings where baseline covari-

ates may be more informative for an endline outcome than that outcome at baseline. Over the

long-term, the relationship between the outcome and its determinants may change over different

phases of the lifecycle (µ0(d,u) ̸= µ1(d,u)). For example, labor force participation at age 15 may

not be determined by the same outcome equation as it would be at age 25. The determinants of

other outcomes, such as test scores, may be more stable even over long periods of time, however

(Muralidharan, 2017).

Even over relatively short-time periods, if a study examines a population at different phases

of their life cycle, baseline covariates may be informative at endline relative to baseline outcome.

For instance, consider enrollment as an outcome of interest. In some settings, enrollment in el-

ementary school is highly prevalent and similar across treatment groups due to strict policies on

education and child labor for young kids, while enrollment in secondary education depends on the

opportunity cost of schooling as the potential for labor force participation in the study population

increases. Thus, if enrollment is measured during elementary school at baseline and during sec-

ondary school at follow-up, the structural function governing the relationship between the outcome

and its determinants would change over time in such a setting. Under these conditions, despite the

relatively short time between baseline and follow-up surveys, baseline covariates such as parents’

income, which can determine student labor force participation at endline, may be more relevant

than the baseline outcome for detecting violations of internal validity.

Short-term aggregate shocks can also affect the relationship between an outcome and its deter-

minants.48 In this case, baseline covariates might be informative of the outcome at endline if they

help explain how individuals cope with the impacts of the shock. Consider, for instance, a setting

where consumption is the outcome of interest, and a recession at follow-up induces individuals

to deplete assets and use risk-sharing strategies in order to smooth consumption (i.e., there is a

change in the structural function that determines the outcome). In this setting, data on assets and

48For instance, Rosenzweig and Udry (2019) show that price fluctuations and weather shocks affect the returns to
education and investments in agriculture and nonfarm enterprises.
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social networks at baseline may be informative for consumption at endline and thereby helpful in

detecting violations of internal validity. Baseline covariates, however, would not be more rele-

vant for detecting violations of internal validity if the shock does not change the determinants of

consumption.

Building on our framework, we introduce two types of covariates appropriate for the tests if

authors choose to use covariates. Recall that Uit denotes the determinants of the outcome. Now

suppose that there is a set of covariates Wit that are functions of the determinants of the outcome,

formally

Yit = µt(Dit ,Uit), (10)

Wit = νt(Uit) for t = 0,1. (11)

This definition implies two types of covariates that are appropriate for the attrition tests: (i) covari-

ates that are themselves determinants of the outcome, i.e. W k
it = U j

it for some k, j, k = 1, . . . ,dW ,

j = 1, . . . ,dU , or (ii) “proxy” variables, which are covariates determined by the same factors as the

outcome Yit .49 Since the structural function µt may change over time, researchers should choose

covariates Wit that determine both the outcome at baseline and the outcome at endline. Adding

these types of covariates to the test can help detect violations of internal validity when changes in

the relationship between the outcome and its determinants limit the ability to detect such violations

using baseline outcome data.50 For instance, in the enrollment example discussed above, parental

income is an appropriate covariate for the test since it is more informative regarding potential vi-

olations of internal validity for high school enrollment than enrollment in elementary education at

baseline.

When including covariates, the testable restrictions of the IVal-R and IVal-P assumptions for

a given outcome Yi1 are conditions on the joint distribution of the baseline outcome and covari-

49For instance, if the outcome of interest is children’s test scores, a covariate determinant of the outcome would be
parental education and a “proxy” variable would be a Raven’s or IQ test.

50See Section 4.1 for a discussion of the cases where baseline outcome data can and cannot detect violations of
internal validity.
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ates Zi0 = (Yi0,W ′
i0)

′.51 This outcome-specific approach to including other variables in attrition

tests resonates with the seminal work on clinial trials by Altman (1985), which emphasizes that

imbalance should only concern the researcher if the variable in question is related to the outcome.

The inclusion of covariates that do not meet any of these criteria (Xit ̸=Wit) may lead to a false

rejection of the identifying assumption in question. Thus, if authors plan to use covariates in their

attrition tests, we recommend pre-specifying the baseline covariates that will be included in the

attrition tests for each of the main outcomes. In addition, we bring attention to two potential sources

of over-rejection of internal validity in the literature when including covariates in the selective

attrition test. First, studies that implement the selective attrition tests on all baseline variables,

Zi0 = (Yi0,W ′
i0,X

′
i0)

′, are testing the IVal-R assumption for all variables in the survey as opposed

to the outcome in question only. This IVal-R assumption is a much stronger condition that may be

violated, even if the IVal-R assumption for the outcome in question holds.52 Second, a substantial

proportion of the implementation of selective attrition tests consists of individual tests for each

baseline variable without correcting for multiple testing.

4.2.1 Covariates in the Progresa Example

To illustrate the implementation of attrition tests with covariates, we return to the Progresa exam-

ple from Section 3.1, where we examine two outcomes: (i) current school enrollment for children

6 to 16 years old, and (ii) paid employment for adults in the last week. This is a short-term exper-

iment where the time span between baseline and follow-up surveys does not exceed 21 months.53

In addition, these outcomes are not degenerate or close to degenerate at baseline. For a subset of

the children, however, the baseline outcome is measured in the last two years of primary school.

This means that the outcome at baseline as opposed to endline may be measured at different points

51Naturally, if there is not baseline data available, the testable restrictions of the IVal-R and IVal-P assumptions
would only be on the joint distribution of the covariates (W ′

i0). Section B in the appendix provides details on the
implementation of the regression tests for this multivariate case.

52Formally, the IVal-R assumption relevant to all variables in the survey is (Ei0,Ei1) ⊥ Ti|Ri, where Zit = ξt(Eit)
and Eit = (U ′

it ,η
′
it)

′. However, the IVal-R assumption that ensures identification of treatment effects for the outcome
in question is weaker, since it imposes the conditional random assignment restriction on the unobservables relevant to
that outcome only, Uit .

53Baseline data was collected in October 1997 and the last follow-up was collected in November 1999.
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in the lifecycle. The adult employment outcome, however, does not meet the criteria outlined in

this section for settings where covariates are required. Nonetheless, we apply covariates to both

outcomes as an illustration of how to specify covariates for different outcomes and conduct the

IVal-R and IVal-P tests including covariates. In particular, we choose outcome-specific covariates

for inclusion in the attrition tests that are likely determinants of the outcome at baseline and end-

line.54 Of course, we recommend researchers choose such covariates before endline data becomes

available if possible.

First, we consider the outcome of school enrollment. We choose variables that are particularly

likely to be determinants of the outcome at endline that are in the available data. Specifically, we

include two important determinants of schooling outcomes that may interact with opportunities

for additional investment in education such as Progresa: the household poverty index and the

household head’s years of education in the test.55 In addition, we include information on the

child’s age at baseline since younger kids are more likely to attend school relative to older peers.56

Table 4 presents the results for the outcome of school enrollment. We report separate results

for the children that were in the last two years of primary school (1st to 6th grade) at baseline

since the determinants of school enrollment may vary across time for those children that are likely

to have transitioned from primary to lower-secondary school (7th to 9th grade) between baseline

and follow-up.57 When we add these variables to the test, we obtain the same results as in the test

without covariates. In particular, we reject the null hypothesis of IVal-P but cannot reject the null

hypothesis of IVal-R. These results are similar for both the full sample and the sample of students

that are likely to be undergoing a shift in the life-cycle during that time period. They also remain

unchanged when the test includes each covariate separately, suggesting that they are not driven by

one single dimension or group.

54We exclude covariates with a response rate at baseline below 95% to avoid significant changes in sample size. As
mentioned in Section 3, our framework focuses on cases where non-response is only an issue at follow-up.

55We obtain comparable results when including the information on the education of the child’s parents.
56Although the opportunity cost of schooling is also an important determinant of enrollment, we exclude labor force

participation from this analysis since baseline attrition leads to a substantial sample loss (20%).
57As discussed before, labor force participation is an essential determinant of enrollment in lower-secondary despite

being likely irrelevant for enrollment in primary school.
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In order to interpret the results of the tests with and without covariates, we inspect the mean

value of these covariates across the four treatment-response subgroups at baseline (see Table SA7

in the online appendix). The main pattern that emerges is that treatment and control children are

very similar in terms of these characteristics within each response group. Meanwhile, consistent

with the IVal-P rejection, respondents and attritors are fairly different in all dimensions. On aver-

age, children in the attritor subsample are older and belong to less wealthy households with lesser

educated household heads. We note that these patterns are in line with the differences in mean

baseline enrollment across treatment-response subgroups. When we include these covariates in the

attrition tests, the results do not change relative to when we only use the baseline outcome.

Table 4: Attrition Tests using Covariates for Progresa: School Enrollment

Follow-up
Sample Attrition Rate Tests without

Covariates
IVal-R Test with Covariates IVal-P Test with Covariates

C Differ-
ential IVal-R IVal-P Age Poverty

Index
Head’s
Educ All Age Poverty

Index
Head’s
Educ All

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A. All children between 6-16 years old

Pooled 0.188 -0.008 0.824 0.000 0.608 0.952 0.922 0.841 0.000 0.000 0.000 0.000
1st 0.151 -0.014 0.827 0.000 0.485 0.923 0.798 0.605 0.000 0.000 0.000 0.000
2nd 0.245 -0.018 0.790 0.000 0.395 0.542 0.913 0.564 0.000 0.000 0.000 0.000
3rd 0.169 0.008 0.200 0.000 0.450 0.462 0.397 0.753 0.000 0.000 0.000 0.000

Panel B. Children that were not in the last two years of primary school at baseline

Pooled 0.164 -0.008 0.762 0.000 0.461 0.921 0.856 0.740 0.000 0.000 0.000 0.000
1st 0.128 -0.013 0.514 0.000 0.311 0.783 0.718 0.518 0.000 0.000 0.000 0.000
2nd 0.211 -0.021 0.928 0.000 0.299 0.350 0.915 0.338 0.000 0.000 0.000 0.000
3rd 0.152 0.011 0.487 0.000 0.573 0.741 0.552 0.748 0.000 0.000 0.000 0.000

Panel C. Children that were in the last two years of primary school at baseline

Pooled 0.259 -0.011 0.679 0.000 0.712 0.928 0.735 0.904 0.000 0.000 0.000 0.000
1st 0.217 -0.019 0.883 0.000 0.957 0.981 0.838 0.985 0.000 0.000 0.000 0.000
2nd 0.342 -0.014 0.843 0.000 0.969 0.980 0.940 0.997 0.000 0.000 0.000 0.000
3rd 0.219 -0.001 0.211 0.000 0.044 0.530 0.337 0.228 0.000 0.000 0.000 0.000

Notes: This table presents the p-values of the attrition tests with and without baseline covariates. The sample size in Panels A, B, and C are 24,094,
17,822, and 6,272. All columns within each panel use the same sample. The tests were conducted using the regression tests proposed in Section B.
Columns (5)-(7) and (9)-(11) present the results of the tests that only include one baseline covariate in addition to the baseline outcome. Columns (8)
and (12) report the results of the tests that include the three baseline covariates plus the baseline outcome. Pooled refers to all the three follow-ups. All
regression tests use clustered standard errors at the locality level.

