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Abstract

Most cognitive architectures have an implicit representation of
time. As a result, reasoning about specific temporal relation-
ships among events is typically beyond their capability. In this
paper, we describe an extension of the ICARUS architecture to
include an episodic belief memory, an explicit representation
of temporal relationships, and associated reasoning processes.
We then demonstrate the ensuing reasoning capabilities on a
task that involves recognizing football plays. Finally, we dis-
cuss the implications of our temporal representation and rea-
soning mechanisms for the larger architecture.
Keywords: cognitive architectures; episodic memory; tempo-
ral logic; event recognition

Introduction
The ability to remember and reason about events over time
is fundamental to human cognition. Tulving (1983, 2002)
describes episodic memory as a temporal or contextual store
that captures an individual’s experiences. This history can
then be used to improve decision making by forming part
of an internal model of the environment, by keeping track
of long-term goals, or by improving behavior through learn-
ing. Many cognitive tasks, such as problem solving (Howes,
1993) and discourse comprehension (Kintsch, 1998), also de-
pend on storing and recalling information about the past.

In spite of the broad applicability of episodic memory and
temporal reasoning, few efforts at constructing computational
models of such capabilities have been made. Kolodner’s
(1993) early work on case-based reasoning is particularly rel-
evant to episodic memory. Here, a case typically describes
the solution to a previously encountered problem which the
system can then retrieve and adapt to new problems. How-
ever, case structures typically do not generalize well and are
usually hand-crafted for specific tasks.

In the context of cognitive architectures, Altmann and John
(1999) added an episodic memory to Soar, although it was
task specific and was not integrated into the larger architec-
ture. More recently, Nuxoll and Laird (2007) integrated a
general-purpose episodic memory module into Soar, and then
implemented cognitive capabilities such as learning from past
successes and failures on top of the new module. ACT-R
(Anderson & Lebiere, 1998) also supports a limited form of
episodic memory. The architecture’s chunking mechanism
stores partial copies of working memory for subsequent re-
trieval, but does not support retrieval of temporally related
items, and does not distinguish between memories of prior
events and beliefs about the present. Systems like these tend

to be similar in their focus on storing, retrieving, and using
entire episodes in support of cognitive tasks.

None of the aforementioned systems provide an explicit
language or inference mechanism that lets them reason about
temporal relationships among individual events or entities. In
this paper, we extend the ICARUS architecture (Langley &
Choi, 2006) to (1) represent and retain beliefs about past ex-
periences, (2) encode general temporal relationships in long-
term conceptual memory, and (3) reason about temporal re-
lationships based on past and present beliefs. Moreover, we
show that these extensions fit naturally into the existing ar-
chitecture, and that they expand its capabilities substantially
without the addition of new or sophisticated modules. We be-
gin our discussion with a brief review of ICARUS, after which
we describe our changes to the architecture, demonstrate their
effects, and discuss their implications.

A Brief Review of ICARUS

The objective of the ICARUS architecture is to qualitatively
model results on human cognition. It incorporates many
ideas from traditional work on cognitive modeling, and main-
tains that cognition is closely tied to perception and action so
that a model must be linked to some external environment.
Like Soar (Laird, Rosenbloom, & Newell, 1986) and ACT-R
(Anderson, 1993), ICARUS makes theoretical commitments
to formalisms for memories, knowledge representation, and
cognitive processes. For example, ICARUS shares the distinc-
tion between short-term and long-term memories, and goal-
driven but reactive execution with several other architectures,
but also includes many novel features such as a commitment
to separate storage for conceptual and skill knowledge, and
indexing skills by the goals they achieve.

In this section we briefly review representation, inference,
and execution in ICARUS to provide a basis for our discus-
sion of temporal representation and reasoning. In particular,
ICARUS maintains a tight integration between inference and
execution processes,1 thus qualifying it as an instance of a
unified cognitive architecture (Newell, 1990). As we will see,
this helps to expand the power of the temporal representa-
tion beyond the conceptual memory and the inference mech-
anisms without requiring substantial modification to other
modules in the architecture, such as execution or learning.

