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OXFORD
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ABSTRACT

Benkeser et al. demonstrate how adjustment for baseline covariates in randomized trials can meaningfully improve precision for a variety of out-
come types. Their findings build on a long history, starting in 1932 with R.A. Fisher and including more recent endorsements by the U.S. Food
and Drug Administration and the European Medicines Agency. Here, we address an important practical consideration: how to select the adjust-
ment approach—which variables and in which form—to maximize precision, while maintaining Type-I error control. Balzer et al. previously
proposed Adaptive Pre-specification within TMLE to flexibly and automatically select, from a prespecified set, the approach that maximizes
empirical efficiency in small trials (N < 40). To avoid overfitting with few randomized units, selection was previously limited to working gen-
eralized linear models, adjusting for a single covariate. Now, we tailor Adaptive Pre-specification to trials with many randomized units. Using
V-fold cross-validation and the estimated influence curve-squared as the loss function, we select from an expanded set of candidates, including
modern machine learning methods adjusting for multiple covariates. As assessed in simulations exploring a variety of data-generating processes,
our approach maintains Type-I error control (under the null) and offers substantial gains in precision—equivalent to 20%-43% reductions in
sample size for the same statistical power. When applied to real data from ACTG Study 175, we also see meaningful efficiency improvements

overall and within subgroups.

KEYWORDS: covariate adjustment; efficiency; machine learning; pre-specification; randomized trials; TMLE.

1 INTRODUCTION

There is a long history of debate on whether and how to opti-
mally adjust for baseline covariates to improve precision in ran-
domized trials (eg, Fisher (1932); Tsiatis et al. (2008); Zhang
etal. (2008); EMA (2015); FDA (2021)). Recently, for binary,
ordinal, and time-to-event outcomes, Benkeser et al. (2021) de-
fined several potential causal effects of interest and, for each,
demonstrated the promise of covariate adjustment to improve
our ability to make timely and precise inferences, without fear
of bias due to regression model misspecification. In their simu-
lation study, covariate adjustment led to substantial gains in ef-
ficiency, translating to 4%-18% reductions in sample size for the
same statistical power when there was an effect, while maintain-
ing good Type-I error control when there was no effect.
However, Benkeser et al. (2021) only briefly discuss how to
optimally select the adjustment covariates and the “working” re-
gression model to maximize precision for the effect of interest.
In their Rejoinder, they state, “the variables should either be se-
lected before the trial starts (selecting those that are most prog-
nostic for the outcome based on prior data), or selected using the
trial data based on a completely prespecified algorithm that aims
to select the most prognostic variables” (Benkeser et al., 2021).
Their recommendation to use prior data assumes the existence

of such data and the consistency of relationships over time and
space. Their recommendation for data-adaptive selection does
not provide a specific algorithm.

The challenge of “how” is further highlighted in the corre-
sponding commentaries. Specifically, Zhang and Zhang (2021)
emphasize that using a misspecified regression model for covari-
ate adjustment can improve efficiency “as long as the covariates
are predictive of the outcomes”. This leaves the reader wonder-
ing about the potential detriments to efficiency and Type-I er-
ror control with forced adjustment for covariates that are, in fact,
not prognostic of the outcome. Zhang and Zhang (2021) call for
further investigation into practical challenges, such as few inde-
pendent units, stratified randomization, and covariate selection.

Building on our previous work in Adaptive Pre-specification
(APS), we offer concrete solutions to these practical challenges
(Balzer et al.,, 2016). Our approach data-adaptively selects, from
a prespecified set, the covariates and the form of the working
model to minimize the cross-validated variance estimate and,
thereby, maximize the empirical efficiency. Our approach is ap-
plicable to asymptotically linear estimators with known influ-
ence curves and, thus, covers a large class of algorithms in-
cluding those most commonly used for causal inference. Addi-
tionally, our work is applicable under a variety of trial designs:
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simple randomization, randomization within strata of baseline
covariates, and randomization within matched pairs of units.
Throughout, we focus on a targeted minimum-loss based esti-
mation (TMLE), which is summarized below and detailed in
Web Appendix A (van der Laan and Rose, 2011). However, we
emphasize APS can be applied to select the optimal, asymptoti-
cally linear estimator for a wide variety of causal effects.