We now examine the attrition tests with covariates for the outcome of adult employment (see

Table 5). In this case, we focus on covariates that are either related to work experience or deter-

minants of labor supply. Given the available information, we include data on age, gender, and

marital status. We also add measures on the number of family members by age group since labor

supply may depend on the household’s labor endowment and the demand for supervision tasks at
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home. For instance, women with young children are less likely to work when public childcare is

not typically available. When we add these covariates to the tests, we still cannot reject the IVal-R

assumption. Yet, in contrast to the test without covariates, we reject the IVal-P assumption. This

test rejects at 1% across all follow-ups and each of the covariates, suggesting that every single one

of these characteristics is correlated with response.58

Table 5: Attrition Tests using Covariates for Progresa: Employment Last Week (18+ years old)

Follow-up
Sample Attrition Rate

Test
without

Covariates
Test with Covariates

C Differen-
tial

Baseline
outcome

Age Male (=1) Married
(=1)

# Chldn.
<= 5

# Chldn.
5-18 # Adults All

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A. Test of IVal-R (p-values)

Pooled 0.158 0.007 0.711 0.309 0.706 0.893 0.949 0.844 0.892 0.436
1st 0.101 -0.006 0.839 0.890 0.649 0.915 0.981 0.903 0.942 0.950
2nd 0.196 0.000 0.574 0.417 0.619 0.541 0.861 0.764 0.498 0.270
3rd 0.175 0.028 0.797 0.140 0.739 0.958 0.958 0.832 0.951 0.610

Panel B. Test of IVal-P (p-values)

Pooled 0.158 0.007 0.150 0.000 0.000 0.000 0.408 0.000 0.000 0.000
1st 0.101 -0.006 0.905 0.000 0.459 0.000 0.960 0.000 0.000 0.000
2nd 0.196 0.000 0.068 0.000 0.000 0.000 0.206 0.014 0.000 0.000
3rd 0.175 0.028 0.534 0.000 0.564 0.000 0.872 0.000 0.000 0.000

Notes: This table presents the p-values of the attrition tests with and without baseline covariates. The sample size in both panels is 31,175 individuals.
The tests were conducted using the regression tests proposed in Section B. Columns (4)-(9) present the results of the tests that only include one baseline
covariate in addition to the baseline outcome. Column (10) reports the results of the tests that include the six baseline covariates plus the baseline outcome.
Pooled refers to all the three follow-ups. All regression tests use clustered standard errors at the locality level.

One important question that arises in this context is how to interpret the differences in the re-

sults of the attrition test with and without covariates for the IVal-P assumption. If all the covariates

included in the test satisfy any of the criteria for Wit , these findings suggest that IVal-P no longer

holds. To understand the difference in findings for the IVal-P tests with and without covariates, we

examine the mean baseline value of adult employment and covariates across treatment-response

subgroups (see Table SA8 in the online appendix). While we do not find meaningful differences in

employment across respondents and attritors, we note that they are different in several of the other

dimensions. Relative to attritors, respondents were older, lived in smaller households, and were

more likely to be married. If these characteristics are determinants of both untreated and treated

potential employment at endline, our results including covariates suggest a violation of internal

58We obtain similar results when we split the sample by gender and discretize the age variable across three important
stages of work life: 18-25, 25-55, and 55+ years old.
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validity for the study population.

Overall, these results suggest that the inclusion of relevant covariates in the attrition tests can

help detect violations of internal validity. We recommend that researchers carefully pre-specify

the covariates for each outcome-specific test following our criteria. In assessing differences in

conclusions of attrition tests due to the inclusion of covariates, we suggest that authors consider

the relevance of these covariates for potential outcomes at endline.

5 Empirical Applications

To further illustrate the empirical relevance of our theoretical analysis, we apply the proposed tests

of attrition bias to four published field experiments. The data comes from field experiments with

both high reported attrition rates for survey outcomes and publicly available data that includes

attritors.59 Thus, the exercise is not intended to draw inference about the implications of applying

various attrition tests to a representative sample of published field experiments, since we expect

that these studies received additional scrutiny given their relatively high attrition rates. In addition,

field experiments that are published in prestigious journals may not be representative of all field

experiment data, especially if perceptions of attrition bias had an impact on publication.

Across the four selected articles included in this exercise, we conduct attrition tests for a total

of 26 outcomes. This includes all outcomes with baseline data that are reported in the abstracts

as well as all other unique outcomes with baseline data.60 Our systematic approach to choosing

outcomes for this analysis sometimes leads us to focus only on secondary or tertiary outcomes for a

given study. Thus, the results from this exercise should not be interpreted as definitive in assessing

the importance of attrition to all outcomes in these papers or its impact on their main results.

Since we recommend that authors pre-specify covariates based on their contextual understand-

59We selected the articles with the four highest survey attrition rates for which the data required to implement the
attrition tests is available. We recognize that other important outcomes for these papers may be from other sources,
and attrition may not be relevant for those outcomes. (see Section SA1.2 in the online appendix for details).

60If the article reports results separately by wave, we report attrition tests for each wave of a given outcome. We did
not, however, report results for each heterogeneous treatment effect unless those results were reported in the abstract.
We also exclude results on outcomes with an effective attrition rate of 0%, or outcomes from baseline surveys collected
only for a subsample of the population in the treatment effect analysis.
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ing of the outcome in question, we focus our analysis in this exercise on outcomes for which

covariates are not required according to our criteria in Section 4.2. First, we only include out-

comes with baseline data. Second, we exclude outcomes that are (nearly) degenerate.61 Third,

across all studies, the time frame between baseline and follow-up surveys is relatively short, and

the populations are at similar phases of their life cycle.62 It is worth noting that even for those

outcomes, relevant covariates as per our criteria in Section 4.2 may be informative, and it may

therefore be appropriate to include them.

5.1 Implementation of Attrition Tests

For each outcome included in this exercise, the appropriate attrition test depends on the type of

outcome and the approach to randomization used in the experiment. For fully randomized ex-

periments, we apply the tests of the IVal-R and IVal-P assumptions in Proposition 1. For stratified

experiments, we instead apply the tests of the assumptions in Proposition 2.63 For binary outcomes

and also for all outcomes from clustered experiments, we apply regression-based mean tests (see

Section B). For continuous outcomes in non-clustered experiments, we report p-values of the KS

distributional tests using the appropriate randomization procedure.64

In addition to applying our proposed attrition tests, we also consider how those tests might

compare to other approaches. Thus, we apply a version of the tests commonly used in the litera-

ture to the data, including: the differential attrition rate test, the IVal-R test using the respondent

subsample only, and the IVal-R test using the attritor subsample only. We use the same approaches

to handling stratification and continuous outcomes in all three IVal-R tests to ensure they are di-

rectly comparable, but that also means that we do not necessarily replicate the exact tests that

61Specifically, we exclude binary outcomes that have low variance at baseline due to the sample proportions of the
event being less than 10%.

62In particular, two studies target entrepreneurs and business owners, one targets school teachers, and another fo-
cuses on migrants sending remittances back home. As for the time frame between baseline and follow-up surveys, it
ranges between 8 and 24 months across all four studies. See Table SA5 and Table SA6 in the online appendix for more
details on these articles and the outcomes that we study in these empirical applications.

63When the number of strata in the experiment is larger than ten, we conduct a test with strata fixed effects only as
opposed to the fully interacted regression in Section B in order to avoid high dimensional inference issues. Under the
null, this specification is an implication of the sharp testable restrictions proposed in Proposition 2.

64We apply the Dufour (2006) randomization procedure to accommodate the possibility of ties.
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are used in the articles from which we drew data for this exercise. Instead, we indicate whether

authors’ attrition tests reject for the outcomes for which they are available.

As highlighted in Section 4, there is heterogeneity in the implementation of the selective at-

trition tests in practice. Each of the four articles selected for this exercise relies on a different

approach. Three articles examine experiments that are randomized within strata. One article in-

cludes strata fixed effects in its selective attrition test, whereas the other two do not. We also note

that three articles also implement a differential attrition rate test. Our results may differ since we

rely on outcome-level rather than survey-level attrition rates.

5.2 Results of the Empirical Applications

Our IVal-R and IVal-P test results reported in Table 6 have promising implications for the internal

validity of randomized experiments. The joint IVal-R test does not reject for any of the 26 outcomes

at the 5% level. The IVal-R tests using only respondents or attritors yield the same conclusion

for all outcomes. Although there is often a substantial difference in the p-values for these two

simple tests relative to the joint test for a given outcome, there is no consistent pattern in the

direction of those differences. The IVal-P test also does not reject the IVal-P assumption at the

5% level for 21 out of the 26 outcomes (this finding remains the same after correcting for multiple

hypothesis testing).65 While keeping in mind the usual caveats regarding the power of any test in

finite samples, our results suggest that a researcher interested in treatment effects for the respondent

subpopulation would not reject the relevant identifying assumption for any of the outcomes in our

analysis, even when exploiting all the information in the baseline sample (i.e. respondents and

attritors). It is particularly notable that, for a majority of the outcomes we consider, a researcher

would also not reject the assumption that ensures the identification of the treatment effects for the

study population.

Given its wide use in empirical practice, we also implement the differential attrition rate test.

Using outcome-level attrition rates, we reject the null hypothesis of equal attrition rates at the 5%

65Although the number of outcomes from a given field experiment varies widely, these non-rejection results are not
driven by any one experiment or type of outcome.
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level for 8 of 26 outcomes (3 outcomes after correcting for multiple hypothesis testing). For all

8 outcomes where the differential attrition rate test rejects the null hypothesis at the 5% level, the

IVal-R and IVal-P assumptions are not rejected at the 5% level using our tests. These empirical

cases are consistent with the testable implications of Example 1, which illustrates the shortcomings

of the differential attrition rate test as a test of internal validity.

Next, we consider the results of the attrition tests reported by the authors (Table 6). The authors

report a differential attrition rate test that is relevant to 23 out of the 26 outcomes and a selective

attrition test for 17 outcomes. They report differential attrition rate tests that reject at the 5% level

for 18 outcomes. The higher frequency of rejections of the authors’ differential attrition rate test

relative to ours is driven by their use of survey-level, as opposed to outcome-level, attrition rates.

The authors of these four articles largely do not find evidence of selective attrition. They do,

however, reject their version of the test at the 10% level for 2 of the 17 outcomes.

When we compare our test results with the authors’, we note several differences. While we

do not reject the IVal-R assumption for any of the outcomes we consider, the authors reject their

survey-level differential attrition rate test for 18 outcomes. Once we account for outcome-level

attrition, we only reject equal attrition rates for 8 outcomes. As we note above, in all of these

cases, our IVal-P (or IVal-R) test does not reject. In addition, authors do not consistently account

for the stratification of the experimental design in their selective attrition test, which may lead to

a false rejection of internal validity.66 Another possible source of false rejection in the literature

is the fact that many authors do not correct for multiple hypothesis testing across outcomes. One

limitation in comparing our results with the authors’ is that, since they do not state their object of

interest, it is not clear whether they intend to test for IVal-R or IVal-P.

We draw several conclusions from this empirical exercise. Our analysis highlights the dis-

66To provide a simple example, consider a case where there are two strata (men and women). For simplicity, assume
all men respond in the follow-up period. Now suppose 10% (5%) of women in the control (treatment) group do not
respond to the follow-up survey, but the unobservables that affect outcome are independent of response. As a result,
the treatment and control respondents consist of different proportions of men and women. It follows that, even though
women in the different treatment-response subgroups have the same mean baseline outcome, the pooled treatment
and control respondents may differ in that regard. Thus, a regression-based IVal-R test that does not account for the
stratification may falsely reject internal validity.
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advantages of the lack of consensus in empirical practice. Our results show the importance of

consistent implementation of IVal-R and IVal-P tests that allow researchers to better understand

the implications of attrition for internal validity. In line with our theoretical analysis, the results of

the differential attrition rate test are not consistent with our proposed tests. Thus, while attrition

rates by group remain important summary statistics that should be reported, conclusions regarding

internal validity and subsequent attrition analysis should not be based on whether or not there are

differences in attrition rates.67 Finally, we note that findings from IVal-R and IVal-P tests should be

complemented with attrition corrections to better evaluate the magnitude of potential bias resulting

from attrition.

6 Conclusion

This paper presents the problem of testing attrition bias in field experiments with baseline outcome

data as an identification problem in a panel model. The proposed tests are based on the sharp

testable restrictions of the identifying assumptions of the specific object of interest: either the

average treatment effect for the respondents, the average treatment effect for the study population

or a heterogeneous treatment effect. This study also provides theoretical conditions under which

the differential attrition rate test, a widely used test, may not control size as a test of internal

validity. The theoretical analysis has important implications for current empirical practice in testing

attrition bias in field experiments. It also highlights that the majority of testing procedures used in

the empirical literature have focused on the internal validity of treatment effects for the respondent

subpopulation. The theoretical and empirical results, however, suggest that the treatment effects of

the study population are important and possibly attainable in practice.

While this paper is a step forward toward understanding current empirical practice and estab-

lishing a standard in testing attrition bias in field experiments, we emphasize the important role of

corrections to complement any assessment of the impact of attrition on internal validity of a given

67This recommendation is not solely based on the usual pre-test bias concern, but also because the differential
attrition rate test is not a test of internal validity in general.
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study. Despite the availability of several approaches to correct for attrition bias (Lee, 2009; Huber,

2012; Behagel et al., 2015; Millán and Macours, 2021), alternative approaches that exploit the in-

formation in baseline outcome data as in the framework here may be useful to complement existing

methods that rely on unconfoundedness or identify effects for a subgroup of the population, such

as always-responders. For instance, Ghanem et al. (2022) extend the changes-in-changes approach

to identify treatment effects for the respondents and the entire study population.

