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R eader R eaction 

Ad aptive s election of the optimal strategy to improve 

precision and power in r andomiz ed trials 
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1 Division of B ios tatis tics, Unive r sity of Cal i for nia Be rkeley, Be rke ley, CA 94720, United St ate s, 2 Manning Colle ge of Inform ation a nd Compute r 
Scienc es, Univ ersity of Mas s achus e tts Amherst, Amherst, MA 01003, United St ate s, 3 De pa rtme n t of B ios tatis tics, Unive rsity of Mas s achus e tts 

Amhe rs t, Amhe rs t, MA 01003, United St ate s 
* Corresponding author: Laura B. Balzer, Division of Biostat ist ics, University of Cali for nia Berkeley, Berkeley, CA, 94720, United States ( la ura.b alze r@be rkeley.edu ) . 

A B S T R A C T  

Be nkese r et al. de mons trate how adjus tme n t for baseline covariates in r andomiz ed trials can meaningfully improve precision for a v arie ty of out- 
c ome types . Their findings build on a long his tory, s ta rting in 1932 with R.A. Fishe r a nd including more re c e n t e ndorse me n ts b y the U.S. Food 

and Drug Administration and the European Medicines Agency. Here, we address an importa n t practical consideration: how to select the adjust- 
me n t a pproach—which va riables a nd in which form—to m aximize pre cision, while m ain taining Type-I e rror con trol. Balze r et al. previously 
propos ed Ad aptive Pre-spec i fication within TMLE to flexibly and automatically select , f rom a prespec i fied s e t, the appr oach tha t maximizes 
e mpirical efficie ncy in small trials ( N < 40 ) . To av oid ov erfitting with few r andomiz e d units, sele ction was previously limite d to working gen- 
er aliz ed linea r models, adjus ting for a single cov ari ate. Now, we tailor Ad aptiv e Pre-spe c i fication to trials with many r andomiz e d units . Using 
V -fo ld cros s-v alid ation and the estim ate d influenc e curv e-square d as the loss function, we select from a n expa nded s e t of candid ates, including 
modern machine learning methods adjusting for multiple cov ari ates. As as s es s ed in simul ation s exp loring a v arie ty of dat a -genera ting pr oces s es, 
our a pproach main tains Type-I e rror con trol ( unde r the n ull ) a nd offe rs subs ta n ti al gain s in pre cision—e quivale n t to 20%-43% reductions in 

s amp le size for the same stat ist ical power. When applied to real da ta fr om ACTG Study 175, we als o s ee mea ningful efficie ncy improve me n ts 
ove rall a nd within s ubgroups . 

KEY W OR DS : cov ari ate adjus tme n t; efficie ncy; machine lea r ning; pre-spec i fication; r andomiz ed trials; TMLE. 
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1 I N T R O D U C T I O N 

here is a long history of debate on whether and how to opti-
ally adjust for baseline cov ari at es t o improve precision in ran-

omize d trials ( e g, Fisher ( 1932 ) ; Tsi atis e t al. ( 2008 ) ; Zhang
t al. ( 2008 ) ; EMA ( 2015 ) ; FDA ( 2021 ) ) . Re c e n tly, for bina ry,
rdinal , and t ime-to-eve n t outcomes, Be nkese r et al. ( 2021 ) de-
ne d sev e ral pote n ti al caus al effects of in te res t a nd, for each,
e mons trated the promise of covariate adjus tme n t to improve
ur ability to make timely and precise infe re nces, without fea r
f bias due to r egr e ssion mode l misspec i fication. In their simu-
 ation study, cov ari ate adjustment led to subs ta n ti al gain s in ef-
cie ncy, tra n sl a ting to 4%-18% r eduction s in s amp le size for the
a me s tatis tical powe r whe n the re was a n effe ct, while m aintain-
ng good Type-I error control when there was no effect. 

How ev e r, Be nkese r et al. ( 2021 ) only briefly d isc uss how to
ptim ally sele ct the adjus tme n t cova riates a nd the “working” re-
re ssion mode l to m aximize pre cision for the effe ct of in te res t.
n their Rejoinder, they state, “the v ari ab les should either be se-
e cte d before the trial s ta rts ( selecting those that are most prog-
ostic for the outcome based on prior data ) , or sele cte d using the

ri al d ata bas e d on a c omp le te ly pre spec i fied algorithm that aims
o select the most prognostic variable s ” ( Benke ser et al., 2021 ) .
heir re c ommendation to use prior data assumes the exis te nce
e c eiv e d: O cto ber 31, 2022; Revis ed: Septe mbe r 6, 2023; Ac c epte d: D e c e mbe r 15, 2023 
The Author ( s ) 2024. P ublished b y Oxford Unive rsity Pre ss on be half of The In te rn ation al Bio

ommon s A t tribution-NonCommer c ial L icen s e ( https://creativ ec ommons .org/lic enses/by-
e dium, provide d the origin al w ork is properly cite d. For c ommer cial r e-us e, p leas e contact j o
f such data and the consis te ncy of r ela t ionships over t ime and
pac e. Their re c ommend ation for d at a -ad aptive s e lection doe s
ot provide a spec i fic algorithm. 
The challenge of “how” is further highlighted in the corre-

ponding comme n ta ries . Spe c i fically, Zha ng a nd Zha ng ( 2021 )
mph asize th at using a misspe c i fie d re gre ssion mode l for cova ri -
te adjus tme n t ca n improve efficie ncy “as long as the cov ari ates
r e pr e dictiv e of the outc ome s ”. This leave s the reade r wonde r-
ng about the pote n ti al de trime n ts to efficie ncy a nd Type-I e r-
 or contr ol with for c e d adjus tme n t for cova ria tes tha t ar e, in fact,
ot prognostic of the outc ome. Zh a ng a nd Zha ng ( 2021 ) call for

urthe r inves ti gation in to practical challe nge s, such as fe w inde-
e nde n t units, stratified randomization, and cov ari ate s election .
Building on our previous work in Adaptive Pre-spec i fication