2 METHODS

In randomized trials, TMLE is a powerful approach to lever-
age baseline covariates for efficiency gains, while remaining ro-
bust to regression model misspecification (eg, Moore and van
der Laan (2009); Rosenblum and van der Laan (2010); Balzer
et al. (2023); Benitez et al. (2023)). For outcomes measured
completely in a 2-armed trial, the steps of TMLE are (1) ob-
tain an initial estimator of the “outcome regression”, defined as
the conditional expectation of the outcome Y given the treat-
ment indicator A and covariates W; (2) obtain predicted out-
comes under the treatment (Y |A = 1, W) and under the con-
trol [E(Y|A = 0, W); (3) target these outcome predictions us-
ing information in the “propensity score”, defined as the condi-
tional probability of receiving the treatment given the covariates
P(A = 1|W); (4) average the targeted predictions under the
treatment [ (Y|A = 1, W), and under the control £ (YIA =
0, W); and (S) contrast on the scale of interest.

Under standard regularity conditions, TMLE is asymptoti-
cally linear; therefore, the standardized estimator is asymptot-
ically normal with mean zero and variance given by the vari-
ance of its influence curve (Web Appendix A). If the initial esti-
mator for the outcome regression E(Y|A, W) uses a “working”
generalized linear model (GLM) with an intercept and a main
term for the treatment and if the propensity score is not esti-
mated, then targeting (step 3) can be skipped (Rosenblum and
van der Laan, 2010). Further precision can be attained by using
a prespecified, data-adaptive algorithm for initial estimation of
the outcome regression and for “collaborative” estimation of the
propensity score, as described next.

2.1 Adaptive Pre-specification (APS)

Rubin and van der Laan (2008) proposed the principle of em-
pirical efficiency maximization to optimize precision and, thus,
power in randomized trials. To pick the “best” estimator, they
propose using as loss function the squared-efficient influence
curve for the estimand of interest; this corresponds to selecting
the candidate TMLE with the smallest cross-validated variance
estimate (van der Laan and Rose (2011); pp. 572-577). Build-
ing on this principle and motivated by the SEARCH community
randomized trial (N = 32), Balzer et al. (2016) proposed and
implemented APS to select the optimal adjustment approach in
trials with few randomized units. We now generalize APS for use
in trials with many randomized units.

Figure 1 provides a schematic of APS to select and implement
the optimal TMLE (details in Web Appendix A). First, we pre-
specify candidate estimators of the outcome regression and of
the known propensity score. Together, they form the set of can-
didate TMLESs, which are consistent and locally efficient esti-

mators. As originally formulated for small trials, we limited can-
didate estimators of the outcome regression to working GLMs
with an intercept, a main term for the treatment A, and at most 1
adjustment variable. We also limited candidate estimators of the
propensity score to working logistic regressions with an intercept
and at most 1 adjustment variable. For the large-trial implemen-
tation, we now propose adjusting for multiple covariates in more
flexible algorithms, such as penalized regression and multivariate
adaptive regression splines (MARS). The unadjusted estimator
must also be included as a candidate. APS also requires us to pre-
specify a cross-validation (CV) scheme and a loss function to
objectively measure performance. For small trials, we used leave-
one-out CV; for larger trials, we use V-fold CV. As loss function,
we use the estimated influence curve-squared for the TMLE of
the effect of interest (Web Appendix A).

With these ingredients, we have a fully prespecified and auto-
mated procedure to data-adaptively select the TMLE that max-
imizes empirical efficiency. Selection occurs in 2 steps. First, we
select the candidate estimator of the outcome regression—both
the adjustment variable(s) and the functional form—that min-
imizes the cross-validated variance estimate. Next, we select the
candidate estimator of the propensity score—both the adjust-
ment variable(s) and the functional form—that further mini-
mizes the cross-validated variance estimate when used to target
initial predictions from the previously selected outcome regres-
sion estimator. The two selected estimators form the optimal
TMLE, which is then fit using all the data.

APS can be considered an extension of Collaborative-TMLE
using a CV-selector (a.k.a., discrete Super Learner) to maximize
precision in randomized trials. In the small trial setting, sub-
stantial precision gains from APS have repeatedly been demon-
strated in simulations and with real data (Balzer et al., 2016; Ben-
itez et al,, 2023). For example, in the SEARCH study (N = 32),
we found that the variance of the unadjusted effect estimator was
4.6 times that of TMLE with the small-trial implementation of
APS (Balzer et al., 2023). We now examine the performance of
our proposed modification to APS for large-trial settings using
simulations as well as a real-data application.

