
UC Davis
UC Davis Previously Published Works

Title
Foldamer Architectures of Triazine-Based Sequence-Defined Polymers Investigated with 
Molecular Dynamics Simulations and Enhanced Sampling Methods

Permalink
https://escholarship.org/uc/item/4ch039p3

Journal
The Journal of Physical Chemistry B, 123(44)

ISSN
1520-6106

Authors
Ahn, Surl-Hee
Grate, Jay W

Publication Date
2019-11-07

DOI
10.1021/acs.jpcb.9b06067

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, available at https://creativecommons.org/licenses/by-sa/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4ch039p3
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/


Foldamer Architectures of Triazine-Based

Sequence-Defined Polymers Investigated with

Molecular Dynamics Simulations and Enhanced

Sampling Methods

Surl-Hee Ahn∗,† and Jay W. Grate∗,‡

†Department of Chemistry and Biochemistry, University of California San Diego, La Jolla

‡Pacific Northwest National Laboratory, Richland

E-mail: s3ahn@ucsd.edu; jwgrate@pnnl.gov

Phone: +1 (650)521-7646; +1 (509)371-6500

1



Abstract

Triazine-based sequence-defined polymers have recently been developed that are

biomimetic and robust. In molecular dynamics (MD) simulations, the triazine poly-

mers were shown to form linear nanorod foldamers through hydrogen bonding and π-π

interactions. The nanorod foldamers have motifs resembling those of DNA, α-helices,

and β-sheets, and have potential to be useful building blocks for new macromolecules

and materials. To understand the formation of nanorod foldamers, we investigate

how linker structures in the middle of the triazine polymers lead to folding using MD

simulations. We found that a variety of linkers can participate in folding, but that

specific linker structures are more favorable than others, depending on the polymer

length. Folding of hexamers into well-defined nanorod foldamers was most favorable

with pentanediamine and ortho-xylenediamine linkers in the center of the polymers.

Foldamers with ortho-xylenediamine linkers in the center were investigated for longer

polymers, i.e., octamers and decamers, using two different enhanced sampling meth-

ods, since regular MD simulations had failed to show any folding for these longer

polymers. In particular, the recently developed concurrent adaptive sampling (CAS)

algorithm and replica exchange molecular dynamics (REMD) were used. We found

that the two enhanced sampling methods did lead to the observation of foldamers, and

that REMD revealed new foldamer architectures where cis-trans isomerizations had

occurred. Foldamer formation, diversity, and the strengths and limitations of simula-

tion techniques are discussed. These findings provide new insights into the diversity of

foldamer architectures for a new type of biomimetic synthetic polymer.

Introduction

Sequence-defined polymers, epitomized in nature by peptides and poly(nucleic acids), are

macromolecules composed of a multiplicity of monomers that are sequenced into the structure

in a pre-determined order. The resulting polymer also has a defined length. The monomers

in a sequence-defined polymer are distinguished from one another by having a different side
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chain; in peptides, the amino acids each have a particular side chain, while in poly(nucleic

acids), the side chains are the nucleic acid bases. In nature, sequence-defined polymers create

biomaterials, encode information, perform biocatalysis, participate in molecular recognition,

and shuttle species across membranes. There has been a recent resurgence in interest in

synthetic sequence-defined polymers, in the expectation that features such as functionality,

sequence, monodispersity, folding, and assembly will lead to useful molecules and materials;

this is evident in an edited volume,1 a number of reviews and topical articles,2–10 as well as

numerous papers on new syntheses and structures.11–30

Among these, the triazine-based sequence-defined polymers reported in 2016 claim a

number of biomimetic features, while posing challenges for molecular dynamics (MD) simu-

lations.11–13 These polymers consist of aromatic triazine rings connected together by linker

sections that are typically derived from diamines, such as ethylenediamine, as shown in Fig-

ure 1. Each aromatic triazine ring in the backbone has a pendant side chain. The iterative

submonomer synthesis approach enables sequencing monomers with different side chains,

like the amino acids in peptides. With the triazine polymers, it is also possible to sequence

linker sections with different structures into the polymer backbone. The lone pairs of the

NH groups from the linker sections, adjacent to the aromatic rings, are delocalized with the

aromatic π electrons. This produces a barrier to rotation in regular spots along the back-

bone. This can also be regarded as biomimetic to peptides, which have amide groups in the

backbone presenting rotational barriers. These energetic barriers limit the ability of simple

MD simulations from fully exploring conformational structures within feasible computational

time frames.

To see the possible conformational behavior and assembly of triazine polymers, molecular

dynamics (MD) simulations were used in the initial report of triazine polymers.11 Regular

MD simulations showed that dimers of trimers form nanorod foldamers that are held together

by motifs of paired hydrogen bonds and π-π interactions, and replica exchange molecular

dynamics (REMD)31 simulations also revealed similar nanorod foldamers from hexamers,11
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Figure 1: Triazine-based sequence-defined polymer example highlighting a linker in the cen-
tral position. Linkers examined in simulations in this study, from ethylene(C2) to ortho-
xylene, are shown. Side chains are varied to illustrate the sequence-defined nature of these
polymers. In simulations in this study, however, homopolymers with ethyl side chains are
used in order to focus on the role of backbone structure in folding.

which are shown in Figure 2a and Figure 2b. Hydrogen bonds drive conformation and as-

sembly due to their to their complementarity, directionality, and strength,14,32 and π-π inter-

actions, which are weaker than hydrogen bonds, help stabilize self-assembled molecules and

foldamers.32–41 These structures seen in simulations have overall features and non-covalent

interactions resembling those of DNA, peptide α-helices, and peptide β-sheets.11

(a) Dimer of trimers. (b) Hexamer.

Figure 2: Nanorod structures seen from Ref. 11, which are held together by 8 hydrogen
bonds and 3 π-π interactions. Both cases are shown with the same ethyl side chains here,
but the hexamer foldamer had pentyl side chains in Ref. 11. The green dashed lines indicate
hydrogen bonds and the numbers indicate their length. The depth cueing feature was used
to add depth to the images, so some parts of the molecule are lighter than others.