 APS ) , we offer concrete solutions to these practical challenges
 Balzer et al., 2016 ) . Our appr oach da t a -adaptive ly se lects, from
 prespec i fied s e t, the cov ari ates and the form of the working
odel to minimize the cros s-v alid ated v ari anc e estim ate and,

he reb y, maximize the e mpirical efficie ncy. Our a pproach is a p-
 licab le t o asympt otically linea r es timators with known influ-
nc e curv es a nd, th us, c ov e rs a la rge cl as s of algorithm s in-
luding those most commonly used for causal infe re nce. Addi -
ion ally, our w ork is app licab le under a v arie ty of tri al design s:
me tric Socie ty. Thi s i s a n Ope n Ac c ess a rticle dis tributed unde r the te rms of the C re ative 
nc/4.0/ ) , which permits non-c ommer cial r e-use, distribution, and r epr oduction in any 
urn als .permis sion s@oup.com 

https://doi.org/10.1093/biomtc/ujad034
http://orcid.org/0000-0002-3730-410X
mailto:laura.balzer@berkeley.edu
https://creativecommons.org/licenses/by-nc/4.0/
mailto:journals.permissions@oup.com


2 � Biometrics , 2024, Vol. 80, No. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

simple r andomization, r andomization within strata of baseline
cov ari a tes, and randomiza tion within ma tched pairs of units.
Throughout, we focus on a targeted minimum-los s bas ed esti-
mation ( TMLE ) , which is summarized below and detailed in
Web A ppendix A ( va n de r Laa n a nd Rose, 2011 ) . How ev er, w e
e mphasize APS ca n be a pp lied to s ele ct the optim al, asymptoti-
cally linear estimator for a wide v arie ty of causal effe cts . 

2 M ET H O D S  

In r andomiz ed trial s, TMLE i s a powe rful a pproach to leve r-
age bas eline cov ari ates for efficiency gains, while r emaining r o-
bust to r egr e ssion mode l misspec i fica tion ( eg, Moor e a nd va n
de r Laa n ( 2009 ) ; Rose nblum a nd va n de r Laa n ( 2010 ) ; Balze r
et al. ( 2023 ) ; Benitez et al. ( 2023 ) ) . For outcomes measured
comp le tely in a 2-armed trial, the steps of TMLE are ( 1 ) ob-
tain an initial estimator of the “outcome r egr ession”, defined as
the c ondition al expe ctation of the outc ome Y giv en the tr ea t-
me n t indicator A and cov ari ates W ; ( 2 ) o btain pre dicte d out-
comes under the tr ea tment ˆ E (Y | A = 1 , W ) and under the con-
trol ˆ E (Y | A = 0 , W ) ; ( 3 ) t arget the se outc ome pre dictions us-
ing information in the “propensity sc ore”, define d as the condi-
tional probability of re c eiving the treatme n t give n the cova riates
P (A = 1 | W ) ; ( 4 ) ave rage the ta rgete d pre dictions under the
tr ea tme n t ˆ E 

∗
(Y | A = 1 , W ) , a nd unde r the con trol ˆ E 

∗
(Y | A =

0 , W ) ; and ( 5 ) contrast on the scale of interest. 
Unde r s ta nda r d r e gularity c ondit ions, TMLE is asymptot i-

cally linea r; the r efor e, the s ta nda rdized es timator is asymptot-
ically normal with mea n ze ro a nd va ria nc e giv e n b y the va ri -
ance of its influenc e curv e ( Web A ppendix A ) . If the initial esti-
mator for the outcome r egr es sion E (Y | A, W ) us es a “working”
ge ne r aliz ed linear model ( GLM ) with a n in te rcept a nd a main
term for the tr ea tment and if the propensity score is not es ti -
m ate d, the n ta rgeting ( s tep 3 ) ca n be skipped ( Rose nblum a nd
va n de r Laa n, 2010 ) . Furthe r precision ca n be a t tained by using
a prespec i fied, dat a -ada ptive al gorithm for initial estimation of
the outcome r egr ession and for “co ll aborat ive” est imat ion of the
propen sity s core, as described next. 

2.1 Ad a ptive Pre-sp eci fication ( APS ) 
Rubin and van der Laan ( 2008 ) proposed the principle of em-
pirical efficiency maximization to optimize precision a nd, th us,
power in r andomiz e d trials . To pick the “best” estimator, they
propose using as loss function the squa red -efficie n t influe nce
curve for the es tima nd of in te res t; thi s correspond s to selecting
the candidate TMLE with the s malle st cros s-v alid ated v ari ance
es timate ( va n de r Laa n a nd Rose ( 2011 ) ; pp. 572-577 ) . Build-
ing on this principle and motivated by the SEARCH community
r andomiz ed trial ( N = 32 ) , Balzer e t al. ( 2016 ) propos ed and
imple me n t ed APS t o select the optimal adjus tme n t a pproach in
trials with few r andomiz e d units . We now ge ne r aliz e APS for use
in trials with many r andomiz e d units . 