1This tight integration also holds for problem solving and learn-
ing in ICARUS, though we do not discuss these here.
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Table 1: Non-temporal concepts from the football domain.
; Convert player activity perception into a belief
((agent-action ?agent ?action)

:percepts ((agent ?agent team OFFENSE action ?action)))

; Convert player direction of motion into a belief
((agent-direction ?agent ?dir)

:percepts ((agent ?agent direction ?dir team OFFENSE)))

; ?agent moved in direction ?dir
((moved ?agent ?dir)

:relations ((agent-action ?agent MOVE)
(agent-direction ?agent ?dir)))

Like other architectures, ICARUS operates in cognitive cy-
cles. A cycle begins when the agent perceives objects in the
environment and places their descriptions into a short-term
perceptual buffer. This initiates the inference process, which
matches percepts against the structures stored in long-term
conceptual memory, which contains a set of hierarchically
organized logical rules. Each conceptual clause describes a
class of environmental situations using a relational language
similar to PROLOG; it includes a head, with the concept name
and arguments, and a body that describes the conditions under
which the concept applies.

The result of matching the percepts with concepts is a set
of beliefs, which represent specific relational properties that
hold in the current environment. The beliefs are stored in
a short-term belief memory and then matched against other
concept definitions in a bottom-up manner to produce new,
higher-level (more abstract) beliefs. This process continues
in a bottom-up manner until the architecture deduces all pos-
sible beliefs for the current environment state.

Table 1 shows three non-temporal concept definitions for
football, which we use for illustration throughout the remain-
der of the paper. Symbols preceded by question marks in-
dicate variables. The first two concepts extract information
from the agent’s perceptions of the current state, converting
these into beliefs as shown in Table 2. For football, percepts
include the identity, activity, and direction of each player on
the field. The third concept recognizes the condition in which
a given player is moving in a specific direction on the field by
matching against lower-level beliefs about actions and direc-
tions. ICARUS does not maintain percepts and beliefs across
cognitive cycles, which prevents it from reasoning about tem-
poral events and relationships among players on the field.

After deducing the set of beliefs about the current state,
ICARUS then uses its beliefs, combined with its goals and
the structures contained in its long-term skill memory to de-
termine which skills to apply in the environment to achieve
these goals. Execution begins with a goal, which is a belief
that the architecture wants to make true. Given a goal, the ar-
chitecture finds a skill in long-term memory that both applies
in the current state and achieves the goal.

Like conceptual memory, skill memory is organized hier-
archically. Skills take a form similar to conceptual clauses;
they have a head, which states the skill’s objective, and a

Table 2: Sample percepts with inferred non-temporal beliefs
for the concepts shown in Table 1.
Percepts (cycle 1):

(agent QB team OFFENSE action WAIT direction 0)
Beliefs:

(AGENT-ACTION QB WAIT)
(AGENT-DIRECTION QB 0)

Percepts (cycle 2):
(agent QB team OFFENSE action MOVE direction S)

Beliefs:
(AGENT-ACTION QB MOVE)
(AGENT-DIRECTION QB S)
(MOVED QB S)

body, which states the environmental conditions required to
initiate the skill, and the ordered actions or subgoals needed
to achieve the skill’s goal. After it finds an appropriate skill,
the architecture must find a path through the subgoal hierar-
chy down to an executable action (atomic subgoal), ensuring
that all of the intervening subgoals are applicable. If no such
path exists, then ICARUS falls back on problem solving. We
do not consider this case here, but Langley and Choi (2006)
discuss problem solving in detail.

In the context of football, a skill with the head (moved
?agent ?dir) for achieving goals like (MOVED QB S) would
refer directly to an executable action. More complex skills,
such as those for running crossing receiver patterns (run n
yards down field, then turn hard left or right), would use
moved as a subgoal, thereby building complex behaviors from
simpler ones.

Note the close correspondence between concepts and
skills, as well as between beliefs and goals. This relation-
ship figures centrally in the architecture’s performance and
learning mechanisms, and makes its various processes highly
interdependent. For example, execution relies on inference to
produce the beliefs that are matched against goals and skill
preconditions. Thus, if ICARUS cannot infer that a specific
temporal condition has been achieved, then it cannot deter-
mine whether a skill for achieving that temporal condition ap-
plies or has executed successfully. In the following section,
we discuss an expansion of ICARUS’ reasoning capabilities
that begins to address this limitation.

Temporal Representation and Reasoning
Representing and reasoning over time plays an important role
in a variety of cognitive tasks. For example, recognizing re-
ceiver patterns in football requires the ability to determine
that certain events occurred in a specific order. However, past
efforts at integrating episodic memories into cognitive archi-
tectures tended to result in either substantial modification of
the existing modules or in the addition of entirely new mod-
ules (e.g. Nuxoll & Laird, 2007). Here, we outline a set of
extensions that provide ICARUS with the ability to reason and
execute over temporal structures. In particular, we draw at-
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Table 3: Temporal concepts for the football domain.
; ?agent carried ?ball in the current time step
((possession ?agent ?ball)

:percepts ((ball ?ball carriedby ?agent)))

; ?agent caught ?ball
((caught-ball ?agent ?ball)

:relations (((possession AIR ?ball) ?air-start ?air-end)
((possession ?agent ?ball) ?pos-start ?pos-end))

:constraints ((eq ?air-end (- ?pos-end 1))))

tention to the ways in which the existing architecture provides
a basis for temporal reasoning with only minor changes.

