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Support is adduced for two related conjectures of simplicity of the analytic 

structure of the S-ma.trix and related function; namely, Sato's conjecture that the 

S-matrix is a solution of a maximally over-determined system of pseudo-differential 

equations, and our conjecture that the singularity spectrum of any bubble diagram 

function has the conorma.l structure with respect to a canonical decomposition of the 

solutions of the relevant Landau equations. This latter conjecture eliminates the 

open sets of allowed singularities that existing procedures permit. 

1. Introduction 

Two topics concerning the S-matrix singularity structure are discussed. The 

first is Sato's conjecture (1) that the S-matrix is a solution of a maximally over­

determined system of pseudo-differential equations whose characteristic variety is 

given by the Landau equations. This property has already been established for a large 

class of Feynman integrals, and was used to investigate the character of the singu­

larities associated with- contracted diagrams (2). Sato's conjecture, if true, would 

provide a powerful tool for the determination of the analytic properties of scattering 

amplitudes. 

Sato proposed, as a first test of his conjecture, a check of its consistency 

with the S-matrix discontinuity formulas. Some positive results along this line are 

reported here. 

'Jhe second topic concerns the singular! ty structure of bubble diagram func­

tions. These functions arise in the derivation of the S-matrix discontinuity formulas 

from unitarity andanalyticity; both unitarity and the discontinuity formulas are ex­
pressed in terms of them. Bubble diagram functions are represented by bubble dia-

* Supported by M[ller Institute for Basic Research in Science. 
t Supported by ERDA. . 
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grams, and are formed by integrating products of scattering amplitudes and complex 

conJugate amplitudes over the mass-shell variables corresponding to the internal 

lines of these diagrams. 

The singular! ties of bubble diagram functions are controlled by the structure 

theorem (.3) • This theorem places conditions on the complete singular! ty spectrum of 

bubble diagram functions. That is, it limits the allowed real positions of singu­

lar! ties, and for each allowed real position it specifies an allowed set of imaginary 

directions from which the real point can be approached, staying in the domain of 

analyticity. This information combined with uriitarity yields the S-matrix discon­

tinuity formulas (4). 
The structure theorem derived in (.3) allows singularities corresponding to 

a certain degenerate case. This case is defined by an equation u = 0, and the corre­

sponding allowed locations of singularities are called u = 0 points. These points 

cannot occur when the positive-a condition is imposed. But to study nonpositive-a 

singularities the u = 0 points must be considered. 

We show here that in all cases :known to us where u = 0 points cover open 

sets the actual singularities are confined to sets of lower dimension. This general 

result does not, however, specify the locations of these sets of lower dimension. 

This poses the problem of formulating and proving a generalized version of the struc­

ture theorem that restricts the allowed singularities to specified surfaces of co­

dimension one or more. 

A general theorem of this kind is not proved here. However, a number of spec­

ial cases have been examined, ·and these conform to the follOwing rule: A bubble dia­

gram function rBc p) is singular at p only if p lies on a codimension-one or 

more component of the Landau surface associated rl ih ~. The components of this 

Landau surface are obtained by first considering for each Landau diagram D assoc­

iated with rB the solutions (p,k) of the corresponding Landau equations. Here 

k is the set of variables associated with the internal lines of D. These solutions 

define a variety in ( p, k) space, which can be canonically decomposed into a set of 

analytic manifolds. .The p-space images of these manifolds ·can then be canonically 

decomposed into analytic manifolds. 'lhese latter manifolds are the components of the 

Landau surface. In the cases we have examined the components of the Landau surface 

that cover open sets in p space are devoid of singularities, and the singu- . 

larity spectrum has the conormal structure with respect to the remaining manifolds. 

That is, the cotangential component of the singularity spectrum at a point p lying 

on component Ni is confined to the conormal space to Ni at p. (The cotangential 

component of the singularity spectrum at p determines the allowed directions of 

approach to p.) 
In the course of the analysis of u = 0 points another problem is encc-un­

tered and resolved. This is the problem of "l 
0 

points. The set 'h/
0 

is 'the part 

of the mass shell where two or more initial momentum-energy vectors .are parallel or 

L 
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two or more final momentum-energy vectors are parallel. The information on the singu-

larity structure of scattering functions near '1'1?. points obtained by Iagolnitzer ' 0 

and Stapp (5) from macrocausali ty is insufficient for the present work. By intro-

ducing also the constraints of Lorentz invariance we obtain a more detailed charac­

terization of the singularity structure at ~ points. The singularity spectrum 
0 

has, in particular, the conormal structure demanded by Sate's conjecture and needed 

in our work on u = 0 points. 