Figur e 1 pr ovides a schema tic of APS to select a nd imple me n t
the optimal TMLE ( details in Web A ppendix A ) . First, we pre-
spec i fy candidate estimators of the outcome r egr ession and of
the known propensity score. Together, they form the set of can-
dida te TMLEs, which ar e consis te n t a nd locally efficie n t es ti -
m ators . As origin ally formulate d for sm all trials, w e limite d can- 
dida te estima tors of the outc ome re gression to w orking GLMs 
with a n in te rc ept, a m ain term for the tr ea tme n t A , a nd at most 1
adjus tme n t va riable. We also limited candidate estimators of the 
propen sity s c ore to w ork ing log i stic r egr es sion s with a n in te rcept
a nd at mos t 1 adjus tme n t va riable. For the la rge-trial imple me n-
tation, we now propose a djustin g for multiple covariates in more 
flexib le algorithm s, s uch as pen alize d re gression and multiv ari ate 
adaptiv e re gres sion sp l ines ( MARS ) . The unad jus ted es timator 
m us t also be included as a candid ate. APS als o r equir es us to pre- 
spec i fy a cros s-v alid ation ( CV ) s che me a nd a loss function to 

o bj e ctiv ely meas ure perform anc e. For sm all trials, w e use d leav e- 
one- out CV; for la rge r trials, we use V -fold CV. As loss function, 
we use the estimated influence curve-squared for the TMLE of 
the effect of in te res t ( Web Appe ndix A) . 

W ith thes e ingredie n ts, we have a fully prespec i fied and auto- 
m ate d proc e dure to dat a -adaptive ly se le ct the TMLE th at m ax-
imi zes emp irical efficiency. Sele ction oc c ur s in 2 steps. Fir st, we 
s elect the candid a te estima t or of the out c ome re gression—both 

the adjus tme n t va riable ( s ) a nd the functional form—that min- 
imizes the cros s-v alid ated v ari anc e estim ate. Next, w e sele ct the 
ca ndidate es timator of the propensity score—both the adjust- 
me n t va riable ( s ) a nd the functional form—that further mini- 
mizes the cros s-v alid ated v ari anc e estim ate when use d to target 
init ial predict ions from the previously sele cte d outc ome re gres- 
sion estim ator. The tw o sele cte d estim ators form the optimal 
TMLE, which is then fit using all the data. 

APS can be c onsidere d an extension of Collaborative-TMLE 

using a CV-se lector ( a.k. a., dis cre te Supe r Lea rne r ) to maximize 
precision in r andomiz ed trials. In the small trial setting, sub- 
s ta n tial precision gains from APS h av e repeate dly be e n de mon- 
strated in simul ation s and with real data ( Balzer et al., 2016 ; Ben- 
itez et al., 2023 ) . For example, in the SEARCH study ( N = 32 ) , 
we found that the v ari ance of the unadjusted effect estimator was 
4.6 times that of TMLE with the small-tri al imp le me n tation of 
APS ( Balzer et al., 2023 ) . We now examine the perform anc e of 
our proposed modification to APS for l arge-tri al s e ttin gs usin g 
simul ation s as well as a real-data app lication . 

3 S I M U L AT I O N  ST U D I E S  

To address the pe rsis te n t c onc e rns about adjus tme n t with non-
linea r models, hi ghli gh ted b y LaVa nge ( 2021 ) a mong othe rs, we 
exp lore d at a -ge ne rating proces s es with hi ghe r orde r in te ractions 
a nd nonlinea r link function s. We als o ev aluate the pe rforma nce 
with simple randomization and stratified randomization. Our fo- 
cus is on est imat ing the s amp le effe ct; how ev er, as previously dis- 
cus s ed, our approach is app licab le to other asymptotically linear 
estimators with known influenc e curv es, s uch as TMLE for the 
popula tion average tr ea tme n t effect ( PATE ) or the conditional 
averag e tre atme n t effect ( CATE; Web A ppendix A ) . 

We consider 5000 simul ated tri als, each with N = 500 par- 
ticipa n ts. For each pa rticipa n t, we ge ne ra te 5 measur ed cova ri -
ates { W 1 , . . . , W 5 } from a s ta nda rd normal dis tribution, 2 un- 
meas ure d c ov ari ates { U 1 , U 2 } from a s ta nda rd uni for m distribu-
tion, and the binary counterfactual outcomes Y ( a ) in 3 s e ttings 
of varying complexity: 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data