The first architectural modification focuses on encoding
temporal information with beliefs. The representation of be-
liefs expands to include start time stamps, which indicate the
first time at which a belief held, and end time stamps, which
indicates the last time at which it held. ICARUS already main-
tains an internal notion of time, based on cognitive cycles,
that may be used to set these time stamps. A special sym-
bol, NOW, indicates the current time and distinguishes beliefs
about the present from beliefs about the past. Thus, when a
new belief is inferred, it receives a start time corresponding
to the current cycle number and an end time of NOW until the
first cycle in which the belief no longer holds. At that time,
the end time stamp reverts to a specific cycle number. Per-
cepts are not similarly time stamped, as perceptual memory
continues to represent perceptions on the current cycle.

This augmented belief representation lets ICARUS distin-
guish beliefs about past events from ones about the present.
The next extension is then to expand the temporal scope of be-
lief memory by retaining all of the beliefs held throughout an
episode. This is equivalent to providing the architecture with
an episodic belief memory, whereas previously belief mem-
ory included only those beliefs that held on the current cycle.
All beliefs contained in the episodic memory are generated
through inference, which is based on the agent’s percepts, so
belief memory maintains a record of experiences in the envi-
ronment from the agent’s perspective.

The importance of episodic memory is well established,
but the memory alone provides little improvement to an ar-
chitecture’s capabilities. To exploit this memory, two mi-
nor changes to the concept language are required. First,
the :relations field, which lists the lower-level concepts
that support a higher-level definition, expands to reference
the time stamps assigned to beliefs. Second, we add a new
:constraints field that represents simple arithmetic tests
over time values referenced in the :relations field. Thus,
this field lets ICARUS use temporal constraints as antecedents
to concepts.

The architecture’s inference process also expands to sup-
port the changes in belief and conceptual memories. The fun-
damental mechanism, which computes in a bottom-up man-
ner the deductive closure of conceptual memory with the be-
lief and perceptual memories, remains unchanged. The only
difference is that the time stamps and temporal constraints

Table 4: Percepts and corresponding temporal belief memory
for concepts shown in Table 3.

· · ·
Percepts (cycle 124:

(ball BALL1 carriedby AIR)
(agent RB direction E team OFFENSE action MOVE)

Beliefs:
(POSSESSION QB BALL1) 1 98
(POSSESSION AIR BALL1) 98 NOW

Percepts (cycle 125):
(ball BALL1 carriedby RB)
(agent RB direction E team OFFENSE action MOVE)

Beliefs:
(POSSESSION QB BALL1) 1 98
(POSSESSION AIR BALL1) 98 124
(POSSESSION RB BALL1) 125 NOW
(CAUGHT-BALL RB BALL1) 125 NOW

· · ·

must be matched in addition to the percepts and relations
fields. No new specialized control is required.

Table 3 shows the temporal concept caught-ball, which
holds if the ball is in the AIR (thrown by the passer) during
one cycle, and then in the possession of a player during the
next cycle. Here, the :constraints field relates the end time
stamps of the two subconcepts (relations). Note that this defi-
nition of caught-ball only holds for the one cycle in which the
receiver first gains possession of the ball (end times differ by
one). An alternative definition could relate the end time stamp
of the ball in the AIR with the start time of the receiver’s pos-
session, thereby letting the concept match on every cycle after
the initial catch. Preference in definition depends on how the
concept will be used by higher-level concepts.

Table 4 shows the results of inference over the temporal
concepts for two cycles, including the beliefs inferred during
previous cycles. Notice the compact and temporally descrip-
tive form of the beliefs. Three beliefs describe the history of
ball possession over 125 cognitive cycles. In general, a single
temporal belief state is sufficient to describe an entire episode
up to that point. Also note the transition of the end time from
NOW to a cycle number for (POSSESSION AIR BALL1). The
end time for (CAUGHT-BALL RB BALL1) will similarly re-
vert to 125 in the next cycle.