3 SIMULATION STUDIES

To address the persistent concerns about adjustment with non-
linear models, highlighted by LaVange (2021) among others, we
explore data-generating processes with higher order interactions
and nonlinear link functions. We also evaluate the performance
with simple randomization and stratified randomization. Our fo-
cus is on estimating the sample effect; however, as previously dis-
cussed, our approach is applicable to other asymptotically linear
estimators with known influence curves, such as TMLE for the
population average treatment effect (PATE) or the conditional
average treatment effect (CATE; Web Appendix A).

We consider 5000 simulated trials, each with N = 500 par-
ticipants. For each participant, we generate S measured covari-
ates {W, ..., Ws} from a standard normal distribution, 2 un-
measured covariates { U}, U, } from a standard uniform distribu-
tion, and the binary counterfactual outcomes Y(a) in 3 settings
of varying complexity:
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FIGURE 1 Schematic of Adaptive Pre-specification (APS) within TMLE
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(4) Use observations in fold v to obtain CV-estimates
of the IC-squared for TMLE with each candidate for
E(Y|A, W) but no targeting. Select the outcome
regression estimator resulting in the smallest CV-risk
estimate; denote it Ey (Y|4, W).

— 1 1 ~
Risk, = VZ [n_ Z {Df”(Ok)}z]
VLY kek,

1 1O e
Riskp = sz [n—v Z {DEV(Ok)}Z]

kEK,

(5) Use observations in fold v to obtain CV-estimates
of the IC-squared for TMLE with outcome regression
estimator * and targeting with each candidate for
P(A = 1|W). Select the propensity score estimator
resulting in the smallest CV-risk estimate.

RSK, —12 ! > (b0
° v ”[n"kek *1( © ]
e 1 1 A*—v 2
Risky , = VZ,, [nv k; {D*P (Ok)} ]

(6) Using all the data, apply TMLE with the selected
estimators of the outcome regression % and
propensity score % to obtain a point estimate ¢* and
variance estimate (via the estimated IC) 52.

to flexibly and automatically select, from a prespecified set, the

adjustment approach that maximizes empirical efficiency for the effect of interest. For illustration, we show R candidate outcome regression
estimators E(Y|A, W), P candidate propensity score estimators [P(A = 1|{W ), and V = S-fold cross-validation (CV). For simplicity, we show
the process for first and last folds, and use ellipses to indicate an analogous process for the other folds. Let K, denote the set of indices for the

observations in fold v of size |K, | = n,. For observation k in validation set

v, the CV-influence curve estimate for the TMLE using candidate

outcome regression r but no targeting is denoted D:" (Or) in step 4, while the corresponding CV-estimate of the influence curve for the TMLE

using the selected outcome regression % and targeting with candidate propensity score estimator p is denoted D*,~"( Oy ) in step $

(Web Appendix A).

(i) “linear”: Y(a) = ]l{U1 < logit ' (a+W, — W, +
Wy — Wy + Ws — 2aW; + Uh) },

(ii) “interactive”: Y(a) = ]l{U1 < logit ' (a +W; +
W2+W3 +W4+W5 +aW1 +aW2W4+aW3 +
awsU, + Uy)},

(iii) “polynomial”: Y(a) = ]l{U1 < logit *(a+ W, +
W, + W5 + W, + Wy — WiW;5 4+ 2W, W3 W, —

Wi(1 = W) + )}

We additionally consider a “treatment only” scenario where
none of the measured covariates influences the outcome:
Y(a) = ]l{U1 < logitil(O.la + ZUZ)}. Using these counter-
factual outcomes, we calculate the true value of the sam-
ple risk ratio (RR)=1/NY ;Y;(1)+1/N>_;Y;(0). As detailed
in Web Appendix B, we also consider a continuous out-
come, generated under 4 analogous settings. For the con-
tinuous endpoint, we focus on the sample average treat-
ment effect (SATE)=1/N>_;Y;(1) — 1/N) ;Y;(0). In each
setting, we generate the observed treatment A using sim-

*p

ple randomization and randomization within strata defined
by 1(W; > 0). Finally, we set the observed outcome Y
equal to the counterfactual outcome Y(a) when the observed
treatment A = a.