We shall now describe these results in more detail, together with some new 

. technical results upon which they are based. The proofs will be given elsewhere. 

The results are based on the general theory of microfunctions discussed by 

Sato, Kawai, and Kashiwara (6). Thus the singularity spectrum of a hyperfunction 

defined on a real analytic manifold M of dimension n is regarded as the support 

in -V-1 s*M of. the hyperfu'nction regarded as a microfunction. The space -y:i s*M 
consists of points ( p, -{:i u) where p lies in M and u is a nonzero real n vector 

defined modulo real positi ~ ( multiplicative) factors. The vector u lies in the 

cotangent space and determines allowed directions in the dual tangent space. 

2. Structure Theorem, ~ Points, and Generalized Landau Equations 
-----------~----------0·----------------~·-----------------------

An important concept is that of the space-time Landau equations. Consider 

a diagram D. This is a topological structure consisting of n external lines Lr 

and n 1 internal lines L1 connected at n" vertices V J. Each line has a directio~ 

and the incidence numbers (J,~ (or [J,r]) are +1,-1, o_r 0, according to whether 

V J lies on the front-end, back-end, or no end of L1 (or L ). The indices J\ R.) 

and rc 1) are uniquely defined: [J±( R.) ,tJ = ±1. They label ~he vertices lying on 

the ends of internal line L1 • Each L1 {or Lr) . is associated with a mass !JR. (or 

mr), and each line t 1 of some (possibly empty) subset of the internal lines carries 

a sign aR." 

Definition 1. A set (p1 , .•• ,pn; ~,···,un): {p,u) consisting of n real 

four-vectors pr and n real four vectors ~ is said to be a solution of the Landau 

equations corresponding to Landau diagram D if and only if there are a four vector a, 
sets of real four vectors kR. {1 = l,···,n') and vj (j = l,···,n"), and scalars 

a1 (1 = 1,···,n') and Br (r = l, ••. ,n) such that the following equations hold: 

L [J:r]p + L [J:t)k1 = 0 for j = 1,···,n" (La) 
r r R. 

p 2 .. ~2 Po > 0 for r =- 1, • • • ,n ( l.b) 
r r 

(1) k2 2 0 0 for 1 = 1, • • • ,n 1 {l.c) = llt k1 > 1 

Vr(1);.. VJ_(1) = aJ!.r. for 1 = 1, • • · ,n 1 {l.d) 

ur + BrPJ = -[J{r ):r )~J{r) + a) for r = 1,·. ·,n (l.e) 
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for all signed lines .t ( 1. f) 

for some .t (l.g) 

Note that the vector u : ( ~, · · •, un) is not uniquely determined by these 

equations: given one solution another is generated by a common posit! ve scale change 

of the vJ's, aft's, B 's, and u 's. Also, if (p,u) is a solution then so is 
~ r r · 

(P, u+u
0
(pp where u

0
(p) is any 4n vector of the form u

0 
= (B~r+a,B2JI2+a, ••. , 

B~pn+a). Thus u at p is defined modulo vectors of the form u
0
(p), and modulo 

positive scale changes. 

The restricted mass shell ~r is defined by {p; p 2 = m 2 for r = 1, • · · ,n, 

~ [J(r),r)pr = O, at least two pr are not parallel}. Th~ solu~ions (p,i/=1 u) 

of (1) define a variety ;l(D) in -{:i s*•tr{. This variety is called the Landau 

variety and its proJection to the base space ~r is the Landau surface L(D). 

The Landau equations associated with a bubble diagram function FrB (which 

is ~ with the conservation law a-function factor removed) is the set of Landau 

equations ( 1) corresponding to all diagrams D c B. The set .. ~ is the set of Landau 

diagrams that can be constructed by replacing each bubble b of B by some Landau 

diagram ~' where the internal lines of Ib all carry the sign of b. {See (J), 
(4), or (~for further details.} 

The functions ~ are defined on the (unrestricted) mass shell {p; P/ = m/, 

r = 1,2, • • • ,n}. The corresponding equations are ( 1) with a = 0. 

Definition 2. A point p is said to be a u = 0 point if there is a solu­

tion (p,u) = (p,O) of the Landau equations (1). 