In the specific structures seen, which we call nanorod foldamers, the side chains for

each pair of π-bonded aromatic triazine rings project out opposite sides of the rod. The

configuration of the bonds connecting the aromatic rings to the alpha amines were all cis

along the length of the rod. The corresponding bonds at the fold site of folded hexamers were
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trans. In this paper, foldamers with this specific structure, i.e., with regard to side chains

and cis bond orientations and linear aspect, are called nanorods. Although these simulations

used homohexamers (i.e., all monomers with the same side chain) and homotrimers, the

observation of such foldamers suggests that in the future, sequence plus folding or assembly

could create specific arrangements of side chain functional groups, just as sequence plus

folding lead to functional group arrangements in peptide and protein conformations.

After the initial report on synthesis and simulation of triazine polymers, we focused on

how the backbone structure and different side chains influenced the formation of nanorod

foldamers in MD simulations.13 Since MD simulations by themselves are limited in predic-

tive power by routinely getting “stuck” in metastable states, enhanced sampling methods

were used, namely the recently developed concurrent adaptive sampling (CAS) algorithm12

and REMD. The CAS algorithm is a state-based enhanced sampling method that divides up

the conformational space into small volume elements called “macrostates” and runs short

simulations between the macrostates to efficiently sample both thermodynamic and kinetic

properties. REMD is a thermodynamic enhanced sampling method that biases the system

with different temperatures to overcome high energy barriers and efficiently samples thermo-

dynamic properties. From this study, we found that the backbone structure needs to have hy-

drogen bonding ability to form nanorod foldamers; π-π interactions alone were not sufficient

to stabilize the nanorod foldamers. In addition, the side chains’ hydrogen bonding ability or

lack thereof did not matter. This main result, the importance of backbone-backbone hydro-

gen bonding interactions, can provide guidance for materials scientists designing molecules

intended to fold or assemble in biomimetic fashion.

Having explored backbone structures and different side chains, we now explore struc-

tural aspects that may affect folding. Specifically, we focus on how the structure of the

central linker of the molecule allows or promotes folding. To consider possible linker struc-

tures for the folding location, physical molecular models of a dimer of trimers were first

constructed. The bonding locations coming off the end of a pair of interacting trimers,
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which we might bridge with a linker to create a hexameric foldamer, have a directional-

ity. Potential central linkers must have bond numbers and angles that can connect these

locations. While ethylenediamine linkers at the fold position were seen to be possible from

past simulations, these physical models suggested that pentanediamine linkers might also

be favorable for the folding of hexamers. In an effort to promote such folding, we also

considered the ortho-xylylenediamine linker, in which the ortho arrangement might bring

the chains into proximity, while the spacing and tetrahedral angles of the benzylic amines

would fit to the triazine rings on the nanorod end. We also modeled the structures using

the Avogadro software,42 starting with a nanorod foldamer formed from a dimer of trimers

and connecting the ends with the proposed linkers to make a folded hexamer. These models

confirmed that the pentanediamine and ortho-xylylenediamine linkers could make a fold and

keep the nanorod in order. For this paper, as shown in Figure 1, we considered ethane(C2)-

pentane(C5)diamine linkers as well as the ortho-xylylenediamine linker. In addition, the

triazine polymers (technically just oligomers) with different lengths, ranging from tetramers

to decamers, were tested with these linkers.

A series of regular MD simulations were run first, pre-arranging the trans bonds around

the linker expected to serve as the folding point, while the other bonds were cis. Follow-

ing these simulations, specific cases were further investigated using two enhanced sampling

methods the CAS algorithm and REMD following Ref. 13. The CAS method with nonco-

valent interactions as the collective variables more widely explores conformational space for

the starting arrangement of cis and trans bonding. REMD, on the other hand, does allow cis

and trans isomerizations to occur within the simulation, and a greater diversity of foldamer

architectures arise. In the course of these studies, we found new ways that foldamers can

form, with different cis and trans arrangements, or folding sections that include a triazine

monomer within the fold.
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Methods

Concurrent adaptive sampling algorithm

The CAS algorithm is a recently developed enhanced sampling method12 that is based on the

weighted ensemble (WE) method,43 which has been widely used to obtain thermodynamic

and kinetic properties of various systems.44–47 Details of the CAS algorithm can be found

in Ref. 12 and details of the WE method can be found in Ref. 43. Essentially, the CAS

algorithm is an adaptive version of the WE method that has additional features, which makes

the WE method more powerful. In the CAS algorithm/WE method, many simulations or

“walkers” are simultaneously run for a short period of time τ and they carry probabilities

or “weights” w. After each run, the walkers are binned to “macrostates,” or small volume

elements of the conformational space, that is defined by the reaction coordinates, which

can be non-differentiable, chosen for the system, e.g., dihedral angles and number of non-

covalent interactions. Then the walkers are “resampled” or go through an unbiased process

that maintains a certain target number number of walkers nw for each macrostate in a

statistically correct way. This way, the number of walkers decreases in low energy regions

where sampling is easy and increases in high energy regions where sampling is difficult. How

resampling is carried out in the CAS algorithm is slightly different from the original WE

method’s implementation: the CAS algorithm produces walkers with equal mean weights

within each macrostate, which reduces statistical errors, compared to having walkers with

varying weights. As a result, sampling becomes more uniform irrespective of the energy

barrier heights. Since the process does not add any statistical bias to the system, we can

obtain thermodynamic and kinetic properties directly from the simulation.

The CAS algorithm also has unique features that can speed up the sampling process. For

instance, it can have adaptive macrostates that are newly created at every simulation step,

which can be useful when exploring conformational spaces that would have an intractable

number of macrostates if pre-defined. Additionally, the method can have more than one or
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two reaction coordinates, which is the case for most enhanced sampling methods, without

incurring exponentially increasing computational cost. This is because the macrostates are

essentially n-dimensional spheres, where n denotes the number of reaction coordinates, and

be fairly large in a high dimensional conformational space. Finally, the CAS algorithm can

focus its computational effort in sampling the slowest non-stationary process in a system

that has two major metastable states by using a technique denoted as “spectral clustering.”

It uses the committor function that is approximated by the normalized second dominant

eigenvector from the transition matrix between macrostates and importance sampling. By

doing so, the CAS algorithm keeps macrostates along the slowest pathways while depleting

macrostates orthogonal to the slowest pathways.