Several practical aspects of the implementation of the proposed test may lead to pre-test bias,

and inference procedures that correct for these and other pre-test bias issues are a priority for future

work. For instance, the proposed tests may be used in practice to inform whether an attrition cor-

rection is warranted or not in the empirical analysis. Empirical researchers may also be interested

in first testing the identifying assumption for treatment effects for the respondent subpopulation

and then testing their validity for the entire study population.

Finally, this paper has several policy implications. Attrition in a given study is often used as a

metric to evaluate the study’s reliability to inform policy. For instance, What Works Clearinghouse,

an initiative of the U.S. Department of Education, has specific (differential) attrition rate standards

for studies (IES, 2017). Our results indicate an alternative approach to assessing potential attrition

bias. Furthermore, questions regarding external validity of treatment effects measured from field

experiments are especially important from a policy perspective. This paper points to the possibility

that in the presence of response problems, the identified effect in a given field experiment may

only be valid for the respondent subpopulation, and hence may not identify the ATE for the study

population. This is an important issue to consider when synthesizing results of field experiments

to inform policy.
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A Randomization Tests of Internal Validity

We present randomization procedures to test the IVal-R and IVal-P assumptions for completely and
stratified randomized experiments. The proposed procedures approximate the exact p-values of
the proposed distributional statistics under the cross-sectional i.i.d. assumption when the outcome
distribution is continuous.68 They can also be adapted to accommodate possibly discrete or mixed
outcome distributions, which may result from rounding or censoring in the data collection, by
applying the procedure in Dufour (2006). In this section, we focus on distributional statistics for
the testable restrictions on the baseline outcome as in Propositions 1 and 2. The randomization
procedures we propose, however, can be applied to test joint distributional hypotheses that include
covariates as in Section 4.2.

We first outline a general randomization procedure that we adapt to the different settings we
consider.69 Given a dataset Z and a statistic Tn = T (Z) that tests a null hypothesis H0, we use
the following procedure to provide a stochastic approximation of the exact p-value for the test
statistic Tn exploiting invariant transformations g ∈ G0 (Lehmann and Romano, 2005, Chapter
15.2). Specifically, the transformations g ∈ G0 satisfy Z d

= g(Z) under H0 only.

Procedure 1. (Randomization)

1. For gb, which is i.i.d. Uniform(G0), compute T̂n(gb) = T (gb(Z)),

2. Repeat Step 1 for b = 1, . . . ,B times,

3. Compute the p-value, p̂n,B = 1
B+1

(
1+∑

B
b=1 1{T̂n(gb)≥ Tn}

)
.

A test that rejects when p̂n,B ≤ α is level α for any B (Lehmann and Romano, 2005, Chapter
15.2). In our application, the invariant transformations in G0 consist of permutations of individuals
across certain subgroups in our data set. The subgroups are defined by the combination of response
and treatment in the case of completely randomized trials, and all the combinations of response,
treatment, and stratum in the case of trials that are randomized within strata.

A.1 Completely Randomized Trials

The testable restriction of the IVal-R assumption, stated in Proposition 1(a.ii), implies that the dis-
tribution of baseline outcome is identical for treatment and control respondents as well as treatment
and control attritors. Thus, the joint hypothesis is given by

H1
0 : FYi0|Ti=0,Ri=r = FYi0|Ti=1,Ri=r for r = 0,1. (12)

The general form of the distributional statistic for each of the equalities in the null hypothesis
above is

T 1
n,r =

∥∥√n
(
Fn,Yi0|Ti=0,Ri=r −Fn,Yi0|Ti=1,Ri=r

)∥∥ for r = 0,1,

68We maintain the cross-sectional i.i.d. assumption to simplify the presentation. The randomization procedures
proposed here remain valid under weaker exchangeability-type assumptions.

69See Lehmann and Romano (2005); Canay, Romano and Shaikh (2017) for a more detailed review.
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where for a random variable Xi, Fn,Xi denotes the empirical cdf, i.e. the sample analogue of FXi ,
and ∥.∥ denotes some non-random or random norm. Different choices of the norm give rise to
different statistics. For instance, the KS and CM statistics are the most widely known and used.
The former is obtained by using the L∞ norm over the sample points, i.e. ∥ f∥n,∞ = maxi | f (yi)|,
whereas the latter is obtained by using an L2 norm, i.e. ∥ f∥n,2 = ∑

n
i=1 f (yi)

2/n. In order to test
the joint hypothesis in (12), the two following statistics that aggregate over T 1

n,r for r = 0,1 are
standard choices in the literature (Imbens and Rubin, 2015),70

T 1
n,m = max{T 1

n,0,T
1

n,1},

T 1
n,p = pn,0T 1

n,0 + pn,1T 1
n,1, where pn,r =

n

∑
i=1

1{Ri = r}/n for r = 0,1.

The joint KS statistic we use to test H1
0 in the simulation and empirical section is given by

KS1
n,m = max{KS1

n,0,KS1
n,1},where for r = 0,1

KS1
n,r = max

i:Ri=r

∣∣√n(Fn,Yi0(yi0|Ti = 1,Ri = r)−Fn,Yi0(yi0|Ti = 0,Ri = r))
∣∣ . (13)

Let G 1
0 denote the set of all permutations of individual observations within respondent and

attritor subgroups, for g ∈ G 1
0 , g(Z) = {(Yi0,Tg(i),Rg(i)) : Rg(i) = Ri,1 ≤ i ≤ n}. Under H1

0 and the

cross-sectional i.i.d. assumption, Z d
= g(Z) for g ∈ G 1

0 . Hence, we can obtain p-values for T 1
n,m and

T 1
n,p under H1

0 by applying Procedure 1 using the set of permutations G 1
0 .

We now consider testing the restriction of the IVal-P assumption stated in Proposition 1(b.ii).
This restriction implies that the distribution of the baseline outcome variable is identically dis-
tributed across all four subgroups defined by treatment and response status. Let (Ti,Ri) = (τ,r),
where (τ,r) ∈T ×R = {(0,0),(0,1),(1,0),(1,1)} and (τ j,r j) denote the jth element of T ×R.
Then, the joint hypothesis is given wlog by

H2
0 : FYi0|Ti=τ j,Ri=r j = FYi0|Ti=τ j+1,Ri=r j+1 for j = 1, . . . , |T ×R|−1. (14)

In this case, the two statistics that we propose to test the joint hypothesis are:

T 2
n,m = max

j=1,...,|T ×R|−1

∥∥∥√n
(

Fn,Yi0|Ti=τ j,Ri=r j −Fn,Yi0|Ti=τ j+1,Ri=r j+1

)∥∥∥ ,
T 2

n,p =
|T ×R|−1

∑
j=1

w j

∥∥∥√n
(

Fn,Yi0|Ti=τ j,Ri=r j −Fn,Yi0|Ti=τ j+1,Ri=r j+1

)∥∥∥
for some fixed or data-dependent non-negative weights w j for j = 1, . . . , |T ×R| − 1. In the

70There are other possible approaches to construct joint statistics. We compare the finite-sample performance of the
two joint statistics we consider numerically in Section SA5.3 of the online appendix.
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simulation and empirical sections, we use the following KS statistic to test H2
0

KS2
n = max

j=1,2,3
KS2

n, j, where (15)

KS2
n, j = max

i

∣∣√n
(
Fn,Yi0(yi0|Ti = τ j,Ri = r j)−Fn,Yi0(yi0|Ti = τ j+1,Ri = r j+1)

)∣∣ .
and {τ j,r j} is the jth element of T ×R = {(0,0),(0,1),(1,0),(1,1)}.

Under H2
0 and the cross-sectional i.i.d. assumption, any random permutation of individuals

across the four treatment-response subgroups will yield the same joint distribution of the data.
Specifically, for g ∈ G 2

0 , g(Z) = {(Yi0,Tg(i),Rg(i)) : 1 ≤ i ≤ n}. We can hence apply Procedure 1
using G 2

0 to obtain approximately exact p-values for the statistic T 2
n,m or T 2

n,p under H2
0 .

A.2 Stratified Randomized Trials

As pointed out in Section 3.2.3, the testable restrictions in the case of stratified or block randomized
trials (Proposition 2) are conditional versions of those in the case of completely randomized trials
(Proposition 1). Thus, in what follows we lay out the conditional versions of the null hypotheses,
the distributional statistics, and the invariant transformations presented in Section A.1.

We first consider the restriction in Proposition 2(a.ii), which yields the following null hypoth-
esis

H1,S
0 : FYi0|Ti=0,Si=s,Ri=r = FYi0|Ti=1,Si=s,Ri=r for r = 0,1, s ∈ S . (16)

To obtain the test statistics for the joint hypothesis H1,S
0 , we first construct test statistics for a given

s ∈ S ,

T 1,S
n,m,s = max

r=0,1

∥∥√n
(
Fn,Yi0|Ti=0,Si=s,Ri=r −Fn,Yi0|Ti=1,Si=s,Ri=r

)∥∥ ,
T 1,S

n,p,s = ∑
r=0,1

pr|s
n
∥∥√n

(
Fn,Yi0|Ti=0,Si=s,Ri=r −Fn,Yi0|Ti=1,Si=s,Ri=r

)∥∥ ,
where pr|s

n = ∑
n
i=1 1{Ri = r,Si = s}/∑

n
i=1 1{Si = s}. We then aggregate over each of those statistics

to get

T 1,S
n,m = max

s∈S
T 1,S

n,m,s,

T 1,S
n,p = ∑

s∈S

ps
nT 1,S

n,p,s , where ps
n =

n

∑
i=1

1{Si = s}/n for s ∈ S .

In this case, the invariant transformations under H1,S
0 are the ones where n elements are permuted

within response-strata subgroups. Formally, for g ∈ G 1,S
0 , g(Z) = {(Yi0,Tg(i),Sg(i),Rg(i)) : Sg(i) =

Si,Rg(i) = Ri,1 ≤ i ≤ n}, where Z = {(Yi0,Ti,Si,Ri) : 1 ≤ i ≤ n}. Under H1,S
0 and the cross-

sectional i.i.d. assumption within strata, Z d
= g(Z) for g ∈ G 1,S

0 . Hence, using G 1,S
0 , we can obtain

p-values for T 1,S
n,m and T 1,S

n,p under H1,S
0 .
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We now consider testing the restriction in Proposition 2(b.ii). The resulting null hypothesis is
given wlog by the following

H2,S
0 : FYi0|Ti=τ j,Si=s,Ri=r j = FYi0|Ti=τ j+1,Si=s,Ri=r j+1 for j = 1, . . . , |T ×R|−1, s ∈ S . (17)

To obtain the test statistics for the joint hypothesis H2,S
0 , we first construct test statistics for a given

s ∈ S ,

T 2,S
n,m,s = max

j=1,...,|T ×R|−1

∥∥∥√n
(

Fn,Yi0|Ti=τ j,Si=s,Ri=r j −Fn,Yi0|Ti=τ j+1,Si=s,Ri=r j+1

)∥∥∥ ,
T 2,S

n,p,s =
|T ×R|−1

∑
j=1

w j,s

∥∥∥√n
(

Fn,Yi0|Ti=τ j,Si=s,Ri=r j −Fn,Yi0|Ti=τ j+1,Si=s,Ri=r j+1

)∥∥∥ ,
given fixed or random non-negative weights w j,s for j = 1, . . . , |T ×R|−1 and s ∈ S . We then
aggregate over each of those statistics to get

T 2,S
n,m = max

s∈S
T 2,S

n,m,s,

T 2,S
n,p = ∑

s∈S

wsT 2,S
n,p,s ,

given fixed or random non-negative weights ws for s ∈ S .
Under the above hypothesis and the cross-sectional i.i.d. assumption within strata, the distribu-

tion of the data is invariant to permutations within strata, i.e. for g∈G 2,S
0 , g(Z)= {(Yi0,Tg(i),Sg(i),Rg(i)) :

Sg(i) = Si,1 ≤ i ≤ n}. Thus, applying Procedure 1 to T 2,S
n,m or T 2,S

n,p using G 2,S
0 yields approxi-

mately exact p-values for these statistics under H2,S
0 .