B Theorem 1. If the singularitB spectrums of the bubble diagram functions 
1 2 ) Fr (p1 ,···,ps,ps+l'···,pn ) and Fr (ps+l'···,pnl'Pn +l'···,Pn are confined to 

solutions of the associate! space-time Landau equations 1 except possibly at u = 0 

points, then the bubble diagram function Fr B corresponding to the bubble diagram 

B obtained by Joining B1 and B2 with respect to Ps+l' · · · ,p~ has the same pro­

perty. 

The usual structure theorem (3) follows from a repeated application of Theorem 

1 starting from bubble ·diagrams B
1 

and B
2 

consisting of single bubbles. For these 

simplest bubble diagrams the only u = 0 points are the ~0 points ( (7) ). 
To prove Theorem 1 we first prove a corresponding theorem for the (non-reduced) 

bubble diagram functions, i.e., bubble diagram functions which contain the overall a­

function. This is easily done by the successive application of Corollary 2.4.2 and 

Theorem 2.3.1 in Chapter I of (6). In fact, Corollary 2.4.2 guarantees that the in­

tegrand appearing in the definition of ~ is well defined under the u ~ 0 assump­

tion and estimates its singularity spectrum. Therefore Theorem 2.3.1 immediately 

applies to estimate the singularity spectrum of ~. Next we apply Theorem 2.1.8 in 

Chapter III of (6) to estimate the singularity spectrum of F rB, the function obtained 

by factorizing out the overall c5 function from ~. 

'-
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That the theory of microfunctions would yield a simple proof of the structure 

theorem was noted by Professor Pha.m several years ago. (Private communication from 

Professor Iagolnitzer to HPS.) 

Theorem 1 estimates the singularity spectrums of bubble diagram functions 

and is used in the derivation of the S-matrix discontinuity formula. ( (4)) However, 

.the limitation to u to· points is quite serious, since, unlike u; o points, the 

u = 0 points may cover open sets. 

To overcome this difficulty we . do two things • The first is to obtain more 

int'orma.tion on the singularity spectrum of the S matrix at 9'ri points, by making 
0 

use of the Lorentz invariance property of the S matrix. The second is to take account 

of the specific form of the singularities. In fact, the troubles at u = ·o · points 

come from the fact that the multiplication procedure needed to define the integrand 

at such points cannot be legitimate unless the singularities enjoy special properties. 

On the other hand, solutions of maximallY overdetermined systems enjoy properties 

that allow their products to be defined even at u = 0 points. 

In ccmnection w1 th the 'Pt.. problem we int-roduce a generalized version of 
0 . 

the Landau equations. 

Definition J, The generalized space-time Landau equaticins corresponding to 

a scattering function S {p) or its conjugate st(p) are the same as the original · r r 
space-time Landau equations ( 1) for these functions except that for every set {Lr; 

rcl'} of external lines that all originate (or all terminate) on a single vertex, 

there is an alternative to the set of equations (l.d) and (l.e) associated with these 

lines. This alternative set consists of the equations 

if rEI' and r'Er ( 2.a) 

(2) -[J{r),r]<v + n ) . r r for rEr ( 2.b) 

where the nr satisfy 

L( 0 'V 'V 0) pn -pn = r T r r 0 • ( 2.c) 

rEr 
Also, in place of ( 1. g) one imposes on the complete solution the condition 

( J ) u t 0 (mod u
0

) • 

All solutions (p; u) of the form {pl'p2, ... ,pn; a~1+a,B2J'2+a, ... ,B~pn+a) are 

eliminated by (J ). 

Theorem 2. The macroscopic causality and ~rentz invariance properties of 

the S matrix entail that the singularity spectrums of Sr(p) and S~(p) be confined 

to solutions of the corresponding generalized Landau equations. 

For a general bubble diagram function FrB the generalized Landau equat~ons 
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are obtained from the ordinary equations (1) by allowing for the variables associated 

w1 th each individual bubble b of B the options allowed by ( 2) and ( J). That is 1 

if lb is the part of some D c: B that is associated with a bubble· b of B 1 then 

for each vertex v of Db that is an external vertex of ~ considered alone, one 

allows the option described by ( 2) 1 but excludes 1 for the variables ui associated 

w1 th all the external lines of lb considered alone 1 . all solutions excluded by (J). 

{Geometrically, the option ( 2) allows certain parallel displacements of the space­

time trajectories corresponding to a set of explicit lines of B that all begin 

or end on a common vertex v of D, provided these trajectories are all parallel. 

Condition ( J) excludes a:ny solution in which the trajectories associated with the ex­

ternal lines of any single lb considered alone, all pass through a common point. 