To use the CAS algorithm in practice, a few parameters need to be set beforehand. First,

the reaction coordinates need to be chosen, which should be able to describe the various sam-

pled conformations and progress from reactant to product if those states are defined. Note

that the selection of these reaction coordinates may influence which pathways are sampled

and hence which structures are seen or not seen in the final results. Second, the simulation

length τ needs be set to an appropriate length so that transitions are not inadvertently

missed (if too long) and the computational cost is not too high from frequent resampling (if

too short). Fortunately, we do not need to worry about setting τ so that transitions between

macrostates are Markovian. Each walker keeps track of its past history so statistically un-

biased estimates of kinetics can be directly obtained, regardless of the length of τ . Third,

the target number of walkers per macrostate nw needs to be high enough so that visited

macrostates are constantly sampled throughout the simulation. Finally, macrostates need

to be either pre-defined before the simulation or set to be adaptive so that new macrostates

are created at every simulation step. The radius or size of the macrostates also needs to be

chosen appropriately so that regions with different energy barrier heights can be effectively

sampled.
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Replica exchange molecular dynamics

REMD is a well-established enhanced sampling method31 that has been widely used to obtain

thermodynamic properties of various systems.48–52 Details of REMD can be found in Ref.

31. Essentially, REMD simultaneously runs many simulations or “replicas” at different tem-

peratures and exchanges the replicas periodically with a Metropolis criterion. The periodic

exchanges occur so that the low temperature replicas can access high temperature replicas

and vice versa, overcome energy barriers, and efficiently sample the conformational space.

After the exchanges, momenta are rescaled to maintain the temperature condition for each

replica and equilibrium canonical (NVT) ensemble for each temperature. Combined with

the Metropolis criterion for the exchange probability, REMD ends up maintaining detailed

balance for an extended ensemble of canonical states.

However, since bias, or temperature in this case, is added to the system, the weighted

histogram analysis method (WHAM)53 or multistate Bennett acceptance ratio (MBAR)54

needs to be used during post-processing to obtain the actual free energy landscape of the sys-

tem. In addition, since the system’s kinetics are altered from the process, kinetics can only

be obtained approximately after post-processing and constructing a master equation.55,56

Nonetheless, REMD is effective at overcoming enthalpic barriers and sampling thermody-

namic properties of the system. Additionally, there is no need to choose reaction coordinates

beforehand, which allows the method to be applied to new and unfamiliar systems.

To use REMD in practice, a few parameters need to be set beforehand. First, the

exchange probability needs to be high enough to mix low and high temperature replicas

well. The exchange probability p between replica i and replica j is given by

p = min

(
1, e

(Ei−Ej)

(
1

kBTi
− 1

kBTj

))
(1)

where kB represents the Boltzmann constant, E represents energy, and T represents tem-

perature. As seen from Eq. 1, the difference between the energies and/or the temperatures
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need to be small in order for p to be high. Hence, the number of replicas and temperature

range need to be set well so that we have the right spacing between replicas. Having uniform

exchange probabilities for all replicas is a good indicator that we have an optimal temper-

ature distribution. Finally, the number of simulation steps between exchanges needs to be

long enough so that each replica has time to equilibrate.

Simulation protocol

The triazine polymers were all simulated with GROMACS 4.6.457 at temperature T = 300

K with time step ∆t = 2 fs. Most simulation parameters were identical to the ones in Ref.

11 and Ref. 13. The simulations were in the non-periodic canonical (NVT) ensemble with

velocity-rescale temperature coupling (0.2 ps coupling time).58 The generalized Amber force

field (GAFF)59 and the programs AnteChamber PYthon Parser interfacE (ACPYPE)60 and

Antechamber61 were used to generate parameters and topologies for the triazine polymers.

The triazine polymers’ initial conformations were constructed to be all cis and extended,

except for the linkers at the fold position that were trans on both sides, using an in-house

Python script used in Ref. 11. The Generalized Born/Surface Area implicit solvent with the

Onufriev/Bashford/Case algorithm62 for calculating Born radii, solvent dielectric constant

of 78.3, and infinite van der Waals and Coulomb cutoffs were used. The hydrophobic solvent

accessible surface area was calculated using an analytical continuum electrostatics (ACE)-

type approximation28 and the internal dielectric constant was set to 1,63 which were the

default settings on GROMACS.

The particular force field GAFF and implicit solvent were used since Ref. 64 reported

that they were accurate at reproducing the torsional landscape and major conformers of

peptoids, which are similar to triazine polymers, seen from quantum mechanical calculations

and experiments. Additionally, GAFF was shown to have π-π interaction energy and equi-

librium distance comparable to those from quantum mechanical calculations and reliable in

simulating long-range structures for liquid benzene, which is the prototypical system for π-π
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interactions.65 GAFF was also shown to be reliable at reproducing parallel π-π interactions,

which were the only type of π-π interactions that appeared in all of our simulations, at small

molecular separation less than 5 Å for liquid benzene, which is similar to our protocol of

counting ones less than 4.2 Å, as noted later in the Data Analysis section. Other works that

involve systems with π-π interactions have used GAFF.66,67 In this paper, implicit solvent

was used consistently across all of the simulation methods used and to stay consistent with

simulations of single folding macromolecules in our previous work.11–13 REMD is known to

scale poorly for explicit solvent systems, so consistent use of implicit solvent allowed direct

comparison among regular MD, the CAS algorithm, and REMD simulations.

The CAS algorithm simulations were run with conformations sampled every 100 ps from

a 100 ns long regular MD simulation that started with the all cis and extended conformation.

To be consistent with the 100 ns simulation trajectory, the CAS algorithm simulation had

each conformation transition into its next conformation that occurred after 100 ps and

resampled for the very first step and then regular CAS algorithm simulation steps were

taken. The total simulation time was calculated by the cumulative number of macrostates

× target number of walkers per macrostate nw × simulation time τ . The target number of

walkers per macrostate nw was set to 10, and the simulation time τ was set to 100 ps so

that the triazine polymer had sufficient time to transition into another conformation. The

reaction coordinates were the number of hydrogen bonds and the number of π-π interactions,

which could easily indicate whether the triazine polymer was a nanorod foldamer or not.

The macrostates were pre-defined and fixed throughout the simulation and had centers with

integer values with a radius of 0.5.