In practice, it may be possible that response problems could lead to violations of internal va-
lidity in some strata but not in others. If that is the case, it may be more appropriate to test interval
validity for each stratum separately. Recall that when the goal is to test the IVal-R assumption,
the stratum-specific hypothesis is H1,s

0 : FYi0|Ti=0,Si=s,Ri=r = FYi0|Ti=1,Si=s,Ri=r for r = 0,1. Hence,
for each s ∈ S , one can use G 1,S

0 in the above procedure to obtain p-values for T 1,S
n,m,s and T 1,S

n,p,s ,
and then perform a multiple testing correction that controls either family-wise error rate or false
discovery rate. We can follow a similar approach when the goal is to test the IVal-P assumption
conditional on stratum.

The aforementioned subgroup-randomization procedures split the original sample into respon-
dents and attritors or four treatment-response groups. This approach does not directly extend to
cluster randomized experiments.71 Given the widespread use of regression-based tests in the em-
pirical literature, we illustrate how to test the mean implications of the distributional restrictions
of the IVal-R and IVal-P assumptions using regressions for completely, cluster, and stratified ran-
domized experiments in Section B.

71To test the distributional restrictions for cluster randomized experiments, the bootstrap-adjusted critical values for
the KS and CM-type statistics in Ghanem (2017) can be implemented.
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B Regression Tests of Internal Validity

In this section, we show how to implement the mean IVal-R and IVal-P tests using regression-based
procedures. In completely and cluster randomized experiments, the null hypothesis of the IVal-R
test (H1

0,M) consists of the equality of means across treatment and control responders as well as
treatment and control attritors. Meanwhile, the null hypothesis of the IVal-P test (H2

0,M) consists
of the equality of means across all treatment/respondent subgroups. In the stratified randomization
case, the null hypotheses of the IVal-R and IVal-P tests consist of analogous restrictions within
strata, H1,S

0,M and H2,S
0,M , respectively. Here, we present these hypotheses as joint restrictions on lin-

ear regression coefficients, which are straightforward to test using the appropriate standard errors.
The Stata ado file to implement those regression-based tests is available at the SSC archive and can
be downloaded using the following command: ssc install attregtest.

B.1 Completely and Cluster Randomized Experiments

If the experiment is completely or cluster randomized and Yi0 is the baseline outcome, the prac-
titioner may implement one of two equivalent approaches to conducting the mean tests. The first
approach is given by:

Yi0 = γ11TiRi + γ01(1−Ti)Ri + γ10Ti(1−Ri)+ γ00(1−Ti)(1−Ri)+ εi

H1
0,M : γ11 = γ01 & γ10 = γ00,

H2
0,M : γ11 = γ01 = γ10 = γ00.

The second approach allows for an intercept in the regression, which captures the mean baseline
outcome for the control attritors:

Yi0 = α +β01Ri +β10Ti +β11TiRi + εi

H1
0,M : β10 = β11 = 0,

H2
0,M : β01 = β10 = β11 = 0.

In some cases, the practitioner may have collected baseline data on determinants of (or prox-
ies for) the outcome of interest, Wi0 (as defined in Equation 11). If the practitioner chooses to
include these determinants in testing for attrition bias, the regression-based procedure should test
the joint hypotheses across the baseline outcome (if available) and the dW baseline covariates that
are relevant for such outcome, i.e. Zi0 = (Yi0,W ′

i0)
′, ∀ j = 1, . . . ,(dW +1).

Z j
i0 = γ

j
11TiRi + γ

j
01(1−Ti)Ri + γ

j
10Ti(1−Ri)+ γ

j
00(1−Ti)(1−Ri)+ εi

H1
0,M : γ

j
11 = γ

j
01 & γ

j
10 = γ

j
00 ∀ j = 1, . . . ,(dW +1)

H2
0,M : γ

j
11 = γ

j
01 = γ

j
10 = γ

j
00 ∀ j = 1, . . . ,(dW +1)

As in the univariate case above, the null hypotheses in this multivariate case can also be tested
using the specification that inlcudes an intercept. Note that if the researcher is interested instead in
testing across multiple outcomes we recommend testing these individually rather than jointly (as
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in Section 3.1), while accounting for multiple testing.

B.2 Stratified Randomized Experiments

As in Section B.1, we again present two equivalent formulations of the tests for stratified experi-
ments. In these fully saturated models, the null hypotheses test the equality of means within strata.
The first version of the test is given by:

Yi0 = ∑
s∈S

[γs
11TiRi + γ

s
10Ti(1−Ri)+ γ

s
01(1−Ti)Ri + γ

s
00(1−Ti)(1−Ri)]1{Si = s}+ εi

Hence, for s ∈ S ,

H1,S
0,M : γ

s
11 = γ

s
01 & γ

s
10 = γ

s
00, for all s ∈ S ,

H2,S
0,M : γ

s
11 = γ

s
01 = γ

s
10 = γ

s
00, for all s ∈ S .

In this case, the equivalent formulation uses a model with strata fixed effects and strata-specific
coefficients,

Yi0 =
S

∑
s=1

{α
s +β

s
01Ri +β

s
10Ti +β

s
11TiRi}1{Si = s}+ εi

H1,S
0,M : β

s
10 = β

s
11 = 0, for all s ∈ S ,

H2,S
0,M : β

s
01 = β

s
10 = β

s
11 = 0, for all s ∈ S .

When the number of strata is large, however, testing the equality of means across groups within
each stratum may result in high-dimensional inference issues. In that case, practitioners can instead
test implications of H1,S

0,M and H2,S
0,M as follows:

Yi0 =
S

∑
s=1

(αs +β
s
01Ri)1{Si = s}+π10Ti +π11TiRi + εi

H1′,S
0,M : π10 = π11 = 0,

Yi0 =
S

∑
s=1

α
s1{Si = s}+π01Ri +π10Ti +π11TiRi + εi

H2′,S
0,M : π01 = π10 = π11 = 0.

If the practitioner chooses to include baseline covariates for a stratified experiment, as in Sec-
tion B.1, she should test the joint hypotheses across the baseline outcome and all relevant baseline
covariates.
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C Attrition Tests in the Field Experiment Literature

In this section, we describe the different empirical strategies used to test for attrition bias in the
articles we review and classify them into differential attrition rate tests, selective attrition tests,
and determinants of attrition tests. We classify the strategies for the differential attrition rate test
and the determinants of attrition test as broadly as possible and include any article that performs
a regression under any of these two categories as performing the relevant test. For the selective
attrition tests, we specify the null hypotheses since they are closely related to the tests that we
propose. Throughout this section, we use the following notation to facilitate the exposition of each
strategy and the comparison across them:
-Let Ri take the value of 1 if individual i belongs to the follow-up sample.
-Let Ti take the value of 1 if individual i belongs to the treatment group.
-Let Xi0 be a k×1 vector of baseline variables.
-Let Yi0 be a l ×1 vector of outcomes collected at baseline.
-Let Zi0 = (X ′

i0,Y
′
i0)

′.
-For a vector w, w j denotes the jth element of w.

C.1 Differential Attrition Rate Test

The differential attrition rate test determines whether the rates of attrition are statistically signifi-
cantly different across treatment and control groups.

1. t-test of the equality of attrition rate by treatment group, i.e. H0 : P(Ri = 0|Ti = 1) = P(Ri =
0|Ti = 0).

2. Ri = γ +Tiβ +Ui; may include strata fixed effects.

3. Ri = γ +Tiβ +X ′
i0θ +Y ′

i0α +Ui; may include strata fixed effects.

C.2 Selective Attrition Test

The selective attrition test determines whether, conditional on response status, the distribution of
observable characteristics is the same across treatment and control groups. We identify two sub-
types of selective attrition tests: i) a test that includes only respondents or attritors, and ii) a test
that includes both respondents and attritors. We note that the selective attrition tests are usually
conducted on both baseline outcomes and baseline covariates. Some authors conduct multiple tests
for individual baseline variables while others test all baseline variables jointly (see Table SA4 for
details). Thus, for each estimation strategy, we report the null hypotheses that are used in each
case.

C.2.1 Tests that include only respondents or attritors

1. t-test of baseline characteristics by treatment group among respondents:
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(a) Multiple hypotheses for individual baseline variables:
For each j = 1,2, . . . ,(l + k)

H j
0 : E[Z j

i0|Ti = 1,Ri = 1] = E[Z j
i0|Ti = 0,Ri = 1].

(b) Joint hypothesis for all baseline variables:

H0 : E[Z j
i0|Ti = 1,Ri = 1] = E[Z j

i0|Ti = 0,Ri = 1], ∀ j = 1, . . . ,(l + k).

2. Ti = γ +X ′
i0θ +Y ′

i0α +Ui if Ri = 1; may include strata fixed effects.

(a) Joint hypothesis for all baseline variables:

H0 : θ = α = 0

3. Kolmogorov-Smirnov (KS) test of baseline characteristics by treatment group among re-
spondents.

(a) Multiple hypotheses for individual baseline variables:
For each j = 1,2, . . . ,(l + k)

H j
0 : FZ j

i0|Ti,Ri=1 = FZ j
i0|Ri=1

4. Z j
i0 = γ +Tiβ

j +U j
i if Ri = 1, for j = 1,2, . . . ,(l + k); may include strata fixed effects.

(a) Multiple hypotheses for individual baseline variables:
For each j = 1,2, . . . ,(l + k)

H j
0 : β

j = 0

(b) Joint hypothesis for all baseline variables:

H0 : β
1 = β

2 = · · ·= β
l+k = 0

5. Z j
i0 = γ +Tiβ

j +U j
i if Ri = 0, for j = 1,2, . . . ,(l + k); may include strata fixed effects.

(a) Multiple hypotheses for individual baseline variables:
For each j = 1,2, . . . ,(l + k)

H j
0 : β

j = 0

C.2.2 Tests that include both respondents and attritors

1. Z j
i0 = γ j +Tiβ

j +(1−Ri)λ
j +Ti(1−Ri)φ

j +U j
i for j = 1,2, . . . ,(l+ k); may include strata

fixed effects.
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(a) Multiple hypotheses for individual baseline variables:72

For each j = 1,2, . . . ,(l + k)

H j
0 : β

j = 0

2. Ri = γ +Tiβ +X ′
i0θ +Y ′

i0α +TiX ′
i0λ1 +TiY ′

i0λ2 +Ui; may include strata fixed effects.

(a) Multiple hypotheses for individual baseline variables I:
For each m = 1,2, . . . ,k and j = 1,2, . . . , l

Hθ ,m
0 : θ

m = 0 , Hα, j
0 : α

j = 0 , Hλ1,m
0 : λ

m
1 = 0 , H

λ2, j
0 : λ

j
2 = 0

(b) Multiple hypotheses for individual baseline variables II:
For each m = 1,2, . . . ,k and j = 1,2, . . . , l

Hλ1,m
0 : λ

m
1 = 0 , H

λ2, j
0 : λ

j
2 = 0

(c) Joint hypothesis for all baseline variables I:

H0 : β = θ = α = λ1 = λ2 = 0

(d) Joint hypothesis for all baseline variables II:

H0 : λ1 = λ2 = 0

3. t-test of the equality of the difference in baseline outcome between respondents and attritors
across treatment groups.

(a) Multiple hypotheses for individual baseline outcomes:
For each j = 1,2, . . . , l

H j
0 : E[Y j

i0|Ti = 1,Ri = 1]−E[Y j
i0|Ti = 1,Ri = 0]

= E[Y j
i0|Ti = 0,Ri = 1]−E[Y j

i0|Ti = 0,Ri = 0]

C.3 Determinants of Attrition Test

The determinants of attrition test determines whether attritors are significantly different from re-
spondents regardless of treatment assignment.

1. Ri = γ +Tiβ +X ′
i0θ +Y ′

i0α +Ui; may include strata fixed effects.

2. Z j
i0 = γ j +(1−Ri)λ

j +U j
i , j = 1,2, . . . ,(l + k); may include strata fixed effects.

3. Ri = γ +X ′
i0θ +Y ′

i0α +Ui; may include strata fixed effects.