Biometrics , 2024, Vol. 80, No. 1 � 3 

FIGURE 1 Schematic of Adaptive Pre-spec i fication ( A PS ) within TMLE to flexibly and automatically select, from a prespec i fied s e t, the 
adjus tme n t a ppr oach tha t maximi zes emp irical efficie ncy for the effect of in te res t. For i l lus tration, we show R ca ndidat e out c ome re gression 

estimators E (Y | A, W ) , P candidate propensity score estimators P (A = 1 | W ) , and V = 5-fold cros s-v alid ation ( CV ) . For simplicity, we show 

the process for first and last folds, and use e llipse s to indicate an analogous process for the other folds. Let K v denote the set of indices for the 
o bs erv ation s in fold v of size | K v | = n v . For o bs erv ation k in v alid ation s e t v , the CV-influenc e curv e estim ate for the T MLE usin g candidate 
outc ome re gression r but no targeting is denoted 

ˆ D 

−v 
r (O k ) in step 4, while the c orresponding CV-estim ate of the influence curve for the TMLE 

using the sele cte d outc ome re gression � and targeting with candidate propensity score estimator p is denoted 

ˆ D 

∗, −v 
�p (O k ) in step 5 

( Web A ppendix A ) . 
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( i ) “linear”: Y (a ) = 1 

{
U 1 < logit −1 (a + W 1 − W 2 +

W 3 − W 4 + W 5 − 2 aW 1 + U 2 ) 
}
, 

( ii ) “in te ractive”: Y (a ) = 1 

{
U 1 < logit −1 (a + W 1 +

W 2 + W 3 + W 4 + W 5 + aW 1 + aW 2 W 4 + aW 3 + 

aW 5 U 2 + U 2 ) 
}
, 

( i i i ) “po lynomi al”: Y (a ) = 1 

{
U 1 < logit −1 (a + W 1 +

W 2 + W 3 + W 4 + W 5 − W 1 W 3 + 2 W 1 W 3 W 4 −
W 4 (1 − W 1 ) + U 2 ) 

}
. 

We addition ally c onsider a “tr ea tme n t only” sce na rio whe re
one of the meas ure d c ov ari ate s influence s the outcome:
 (a ) = 1 

{
U 1 < logit −1 (0 . 1 a + 2 U 2 ) 

}
. Using these coun te r-

actual outc omes, w e calcul ate the true v alue of the s am-
le risk ratio ( RR ) = 1/ N 

∑ 

i Y i ( 1 ) ÷1/ N 

∑ 

i Y i ( 0 ) . As detailed
n Web Appendix B , we als o con side r a con tin uous out-
ome, ge ne rated unde r 4 a nalo gous s e ttings. For the con-
in uous e ndpoin t, we focus on the s amp le averag e tre at-

e n t effect ( SATE ) = 1/ N 

∑ 

i Y i ( 1 ) − 1/ N 

∑ 

i Y i ( 0 ) . In each
 e tting, we ge ne rate the o bs erv e d tr ea tme n t A using sim-
le randomization and randomization within strata defined
y 1 (W 1 > 0) . Fin ally, w e s e t the o bs erv e d outc ome Y
qual to the coun te rfactual outcome Y ( a ) whe n the o bs erved
r ea tme n t A = a . 

We compare the unadjusted es timator, fixed adjus tme n t for
 1 in the outcome r egr e ssion, TMLE with APS t ailored for

mall trials, and TMLE with our novel modification of APS
or la rge r trials. In the small-trial APS, we limit the candidate
stimat or t o workin g GLMs with 1 a djus tme n t cova riate se-
e cte d from { W 1 , W 2 , W 3 , W 4 , W 5 , ∅ }. In the l arge-tri al APS,
 e sele ct from w orkin g GLMs a djustin g for 1 co v ari ate, main

e rms GLM adjus ting for all cov ari at es, st epwise r egr ession, step-
ise r egr ession with all possible pairwise in te ractions, LAS SO,
ARS, and the un adjuste d estim ator. Both v ersion s of APS us e

-fold CV. Pe rforma nce crite ria include 95% c onfidenc e inter-
al c ov erage, a t taine d pow e r, Type-I e rror ( unde r the n ull ) , bias,
 ari ance, and mean squar ed err or ( MSE ) . Fo llowing Benkes er
t al. ( 2021 ) , we provide the relative efficiency, calculated as
he MSE of a cov ari at e-adjust e d estim ator divide d by the MSE
f the un adjuste d effe ct estim a tor, and pr ovide an estimate the

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
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TA BLE 1 Est imator pe rforma nce with the binary outcome where there is an effect and with a s amp le size of N = 500. 

DGP Design Estimator Cover. Power MSE Bias Var. Rel.Eff. 

Linear Simple Un adjuste d 0 .976 0 .929 0 .005 0 .002 0 .007 1 .000 
Static 0 .977 0 .929 0 .005 0 .002 0 .007 0 .998 
Small APS 0 .982 0 .950 0 .004 − 0 .006 0 .006 0 .798 
Large APS 0 .971 0 .984 0 .004 0 .002 0 .006 0 .699 

Stratified Un adjuste d 0 .980 0 .935 0 .005 0 .003 0 .007 1 .000 
Static 0 .979 0 .935 0 .005 0 .003 0 .007 0 .997 
Small APS 0 .984 0 .952 0 .004 − 0 .005 0 .006 0 .796 
Large APS 0 .974 0 .984 0 .004 0 .003 0 .006 0 .707 

In te ractive Simple Un adjuste d 0 .965 0 .211 0 .003 0 .003 0 .003 1 .000 
Static 0 .964 0 .228 0 .002 0 .003 0 .003 0 .867 
Small APS 0 .975 0 .212 0 .002 0 .001 0 .002 0 .730 
Large APS 0 .965 0 .324 0 .002 0 .003 0 .002 0 .567 