Following Ref. 64, which used REMD from 300 to 800 K to obtain free energy landscapes

of peptoids, as a reference, the REMD simulations were run with 16 replicas that uniformly

spanned from 300 to 800 K for each system. The highest temperature of 800 K is used

to enable and observe cis to trans and vice versa isomerizations (a single isomerization is

experimentally measured to have an energy barrier of ∆G‡ = 15 kcal/mol),14,68,69 as done
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in Ref. 64. The system was stable at the highest temperature since numerical integration of

the MD simulation was stable throughout the entire simulation. The number of simulation

steps between exchanges was set to 1000 (2 ps), which resulted in an exchange probability

around 50% for each replica. According to Ref. 70, exchange probabilities that are greater

than 25% do not affect sampling greatly. Before running the REMD simulations, the replicas

were equilibrated for 200 ps at each temperature. Conformations and potential energies were

saved every 2 ps.

Data analysis

For all of the simulations, the nanorod foldamers were detected by examining and noting the

number of hydrogen bonds between the triazine rings and the rest of the triazine polymer,

which were defined to be 2.5 Å or shorter in order to be counted, and the number of π-

π interactions, which was detected by measuring the center of mass distance between the

triazine rings and had to be 4.2 Å or shorter in order to be counted. Our previous work11,13

had used a distance metric to count hydrogen bonds and π-π interactions and this protocol

was again followed here. The protocol in counting π-π interactions is similar to the work

where π-π interactions were counted for MD simulations of single-stranded DNA binding to

graphene oxide,71 which in turn followed the work where π-π interactions were counted for

the same system.72 Other work in bioinfomatics had used the distance metric to count π-π

interactions.73 On the other hand, there are other works with MD simulations and molecular

docking that had used an additional metric along with the distance metric, i.e., measuring

the angle between the two aromatic ring planes.74,75 Having counted π-π interactions without

this additional criterion, our results might have overestimated the number of π-π interactions

present in the MD simulations. That being said, in our prior paper,13 we showed that the

hydrogen bonding interactions played the key role in assembly, not π-π interactions. Without

hydrogen bonding interactions, π-π interactions are not strong enough to keep foldamers

together and are not the key driving force.
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For the CAS algorithm and REMD simulations with even-numbered triazine polymers

(octamers, decamers), only the distances between the triazine rings that should be paired

up to form a full linear nanorod foldamer were measured, e.g., for the octamers, the distance

between the first and the eighth triazine rings, the distance between the second and the

seventh triazine rings, the distance between the third and the sixth triazine rings, and the

distance between the fourth and the fifth triazine rings were measured. If the triazine rings

pair up otherwise, then there would be a shift and the triazine polymer would not form a

full linear nanorod foldamer. Additionally, a triazine polymer would have to have a certain

number of hydrogen bonds and π-π interactions to be considered as a nanorod foldamer

and the numbers would depend on the polymer length, e.g., a tetramer nanorod foldamer

would have at least 4 hydrogen bonds and 2 π-π interactions. Similarly, a hexamer nanorod

foldamer would have 8 hydrogen bonds and 3 π-π interactions like the dimer of trimers in

Figure 2a. See Table 1 for the number of π-π interactions and hydrogen bonds needed to

form a nanorod foldamer for each triazine polymer depending on the polymer length.

Table 1: Number of π-π interactions and hydrogen bonds needed for nanorod
foldamer formation

No. of π-π interactions No. of hydrogen bondsa

Tetramer 2 4-5
Pentamer 2 4-6
Hexamer 3 8-9
Heptamer 3 8-11
Octamer 4 12
Nonamer 4 12-13
Decamer 5 16

a The lower bound indicates the minimum number of hydrogen bonds needed. This column
ended up being a range for most triazine polymers after counting the number of hydrogen

bonds for the observed nanorod foldamers in MD simulations.

The regular MD simulations were run for 1 µs, unless otherwise noted. Conformations

were sampled every 100 ps and the first 100 ns were thrown out (equilibrium time). The

CAS algorithm and REMD simulations were run for 2 µs and the first 100 ns were thrown

out as well. The conformations and potential energies were sampled every 100 ps in the
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REMD simulations to produce the free energy landscapes using the multistate Bennett ac-

ceptance ratio (MBAR), specifically the Python implementation by Shirts and Chodera,54

to be consistent with the CAS algorithm simulations that had a simulation time of τ = 100

ps. But for convergence analysis, the finest replica data that were produced from sampling

every 2 ps were used to calculate the average number of round-trips in a given observation

time per replica.

To identify major conformations for each triazine polymer from the regular MD simula-

tions and REMD simulations, we used k-means clustering76 using the R program77 as done

in Ref. 11. Specifically, with the conformations that were sampled every 100 ps from the

last 900 ns, we first computed a matrix with entries that indicated the root mean square

deviation (RMSD) of the triazine rings’ position with respect to each other. Then the matrix

was used as input for an in-house R script used in Ref. 11 that identifies k, or the number

of clusters, for the particular triazine polymer. The optimal k was found by identifying the

“knee,” or the point where the slope greatly decreases, in the within-group sum of squares

vs. k plot. As stated in Ref. 11, clusters with small internal RMSDs likely represent stable,

folded conformations, whereas clusters with big internal RMSDs likely represent transient,

unfolded conformations. Hence, the fraction of the total population that is in a “compact”

cluster with a small internal RMSD gives an estimate of how much the triazine polymer is

likely to form stable, folded conformations.

Results

Regular molecular dynamics simulation

As stated in the Introduction, several triazine polymers with different lengths, ranging

from tetramers to decamers, with four different aliphatic linkers, namely ethylenediamine,

propanediamine, butanediamine, and pentanediamine, and an ortho-xylylenediamine linker,

as shown in Figure 1, were run for 1 µs in implicit solvent. For the present studies focus-
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ing on backbone-backbone interactions and conformational structures, the triazine polymers

had ethyl side chains on all monomers and were symmetrical end-to-end with methylamino

terminal substituents (i.e., this means that the final monomer did not have a complete linker

section dangling at the end). The percentage of nanorod foldamers in the total population

from k-means clustering is listed in Table 2 for each triazine polymer. The same results are

plotted in Figure 3 to visualize the results more easily. Surprisingly, the linkers leading to

nanorod foldamers depended on the polymer length.

The nanorod foldamers, formed from the linkers leading to foldamers, are shown in

Figure 4a, Figure 4b, Figure 4c, and Figure 4d for tetramers, pentamers, hexamers, and

heptamers, respectively. First, note that all of the nanorod foldamers shown formed with

the ends evenly aligned with paired triazine rings. Therefore, tetramers and hexamers have

a single linker making the fold, whereas with pentamers and heptamers, the fold region

consists of a triazine monomer plus the linker. The tetramer and pentamer each form a rod

section with 2 pairs of π-π bonded triazine rings with side chains projecting toward different

sides of the rod. Similarly, the hexamer and heptamer each form a rod section with 3 pairs

of π-π bonded triazine rings with side chains projecting toward different sides of the rod.