72Although this null hypothesis is testing for the equality of means for treatment and control respondents, we classify
this strategy as one that includes both respondents and attritors given that the regression test is based on both samples.
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4. Let Reasoni take the value of 1 if the individual identifies it as one of the reasons for which
she dropped out of the program. The test consists of a Probit estimation of:
Reasoni = γ +Tiβ +Ui if Ri = 1; may include strata fixed effects.
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SA1 Selection of Articles from the Field Experiment Literature

SA1.1 Selection of Articles for the Review

In order to understand both the extent of attrition as well as how authors test for attrition bias in

practice, we systematically reviewed articles that report the results of field experiments. We include

articles that were published in the top five journals in economics, as well as five highly regarded

applied economics journals: American Economic Review, American Economic Journal: Applied

Economics, Econometrica, Economic Journal, Journal of Development Economics, Journal of

Human Resources, Journal of Political Economy, Review of Economics and Statistics, Review of

Economic Studies, and Quarterly Journal of Economics.73 By searching for RCT, randomized con-

trolled trial, or field experiment in each journal’s website, we identified 160 articles that estimate

the impacts of a field experiment intervention and were published between 2009 and 2015.74

Of these 160 experiments, we exclude five articles with a study design for which attrition is

irrelevant due to the use of repeated cross-sections or the fact that attrition is the only outcome

reported in the abstract. Further, since the testable restrictions proposed in Section 3 are conditions

on the baseline outcome, we also excluded 62 articles that did not have available baseline data for
73We chose these four applied journals because they are important sources of published field experiments.
74Our initial search using these keywords yielded a total of 235 articles, but 75 of them were neither field experi-

ments nor studies that report the impacts of an intervention on a specific outcome for the first time. Of these 75 papers,
33 were observational studies exploiting quasi-experimental variation, and 27 were lab experiments or lab in the field
(which usually take place over a very short period of time). The remaining 15 articles had a primary goal different from
reporting an intervention’s impact. In particular, some papers used existing field experiments to calibrate structural
models or illustrate the application of a new econometric technique, and others used the random allocation of survey
formats to test for the best approach to elicit information on variables such as consumption and poverty.
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any of the abstract outcomes. Half of these papers did not collect baseline outcomes (29) or had a

response rate at baseline below fifty percent (4). The other experiments targeted a population for

which the baseline outcome takes the same value for everyone by design (29).75

Thus, we review 93 papers with a study design for which attrition is relevant and baseline

data on at least one main outcome variable reported in the abstract.76 Of these articles, 61% were

published in the Journal of Development Economics, the American Economic Journal: Applied

Economics, and the Quarterly Journal of Economics (see Table SA2).

One challenge that arose in our review was determining which attrition rates and attrition tests

are most relevant, since the reported attrition rates usually vary across different data sources or

different subsamples. We chose to focus on the results that are reported in the abstract in our

analysis of attrition rates. But, since many authors do not report attrition tests for each of the

abstract results, in our analysis of attrition tests we focus on whether authors report a test that is

relevant to at least one abstract result.

SA1.2 Selection of Articles for the Empirical Applications

In order to conduct the empirical applications in Section 5, we identified 47 articles that had pub-

licly available analysis files from the 93 articles in our review (see Section 2). To select the four

articles included in the empirical applications, we reviewed the data files of the twelve articles with

the highest reported survey attrition rates. We excluded field experiments for a variety of reasons

that would not, in the majority of cases, affect the ability of the authors to implement our tests. Of

the eight experiments that were excluded: two did not provide the data sets along with the analy-

sis files due to confidentiality restrictions, two provided the data sets but did not include attritors,

one did not provide sufficient information to identify the attritors, and one had a unique outcome

of interest that was nearly degenerate at baseline. In two cases, an exceptionally high number of

75Some examples in this last category include training interventions that target unemployed individuals and mea-
sure impacts on employment, as well as studies that estimate the effect of an intervention on the take-up of a newly
introduced product.

76These 93 articles correspond to 96 field experiments since some papers report results for more than one interven-
tion.
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missing values at baseline was the limiting factor since the attrition rate at follow-up conditional

on baseline response was lower than the attrition rate reported in the paper.

SA2 Proofs

Proof. (Proposition 1)

(a) Under the assumptions imposed it follows that FUi0,Ui1|Ti,Ri = FUi0,Ui1|Ri , which implies that for

d = 0,1, FYit(d)|Ti,Ri =
∫

1{µt(d,u)≤ .}dFUit |Ti,Ri(u) =
∫

1{µt(d,u)≤ .}dFUit |Ri(u) = FYit(d)|Ri for

t = 0,1. (i) follows by letting t = 1 and d = 0, while conditioning the left-hand side of the last

equation on Ti = 0 and Ri = 1, and the testable implication in (ii) follows by letting t = d = 0.

Following Hsu, Liu and Shi (2019), we show that the testable restriction is sharp by showing

that if (Yi0,Yi1,Ti,Ri) satisfy Yi0|Ti = 0,Ri = r d
= Yi0|Ti = 1,Ri = r for r = 0,1, then there exists

(Ui0,Ui1) such that Yit(d) = µt(d,Uit) for some µt(d, .) for d = 0,1 and t = 0,1, and (Ui0,Ui1) ⊥

Ti|Ri that generate the observed distributions. By the arbitrariness of Uit and µt , we can let Uit =

(Yit(0),Yit(1))′ and µt(d,Uit) = dYit(1)+(1−d)Yit(0) for d = 0,1, t = 0,1. Note that Yi0 = Yi0(0)

since Di0 = 0 w.p.1. Now we need to construct a distribution of Ui = (U ′
i0,U

′
i1) that satisfies

FUi|Ti,Ri ≡ FYi0(0),Yi0(1),Yi1(0),Yi1(1)|Ti,Ri = FYi0(0),Yi0(1),Yi1(0),Yi1(1)|Ri

as well as the relevant equalities between potential and observed outcomes. We proceed by first

constructing the unobservable distribution for the respondents. By setting the appropriate potential

outcomes to their observed counterparts, we obtain the following equalities for the distribution of

Ui for the treatment and control respondents

FUi|Ti=0,Ri=1 = FYi0(0),Yi0(1),Yi1(0),Yi1(1)|Ti=0,Ri=1 = FYi0(1),Yi1,Yi1(1)|Yi0,Ti=0,Ri=1FYi0|Ti=0,Ri=1

FUi|Ti=1,Ri=1 = FYi0(1),Yi1(0),Yi1|Yi0,Ti=1,Ri=1FYi0|Ti=1,Ri=1

By construction, FYi0|Ti,Ri=1 =FYi0|Ri=1. Now generating the two distributions above using FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti,Ri=1
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which satisfies FYi0(1),Yi1,Yi1(1)|Yi0,Ti=0,Ri=1 = FYi0(1),Yi1(0),Yi1|Yi0,Ti=1,Ri=1 yields Ui ⊥ Ti|Ri = 1 and we

can construct the observed outcome distribution (Yi0,Yi1)|Ri = 1 from Ui|Ri = 1.

The result for the attritor subpopulation follows trivially from the above arguments,

FUi|Ti=0,Ri=0 = FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti=0,Ri=0FYi0|Ti=0,Ri=0,

FUi|Ti=1,Ri=0 = FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti=1,Ri=0FYi0|Ti=1,Ri=0,

Since FYi0|Ti,Ri=0 = FYi0|Ri=0 by construction, it remains to generate the two distributions above

using the same FYi0(1),Yi1(0),Yi1(1)|Yi0,Ri=0. This leads to a distribution of Ui|Ri = 0 that is independent

of Ti and that generates the observed outcome distribution Yi0|Ri = 0.

(b) Under the given assumptions, it follows that FUi0,Ui1|Ti,Ri = FUi0,Ui1|Ti = FUi0,Ui1 where the

last equality follows by random assignment. Similar to (a), the above implies that for d = 0,1

and t = 0,1, FYit(d)|Ti,Ri =
∫

1{µt(d,u)≤ .}dFUit |Ti,Ri(u) =
∫

1{µt(d,u)≤ .}dFUit (u) = FYit(d). (i)

follows by letting t = 1, while conditioning the left-hand side of the last equation on Ti = τ and

Ri = 1 for d = τ and τ = 0,1, whereas (ii) follows by letting d = t = 0 while conditioning on Ti = τ

and Ri = r for τ = 0,1, r = 0,1.

To show that the testable restriction is sharp, it remains to show that if (Yi0,Yi1,Ti,Ri) satis-

fies Yi0|Ti,Ri
d
= Yi0(0), then there exists (Ui0,Ui1) such that Yit(d) = µt(d,Uit) for some µt(d, .)

for d = 0,1 and t = 0,1, and (Ui0,Ui1) ⊥ (Ti,Ri). Similar to (a.ii), we let Uit = (Yit(0),Yit(1))′

and µt(d,Uit) = dYit(1)+ (1− d)Yit(0). Then Yi0 = Yi0(0) by similar arguments as in the above.

Furthermore, FYi0|Ti,Ri = FYi0 by construction and it follows immediately that

FUi|Ti=0,Ri=1 = FYi0(1),Yi1,Yi1(1)|Yi0Ti=0,Ri=1FYi0,

FUi|Ti=1,Ri=1 = FYi0(1),Yi1(0),Yi1|Yi0,Ti=1,Ri=1FYi0 ,

FUi|Ti=0,Ri=0 = FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti=0,Ri=0FYi0 ,

FUi|Ti=1,Ri=0 = FYi0(1),Yi1(0),Yi1(1)|Yi0,Ti=1,Ri=0FYi0 .
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Now constructing all of the above distributions using the same FYi0(1),Yi1(0),Yi1(1)|Ti,Ri that satisfies

FYi0(1),Yi1,Yi1(1)|Yi0,Ti=0,Ri=1 = FYi0(1),Yi1(0),Yi1|Yi0,Ti=1,Ri=1 implies the result.

Proof. (Proposition 2) The proof is immediate from the proof of Proposition 1 by conditioning all

statements on Si.

Proof. (Proposition 3) For notational brevity, let Ui = (U ′
i0,U

′
i1). We first note that by random

assignment, it follows that

FUi|Ti,Ri(0),Ri(1) = FUi|Ti,ξ (0,Vi),ξ (1,Vi)=FUi|ξ (0,Vi),ξ (1,Vi) = FUi|Ri(0),Ri(1). (SA2.1)

As a result,

FUi|Ti=1,Ri=1 =
p01FUi|(Ri(0),Ri(1))=(0,1)+ p11FUi|(Ri(0),Ri(1))=(1,1)

P(Ri = 1|Ti = 1)
, (SA2.2)

FUi|Ti=0,Ri=1 =
p10FUi|(Ri(0),Ri(1))=(1,0)+ p11FUi|(Ri(0),Ri(1))=(1,1)

P(Ri = 1|Ti = 0)
. (SA2.3)

If (i) holds, then FUi|Ri(0),Ri(1) = FUi , hence

FUi|Ti=1,Ri=1 =
p01FUi + p11FUi

P(Ri = 1|Ti = 1)
= FUi, FUi|Ti=0,Ri=1 =

p10FUi + p11FUi

P(Ri = 1|Ti = 0)
= FUi.

We can similarly show that FUi|Ti,Ri=0 = FUi , it follows trivially that Ui|Ti,Ri
d
=Ui|Ri.

Alternatively, if we assume (ii), Ri(0) ≤ Ri(1) implies p10 = 0. As a result, P(Ri = 0|Ti =

1) = P(Ri = 0|Ti = 0) iff p01 = 0. It follows that the terms in (SA2.2) and (SA2.3) both equal

FUi|(Ri(0),Ri(1))=(1,1). Similarly, it follows that FUi|Ti=1,Ri=0 = FUi|Ti=0,Ri=0 = FUi|(Ri(0),Ri(1))=(0,0),

which implies the result.

Finally, suppose (iii) holds, then equal attrition rates imply that p01 = p10. The exchangeability
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restriction implies that FUi|(Ri(0),Ri(1))=(0,1) = FUi|(Ri(0),Ri(1))=(1,0). Hence,

FUi|Ti=1,Ri=1 =
p01FUi|(Ri(0),Ri(1))=(0,1)+ p11FUi|(Ri(0),Ri(1))=(1,1)

P(Ri = 1|Ti = 1)

=
p10FUi|(Ri(0),Ri(1))=(1,0)+ p11FUi|(Ri(0),Ri(1))=(1,1)

P(Ri = 1|Ti = 0)
= FUi|Ti=0,Ri=1. (SA2.4)

Similarly, it follows that FUi|Ti=1,Ri=0 = FUi|Ti=0,Ri=0, which implies the result.