We compare the unadjusted estimator, fixed adjustment for
W, in the outcome regression, TMLE with APS tailored for
small trials, and TMLE with our novel modification of APS
for larger trials. In the small-trial APS, we limit the candidate
estimator to working GLMs with 1 adjustment covariate se-
lected from {W;, W,, W;, Wy, Ws, (}. In the large-trial APS,
we select from working GLMs adjusting for 1 covariate, main
terms GLM adjusting for all covariates, stepwise regression, step-
wise regression with all possible pairwise interactions, LASSO,
MARS, and the unadjusted estimator. Both versions of APS use
S-fold CV. Performance criteria include 95% confidence inter-
val coverage, attained power, Type-I error (under the null), bias,
variance, and mean squared error (MSE). Following Benkeser
et al. (2021), we provide the relative efficiency, calculated as
the MSE of a covariate-adjusted estimator divided by the MSE
of the unadjusted effect estimator, and provide an estimate the
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TABLE 1 Estimator performance with the binary outcome where there is an effect and with a sample size of N = 500.

DGP Design Estimator Cover. Power MSE Bias Var. Rel.Eff.
Linear Simple Unadjusted 0.976 0.929 0.005 0.002 0.007 1.000
Static 0.977 0.929 0.005 0.002 0.007 0.998
Small APS 0.982 0.950 0.004 —0.006 0.006 0.798
Large APS 0.971 0.984 0.004 0.002 0.006 0.699
Stratified Unadjusted 0.980 0.935 0.005 0.003 0.007 1.000
Static 0.979 0.935 0.005 0.003 0.007 0.997
Small APS 0.984 0.952 0.004 —0.005 0.006 0.796
Large APS 0.974 0.984 0.004 0.003 0.006 0.707
Interactive Simple Unadjusted 0.965 0.211 0.003 0.003 0.003 1.000
Static 0.964 0.228 0.002 0.003 0.003 0.867
Small APS 0.975 0.212 0.002 0.001 0.002 0.730
Large APS 0.965 0.324 0.002 0.003 0.002 0.567
Stratified Unadjusted 0.970 0.184 0.003 0.001 0.003 1.000
Static 0.965 0.216 0.002 0.001 0.003 0.945
Small APS 0.980 0.190 0.002 —0.001 0.002 0.774
Large APS 0.966 0.297 0.002 0.001 0.002 0.601
Polynomial Simple Unadjusted 0.963 0.865 0.004 0.004 0.005 1.000
Static 0.967 0.916 0.004 0.002 0.004 0.811
Small APS 0.970 0914 0.003 —0.004 0.004 0.719
Large APS 0.969 0.969 0.003 0.001 0.003 0.584
Stratified Unadjusted 0.977 0.868 0.004 0.002 0.004 1.000
Static 0.966 0.912 0.003 0.002 0.004 0917
Small APS 0.974 0.908 0.003 —0.004 0.004 0.816
Large APS 0.972 0.972 0.003 0.001 0.003 0.673

Note: “DGP” denotes the data-generating process; “Cover.” denotes the 95% confidence interval coverage; “Power” denotes the proportion of times the true null hypothesis was
rejected; “MSE” denotes mean squared error; “Var.” denotes the variance of the point estimates, and “Rel.Eff.” denotes relative efficiency, approximated by the ratio of the MSE of a
given estimator to that of the unadjusted estimator. The average value of the sample risk ratio is 1.25 in the linear setting, 1.06 in the interactive setting, and 1.19 in the polynomial
setting. “Static” refers to forced adjustment for W; in the outcome regression, “Small APS” to TMLE with the small-trial implementation of Adaptive Pre-specification (APS), and

“Large APS” to TMLE with the large-trial implementation of APS.

potential savings in sample size, calculated as 1 minus the relative
efficiency.

For the binary outcome, TMLE using the large-trial APS
substantially improved power for the risk ratio in all scenar-
ios (Table 1). Absolute gains in power as compared to the un-
adjusted approach ranged from 5% to 11%. The relative effi-
ciency ranged from 0.57 to 0.71. This roughly translates to 29%-
43% savings in sample size from using TMLE, instead of the
unadjusted effect estimator (Figure 2). The gains from TMLE
with the small-trial APS were less extreme, but still notable
(relative efficiency: 0.72-0.82). Importantly, all estimators main-
tained nominal-to-conservative confidence interval coverage, as
expected when estimating sample effects (Web Appendix A).