Stratified Un adjuste d 0 .970 0 .184 0 .003 0 .001 0 .003 1 .000 
Static 0 .965 0 .216 0 .002 0 .001 0 .003 0 .945 
Small APS 0 .980 0 .190 0 .002 − 0 .001 0 .002 0 .774 
Large APS 0 .966 0 .297 0 .002 0 .001 0 .002 0 .601 

Po lynomi al Simple Un adjuste d 0 .963 0 .865 0 .004 0 .004 0 .005 1 .000 
Static 0 .967 0 .916 0 .004 0 .002 0 .004 0 .811 
Small APS 0 .970 0 .914 0 .003 − 0 .004 0 .004 0 .719 
Large APS 0 .969 0 .969 0 .003 0 .001 0 .003 0 .584 

Stratified Un adjuste d 0 .977 0 .868 0 .004 0 .002 0 .004 1 .000 
Static 0 .966 0 .912 0 .003 0 .002 0 .004 0 .917 
Small APS 0 .974 0 .908 0 .003 − 0 .004 0 .004 0 .816 
Large APS 0 .972 0 .972 0 .003 0 .001 0 .003 0 .673 

Not e: “DGP” denot es the data-ge ne ra ting pr oc ess; “Cov e r.” de notes the 95% c onfidenc e interval c ov erag e; “Po wer” denotes the proportion of times the true null hypothesis was 
reje cte d; “MS E” de notes mea n squa red e rror; “Va r.” de notes the va ria nce of the point e stimate s, and “Re l.Eff.” denote s re lative efficie ncy, a pproxim ate d by the ratio of the MSE of a 
give n es timat or t o th at of the un adjuste d estim ator. The av erage v alue of the s amp le ri sk ratio i s 1.25 in the linear s e tting, 1.06 in the in te ractive s e tting, and 1.19 in the po lynomi al 
s e t ting. “Sta tic” r efers to for c e d adjus tme n t for W 1 in the outc ome re gression, “Sm all APS” to TMLE with the small-trial imple me n tation of Adaptiv e Pre-spe c i fication ( A PS ) , and 
“Large APS” to TMLE with the l arge-tri al imp lementation of APS. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pote n ti al s avings in s amp le size, calcul a ted as 1 minus the r ela tive
efficiency. 

For the binary outcome, T MLE usin g the l arge-tri al APS
subs ta n tially improved powe r for the risk ratio in all sc en ar-
ios ( Tab le 1 ) . Abs o lute gain s in power as compared to the un-
adjus ted a pproach ra nged from 5% to 11%. The r ela tive effi-
cie ncy ra nged from 0.57 to 0.71. This roughly tran sl at es t o 29%-
43% savings in sample size from usin g T MLE, instea d of the
un adjuste d effe ct estim a tor ( Figur e 2 ) . The gains from TMLE
with the small-trial APS were less extreme, but sti l l notable
( r ela tive efficie ncy: 0.72-0.82 ) . Importa n tly, all es tim ators m ain-
taine d nomin al-to-c on s erv ativ e c onfidenc e interval c ov erage, as
expe cte d when est imat ing s amp le effects ( Web A ppendix A ) . 

Es timator pe rforma nce with a con tin uous outcome a nd ta rget-
ing SATE w as simil ar ( Tab le 2 ) . In all sc en arios, TMLE with the
l arge-tri al APS achiev e d the hi ghes t powe r with abs o lute gain s of
18%-23% c ompare d to the un adjuste d estim a tor. Its r ela t ive ef -
ficiency was 0.58-0.80, roughly tran sl ating to 20%–42% savings
in s amp le size ( Figur e 2 ) . As befor e, the gains fr om TMLE with
the sm all-trial APS w er e less extr eme, but sti l l not able ( re lative
efficie ncy: 0.60–0.98 ) . Again, the 95% confide nce in te rval cov-
erage of the adaptive estimators was comparable to that of the
un adjuste d estim ator. 

Addition al res ults are av ail ab le in Web Appendix B . The se-
lection of estimators for the outcome r egr ession and pr opensity
s core v a ried b y s e tting, hi ghli gh ting our a pproach’s ability to re-
spond to the dat a -ge ne rating process ( Web Tables 1 - 2 ) . Impor-
ta n tly, for both outcome types, the precision gains from TMLE
w ere achiev e d without sacri fic ing Type-I er ror, even in the “tr ea t-
me n t only” s e t ting wher e ther e wer e no pr o gnostic cov ari ates
( Web Tables 3 - 4 ) . 

4 R E A L  DATA  A P P L I C AT I O N : A C TG  ST U DY  

1 7 5  

ACTG Study 175 evaluated the effect of monothe ra p y ve rsus 
c ombin ation the ra p y on health outcomes among pers on s with 

HIV ( Ha mme r et al. 1996 ) . For de mons tration, we exa mine 
the effect of the a n tir etr ovir al ther apy ( ART ) regimen only 
containin g zido vudine ( A = 0 ) v ers us on altern ativ e re gimen 

( A = 1 ) on the diffe re nce in the averag e C D4 count at 20 w e eks
( con tin uous outcome ) a nd the r ela tive risk of the 20-week CD4 

c ount > 350c/mm 

3 ( bin ary outc ome ) . We use the un adjuste d 

estim ator, fixe d adjustment for age and gender, TMLE with the 
small -trial APS, a nd TMLE with the la rge-trial APS. Within APS, 
w e c onsidere d 16 cand idate ad jus tme n t va riables, including de- 
mo grap hics and ART history ( Web Table 5 ) . 