SA2.1 Supplementary Example for Section 4.1

Suppose that there are two unobservables that enter the outcome equation, Uit = (U1
it ,U

2
it )

′ for

t = 0,1, such that (U1
i0,U

1
i1) ⊥ Ti|Ri whereas (U2

i0,U
2
i1) ̸⊥ Ti|Ri. Let the outcome at baseline be a

trivial function of U2
i0, whereas the outcome in the follow-up period is a non-trivial function of both

U1
i0 and U2

i0, e.g.

Yi0 =U1
i0

Yi1 =U1
i1 +U2

i1 +Ti(β1U1
i1 +β2U2

i1)

As a result, even though Yi0|Ti = 1,Ri
d
=Yi0|Ti = 0,Ri holds, Yi1(0)|Ti = 1,Ri = 1

d
̸=Yi1|Ti = 0,Ri =

1. In other words, the control respondents do not provide a valid counterfactual for the treatment

respondents in the follow-up period despite the identity of the baseline outcome distribution for

treatment and control groups conditional on response status. We can illustrate this by looking at

the average treatment effect for the treatment respondents,

E[Yi1(1)−Yi1(0)|Ti = 1,Ri = 1]

=E[U1
i1 +U2

i1 +β1U1
i1 +β2U2

i1|Ti = 1,Ri = 1]︸ ︷︷ ︸
E[Yi1|Ti=1,Ri=1]

−E[U1
i1 +U2

i1|Ti = 1,Ri = 1]︸ ︷︷ ︸
̸=E[Yi1|Ti=0,Ri=1]

.

Hence, E[Yi1|Ti = 1,Ri = 1]−E[Yi1|Ti = 0,Ri = 1] ̸= β1E[U1
i1|Ti = 1,Ri = 1]+β2E[U2

i1|Ti = 1,Ri =

1], i.e. the difference in mean outcomes between treatment and control respondents does not
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identify an average treatment effect for the treatment respondents.

We could however have a case in which the control respondents provide a valid counterfac-

tual for the treatment respondents even though the treatment effect for individual i depends on an

unobservable that is not independent of treatment conditional on response, i.e. U2
it . Specifically, let

Yit =U1
it +Ti(β1U1

it +β2U2
it ) (SA2.5)

and consider the identification of an average treatment effect, E[Yi1(1)−Yi1(0)|Ti = 1,Ri = 1] =

E[U1
i1 +β1U1

i1 +β2U2
i1|Ti = 1,Ri = 1]−E[U1

i1|Ti = 1,Ri = 1] = E[Yi1|Ti = 1,Ri = 1]−E[Yi1|Ti =

0,Ri = 1], since E[U1
i1|Ti = 1,Ri = 1] = E[U1

i1|Ti = 0,Ri = 1]. Note however that in this case what

we identify is no longer internally valid for the entire respondent subpopulation, but for the smaller

subpopulation of treatment respondents.

SA3 Equal Attrition Rates with Multiple Treatment Groups

In this section, we illustrate that once we have more than two treatment groups and violations

of monotonicity, then equal attrition rates are possible without imposing the equality of pro-

portions of certain subpopulations unlike Example 2 in the paper. Consider the case where we

have three treatment groups, i.e. Ti ∈ {0,1,2}. For brevity, we use the notation Pi((r0,r1,r2)) ≡

P((Ri(0),Ri(1),Ri(2)) = (r0,r1,r2)) for (r0,r1,r2) ∈ {0,1}3. Hence,

P(Ri = 0|Ti = 0) = Pi((0,0,0))+Pi((0,0,1))+Pi((0,1,0))+Pi((0,1,1))

P(Ri = 0|Ti = 1) = Pi((0,0,0))+Pi((0,0,1))+Pi((1,0,0))+Pi((1,0,1))

P(Ri = 0|Ti = 2) = Pi((0,0,0))+Pi((1,0,0))+Pi((0,1,0))+Pi((1,1,0)) (SA3.1)
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The equality of attrition rates across the three groups, i.e. P(Ri = 0|Ti = 0)−P(Ri = 0|Ti = 1) =

P(Ri = 0|Ti = 0)−P(Ri = 0|Ti = 2) = 0 implies the following equalities,

Pi((0,1,0))+Pi((0,1,1)) = Pi((1,0,0))+Pi((1,0,1))

Pi((0,0,1))+Pi((0,1,1)) = Pi((1,0,0))+Pi((1,1,0)) (SA3.2)

which can occur without constraining the proportions of different subpopulations to be equal.

SA4 Identification and Testing for the Multiple Treatment Case

In this section, we present the generalization of Propositions 1 and 2 (Section SA4.1) as well as

the distributional test statistics (Section SA4.2) in the paper to the case where the treatment vari-

able has arbitrary finite-support. As in the paper, we provide results for completely and stratified

randomized experiments. We maintain that Di0 = 0 for all i, i.e. no treatment is assigned in

the baseline period, Di1 ∈ D , where wlog D = {0,1, . . . , |D | − 1}, |D | < ∞. Di ≡ (Di0,Di1) ∈

{(0,0),(0,1), . . . ,(0, |D |−1)}. Let Ti denote the indicator for membership in the treatment group

defined by Di, i.e. Ti ∈ T = {0,1, . . . , |D |−1}, where Ti = Di1 and hence |T |= |D | by construc-

tion.

SA4.1 Identification and Sharp Testable Restrictions

SA4.1.1 Completely Randomized Trials

Proposition 4. Assume (Ui0,Ui1,Vi)⊥ Ti.

(a) If (Ui0,Ui1)⊥ Ti|Ri holds, then

(i) (Identification) Yi1|Ti = τ,Ri = 1 d
= Yi1(τ)|Ri = 1 for τ ∈ T .

(ii) (Sharp Testable Restriction) Yi0|Ti = τ,Ri = r d
=Yi0|Ti = τ ′,Ri = r for r = 0,1, for τ,τ ′ ∈

T ,τ ̸= τ ′.
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(b) If (Ui0,Ui1)⊥ Ri|Ti holds, then

(i) (Identification) Yi1|Ti = τ,Ri = 1 d
= Yi1(τ) for τ ∈ T .

(ii) (Sharp Testable Restriction) Yi0|Ti = τ,Ri = r d
= Yi0 for τ ∈ T , r = 0,1.

Proof. (Proposition 4) (a) Under the assumptions imposed it follows that FUi0,Ui1|Ti,Ri = FUi0,Ui1|Ri ,

which implies that for d ∈D , FYit(d)|Ti,Ri =
∫

1{µt(d,u)≤ .}dFUit |Ti,Ri(u)=
∫

1{µt(d,u)≤ .}dFUit |Ri(u)=

FYit(d)|Ri . (i) follows by letting t = 1 and d = τ , while conditioning the left-hand side of the last

equation on Ti = τ and Ri = 1 and the right-hand side on Ri = 1. The testable implication in (ii)

follows by letting t = d = 0 and conditioning the left-hand side on Ti = τ and Ri = r and the

right-hand side on Ti = τ ′ and Ri = r, where τ ̸= τ ′.

Following Hsu, Liu and Shi (2019), we show that the testable restriction is sharp by showing

that if (Yi0,Yi1,Ti,Ri) satisfy Yi0|Ti = τ,Ri = r d
= Yi0|Ti = τ ′,Ri = r for r = 0,1, τ,τ ′ ∈ T , τ ̸= τ ′,

then there exists (Ui0,Ui1) such that Yit(d) = µt(d,Uit) for some µt(d, .) for d ∈ D and t = 0,1

and (Ui0,Ui1) ⊥ Ti|Ri that generate the observed distributions. By the arbitrariness of Uit and µt ,

we can let U ′
it = Yit(.) = (Yit(0),Yit(1), . . . ,Yit(|D |−1)) and µt(d,Uit) = ∑

D−1
j=0 1{ j = d}Yit( j) for

d ∈D , t = 0,1. Note that Yi0 =Yi0(0) since Di0 = 0 w.p.1. Now we have to construct a distribution

of Ui = (U ′
i0,U

′
i1) that satisfies

FUi|Ti,Ri ≡ FYi0(.),Yi1(.)|Ti,Ri = FYi0(.),Yi1(.)|Ri

as well as the relevant equalities between potential and observed outcomes. We proceed by first

constructing the unobservable distribution for the respondents. By setting the appropriate potential

outcomes to their observed counterparts, we obtain the following equalities for the distribution of

Ui for the respondents in the different treatment groups

FUi|Ti=τ,Ri=1 = F{Yi0(d)}
|D |−1
d=1 ,Yi1(.)|Yi0,Ti=τ,Ri=1

FYi0|Ti=τ,Ri=1

= F{Yi0(d)}
|D |−1
d=1 ,{Yi1(d)}τ−1

d=0,Yi1,{Yi1(d)}
|D |−1
d=τ+1|Yi0,Ti=τ,Ri=1

FYi0|Ti=τ,Ri=1. (SA4.1)
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By construction, FYi0|Ti,Ri=1 = FYi0|Ri=1. Now generating the above distribution for all τ ∈ T such

that F{Yi0(d)}
|D |−1
d=1 ,{Yi1(d)}τ−1

d=0,Yi1,{Yi1(d)}
|D |−1
d=τ+1|Yi0,Ti=τ,Ri=1

which satisfies the following equality ∀τ,τ ′ ∈

T , τ ̸= τ ′,

F{Yi0(d)}
|D |−1
d=1 ,{Yi1(d)}τ−1

d=0,Yi1,{Yi1(d)}
|D |−1
d=τ+1|Yi0,Ti=τ,Ri=1

=F{Yi0(d)}
|D |−1
d=1 ,{Yi1(d)}τ ′−1

d=0 ,Yi1,{Yi1(d)}
|D |−1
d=τ ′+1|Yi0,Ti=τ ′,Ri=1

,

yields Ui ⊥ Ti|Ri = 1 and we can construct the observed outcome distribution (Yi0,Yi1)|Ri = 1 from

Ui|Ri = 1.

The result for the attritor subpopulation follows trivially from the above arguments,

FUi|Ti=τ,Ri=0 = F{Yi0(d)}
|D |−1
d=1 ,Yit(.)|Yi0,Ti=τ,Ri=0

FYi0|Ti=τ,Ri=0 (SA4.2)

Since FYi0|Ti,Ri=0 = FYi0|Ri=0 by construction, it remains to generate the above distribution for all

τ ∈ T using the same F{Yi0(d)}
|D |−1
d=1 ,Yit(.)|Yi0,Ri=0

. This leads to a distribution of Ui|Ri = 0 that is

independent of Ti and that generates the observed outcome distribution Yi0|Ri = 0.

(b) Under the given assumptions, it follows that FUi0,Ui1|Ti,Ri = FUi0,Ui1|Ti = FUi0,Ui1 where the

last equality follows by random assignment. Similar to (a), the above implies that for d ∈ D ,

FYit(d)|Ti,Ri(.) =
∫

1{µt(d,u)≤ .}dFUit |Ti,Ri(u) =
∫

1{µt(d,u)≤ .}dFUit (u) = FYit(d). (i) follows by

letting d = τ and t = 1, while conditioning the left-hand side of the last equation on Ti = τ and

Ri = 1, whereas (ii) follows by letting d = t = 0 while conditioning on Ti = τ and Ri = r for τ ∈T ,

r = 0,1.

To show that the testable restriction is sharp, it remains to show that if (Yi0,Yi1,Ti,Ri) satisfies

Yi0|Ti,Ri
d
= Yi0(0), then there exists (Ui0,Ui1) such that Yit(d) = µt(d,Uit) for some µt(d, .) for d ∈

D and t = 0,1 and (Ui0,Ui1)⊥ (Ti,Ri). Similar to (a.ii), we let U ′
it =Yit(.)= (Yit(0),Yit(1), . . . ,Yit(|D |−

1)) and µt(d,Uit) = ∑
D−1
j=0 1{ j = d}Yit( j) for d ∈ D , t = 0,1. By construction, Yi0 = Yi0(0). Fur-
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thermore, FYi0|Ti,Ri = FYi0 by assumption. It follows immediately that for all τ ∈ T

FUi|Ti=τ,Ri=1 = F{Yi0(d)}
|D |−1
d=1 ,{Yi1(d)}τ−1

d=0,Yi1,{Yi1(d)}
|D |−1
d=τ+1|Ti=τ,Ri=1

FYi0,

FUi|Ti=τ,Ri=0 = F{Yi0(d)}
|D |−1
d=1 ,Yit(.)|Yi0,Ti=τ,Ri=0

FYi0.