Estimator performance with a continuous outcome and target-
ing SATE was similar (Table 2). In all scenarios, TMLE with the
large-trial APS achieved the highest power with absolute gains of
18%-23% compared to the unadjusted estimator. Its relative ef-
ficiency was 0.58-0.80, roughly translating to 20%-42% savings
in sample size (Figure 2). As before, the gains from TMLE with
the small-trial APS were less extreme, but still notable (relative
efficiency: 0.60-0.98). Again, the 95% confidence interval cov-
erage of the adaptive estimators was comparable to that of the
unadjusted estimator.

Additional results are available in Web Appendix B. The se-
lection of estimators for the outcome regression and propensity
score varied by setting, highlighting our approach’s ability to re-
spond to the data-generating process (Web Tables 1-2). Impor-
tantly, for both outcome types, the precision gains from TMLE
were achieved without sacrificing Type-I error, even in the “treat-

ment only” setting where there were no prognostic covariates
(Web Tables 3-4).

4 REAL DATA APPLICATION: ACTG STUDY
17§

ACTG Study 175 evaluated the effect of monotherapy versus
combination therapy on health outcomes among persons with
HIV (Hammer et al. 1996). For demonstration, we examine
the effect of the antiretroviral therapy (ART) regimen only
containing zidovudine (A = 0) versus on alternative regimen
(A =1) on the difference in the average CD4 count at 20 weeks
(continuous outcome) and the relative risk of the 20-week CD4
count>350c/mm? (binary outcome). We use the unadjusted
estimator, fixed adjustment for age and gender, TMLE with the
small-trial APS, and TMLE with the large-trial APS. Within APS,
we considered 16 candidate adjustment variables, including de-
mographics and ART history (Web Table S).

The results are summarized in Table 3, with further details in
Web Appendix C. As expected, the point estimates were sim-
ilar across approaches, but the application of APS offered no-
table precision gains. The estimated variance of TMLE with the
large-trial APS divided by that of the unadjusted approach was
0.54 and 0.67 for the continuous and binary outcome, respec-
tively. Assuming negligible bias, this would roughly translate into
needing 46% and 33% fewer participants with our approach.
Importantly, Type-I error control, evaluated through treatment-
blind simulations, was maintained at the nominal rate of 5%. As
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TABLE 2 Estimator performance with the continuous outcome where there is an effect and with a sample size of N = 500.

DGP Design Estimator Cover. Power MSE Bias Var. Rel.Eff.
Linear Simple Unadjusted 0.953 0.591 0.008 —0.001 0.008 1.000
Static 0.948 0.692 0.006 —0.002 0.006 0.790
Small APS 0.950 0.689 0.006 —0.002 0.006 0.778
Large APS 0.950 0.794 0.005 —0.001 0.005 0.628
Stratified Unadjusted 0.971 0.617 0.006 0.001 0.006 1.000
Static 0.945 0.705 0.006 0.001 0.006 1.000
Small APS 0.947 0.706 0.006 0.000 0.006 0.977
Large APS 0.944 0.799 0.005 0.001 0.005 0.799
Interactive Simple Unadjusted 0.948 0.389 0.011 —0.001 0.011 1.000
Static 0.946 0.399 0.011 —0.001 0.011 0.990
Small APS 0.948 0.578 0.007 —0.001 0.007 0.613
Large APS 0.946 0.602 0.007 —0.001 0.007 0.586
Stratified Unadjusted 0.942 0.402 0.012 0.003 0.012 1.000
Static 0.939 0.409 0.012 0.003 0.012 1.000
Small APS 0.946 0.586 0.007 0.001 0.007 0.602
Large APS 0.943 0.617 0.007 0.001 0.007 0.585
Polynomial Simple Unadjusted 0.948 0.489 0.008 —0.001 0.008 1.000
Static 0.943 0.518 0.007 —0.001 0.007 0.938
Small APS 0.953 0.613 0.006 —0.002 0.006 0.729
Large APS 0.948 0.724 0.004 —0.001 0.004 0.585
Stratified Unadjusted 0.948 0.508 0.007 0.002 0.007 1.000
Static 0.939 0.536 0.007 0.002 0.007 1.000
Small APS 0.957 0.631 0.005 0.001 0.005 0.712
Large APS 0.942 0.735 0.005 0.001 0.005 0.621