The r esults ar e s umm arize d in Table 3, with further details in 

Web Appendix C . As expe cte d, the point e stimate s were sim- 
il ar acros s a pproaches, but the a pplication of APS offe red no- 
tab le precision gain s. The estimated v ari ance of TMLE with the 
l arge-tri al APS divided by that of the unadjusted approach was 
0.54 and 0.67 for the continuous and binary outc ome, respe c- 
tiv ely. Ass uming ne glig ible bias, thi s would r oughly transla t e int o 

ne e ding 46% and 33% fewer p articip ants with our approach. 
Importa n tly , T ype-I e rror con tro l, ev aluated through treatme n t- 
b lind simul ation s, w as m aintaine d at the nominal rate of 5%. As 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
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FIG URE 2 Acros s 5000 simul ated tri als with a bin ary outc ome ( top ) a nd with a con tin uous out come ( bott om ) , the estimat ed savings in 

s amp le size ( in % ) , as c ompare d to the un adjuste d estim ator, when using forc e d adjus tme n t for W 1 in the outc ome re gre ssion ( “St atic”) , TMLE 

with the small-trial imple me n tation of Adaptive Pre-spec i fication ( “Small A PS”) , a nd TMLE with the la rge-trial imple me n tation ( “La rge 
APS”) across the 3 dat a -ge ne rating proces s es with prognostic covariates and with simple v ers us stratifie d randomization. 
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TA BLE 2 Est imator pe rforma nce with the con tin uous outcome where there is an effect and with a s amp le size of N = 500. 

DGP Design Estimator Cover. Power MSE Bias Var. Rel.Eff. 

Linear Simple Un adjuste d 0 .953 0 .591 0 .008 − 0 .001 0 .008 1 .000 
Static 0 .948 0 .692 0 .006 − 0 .002 0 .006 0 .790 
Small APS 0 .950 0 .689 0 .006 − 0 .002 0 .006 0 .778 
Large APS 0 .950 0 .794 0 .005 − 0 .001 0 .005 0 .628 

Stratified Un adjuste d 0 .971 0 .617 0 .006 0 .001 0 .006 1 .000 
Static 0 .945 0 .705 0 .006 0 .001 0 .006 1 .000 
Small APS 0 .947 0 .706 0 .006 0 .000 0 .006 0 .977 
Large APS 0 .944 0 .799 0 .005 0 .001 0 .005 0 .799 

In te ractive Simple Un adjuste d 0 .948 0 .389 0 .011 − 0 .001 0 .011 1 .000 
Static 0 .946 0 .399 0 .011 − 0 .001 0 .011 0 .990 
Small APS 0 .948 0 .578 0 .007 − 0 .001 0 .007 0 .613 
Large APS 0 .946 0 .602 0 .007 − 0 .001 0 .007 0 .586 

Stratified Un adjuste d 0 .942 0 .402 0 .012 0 .003 0 .012 1 .000 
Static 0 .939 0 .409 0 .012 0 .003 0 .012 1 .000 
Small APS 0 .946 0 .586 0 .007 0 .001 0 .007 0 .602 
Large APS 0 .943 0 .617 0 .007 0 .001 0 .007 0 .585 

Po lynomi al Simple Un adjuste d 0 .948 0 .489 0 .008 − 0 .001 0 .008 1 .000 
Static 0 .943 0 .518 0 .007 − 0 .001 0 .007 0 .938 
Small APS 0 .953 0 .613 0 .006 − 0 .002 0 .006 0 .729 
Large APS 0 .948 0 .724 0 .004 − 0 .001 0 .004 0 .585 

Stratified Un adjuste d 0 .948 0 .508 0 .007 0 .002 0 .007 1 .000 
Static 0 .939 0 .536 0 .007 0 .002 0 .007 1 .000 
Small APS 0 .957 0 .631 0 .005 0 .001 0 .005 0 .712 
Large APS 0 .942 0 .735 0 .005 0 .001 0 .005 0 .621 

Not e . “DGP” denot es the data-ge ne ra ting pr oc ess; “Cov e r.” de notes the 95% c onfidenc e interval c ov erag e; “Po wer” denotes the proportion of times the true null hypothesis was 
reje cte d; “MS E” de notes mea n squa red e rror; “Va r.” de notes the va ria nce of the point e stimate s, and “Re l.Eff.” denote s re lative efficie ncy, a pproxim ate d by the ratio of the MSE of 
a given estimator to that of the unadjusted estimator. The average value of the sample average tr ea tme n t effect ( SATE ) is 0.195 in the linear s e tting, 0.180 in the interactive s e tting, 
and 0.170 in the po lynomi al s e t ting. “Sta tic” r efers to for c e d adjus tme n t for W 1 in the outcome r egr ession, “Small APS” to TMLE with the small-tri al imp le me n tation of Ada ptive 
Pre-spec i fication ( A PS ) , and “Large APS” to TMLE with the l arge-tri al imp lementation of APS. 