Thus, they conform to the nanorod structure as set out in the Introduction and are overall

linear in shape.

For tetramers, the ethylenediamine, butanediamine, and pentanediamine linkers lead

to high percentages of nanorod foldamers, i.e., ethylenediamine; 79.1 %, butanediamine;

69.0 %, and pentanediamine; 75.8 %. The ortho-xylylenediamine linker was not favorable

for nanorod foldamers in this case. For the longer hexamers, the pentanediamine linker

yielded the highest percentage of nanorod foldamers at 99 %, while the ortho-xylylenediamine

linker resulted in 89 %. In these even-numbered cases, the fold occurs entirely with the

central linker, and the triazine rings are paired in the nanorod architecture. The hexamer

formed the expected well-defined nanorod foldamer. The prediction from physical models of

hexamers, which was described in the Introduction, was that the pentanediamine and ortho-
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xylylenediamine linkers would likely be compatible with folding, and this was confirmed for

the hexamers. The design of the ortho-xylylenediamine to favor folding appears to be valid,

but the pentanediamine linker is also quite favorable and perhaps advantageous.

For pentamers, the ethylenediamine linker plus a triazine monomer were most favorable

(45.7 %), but the butanediamine plus a triazine monomer were also suitable for nanorod

foldamers (36.8 %). The middle monomer in the fold of the pentamer with the enthylenedi-

amine linker is able to participate in one additional hydrogen bond with an adjacent monomer

ring along the chain, which may help stabilize the fold. For the longer heptamers, the or-

tho-xylylenediamine linker yielded the highest percentage of nanorod foldamers, albeit only

23.4 %, from regular MD simulations, and the folding region is also a triazine ring plus the

ortho-xylylenediamine linker. In the heptamer, the main portion of the nanorod foldamer

has 3 π-π interactions and 4 paired hydrogen bonds like the hexamer nanorod foldamer.

Beyond heptamers, nanorod foldamers according to the defined criteria and clustering

methods were not found in the regular MD simulations. None of the linkers yielded folding

for the octamers and decamers. For nonamers, the nanorod foldamer appeared at sev-

eral points in the simulation with the ortho-xylylenediamine linker. However, it was not

significant enough to be detected with k-means clustering, so the percentage of nanorod

foldamers for the nonamer with ortho-xylylenediamine linker is shown as zero in Table 2.

This nanorod foldamer conformation is shown in Figure 5. The fold region consists of the

ortho-xylylenediamine linker as intended, such that the terminal monomers are not aligned

as a π-π bonded pair. The odd monomer dangles beyond the organized nanorod, although

it is able to form an additional hydrogen bond back to the prior monomer in the sequence.

These nanorod foldamers were seen when the ortho-xylylenediamine linker was placed in

the middle between the fourth and fifth triazine rings. The other fold tested was between

the third and fourth triazine rings so that there would be three and six triazine rings on

each side; nanorod foldamers were not observed at all in this case. The results suggest that

folding is most likely when there are more or less equal number of triazine rings on both
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sides of the folding region.

Since nanorod foldamers were not found for the octamers and decamers with any of the

linkers, we extended the regular MD simulations of these cases up to 2 µs. However, nanorod

foldamers were still not detected by our criteria. The regular MD simulations were biased

to look for the nanorod architecture because the cis and trans bonds were pre-arranged to

enable them. The nanorod architecture was indeed seen, but new diversity was also revealed.

The fold location can involve a triazine ring in addition to the linker and the terminal ends

may be aligned or not. For longer polymers, however, the regular MD simulations did not

lead to nanorod foldamers as defined by our criteria within the extended times. This left a

question unanswered, i.e., whether longer nanorods do not form, or alternatively, are simply

not found with regular MD simulations but could form. Prior simulations had suggested

that the dimers of pentamers, once formed, would be stable throughout the simulation.11

Therefore, our efforts proceeded to use enhanced sampling methods for selected cases to

better explore conformational space with regard to folding of longer structures.

Table 2: Percentage of nanorod foldamers in regular MD simulations

Tetramer Pentamer Hexamer Heptamer Octamer Nonamer Decamer
Ethylenediamine 79.1 45.7 0.0 0.0 0.0 0.0 0.0
Propanediamine 0.0 0.0 46.7 15.4 0.0 0.0 0.0
Butanediamine 69.0 36.8 0.0 0.0 0.0 0.0 0.0
Pentanediamine 75.8 0.0 99.3 0.0 0.0 0.0 0.0
ortho-Xylylenediamine 0.0 0.0 88.9 23.4 0.0 0.0 0.0

Concurrent adaptive sampling algorithm

The octamer and decamer structures were further simulated with the ortho-xylylenediamine

linker in the middle using the CAS algorithm. This linker had produced high percentages

of nanorod foldamers for the hexamers, a significant percentage for the heptamers, and

observable transient nanorod foldamers for the nonamers. In the latter case, it was the only

linker that yielded a nanorod foldamer. Octamers and decamers were not observed to yield
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Figure 3: Percentage of nanorod foldamers in regular MD simulations

(a) Tetramer with ethylenediamine linker. (b) Pentamer with ethylenediamine linker.

(c) Hexamer with pentanediamine linker. (d) Heptamer with ortho-xylylenediamine linker.

Figure 4: Same as Figure 2 but from each polymer with its most effective linker in regular
MD simulations.
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Figure 5: Same as Figure 2 but from nonamer with ortho-xylylenediamine linker in the
middle in regular MD simulation.

nanorod foldamers in regular MD simulations.

As stated in the Methods section, the reaction coordinates were the number of hydrogen

bonds and the number of π-π interactions. The starting structures were extended conforma-

tions with all cis bonds except around the linker in the middle folding position, just as in

regular MD simulations. Dihedral angles were not followed as reaction coordinates in these

simulations; therefore, pathways involving energetically unfavorable cis-trans isomerizations

were unlikely to be sampled. The CAS algorithm thus serves as a method to further explore

nanorod foldamers and other structures with these bond configurations but does not explore

all of the possible conformational space. Since the free energy landscape, defined by the

selected non-covalent interactions as reaction coordinates, was two-dimensional with a small

range for both reaction coordinates, the macrostates were pre-defined and fixed throughout

the simulation. Hence, the unique features of the CAS algorithm, such as having adap-

tive macrostates and spectral clustering, were not used, and the CAS algorithm simulations

essentially became regular WE method simulations.