Note. “DGP” denotes the data-generating process; “Cover.” denotes the 95% confidence interval coverage; “Power” denotes the proportion of times the true null hypothesis was
rejected; “MSE” denotes mean squared error; “Var.” denotes the variance of the point estimates, and “Rel.Eff.” denotes relative efficiency, approximated by the ratio of the MSE of
a given estimator to that of the unadjusted estimator. The average value of the sample average treatment effect (SATE) is 0.195 in the linear setting, 0.180 in the interactive setting,
and 0.170 in the polynomial setting. “Static” refers to forced adjustment for W) in the outcome regression, “Small APS” to TMLE with the small-trial implementation of Adaptive
Pre-specification (APS), and “Large APS” to TMLE with the large-trial implementation of APS.

TABLE 3 Comparative results using real data from ACTG Study 175 to estimate the effect on difference in the average CD4 count at 20 weeks
(continuous outcome) and on the relative risk of 20-week CD4 count >350c/mm? (binary outcome).

Outcome Estimator Effect (95%CI) Rel.Var. Out.Reg. PScore Type-1

Continuous Unadjusted 46.4(33.0,59.7) 1.000 Unadj. Unadj. 4.8%
Static 46.8 (33.5,60.0) 0.991 Fixed Fixed 4.8%
Small APS 48.5(38.0,59.0) 0.617 GLM GLM 5.2%
Large APS 47.8(38.0,57.6) 0.542 MARS GLM 5.3%

Binary Unadjusted 1.23 (1.10,1.37) 1.000 Unadj. Unadj. 4.7%
Static 123 (1.11,1.37) 1.001 Fixed Fixed 4.5%
Small APS 1.26 (1.15,1.38) 0.702 GLM GLM 5.2%
Large APS 1.26 (1.15,1.37) 0.672 LASSO GLM 5.2%

Note. “Static” refers to forced adjustment for age in the outcome regression and gender in the propensity score, “Small APS” to TMLE with the small-trial implementation of Adaptive
Pre-specification (APS), selecting from working GLMs adjusting for at most 1 covariate, and “Large APS” to TMLE with the large-trial implementation of APS, selecting from the
small-trial algorithms, main terms, stepwise regression, LASSO, MARS, and MARS after correlation-based screening. “Rel.Var.” is the estimated variance of a given approach divided by
the estimated variance of the unadjusted approach. “Out.Reg.” is the selected approach for estimation of the outcome regression, and “PScore” is the selected approach for estimation of
the known propensity score. “GLM” refers to a working GLM adjusted for at most 1 covariate. “Type-I” is the estimated Type-I error rate, evaluated with treatment-blind simulations,
which permute the treatment indicator A, implement each estimator, and repeat S000 times.

Additional details and results are given in Web Appendix C.

expected, the optimal TMLE varied by the target of inference
and sample size (Web Tables 6-7). For smaller subgroups of
older and younger women, there were notable gains in efficiency
from estimation of the propensity score, but no difference be-
tween the TMLEs using the large versus small-trial APS. Here,
both APS implementations selected a working GLM adjusting
for 1 covariate when estimating the outcome regression and
when estimating the propensity score. In contrast, overall and
for larger subgroups of older and younger men, TMLE with the

large-trial APS offered notable precision gains over the small-
trial implementation, but there were minimal precision improve-
ments from propensity score estimation.

5 DISCUSSION

The U.S. Food and Drug Administration and the European
Medicines Agency endorse adjustment for baseline covariates
to improve precision and, thereby, power in randomized trials


https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
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(EMA, 2015; FDA, 2021). Nonetheless, explicit guidance on
how to optimally select and incorporate adjustment variables
has been lacking. Indeed, the challenges in practical implemen-
tation were discussed in Benkeser et al. (2021) and the accom-
panying commentaries. For trials with limited numbers of ran-
domized units (N < 40), Balzer et al. (2016) addressed this
gap with APS, which selects the adjustment strategy maximiz-
ing the empirical efficiency. Here, for trials with many random-
ized units, we extended APS to include machine learning al-
gorithms (eg, LASSO and MARS) adjusting for multiple co-
variates. Our simulations demonstrated improved precision and
power, translating to 18%-43% potential savings in sample size,
while controlling Type-I error. These gains were seen across a
variety of data-generating processes, for both binary and contin-
uous outcomes, and for both absolute and relative effects. Our
real data application also demonstrated precision gains and high-
lighted how selection of the optimal TMLE was responsive to the
subgroup.