TA BLE 3 Comparat ive results using r eal da ta fr om ACTG Study 175 to estima te the effect on differ ence in the average CD4 count at 20 weeks 
( con tin uous outcome ) a nd on the r ela tive risk of 20-week CD4 count > 350c/mm 

3 ( binary outcome ) . 

O utcom e Estimator Effect ( 95%CI ) Rel.Var. Out.Re g . PScore Type-I 

Con tin uous Un adjuste d 46.4 ( 33.0, 59.7 ) 1.000 Unadj. Unadj. 4.8% 

Static 46.8 ( 33.5, 60.0 ) 0.991 Fixed Fixed 4.8% 

Small APS 48.5 ( 38.0, 59.0 ) 0.617 GLM GLM 5.2% 

Large APS 47.8 ( 38.0, 57.6 ) 0.542 MARS GLM 5.3% 

B ina ry Un adjuste d 1.23 ( 1.10, 1.37 ) 1.000 Unadj. Unadj. 4.7% 

Static 1.23 ( 1.11, 1.37 ) 1.001 Fixed Fixed 4.5% 

Small APS 1.26 ( 1.15, 1.38 ) 0.702 GLM GLM 5.2% 

Large APS 1.26 ( 1.15, 1.37 ) 0.672 LASSO GLM 5.2% 

Note . “Sta tic” r efers to forc e d adjus tme n t for age in the outc ome re gression and gender in the propensity sc ore, “Sm all APS” to TMLE with the small-tri al imp lementation of Adaptive 
Pre-spec i fication ( A PS ) , sele cting from w orking GLMs adjusting for at most 1 cov ari at e, and “Large APS” t o TMLE with the l arge-tri al imp lementation of APS, selecting from the 
small -trial al gorithms, main te rms, s tepwise r egr ession, LASSO, MARS, and MARS after corr ela tion-bas ed s cree ning. “Rel.Va r.” is the estim ate d v ari ance of a given approach divided by 
the estim ate d v ari ance of the unadjusted approach. “Out.Reg.” is the selected approach for est imat ion of the outcome r egr ession, and “PScor e” is the selected approach for est imat ion of 
the known propensity scor e. “GLM” r efers to a working GLM adjusted for at most 1 cov ari ate. “Type-I” is the estim ate d Type-I err or ra te, evalua ted with tr ea tme n t-blind sim ul ation s, 
which pe rm ute the tr ea tme n t indicator A , imple me n t each es timator, a nd r epea t 5000 times. 
Additional details and results are given in Web Appendix C . 

 

 

 

 

 

 

 

 

 

expe cte d , the opt im al TMLE varie d b y the ta rget of infe re nce
a nd sa mple size ( Web Tables 6 –7 ) . For sm aller s ubgroups of
olde r a nd younge r wome n, the re we re notab le gain s in efficiency
fr om estima tion of the propen sity s cor e, but no differ ence be-
tw e en the T MLEs usin g the large v ers us sm all-trial APS. Here,
both APS imple me n t ations se le cte d a w orkin g GLM a djustin g
for 1 cov ari ate whe n es t imat ing the outc ome re gression and
whe n es t imat ing the propen sity s c ore. In c on tras t, ove rall a nd
for la rge r sub groups of o lde r a nd younge r me n, TMLE with the
l arge-tri al APS offered notab le precision gains over the small- 
tri al imp le me n tation, but the re we r e minimal pr ecision impr ove- 
me n ts from propensity score est imat ion. 

5 D I S  C U S S  I O N 

The U.S. Food and Drug Administration and the European 

Medicines Agency endorse adjus tme n t for baseline cov ari ates 
to improve precision a nd, the reb y, powe r in r andomiz ed trials 

https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
https://academic.oup.com/biometrics/article-lookup/doi/10.1093/biomtc/ujad034#supplementary-data
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 EMA , 2015 ; FDA , 2021 ) . Nonethe le ss, explicit guidance on
ow to optimally select and incorporate adjus tme n t va riables
 as be en la ckin g. Inde e d, the ch allen ges in pra ctical imple me n-

a tion wer e d isc ussed in Be nkese r et al. ( 2021 ) a nd the ac c om-
a nying comme n ta r ies. For tr ials with limited n umbe rs of ra n-
omi zed units ( N < 40 ) , Bal zer e t al. ( 2016 ) addres s ed this
ap with APS, which selects the adjustment strategy maximiz-
ng the empirical efficiency. Here, for trials with many random-
ze d units, w e extende d APS to include m a chine learnin g al-
orithms ( eg, LAS SO a nd MARS ) adjus ting for multiple co-
 ari ates. Our simul ation s demon stra ted impr oved pr ecision and
owe r, tra n sl ating to 18%-43% pote n ti al s avings in s amp le size,
hi le control ling Type-I error. These gains were seen across a
 arie ty of d at a -genera ting pr oces s es, for both bina ry a nd con tin-
ous outcomes, and for both abs o lute and r ela tiv e effe cts . Our
 eal da ta applica tion also de mons tra ted pr ecision gains and high-
i gh ted how selection of the optimal TMLE was responsive to the
ubgroup. 