After running the octamer with the ortho-xylylenediamine linker for 825 ns, the nanorod

foldamer with 4 π-π interactions and 12 hydrogen bonds first appeared, which is shown in

Figure 6. This is the expected foldamer, i.e., the nanorod, with the side chains of π-π bonded

aromatic rings projecting to opposite sides of the rod. The nanorod foldamer was constantly

sampled throughout the 2 µs simulation. In addition, even though the other conformations
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did not strictly have 4 π-π interactions and 12 hydrogen bonds with our criteria, some of the

conformations clearly had the nanorod structure, i.e., conformations with 0 π-π interactions

and 11 or more hydrogen bonds, 1 π-π interaction and 10 or more hydrogen bonds, 2-3 π-π

interactions and 7 or more hydrogen bonds, and 4 π-π interactions and 10 or more hydrogen

bonds. The rest of the conformations were globular. The representative conformations

with various numbers of π-π interactions and hydrogen bonds are provided in the SI as

PSE files that can be viewed with PyMOL.78 Combining the probabilities of all of the

conformations that corresponded to the nanorod structure, the probability of observing the

nanorod foldamer is 7.96 × 10−3 % (the probability of observing the conformation with 4

π-π interactions and 12 hydrogen bonds is 5.68 × 10−8 %). Hence, observing the nanorod

foldamer is not very likely, but the CAS algorithm was able to successfully sample this rare

conformation.

The free energy landscape of the octamer, as defined by the reaction coordinates used,

from the CAS algorithm simulation is shown in Figure 7a. The conformers in the “blue”

region have higher probabilities of being observed and thus have lower relative free energies,

whereas the conformers in the “red” region have lower probabilities of being observed and

thus have higher relative free energies. To check for convergence, the relative standard

error for each macrostate was calculated, which ranged from 0.88 to 19.71 %. In addition,

since the transition matrices between macrostates were calculated at every simulation step,

the equilibrium weights were also obtained, which is shown in Figure 7b. Comparing the

two free energy landscapes, the two were equivalent. Having low relative standard errors

and matching weights to equilibrium weights indicated that the CAS algorithm simulation

had well-converged. In addition, the CAS algorithm simulation sampled much more widely

compared to regular MD simulation, which is shown in Figure 8.

Although the CAS algorithm simulation sampled the nanorod foldamer for the octamer,

it did not do so with the decamer. As shown in Figure 9a and Figure 9b, both the CAS

algorithm simulation and regular MD simulation failed to explore much farther than con-
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formations that had 1 π-π interaction during 2 µs of simulation time. The CAS algorithm

simulation was slightly more successful at exploring the free energy landscape compared to

the regular MD simulation, however. The observed conformations were all globular, however,

and did not have obvious signs that they were on their way to form nanorod foldamers.

The results show that the CAS algorithm can sample the well-defined nanorod foldamer

for the octamer with the ortho-xylylenediamine linker. Thus, a nanorod foldamer can form

from the extended conformation containing pre-defined cis and trans bond arrangements

from a longer macromolecule. The CAS algorithm is more effective than regular MD simu-

lations at sampling this free energy landscape.

Figure 6: Same as Figure 2 but from the octamer with ortho-xylylenediamine linker in the
CAS algorithm simulation.

Replica exchange molecular dynamics

Simulations using REMD were carried out on the octamer and decamer with the ortho-

xylylenediamine linker, as we did for the CAS algorithm simulations. When using REMD,

cis-trans isomerizations can occur, so a larger conformational space can be potentially sam-

pled. After running the REMD simulation for 1 µs, a new octamer foldamer was found that

had 4 π-π interactions and 7-12 hydrogen bonds according to our original criteria. We call

this the “zigzag” foldamer, which is shown in Figure 10. The “zigzag” foldamer has an exten-

sive rearrangement of cis and trans configurations, and the creation of an orderly cis-trans

between every pair of aromatic rings along the foldamer. After extending the REMD simu-
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(a) From the CAS algorithm simulation. (b) Equilibrium weights from transition matrix.

Figure 7: Free energy landscapes of the octamer with ortho-xylylenediamine linker. The
conformations are colored according to their relative free energy values or −kBT ln(P )
(kcal/mol), where kB denotes the Boltzmann constant, T denotes the temperature (T =
300 K), and P denotes the probability. Hence, the “blue” regions represent more probable
conformations, whereas the “red” regions represent less probable conformations.
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Figure 8: Same as Figure 7 but for the octamer with ortho-xylylenediamine linker from
regular MD simulation.
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Figure 9: Same as Figure 7 but for the decamer with ortho-xylylenediamine linker.

lation up to 2 µs, another new octamer foldamer was found that had 4 π-π interactions and

6-11 hydrogen bonds according to our original criteria. Due to a shift from the linear axis,

we call this the “staircase” foldamer, which is shown in Figure 11. However, the well-defined

nanorod foldamer did not appear in the REMD simulation; the conformation that had 4 π-π

interactions and 12 hydrogen bonds, which appeared only once after extending the REMD

simulation up to 2 µs, corresponded to the “zigzag” foldamer. The closest octamer foldamer

to the nanorod foldamer had 4 π-π interactions and 10-11 hydrogen bonds after extending

the REMD simulation up to 2 µs, which is shown in Figure 12.

As for the decamer, REMD was able to sample conformations that had up to 4 π-

π interactions but not 5. Most of the conformations that had 3-4 π-π interactions were

foldamers that were partly “zigzag” as shown in Figure 13. The rest of the conformations

were globular. As done for the CAS algorithm simulation of the octamer, the representative

conformations from the REMD simulations with various numbers of π-π interactions and

hydrogen bonds are provided in the SI as PSE files that can be viewed with PyMOL.

From k-means clustering, the “zigzag” foldamer was the only foldamer mentioned pre-

viously that was detected for the octamer and comprised 20.08 % of the total population.