The geometrical interpretation of the Landau equations as a classical space-time scat­

tering diagram is discussed in (J) 1 (4) 1 · and (5) .. The generalized Landau equations 

allow the vertices to go, in effect, to infinity, subject to conservation-law con­

straints.} 

Definition 4• A point p is said to be a generalized u = 0 point of F/ 

if {p,u) = (p,O) satisfies the corresponding generalized Landau equations. 

Theorem J. The singular! ty spectrum of ~( p) is confined to solutions of 

the generalized Landau equations except possibly at generalized u = .o points. 

A simple case covered by Theorem J, but not by Theorem 1, is illustrated in 

Fig. 1. 
P, 

Fig. 1. Bubble diagram for a case covered by Theorem J. 

If for same p the integration region contains a point k where p1 is parallel 

to ~ then the original Landau equations have a u = 0 solution. Such points p 

cover an open set, and .Theorem 1 gives no information there. However, the parallel­

ness of k1 and p1 _does not lead to a u = 0 solution of the generalized Landau 

equations. The generalized u = 0 points do not cover open sets, in this case, and 

the singular! ties allowed by Theorem J are confined to sets of lower dimension. 

J. Sato's Conjecture 

Our further results depend on the form of the singular! ty itself, not merely 

its location, and are restricted to simple cases where we have determined this form. 

A principal limitation arises from the exclusion of three-particle thresholds; the 

form of the singular! ty at such thresholds is very complicated and has not yet been 

determined. 

Two-particle threshold points are analyzable. 

Definition 5. A two-particle threshold point is an argument P = ( p1 , • • • , Pn) 

of Sr( p) such that: ( 1 ) no three 1ni tial p1 are parallel. ( 2} no three finai pi 
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are parallel, (3) there is a (multisheeted) complex neighborhood w of p such that 

Sr( p) has no singular! ties in w except those that coincide with the two-particle 

thresholdscorresponding to the various pairs of parallel initial and final pi, and 

( 4) each of these two-particle thresholds lies below the lowest three-particle thresh­

old in its channel. 

From Zimmermann's result (8) on the square-root nature of singularities lying 

below the lowest three-particle threshold in elastic scattering amplitudes, combined 

rlth the S-matrix discontinuity formulas (4), one may obtain the following result: 

Theorem 4. In a neighborhood of a two-particle threshold point p the s­
matrix Sr( p) is simply a product of normal-threshold factors 

[upi + pj)2- (mi + mj)2 + i<lji ~Pij + ljlij] (4) 

where the ~ij and ljlij are analytic. 

This result validates Sato's conjecture in the neighborhood of any two-particle 

threshold point. It is used in conjunction with the discontinuity formulas to validate 

Sato's conjecture at points where the discontinuity functions involve scattering ampli­

tudes evaluated at two-particle threshold points. 

A positive-a diagram is a Landau diagram each line of which carries a positive 

sign a1 • A diagram subject to this condition is written D+. '!be union of the 
.J+ + + + + 
lk ( D ) is ;/.. , the union of the L( D ) is . L • Nonbasic D are ignored ( 4) . 

Definition 6. A point ( p; v:l u) of :1.: is invertible if and onJ.Y if 

the following three ·conditions hold: 

(5) There is a unique D+ such that (p; ""{:1. u) lies in ;C(D+ ). 
. + 

(6) The complexification of ;l (D ) is an analytic submanifold near (p; 

-V-1 u). 
- + 

(7) If x represents a set of local coordinates of ;l(D ), then there is 

a unique set of analytic functions k1(x), a1(x), and vj(x) such that 

for each point x in some complex neighborhood of the point x0 = image 

.or ( p; -f=J. u) the unique solution of the Landau equations that define 

~(D+) is p = p{x), u = u(x), k = k{x), a = a(x), and v = v(x). 

Theorem 5. Suppose ( p; -{:1 u) of ~ + is invertible. Suppose the corre­

sponding D+ has the property that at most two lines connect any pair of vertices. 

Suppose each of the scattering functions that occurs in the discontinuity formula at 

p is evaluated at a two-particle threshold point. Then the S-matrix Sr( p) satis­

fies near ( p; -{:]. u) a maximally over-determined system of pseudo-differential 

equations. This system is simple, in the sense of (6) Chapter II §4, except for some 

analytic varieties. Its order is a = 2n" - ~ n' , where n' is the number of- internal 

lines and n" is the number of vertices of D+. 