Our approach offers several advant age s over other model-
o bust, cov ari at e-adjust e d estim ators . Firs t, it is es tima nd -
ligne d; w e can estim ate user-spe c i fie d effe cts on any scale ( e g,
iffe re nce, ratio ) , for a ny infe re n tial ta rget ( eg, sa mple, con-
it ional , or populat ion effe ct ) , for sev e ral s tudy desi gns ( eg,
imple, strat ified , m atche d ) , and for a v arie ty of outcome types
 e g, bin ary, c ontinuous ) . Se c ond, our approach is fully pre spec -
fie d, while rem aining dat a -a daptive. Pra ctically, w e can prespe c-
fy seve ral ca ndidate es timators of the outcome r egr ession, and
et the algorithm pick the best appr oach, wher e “best” means

aximi zing emp irical efficie ncy. These ca ndidates ca n include
ser-spec i fied GLMs, including known or suspected in te rac-
ions, as well as modern advances in machine learning. Third, our
ppr oach incorpora tes co ll aborat ive est imat ion of the known
ropen sity s c ore for addition al gains in pr ecision. Ther eby, we
nly estimate P (A = 1 | W ) if it improves the empirical effi-
ie ncy; othe rwise, we tr ea t the pr open sity s core as known and
nly adjust in the outcome r egr es sion . Co ll aborat ive est imat ion
f the propen sity s core does come at the cost of a more com-
 licated algorithm . How ev e r, it ca n mea nin gfully impro v e pre ci-
ion, e specially in s mall trials ( Balzer et al., 2016 ) or smaller sub-
roups ( Web Tables 6 - 7 ) , and computing code is readily avail-
ble. Fin ally, if w e are in the unfortun ate sc en ario where adjust-
e n t does not improve efficie ncy, the al gorithm wi l l default to

he un adjuste d effe ct estim ator. Thus, w e ar e pr ot ect ed from
orc e d adjus tme n t at the detrime n t of precision or Type-I e rror
ontrol. 
We h av e the following re c omme ndations whe n imple me n ting
PS. First, increase the number of cros s-v alid ation ( CV ) fo lds

s the n umbe r of ra ndomized units decreases. Second, as ca ndi -
 ates, con side r a dive rs e s e t of asymptotically linea r es tim ators .
o preve n t forc e d adjus tme n t whe n ha r mful to prec ision, always

nclude the un adjuste d estim a tor as a candida te. As shown her e,
nclud ing cand ida tes tha t flexibly adjus t for m ultip le cov ari ates,

hile satisfying the usual regularity conditions, can lead to sub-
 ta n ti al s avings in s amp le size ( Figure 2 ) . If con sidering more
ggres sive algorithm s ( eg, ra ndom fores t ) that do not readily
atisfy the conditions for asymptotic l inearity, add itional sam-
 le sp lit ting is r e c ommende d. APS n aturally ge ne ra tes a cr oss-
 alid ated v ari anc e estim ate, which can be used if ther e ar e con-
 erns about ov erfitting. To guide dev elopment of the Stat ist ical
n alysis P lan, w e str ongly r e c ommend c onduct ing a simulat ion

tudy, reflecting the real d ata app l ication, to facil it ate pre spec i fi-
ation of the candidate estimators, the CV sche me, a nd the va ri -
 nce es timator based on o bj ective cr iter i a ( eg, rel ative efficiency
nd Type-I error control ) . 
The re a re seve ral limita tions to our pr ese n tation. Firs t , we fo -

used on using APS to chose betw e e n ca ndidate TMLEs; ho w -
v er, the proc e dure is app licab le to other asymptotically linear
stimators with known influence curve s. This include s more tra-
it ional est imators, such as the Cox model for time-to-eve n t out-
 omes . We p l a n to a pp ly APS to s ele ct the optim al appr oach fr om
 v arie ty of doub ly ro bus t ca ndidate s, such as TMLE, au gme n ted
nvers e pro bability wei gh ting, a nd doub le/debi as e d m achine
earning. Se c ond, w e focuse d on trials where outc omes w ere

eas ure d c omp le tely; our w ork is imme di ately app licab le to s e t-
ings where cen s oring or mis singnes s is comp le tely at random . If,
ns tead, ce nsoring or mi ssingness i s random c ondition al on a X , a
ubs e t of the full cov ari ate s e t W , APS should als o be app licab le
 ith the follow ing mod ification: all cand idates m us t adjus t for
 and may consider additional adjus tme n t for the remaining co-
 ari ates. F urther in vest igat ion is warranted. ( We refer the reader
o Balzer et al. ( 2023 ) for the application of APS in cluster ran-
omized trials with missing or c ensore d outc omes . ) Third, our
 pproach is a pp licab le to tri als with simp le ra ndomization, s trat-
fied ra ndomization, a nd ra ndomiza tion within ma tched pairs;
urthe r inves ti gation is ne e de d for s e ttings with s eque n tial ra n-
omiza tion. Finally, as curr e n tly imple me n ted, APS uses a CV-

se lector ( a.k. a., dis cre te Supe r Lea rne r ) to choose the single best
stimator of the outcome r egr ession combined with the single
e st e stimator of the propensity score. We are working to extend
PS to select the optimal convex combination of candidate es-

im ators . Nonethe le ss, we be lieve TMLE with APS, as curre n tly
mple me n ted, is a powe rful a nd unde r-utilized tool for optimal
ov ari ate adjus tme n t in r andomiz e d trials . 
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