Only globular structures were detected for the decamer from k-means clustering. Hence, the
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rest of the foldamers were not major conformations in the REMD simulations. In addition,

a foldamer that had a nanorod foldamer as part of its structure was detected for the octamer

through k-means clustering and comprised 53.87 % of the total population, which is shown

in Figure 14. Since, as previously mentioned in Methods/Data Analysis, only the distances

between the triazine rings that should be paired up to form a full linear nanorod foldamer

were measured for the octamers and decamers, so these foldamers were indicated to have 0

π-π interactions, even though they clearly have 3 π-π interactions. Hence, the free energy

landscapes under-reported π-π interactions since the “expected ones” were only counted.

One common and noticeable feature of these foldamers was that they were all non-

linear, unlike the previously observed nanorod foldamers that were linear. This is due to

the triazine polymers having cis to trans and vice versa isomerizations occurring to them

with the temperature change in the REMD simulations. After temperature is added to the

system, the octamer is able to overcome energy barriers going from cis to trans and vice

versa. In the CAS algorithm simulations, we did not keep track of dihedral angles or any

other reaction coordinates that indicated cis to trans and vice versa isomerizations. Hence,

we did not observe any conformations with cis to trans and vice versa isomerizations and

only observed linear nanorod foldamers. Additionally, the new non-linear foldamers had side

chains on the same side for any given pair of π-π bonded aromatic rings, whereas the linear

nanorod foldamers had side chains on opposite sides.

To compare the REMD simulation findings with those of the CAS algorithm and regular

MD simulation, we plotted the free energy landscapes along the two reaction coordinates

(number of hydrogen bonds and number of π-π interactions), which are shown in Figure 15a

and Figure 15b. Compared to Figure 7a and Figure 9a, the free energy landscapes from the

REMD simulations are vastly different since the CAS algorithm simulations explored the free

energy landscape by probing the two reaction coordinates, whereas the REMD simulations

explored the free energy landscapes more uniformly with different temperatures. To check

for convergence, we calculated the average number of round-trips in a given observation time
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per replica, following Ref. 79 and Ref. 80. A round-trip indicates a replica visiting both the

lowest and the highest temperature states. The given observation time was set to be 10

ns and the average number of round-trips was measured as simulation time increased. For

error bars, the standard deviation of the number of round-trips was multiplied by 2, which

approximately represents a 95% confidence interval. As seen in Figure 16a and Figure 16b,

the average numbers of round-trips converge to stable values with small error bars as the

simulation time increases, indicating that the REMD simulations had converged.

Figure 10: Same as Figure 2 but from the octamer with ortho-xylylenediamine linker in the
REMD simulation. Denoted as “zigzag” foldamer.

Figure 11: Same as Figure 2 but from the octamer with ortho-xylylenediamine linker in the
REMD simulation. Denoted as “staircase” foldamer.
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Figure 12: Same as Figure 2 but from the octamer with ortho-xylylenediamine linker in the
REMD simulation. Closest foldamer to the nanorod foldamer.

Figure 13: Same as Figure 2 but from the decamer with ortho-xylylenediamine linker in the
REMD simulation. Foldamer that is partly “zigzag.”
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Figure 14: Same as Figure 2 but from the octamer with ortho-xylylenediamine linker in the
REMD simulation. Foldamer that has a nanorod foldamer as part of its structure.
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Figure 15: Same as Figure 7 but from REMD simulations.
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(a) Octamer with ortho-xylylenediamine linker. (b) Decamer with ortho-xylylenediamine linker.

Figure 16: Plots of average number of round-trips in a given observation time (10 ns) per
replica vs. simulation time for the REMD simulations.

Discussion

Apart from investigating and observing new and diverse foldamers with various linkers, our

study revealed two main observations. One is that the triazine polymers do not appear to

prefer to form nanorod foldamers longer than folded hexamers or more than 3 π-π interac-

tions. To see if this was the really the case, we ran a 2 µs regular MD simulation of a dimer

of tetramers. The dimer of tetramers formed a foldamer similar to the one in Figure 14 that

had a nanorod foldamer as part of its structure with 3 π-π interactions with one triazine ring

dangling on each side, stabilized by “along the chain” or “turn” hydrogen bonds, as shown

in Figure 17. This result supports our observation but the question remains to be answered:

whether this is a pathway problem to get more than 3 triazine rings lined up or a geome-

try/stability issue that the triazine rings cannot all line up. Since the CAS algorithm was able

to sample the linear nanorod foldamer with 4 π-π interactions and Ref. 11 showed that an

artificially set-up nanorod foldamer from a dimer of pentamers remained stable throughout

a 500 ns MD simulation, this might be a pathway problem. Nonetheless, it is also possible

that as the triazine polymer gets longer, there are so many possible conformations, many of

which still provide many stabilizing hydrogen bonds and abundant dispersion interactions,
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that on balance, the linear nanorod foldamer is not the most favorable. In addition, as the

triazine polymer gets longer, the accessible area for unfavorable solvent interactions gets

larger in a linear nanorod structure. Globular structures may be more favorable for longer

polymers, which can reduce the accessible area for unfavorable solvent interactions and can

still have abundant non-covalent interactions.

In the course of these studies, each additional simulation method expanded the confor-

mational space explored within the given simulation time frame. With the given rotational

barriers in going from cis to trans and vice versa, regular MD explores foldamers with the

given preset cis and trans configurations. The CAS algorithm, on the other hand, probes

and samples extensively along the chosen reaction coordinates, as it is a reaction coordinate-

based method, with its many walkers. As a result, the CAS algorithm can sample many

small energy minima in a relatively flat free energy landscape or a “golf-course” potential81

and overcome entropic barriers. The linear nanorod foldamer from the octamer with ortho-

xylylenediamine linker, which the CAS algorithm successfully sampled, was probably was

one of the many small energy minima in a relatively flat free energy landscape. However,

since the CAS algorithm is heavily dependent on the choice of reaction coordinates, it did not

sample other foldamers with cis to trans and vice versa isomerizations, like the “zigzag” and

“staircase” foldamers found with REMD. In other words, if the chosen reaction coordinates

do not include dihedral angles for the cis and trans bonds with rotational barriers, then the

CAS algorithm, like regular MD, does not find other foldamers requiring cis to trans and

vice versa isomerizations. Hence, the CAS algorithm is effective in exploring a particular

class of foldamers for these macromolecules, but the obtained free energy landscape does

not represent the total free energy landscape of the possible conformations. In other words,

the CAS algorithm has limited exploratory ability depending on the reaction coordinates

chosen.