Remark 1. The excluded subvarieties in Theorem 6 .correspond to the zeros of 

the scattering ampli_tude. In other words, the S matrix is a solution of a simple­

maximally overdetermined system except for a multiplicative factor, possibly vanishing. 
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Remark 2. To obtain these results we have used a micro-local version of the 

discontinuity formula (4). This version makes sense even when L+ is not a hyper­

surface. The arguments. in (4) establish, in effect, also this generaliz~tion. 

Remark 3. The result stated in Theorem 5 arises from a very special property 

of the S-matrix discontinuity formula. It would not hold if that function were replaced 

by the similar bubble diagram function ~ corresponding to the B obtained by simply 
+ replacing the vertices of D by plus bubbles. The S-matrix is thus particularly 

simple, from the point of view or· maximally over-determined systems. 
+ Definition 7. A point pe:L · is simple if and only if 

( 8) L + near p is a co dimension-one analytic submanifold {pe'f; ~( p) = 0}, 

and 

(9) The point (p; -{::l u) = G>; "\{:1 gra~p ~(p~ in ~+ is invertible. 

Theorem 6. If p is a simple point of L then the scattering amplitude 

near p has the following form ( 15): 

h1(p)~{p) + iO)-a+J/2 + h
2
(p) if -a.+~ is neither a positive integer 

nor zero. 
(10) or 

h
1
(p) 4>(p}-a+J/2 log~(p) + i~+ h

2
(p} 

. J 
if -a + 2 is a positive integer 

or zero. 

Here ~ ( p) and h2( p) are a.nalytic. 

To fully analyze the S-matrix singularity structure we must study it also at 

singular points of the Landau variety. In view of Theorem 1 of (9), ~d the remark 

follc:mi.ng it, the most important singular points are t.he points where two irreducible 

components of the Landau variety cross normally along some subvariety of codim 1 in 

the Landau variety. This is the situation which appears if some single internal line 

is contracted. To delineate this case we introduce the following definition. 

Definition 8. A point ( p; -y::i u) of ;I_ + is a simple contraction point 

if and only if the following conditions are satisfied: 
+ + J + ( 11) There are exactly two basic diagrams D1 and D2 that satisfy pe-.. ( Di ) • 

+ . . . + 
( 12 ) D2 is obtained by contracting exactly one line of D1 • 

( lJ) The complerlfications :!.. 1 and ;/. 2 of ;;( ( o;) . and -;{ ( o;) are both 

analytic submanifolds near (p; -y::f u), and each satisfies the inverti­

bili ty condition ( 7). 

(14) ;/.1 n -£.2 is an anillytic submanifold near (p; -y::; u), and -:1.1. and 

j. 2 intersect transversillly at (p; -v-:1 u). 

Theorem 7. Suppose- (p; -y::i u) in -/.. + is a simple contraction point. 
+ + + 

Suppose both D1 and D2 have the properties required in Theorem 5 of D , except 

for the pole singularity associated with the contracted line. Then the conclusions 

of Theorem 5 still hold, except for the simplicity of the system. 

The explicit form of the scattering amplitude can B.lso be given in this case 

under some moderate condi tiona on D
1

, by making use of a canonical form of the system 

' 
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of equations it must satisfy. 

The results stated in Theorems 5 and 7 verify Sa to 1 s conjecture in nontrivial 

cases. 

4. Analysis of Generaiized u = 0 Points 

All open sets of generalized u = 0 points known to us arise from the occur­

rence within a diagram D of a symmetric hammock part. A hammock part is a part that 

is connected to the rest of the diagram at precisely two vertices, has other vertices, 

and has no external lines • Two examples are shown in Fig. 2. 

(a.) (b) 

Fig. 2. Two hammock parts. 

The dark vertices at.the ends are the only vertices connected to the rest of the dia­

gram D, which is not shown. If a hammock diagram is symmetric with respect to a ver­

tical center-line,apart from a reversal of the signs a1 , then for every solution of 

the Landau equations for the half diagram there is a corresponding solution for the 

whole diagram. This solution is symmetric, in the sense that corresponding vertices 

from the two half diagrams coincide. In particular the two end points coincide. Hence 

a solution of the Landau equations for the entire diagram D can be obtained by set-
• . 

ting to zero all a1 •s corresponding to lines outside the hammock part. This solution 

is a u = 0 solution, and it usually generates open sets of generalized u = 0 points. 

Arly bubble diagram with some pair of bubbles connected by more than two lines has 

open sets·or generalized u = 0 points or this kind. 