Now constructing all of the above distributions using the same F{Yi0(d)}
|D |−1
d=1 ,Yit(.)|Yi0,Ti,Ri

that satisfies

the above equalities for all τ ∈ T implies the result.

SA4.1.2 Stratified Randomized Trials

Proposition 5. Assume (Ui0,Ui1,Vi)⊥ Ti|Si.

(a) If (Ui0,Ui1)⊥ Ti|Si,Ri holds, then

(i) (Identification) Yi1|Ti = τ,Si = s,Ri = 1 d
= Yi1(τ)|Si = s,Ri = 1,

for τ ∈ T ,s ∈ S .

(ii) (Sharp Testable Restriction) Yi0|Ti = τ,Si = s,Ri = r d
=Yi0|Ti = τ ′,Si = s,Ri = r, ∀τ,τ ′ ∈

T ,τ ̸= τ,s ∈ S ,r = 0,1.

(b) If (Ui0,Ui1)⊥ Ri|Ti holds, then

(i) (Identification) Yi1|Ti = τ,Si = s,Ri = 1 d
= Yi1(τ)|Si = s for τ ∈ T , s ∈ S .

(ii) (Sharp Testable Restriction) Yi0|Ti = τ,Si = s,Ri = r d
= Yi0|Si = s for τ ∈ T , r = 0,1,

s ∈ S .

Proof. (Proposition 5) The proof for this proposition follows in a straightforward manner from the

proof for Proposition 4 by conditioning all statements on Si.

SA4.2 Distributional Test Statistics

Next, we present the null hypotheses and distributional statistics for the multiple treatment case.

For simplicity, we only present the joint statistics that take the maximum to aggregate over the
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individual statistics of each distributional equality implied by a given testable restriction.

SA4.2.1 Completely Randomized Trials

The null hypothesis implied by Proposition 4(a.ii) is given by the following,

H1,T
0 : FYi0|Ti=τ,Ri=r = FYi0|Ti=τ ′,Ri=r for τ,τ ′ ∈ T , τ ̸= τ

′, r = 0,1. (SA4.3)

Consider the following general form of the distributional statistic for the above null hypothesis

is T 1,T
n = maxr∈{0,1}T 1,T

n,r , where for r = 0,1,

T 1,T
n,r = max

(τ,τ ′)∈T 2:τ ̸=τ ′

∥∥√n
(
Fn,Yi0|Ti=τ,Ri=r −Fn,Yi0|Ti=τ ′,Ri=r

)∥∥ .
The randomization procedure proposed in the paper using the transformations G 1

0 can be used to

obtain p-values for the above statistic under H1,T
0 .

Let (τ,r) ∈ T ×R, where R = {0,1}. Let (τ j,r j) denote the jth element of T ×R, then the

null hypothesis implied by Proposition 4(b.ii) is given by the following:

H2,T
0 : FYi0|Ti=τ j,Ri=r j = FYi0|Ti=τ j+1,Ri=r j+1 for j = 1, . . . , |T ×R|−1. (SA4.4)

the test statistic for the above joint hypothesis is given by

T 2,T
n,m = max

j=1,...,|T ×R|−1

∥∥∥√n
(

Fn,Yi0|Ti=τ j,Ri=r j −Fn,Yi0|Ti=τ j+1,Ri=r j+1

)∥∥∥ ,
The randomization procedure proposed in the paper using the transformations G 2

0 can be used to

obtain p-values for the above statistic under H2,T
0 .
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SA4.2.2 Stratified Randomized Trials

The null hypothesis implied by Proposition 5(a.ii) is given by the following,

H1,S ,T
0 : FYi0|Ti=τ,Si=s,Ri=r = FYi0|Ti=τ ′,Si=s,Ri=r for τ,τ ′ ∈ T , τ ̸= τ

′, s ∈ S , r = 0,1.

(SA4.5)

Consider the following general form of the distributional statistic for the above null hypothesis

is T 1,S ,T
n = maxs∈S maxr∈{0,1}T 1,T

n,r,s , where for s ∈ S and r = 0,1,

T 1,T
n,r,s = max

(τ,τ ′)∈T 2:τ ̸=τ ′

∥∥√n
(
Fn,Yi0|Ti=τ,Si=s,Ri=r −Fn,Yi0|Ti=τ ′,Si=s,Ri=r

)∥∥ .
The randomization procedure proposed in the paper using the transformations G 1,S

0 can be used

to obtain p-values for T 1,S ,T
n under H1,S ,T

0 .

Let (τ,r) ∈ T ×R. Let (τ j,r j) denote the jth element of T ×R, then the null hypothesis

implied by Proposition 5(b.ii) is given by the following:

H2,S ,T
0 : FYi0|Ti=τ j,Si=s,Ri=r j = FYi0|Ti=τ j+1,Si=s,Ri=r j+1 for j = 1, . . . , |T ×R|−1, s ∈ S .

(SA4.6)

the test statistic for the above joint hypothesis is given by

T 2,S ,T
n,m = max

s∈S
max

j=1,...,|T ×R|−1

∥∥∥√n
(

Fn,Yi0|Ti=τ j,Si=s,Ri=r j −Fn,Yi0|Ti=τ j+1,Si=s,Ri=r j+1

)∥∥∥ ,
The randomization procedure proposed in the paper using the transformations G 2,S

0 can be used

to obtain p-values for the above statistic under H2,S ,T
0 .
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SA5 Simulation Study

We illustrate the theoretical results in the paper using a numerical study. The simulations examine

the performance of the differential attrition rate test as well as both the mean and distributional

tests of the IVal-R and IVal-P assumptions.

SA5.1 Simulation Design and Test Statistics

The data-generating process (DGP) is described in Panel A of Table SA1. We assign individuals

to one of the four response types: always-responders, never-responders, control-only responders,

and treatment-only responders. The unobservables that determine the outcome consist of time-

invariant and time-varying components. We introduce dependence between the unobservables in

the outcome equation and potential response by allowing the means of the time-invariant compo-

nent to differ for each response type. We also allow for heterogeneous treatment effects, so that

the ATE-R can differ from the ATE.

We conduct simulations using four variants of this simulation design that feature different cases

of IVal-R and IVal-P as summarized in Panel B of Table SA1.77 Designs I and II present cases

where the differential rate test would have desirable properties as a test of IVal-R.78 Both designs

allow for dependence between the unobservables in the outcome equation and potential response

and impose monotonicity in the response equation by ruling out control-only responders. Design

I allows for non-zero proportions of treatment-only responders and thereby a violation of IVal-R.

Design II rules out treatment-only responders and, as a result, we have IVal-R, but not IVal-P.

Designs III and IV illustrate Examples 1 and 2 in Section 3.3, respectively. Design III demon-

strates a setting in which we have differential attrition rates and IVal-P. It imposes monotonicity

and differential attrition rates as in Design I, but allows the unobservables in the outcome equation

77We only consider these four designs to keep the presentation clear. However, it is possible to combine different
assumptions. For instance, if we assume p01 = p10 and (Ui0,Ui1)⊥ (Ri(0),Ri(1)), then we would have equal attrition
rates and IVal-P. We can also obtain a design that satisfies exchangeability by assuming δ01 = δ10. If combined with
p01 = p10, then we would have equal attrition rates and IVal-R only (Proposition 3(iii)).

78To be precise, in these designs, the differential attrition rate test would have non-trivial power when IVal-R is
violated while controlling size when IVal-R holds.
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Table SA1: Simulation Design

Panel A. Data-Generating Process

Outcome: Yit = β1Dit +β2Ditαi +αi +ηit for t = 0,1
where β1 = β2 = 0.25.

Treatment: Ti
i.i.d.∼ Bernoulli(0.5), Di0 = 0, Di1 = Ti.

Response:
Ri = (1−Ti)Ri(0)+TiRi(1)
where pr0r1 = P((Ri(0),Ri(1)) = (r0,r1)) for r0,r1 ∈ {0,1}2 .

Unobservables:



Uit = (αi,ηit)
′, t = 0,1,

αi|Ri(0),Ri(1)
i.i.d.∼


N(δ00,1) i f (Ri(0),Ri(1)) = (0,0),
N(δ01,1) i f (Ri(0),Ri(1)) = (0,1),
N(δ10,1) i f (Ri(0),Ri(1)) = (1,0),
N(δ11,1) i f (Ri(0),Ri(1)) = (1,1).

ηi1 = 0.5ηi0 + εi0, (ηi0,εi0)
′ i.i.d.∼ N(0,0.5I2)

Panel B. Variants of the Design

Design I II III IV

Monotonicity in the Response Equation Yes Yes Yes No

Equal Attrition Rates No Yes No Yes

IVal-R Assumption No Yes Yes No

IVal-P Assumption ((Ui0,Ui1)⊥ Ri) No No Yes No

Notes: For an integer k, Ik denotes a k×k identity matrix. In Designs I and II, we let δ00 =−0.5, δ01 = 0.5,
and δ11 = −(δ00 p00 + δ01 p01)/p11, such that E[αi] = 0. In Design III, δr0r1 = 0 for all (r0,r1) ∈ {0,1}2,
which implies Uit ⊥ (Ri(0),Ri(1)) for t = 0,1. In Design IV, δ00 = −0.5, δ01 = −δ10 = 0.25, and δ11 =
−(δ00 p00 +δ01 p01 +δ10 p10)/p11. As for the proportions of the different subpopulations, in Designs I-III,
we let p00 = P(Ri = 0|Ti = 1), p01 = P(Ri = 0|Ti = 0)−P(Ri = 0|Ti = 1), and p11 = 1− p00− p01, whereas
in Design IV, we fix p10 = p01, p00 = p10/4, and P(Ri = 0|Ti = 0) = p00 + p10.

and potential response to be independent. Finally, Design IV follows Example 2 in demonstrating a

case in which there are equal attrition rates and a violation of internal validity. Here, we allow for a

violation of monotonicity and dependence between the unobservables in the outcome equation and

potential response. We impose that the proportion of treatment-only and control-only responders

is identical and, as a result, the design features equal attrition rates.

In all four designs, we chose a range of attrition rates from the results of our review of the

empirical literature (see Figure 1). Specifically, we allow for attrition rates in the control group

from 5% to 30%, and differential attrition rates from zero to ten percentage points. To illustrate the
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implication of the designs for estimated mean effects, we report the simulation mean and standard

deviation of the estimated difference in mean outcomes for the treatment and control respondents

in the follow-up period (Ȳ T R
1 − ȲCR

1 ).

The primary goal of our simulation analysis is to compare the performance of the differential

attrition rate test as well as the mean and distributional IVal-R and IVal-P tests using a 5% level

of significance. The differential attrition rate test is a two-sample t-test of the equality of attrition

rates between the treatment and control group, P(Ri = 0|Ti) = P(Ri = 0). The hypotheses of the

mean IVal-R and IVal-P tests (denoted with an M subscript) are given by:

Yi0 = γ11TiRi + γ01(1−Ti)Ri + γ10Ti(1−Ri)+ γ00(1−Ti)(1−Ri)+ εi (SA5.1)

H1,1
0,M : γ10 = γ00, (CR-T R)

H1,2
0,M : γ11 = γ01, (CA-TA)

H1
0,M : γ10 = γ00 & γ11 = γ01, (IV -R) (SA5.2)

H2
0,M : γ11 = γ01 = γ10 = γ00, (IV -P) (SA5.3)

H1,1
0,M (H1,2

0,M) tests the significance of mean differences between the treatment and control respon-

dents (attritors) only. These two hypotheses are similar to widely used tests in the literature and are

both implications of the IVal-R assumption. H1
0,M (H2

0,M) are the hypotheses of the mean IVal-R

(IVal-P) tests in Section 3.2.2, which we implement using Wald statistics and asymptotic χ2 critical

values. To implement the distributional IVal-R and IVal-P tests, we use Kolmogorov-Smirnov-type

(KS) statistics of their respective hypotheses,

H1
0 : Yi0|Ti,Ri = r d

= Yi0|Ri = r, for r = 0,1, (SA5.4)

H2
0 : Yi0|Ti,Ri

d
= Yi0. (SA5.5)

We formally define the KS statistics for the above hypotheses in Section A.1, where we also de-

scribe the randomization procedures we use to obtain their p-values.
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SA5.2 Simulation Results

Table SA9 reports simulation rejection probabilities for the differential attrition rate test as well

as the mean and distributional tests of the IVal-R and IVal-P assumptions for Designs I-IV. First,

we consider the performance of the differential attrition rate test. Columns 1 through 3 of Table

SA9 report the simulation mean of the attrition rates for the control (C) and treatment (T ) groups

as well as the probability of rejecting a differential attrition rate test. Designs I and II, which obey

monotonicity and allow for dependence between the unobservables in the outcome equation and

potential response, illustrate the typical cases in which the differential attrition rate test can be

viewed as a test of IVal-R. In Design I, where internal validity is violated, the test rejects above

5%, while in Design II, where IVal-R holds, the test controls size. Designs III and IV, on the other

hand, illustrate the concerns we raise regarding the use of the differential attrition rate test as a test

of IVal-R. In Design III, the differential attrition rate test rejects at a frequency higher than 5%

simply because the attrition rates are different even though IVal-P holds. In Design IV, however,

the differential attrition rate test does not reject above 5% when internal validity is violated because

attrition rates are equal.