REMD, on the other hand, does not need pre-defined reaction coordinates and is effective

in overcoming enthalpic barriers uniformly, as it is a reaction coordinate-free method, with
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its different temperatures. As a result, cis to trans and vice versa isomerizations occurred in

REMD simulations and REMD was able to explore more of the total free energy landscape

and sample more structures.82 Unfortunately, REMD does not work well for entropic barriers,

including “golf-course” potentials, and can miss sampling small energy minima. Hence,

REMD was able to sample new non-linear foldamers but unable to sample linear nanorod

foldamers. Taken together, the CAS algorithm only thoroughly explored a part of the total

free energy landscape with the chosen reaction coordinates. REMD explored the total free

energy landscape more widely by overcoming enthalpic barriers but missed sampling small

energy minima since it is ineffective in overcoming entropic barriers.

Figure 17: Same as Figure 2 but from the dimer of tetramers in regular MD simulation.
Foldamer that has a nanorod foldamer as part of its structure.

Conclusions

Our original motivation of this study was to understand foldamer architectures of length-

defined triazine-based polymers; and to investigate specific linker structures in the middle

of triazine polymers that might influence folding into a conformation discovered in prior

work, i.e., the nanorod foldamer. While nanorod foldamer conformations do arise for shorter

polymers up to hexamers, they appear to be less likely to persist for longer polymers. Using

the CAS algorithm, it was possible to sample the expected nanorod foldamer for an octamer

with the ortho-xylylenediamine linker. However, the expected nanorod foldamer did not

dominate the conformer population over other possible conformations of octamers.
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In addition, the simulations in this paper revealed a diversity of foldamer structures

that are possible. For example, foldamers containing π bonded pairs of triazine rings in a

nanorod architecture may form with folding sections that include a full triazine monomer,

i.e., with the aromatic triazine ring as part of the folding section. The SI also showed a

transient foldamer seen from an undecamer with two ortho-xylylenediamine linkers, which

are placed 3 triazine rings away from the end. The folding section is composed of a central

section of triazine monomers and has the aromatic groups of the two ortho-xylylenediamine

linker aligned. From a molecular design point of view, this suggests that the linkers that

are sequenced into a triazine polymer might influence structure along the foldamer arms, as

opposed to primarily working at the fold position.

The simulations also showed new foldamer architectures, especially when cis and trans

bond configurations were interchangeable in the REMD simulations. The “zigzag” foldamer

of the octamer in Figure 10, comprising 20.08 % of the total population, represents a new

well-organized foldamer architecture. The SI also showed a “zigzag” foldamer found for a

hexamer with an ethylenediamine linker at the fold.

The nanorod and “zigzag” motifs can be seen as portions of larger structures. The

“zigzag” motif can be found, for example, as a portion of the decamer conformation seen

in Figure 13. Linear or near linear arrangements of hydrogen and π bonded triazine rings

up to 6, similar to the hexamer nanorod, can be seen as portions of octamer structures in

Figure 12 and Figure 14. Indeed, the octamer foldamer with 6-ring nanorod motif comprised

53.87 % of the total population. In addition, the triazine monomer in the fold section, which

is not in a π-π interaction, does have a set of paired hydrogen bonds to an adjacent triazing

ring that is in a π-π interaction as part of a nanorod motif.

Overall, these simulations, using three different simulation techniques, showed that the

foldamer behavior is potentially quite rich. It may be challenging to control or predict by

synthetic design. On the other hand, the specific linker structures investigated for hexamers,

i.e., those based on pentanediamine and ortho-xylylenediamine, were favorable for nanorod
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structures of hexamers as expected. In addition, we found that the motif of the nanorod

structure can arise within a larger structures, and thus may be a useful motif to explore as

a potential building block.

Supporting Information Available

Additional foldamers from additional simulations are shown and described. The PSE files

for the representative conformations from the CAS algorithm and REMD simulations are

available and can be viewed with PyMOL. The CAS algorithm code is available at http:

//github.com/shirleyahn/CAS_Code. Simulation files are available upon request. This

material is available free of charge via the Internet at http://pubs.acs.org/.
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Suárez, E.; Lettieri, S.; Wang, D. W.; Grabe, M. et al. WESTPA: An Interoperable,

Highly Scalable Software Package for Weighted Ensemble Simulation and Analysis.

Journal of Chemical Theory and Computation 2015, 11, 800–809.

(48) Rhee, Y. M.; Pande, V. S. Multiplexed-Replica Exchange Molecular Dynamics Method

for Protein Folding Simulation. Biophysical Journal 2003, 84, 775–786.

(49) Sanbonmatsu, K.; Garcia, A. Structure of Met-Enkephalin in Explicit Aqueous Solu-

tion Using Replica Exchange Molecular Dynamics. Proteins: Structure, Function, and

Bioinformatics 2002, 46, 225–234.

(50) Cecchini, M.; Rao, F.; Seeber, M.; Caflisch, A. Replica Exchange Molecular Dynamics

Simulations of Amyloid Peptide Aggregation. The Journal of Chemical Physics 2004,

121, 10748–10756.

(51) Johnson, R. R.; Kohlmeyer, A.; Johnson, A. C.; Klein, M. L. Free Energy Landscape of

a DNA- Carbon Nanotube Hybrid Using Replica Exchange Molecular Dynamics. Nano

Letters 2009, 9, 537–541.

(52) Mori, T.; Miyashita, N.; Im, W.; Feig, M.; Sugita, Y. Molecular Dynamics Simula-

tions of Biological Membranes and Membrane Proteins Using Enhanced Conformational

Sampling Algorithms. Biochimica et Biophysica Acta-Biomembranes 2016, 1858, 1635–

1651.

38



(53) Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A. The

Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules.

I. The Method. Journal of Computational Chemistry 1992, 13, 1011–1021.

(54) Shirts, M. R.; Chodera, J. D. Statistically Optimal Analysis of Samples from Multiple

Equilibrium States. The Journal of Chemical Physics 2008, 129, 124105.

(55) Buchete, N.-V.; Hummer, G. Peptide Folding Kinetics from Replica Exchange Molec-

ular Dynamics. Physical Review E 2008, 77, 030902.

(56) Stelzl, L. S.; Hummer, G. Kinetics from Replica Exchange Molecular Dynamics Simu-

lations. Journal of Chemical Theory and Computation 2017, 13, 3927–3935.
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