Consider, for example, the bubble diagram B of Fig. J. 

Fig. J. The bubble diagram B. 

Both diagrams of Fig. 2 are contained in a, and each gives an open set of generalized 

u = 0 points that covers the entire region where rB is nonzero. Thus the (general­

ized) structure theorem gives no information about the singularity spectrum of rB. 
Special assumptions were needed in (4) to exclude effects of u = 0 contributions. 

Points k = (k1 ,k2,k
3

) in the integration domain where the only singularities 

of the integrand are those associated with Fig. 2a lead to no singularities of rB. 
The integrand contains a factor ( ~ + iO >'< ~ - iO )~ which is not defined by the rules 

for products of microfunctions. (The product is too similar to (?< ~ >)2.) However, 

for products of representatives of Hilbert space kernels ·one has, for A ~ 0, 



~ 2). -10-
where ~ is the distance below threshold, and ~~ and ~- are the two Heaviside 

resolutions. Using (15) one can effectively reduce the diagram of Fig~ 2a to a simple 

three-particle normal threshold diagram, which yields no singular! ties above the 

three-particle threshold. 

The same argument eliminates most of the singularities of re coming from 

Fig. 2b. However, there are two values of { p1 + p2 )
2 = { P.3 + p 

4 
)2 where the singu­

lar! ties do not have the required form ( ~ ± iO l, and the argument fails. These two 
2 values of ( p

1 
+ p

2
) are those such that the triangle diagram singularity of the 

half" diagram, considered as a surface in k space that changes as p is changed, 

either { 1) :touches the two-particle normal threshold surface corresponding to Fig. 2a, 

or ( 2) touches the point where k3 is parallel t~ p
1 

+ p
2

. (Here k.3 is the vari­

able associated with the lowest line in Fig. 2b.) When either of these cases is 

reached. the singularity surface in k-space suffers an abrupt change of topological 

structure, and a singular! ty of fBc p) is expected, barring cancellations. 

The above argument rests on {15), and works at points p such that all the 

points {p,k) /on the singularity surface of the half diagram are simple points, since 

the forms of the singular! ties are then { cj) ± iO )). • The result, however, continues to 

hold when the singularity surface in {p,k} space includes also simple contraction 

points: 

Theorem S. Consider any bubble diagram function fS{p} and an argument p 
that satisfies the following conditions: 

Then 

(16} There is a unique D such that p lies on L(D') for D' c:: S only 

if D' is D, or· a diagram obtained from D by contracting some signed 

lines. 

(17) This unique diagram D is a symietric hammock diagram Dn_ with half 

diagrams Dr and D1 . 

(18) Every solution (p,k) of the Landau equations for any D G B is ob­

tained from coincident points of Dr and D1 , or from coincident simple 

points of contractions of Dr and D1 , or from coincident simple con­

traction points of D and D1 . 

(19) p lie~ on a codimens~on zero component of LB : U L(D). 
~ DeS 
~ is not singular at p. 

The components of ~ are constructed by decomposing the union of the solutions 

of the corresponding Landau equations into analytic manifolds in the canonical fashion, 

then further decomposing these manifolds into manifolds that are analytic over p 

space, in the sense that the local coordinates of the p space manifold can be used 

as a subset of the local coordinates of the { p, k) · space manifold lying over it. 

This construction gives a well-defined decomposition of L into analytic manifolds, 

which are called its components. If the analytic properties are controlled by the 

gecmetry of the Landau surfaces, as they are in the simple examples studied above, 
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then any single codimension zero component would be expected to be completely free of 

singularities or completely filled with singularities, since the geometr,y is analyt­

ically uniform over each component. 

That no codimension zero component is filled with singularities is suggested 

by the following result. 

Theorem 9. Let the phase space functions pD be defined by the same rules as 

the bubble diagram functions ~~ except that whereas the bubbles of B are associated 

with scattering amplitudes, the vertices of D are associated with
0
constants, which 

are all taken to be unity. Let ~ be a hammock diagram. Then F h is analytic 

except an a locally finite set of analytic manifolds of codimension one or more. More­

over, its singular! ty spectrum enjoys the conormal structure. 

This result is proved by first reducing out the delta functions in the phase 

apace functions, and then applying the result of (10). 

The singularities of the bubble diagram functions are, in a certain sense 1 

generated by the singularities of phase space functions. Hence it seems unlikely that 

the former could give open sets of singularities if the latter do not. 
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