Next, we examine the performance of the IVal-R tests, which are given in Columns 4 through

7 of Table SA9. As expected, where IVal-R holds (Designs II and III), the tests control size.

Similarly, where IVal-R is violated (Designs I and IV), the tests reject above 5%. In general, the

relative power of the test statistics may differ depending on the DGP. In our simulation design,

however, the rejection probabilities of the attritors-only test (CA-TA) and the joint tests (Mean and

KS) are significantly higher than the test based on the difference between the treatment and control

respondents (CR-TR).79

The test statistics of the IVal-P assumption (Columns 8 and 9 in Table SA9) also behave ac-

cording to our theoretical predictions. In Designs I, II and IV, where there is dependence between

the unobservables in the outcome equation and potential response, the IVal-P test rejects above

79This may be because the treatment-only responders are proportionately larger in the control attritor subgroup than
in the treatment respondent subgroup.
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5%. Of particular interest is Design II, since internal validity holds for the respondents, but not for

the population (i.e. IVal-R holds, but IVal-P does not). Thus, although the IVal-P test does reject,

the IVal-R test does not reject above 5%. In this case, the difference in mean outcomes between

treatment and control respondents (i.e. the estimated treatment effect) is not unbiased for the ATE

(0.25), but it is internally valid for the respondents. In Design III, which is the only design where

IVal-P holds, both the mean and KS tests control size. Examining the difference in mean outcomes

between treatment and control respondents at follow-up in this design, we find that it is unbiased

for the ATE across all combinations of attrition rates.

Overall, the simulation results illustrate the limitations of the differential attrition rate test and

show that the tests of the IVal-R and IVal-P assumptions we propose behave according to our

theoretical predictions. In what follows, we examine the finite-sample performance of a wider

variety of the distributional tests of the IVal-R and IVal-P assumptions.

SA5.3 Extended Simulations for the Distributional Tests

SA5.3.1 Comparing Different Statistics of the Distributional Hypotheses

We consider the Kolmogorov-Smirnov (KS) and Cramer-von-Mises (CM) statistics of the simple

and joint hypotheses. For the joint hypotheses, we include the probability weighted statistic in

addition to the version used in the paper.

For the IVal-R assumption, consider the following hypotheses implied by Proposition 1(b.ii) in

the paper

H1,1
0 : Yi0|Ti = 1,Ri = 0 d

= Yi0|Ti = 0,Ri = 0, (CA−TA)

H1,2
0 : Yi0|Ti = 1,Ri = 1 d

= Yi0|Ti = 0,Ri = 1, (CR−T R)

H1
0 : H1,1

0 & H1,2
0 . (Joint) (SA5.6)
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For r = 0,1, the KS and CM statistics to test H1,r+1
0 is given by

KS1
n,r = max

i:Ri=r

∣∣√n(Fn,Yi0(yi0|Ti = 1,Ri = r)−Fn,Yi0(yi0|Ti = 0,Ri = r))
∣∣ .

CM1
n,r =

∑i:Ri=r (
√

n(Fn,Yi0(yi0|Ti = 1,Ri = r)−Fn,Yi0(yi0|Ti = 0,Ri = r))2

∑
n
i=1 1{Ri = r}

(SA5.7)

For the joint hypothesis H1
0 , which is the sharp testable restriction in Proposition 1(b.ii) in the

paper, we consider either KS1
n,m = max{KS1

n,0,KS1
n,1} or KS1

n,p = pn,0KS1
n,0 + pn,1KS1

n,1, where

pn,r = ∑
n
i=1 1{Ri = r}/n for r = 0,1. CM1

n,m and CM1
n,p are similarly defined.

Table SA10 presents the simulation rejection probabilities of the aforementioned statistics of

the IVal-R assumption. For each simulation design and attrition rate, we report the rejection prob-

abilities for the KS statistics of the simple hypotheses, KS1
n,0 and KS1

n,1, using asymptotic critical

values (KS (Asym.)) as a benchmark for the KS (KS (R)) and the CM (CM (R)) statistics using the

p-values obtained from the proposed randomization procedure to test H1
0 (B = 199). The different

variants of the KS and CM test statistics control size under Designs II and III, where IVal-R holds.

They also have non-trivial power in finite samples in Designs I and IV, when IVal-R is violated.

The simulation results for the distributional statistics also illustrate the potential power gains in

finite samples from using the attritor subgroup in testing the IVal-R assumption. In testing the

joint null hypothesis, we find that KS1
n,m and CM1

n,m (Joint (m)) exhibit better finite-sample power

properties than KS1
n,p and CM1

n,p (Joint (p)). We also note that the randomization procedure yields

rejection probabilities for the two-sample KS statistics, KS1
n,0 and KS1

n,1, that are very similar to

those obtained from the asymptotic critical values. In addition, in our simulation design, the CM

statistics generally have better finite-sample power properties than their respective KS statistics,

while maintaining comparable size control.

We then examine the finite-sample performance of the distributional statistics of the IVal-P

assumption. Proposition 1(b.ii) in the paper implies the three simple null hypotheses as well as
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their joint hypothesis below,

H2,1
0 : Yi0|Ti = 0,Ri = 0 d

= Yi0|Ti = 0,Ri = 1, (CA−CR)

H2,2
0 : Yi0|Ti = 0,Ri = 1 d

= Yi0|Ti = 1,Ri = 0, (CR−TA)

H2,3
0 : Yi0|Ti = 1,Ri = 0 d

= Yi0|Ti = 1,Ri = 1, (TA−T R)

H2
0 : H2,1

0 & H2,2
0 & H2,3

0 . (Joint) (SA5.8)

Let (τ j,r j) denote the jth element of T ×R = {(0,0),(0,1),(1,0),(1,1)}. We can define the KS

and CM statistics for H2, j
0 for each j = 1,2,3 by the following,

KS2
n, j = max

i:(Ti,Ri)∈{(τ j,r j),(τ j+1,r j+1)}

∣∣∣√n
(

Fn,Yi0|Ti=τ j−1,Ri=r j−1 −Fn,Yi0|Ti=τ j,Ri=r j

)∣∣∣ ,
CM2

n, j =

∑
i:(Ti,Ri)∈{(τ j,r j),(τ j+1,r j+1)

(√
n
(

Fn,Yi0|Ti=τ j−1,Ri=r j−1 −Fn,Yi0|Ti=τ j,Ri=r j

))2

∑
n
i=1 1

{
(Ti,Ri) ∈ {(τ j,r j),(τ j+1,r j+1)}

} , (SA5.9)

The joint hypothesis H2
0 is tested using the joint statistics KS2

n,m = max j=1,2,3 KS2
n, j and CM2

n,m =

max j=1,2,3CM2
n, j.

In Table SA11, we report the simulation rejection probabilities for distributional tests of the

IVal-P assumption. In addition to the aforementioned statistics whose p-values are obtained using

the proposed randomization procedure to test H2
0 (B = 199), the table also reports the simulation

results for the KS statistics of the simple hypotheses using the asymptotic critical values. Under

Designs I, II and IV, IVal-P is violated, the rejection probabilities for all the test statistics we

consider tend to be higher than the nominal level, as we would expect. The joint KS and CM test

statistics behave similarly in this design and have comparable finite-sample power properties to the

test statistic of the simple hypothesis (TA-TR), which has the best finite-sample power properties

in our simulation design. Finally, in Design III, where IVal-P holds, our simulation results illustrate

that the test statistics we consider control size.
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SA5.3.2 Additional Variants of the Simulation Designs

To illustrate the relative power properties of using the simple vs joint tests of internal validity,

we present additional results using variants of the simulation designs. We show the results of the

KS tests for the case where P(Ri = 0|Ti = 0) = 0.15.80 For the joint hypotheses, we report the

simulation results for the KS statistic that takes the maximum over the individual statistics.

Panel A in Figure SA1 displays the simulation rejection probabilities of the tests of the IVal-R

assumption while Panel B displays the simulation rejection probabilities of the tests of the IVal-

P assumption. We present these rejection probabilities for alternative parameter values of the

designs we consider in Section SA5 in the paper. Design II to I depicts the case in which we

vary the proportion of treatment-only responders, p01, from zero to 0.9×P(Ri = 0|Ti = 0), where

p01 = 0 corresponds to Design II and p01 > 0 to variants of Design I. Design III to I depicts

the case in which we vary the correlation parameter between the unobservables in the outcome

equation and the unobservables in the response equation, ρ , from zero to one. Hence, ρ = 0

corresponds to Design III while ρ > 0 corresponds to different versions of Design I. Finally, the

results under Design II to IV are obtained by fixing p01 = p10 and varying them from zero to

0.9×P(Ri = 0|Ti= 0). Design II corresponds to the case in which p01 = p10 = 0 and p01 = p10 > 0

corresponds to different versions of Design IV.

Overall, the simulation results illustrate that the joint tests that we propose in Section A in

the paper have better finite-sample power properties relative to the statistics of the simple null

hypotheses. Most notably, the results under Design II to I in Panel A of Figure SA1 show that

when IVal-R does not hold (i.e. p01 > 0), the simulation rejection probabilities of the joint test

are generally above the simulation rejection probabilities of the simple test that only uses the

respondents.

SA6 Tables and Figures

80We use an attrition rate of 15% in the control group as reference since that is the average attrition rate in our
review of field experiments. See Section 2 in the paper for details.
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Table SA2: Distribution of Articles by Journal and Year of Publication

Journal
Year

Total
2009 2010 2011 2012 2013 2014 2015

AEJ: Applied 0 0 0 3 3 3 8 17
AER 0 1 1 2 0 2 2 8
EJ 0 0 1 2 0 5 0 8
Econometrica 1 0 0 0 0 1 0 2
JDE 0 0 1 1 3 11 6 22
JHR 0 0 0 1 1 1 2 5
JPE 0 0 1 0 0 0 0 1
QJE 1 1 4 3 2 4 3 18
REstat 2 0 2 1 1 1 3 10
REstud 0 0 0 0 1 1 0 2

Total 4 2 10 13 11 29 24 93

Notes: The 93 articles that we include in our review correspond to 96 field experi-
ments. The two articles that reported more than one field experiment are published
in the AER(2015) and the QJE(2011), respectively.

Table SA3: Overall Attrition Rate by Country’s Income Group

Field Experiments in: N Mean SD Min Max p25 p75
Prop. of

Experiments with
Rate > 15%

High income countries 28 20.7 24.2 0 87 3 28 46%
Upper middle income countries 18 15.6 13.1 0 54 7 20 55%
Low and lower middle income countries 47 11.9 12.6 0 59 2 18 34%
All countries 93 15.3 17.2 0 87 3.3 21 42%

Notes: This table considers the highest overall attrition rate for each field experiment in our review and
excludes one paper that does not report overall attrition rates. We classify countries by income group
according to the official definition of the World Bank.

Table SA4: Number of Baseline Variables Included in The Selective Attrition Test

Category No. of Baseline Variables Included

Mean SD Min Max p25 p75
All papers that conduct a selective attrition test 17.3 10.3 1 46 10 22
Papers that test on multiple baseline variables:

Multiple hypotheses for individual variables (76%) 16.9 9.7 2 46 10 21
Joint hypothesis for all variables (24%) 20.3 11.3 4 44 13 23

Notes: Of the 47 experiments that conduct a selective attrition test, 45 test on multiple baseline
variables. This table excludes one experiment that tests on multiple baseline variables but does
not provide sufficient information for it to be categorized. Percentages are a proportion of the 45
experiments that test on multiple baseline variables.
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