Our approach offers several advantages over other model-
robust, covariate-adjusted estimators. First, it is estimand-
aligned; we can estimate user-specified effects on any scale (eg,
difference, ratio), for any inferential target (eg, sample, con-
ditional, or population effect), for several study designs (eg,
simple, stratified, matched), and for a variety of outcome types
(eg, binary, continuous). Second, our approach s fully prespec-
ified, while remaining data-adaptive. Practically, we can prespec-
ify several candidate estimators of the outcome regression, and
let the algorithm pick the best approach, where “best” means
maximizing empirical efficiency. These candidates can include
user-specified GLMs, including known or suspected interac-
tions, as well as modern advances in machine learning. Third, our
approach incorporates collaborative estimation of the known
propensity score for additional gains in precision. Thereby, we
only estimate P(A = 1|W) if it improves the empirical effi-
ciency; otherwise, we treat the propensity score as known and
only adjust in the outcome regression. Collaborative estimation
of the propensity score does come at the cost of a more com-
plicated algorithm. However, it can meaningfully improve preci-
sion, especially in small trials (Balzer et al., 2016) or smaller sub-
groups (Web Tables 6-7), and computing code is readily avail-
able. Finally, if we are in the unfortunate scenario where adjust-
ment does not improve efficiency, the algorithm will default to
the unadjusted effect estimator. Thus, we are protected from
forced adjustment at the detriment of precision or Type-I error
control.

We have the following recommendations when implementing
APS. First, increase the number of cross-validation (CV) folds
as the number of randomized units decreases. Second, as candi-
dates, consider a diverse set of asymptotically linear estimators.
To prevent forced adjustment when harmful to precision, always
include the unadjusted estimator as a candidate. As shown here,
including candidates that flexibly adjust for multiple covariates,
while satisfying the usual regularity conditions, can lead to sub-
stantial savings in sample size (Figure 2). If considering more
aggressive algorithms (eg, random forest) that do not readily
satisfy the conditions for asymptotic linearity, additional sam-
ple splitting is recommended. APS naturally generates a cross-
validated variance estimate, which can be used if there are con-
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cerns about overfitting. To guide development of the Statistical
Analysis Plan, we strongly recommend conducting a simulation
study, reflecting the real data application, to facilitate prespecifi-
cation of the candidate estimators, the CV scheme, and the vari-
ance estimator based on objective criteria (eg, relative efficiency
and Type-I error control).

There are several limitations to our presentation. First, we fo-
cused on using APS to chose between candidate TMLEs; how-
ever, the procedure is applicable to other asymptotically linear
estimators with known influence curves. This includes more tra-
ditional estimators, such as the Cox model for time-to-event out-
comes. We plan to apply APS to select the optimal approach from
avariety of doubly robust candidates, such as TMLE, augmented
inverse probability weighting, and double/debiased machine
learning. Second, we focused on trials where outcomes were
measured completely; our work is immediately applicable to set-
tings where censoring or missingness is completely at random. If,
instead, censoring or missingness is random conditional ona X, a
subset of the full covariate set W, APS should also be applicable
with the following modification: all candidates must adjust for
X and may consider additional adjustment for the remaining co-
variates. Further investigation is warranted. (We refer the reader
to Balzer et al. (2023) for the application of APS in cluster ran-
domized trials with missing or censored outcomes.) Third, our
approach is applicable to trials with simple randomization, strat-
ified randomization, and randomization within matched pairs;
further investigation is needed for settings with sequential ran-
domization. Finally, as currently implemented, APS uses a CV-
selector (a.k.a., discrete Super Learner) to choose the single best
estimator of the outcome regression combined with the single
best estimator of the propensity score. We are working to extend
APS to select the optimal convex combination of candidate es-
timators. Nonetheless, we believe TMLE with APS, as currently
implemented, is a powerful and under-utilized tool for optimal
covariate adjustment in randomized trials.
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