Looking beyond inference, execution also requires only
minor changes to support the new temporal representation.
Skill syntax requires no changes, but we add the assumption
that preconditions (beliefs) required for a skill to either start
or continue execution must hold in the current time step (end
time stamp equal to NOW). No further changes to skills are
necessary because skill heads (goals) correspond to the heads
of defined concepts. The concept definitions therefore con-
tain the temporal constraints needed to determine whether a
skill executed successfully. This is a key benefit of the close
relationship between inference and execution in ICARUS.
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Figure 1: The pass play observed by ICARUS with annota-
tions indicating actions taken by individual players.
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The representation of temporal beliefs in ICARUS is con-
sistent with recent studies which suggest that neurogenesis
in the hippocampus plays a role in encoding temporal infor-
mation as a form of time stamp (Aimone, Wiles, & Gage,
2009). The extensions also increase the correspondence of
ICARUS’ belief memory with the notion of working mem-
ory, which typically includes items from the past and present
that are currently being manipulated. Although the detailed
mechanisms that we use to represent time in ICARUS are not
psychologically plausible, they are consistent with our ob-
jective of qualitatively modeling human cognitive abilities.
Specifically, our implementation of time stamps provides a
more precise temporal reasoning ability, but it does not pro-
vide representational power beyond that of humans.

We have implemented the above modifications to the ar-
chitecture and tested them extensively in the football setting.
The problem solving and learning modules have not yet been
fully revised to support temporal concepts and beliefs, so we
do not focus on them here. However, we summarize the is-
sues that arise in the discussion section. In the next section,
we demonstrate the use of temporal concepts, beliefs, and in-
ference in ICARUS by applying them to recognize football
plays observed from video footage.

An Illustrative Example
The ability to remember past experiences and to relate them
temporally to other experiences is critical in recognizing com-
plex behaviors. Here we demonstrate ICARUS’ ability to rec-
ognize such behaviors as they unfold over time. Specifically,
we apply the architecture to interpret three football plays as
observed in video footage from a college football game. The
goal is for ICARUS to interpret the behavior of the players,
both individually and as a team.

Figure 1 shows a play diagram of one of the offensive pass-
ing plays presented to ICARUS. Notice the sequential nature
of the individual player behaviors, such as the running back
(RB, right side) who first blocks, then runs east, catches the
ball, and finally runs north with the ball until tackled. Also

Figure 2: Diagram of observed play with annotations indicat-
ing higher-level goals of individual players and player units.

C

RB

LT LG RTRG
RWRRTELWR

RB

cross−pattern  10yd  E

line of
scrimmage

screen−receiver−routes

form−pocket

sl
an

t−
pa

tte
rn1

5 
yd

 N
E

cr
os

s−
pa

tte
rn

10yd E

short−receiver−pattern

5yd RB

block
pass−

screen−pass−play

drop−
scram

ble−
pass

QB

note the coordinated aspects of the play, such as between the
quarterback (QB) and the running back, who perform very
different activities, but time their activities such that the ball
is caught as the running back completes his run to the east.
Figure 2 shows a higher-level view of player behavior, and il-
lustrates the type of interpretation that ICARUS must produce.

ICARUS assumes that low-level perceptual information,
such as pixel-based video footage, has already been processed
into a symbolic format. All domain objects must be described
by some combination of symbolic and numeric attributes. We
therefore rely on the results of video post-processing proce-
dures (Hess & Fern, 2007; Hess, Fern, & Mortenson, 2007) to
serve as the percepts. In this case, ICARUS perceives the iden-
tity, role (such as quarterback or running back), team (offense
or defense), location, direction and current activity (such as
moving or blocking) of each of the 22 players on the field
in each video frame (1/30th second), along with information
about the ball carrier.

We provided ICARUS with a set of 67 temporal concept
definitions sufficient for interpreting the observed plays. Ta-
ble 5 shows the results of applying ICARUS to the three plays.
In all three cases, the architecture produced a set of beliefs
consistent with the play, including the top-level classification
of the entire coordinated sequence, such as screen-pass-play
in Figure 2. The processing times are clearly slower than hu-
mans, although even human performance in this task is highly
variable. Coaches and broadcast announcers can often inter-
pret plays in real time, but most viewers rely on help from
announcers and instant replay to see the details of a given
play. We revisit the question of efficiency in the next section.

Table 5: Temporal inference results for three football plays.

Play Frames Duration Beliefs CPU
1 149 4.97 s 619 321.46 s
2 200 6.67 s 624 539.23 s
3 202 6.73 s 661 484.20 s
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Discussion
Our use of numeric time stamps on beliefs has several bene-
fits for ICARUS. First, it provides a unique form of episodic
memory based on individual temporal beliefs instead of entire
episodes. Second, time stamped beliefs support retrieval of
temporally related items, rather than entire episodes. Third,
the approach provides an explicit mechanism for reasoning
about temporal relationships among individual beliefs. Fi-
nally, these capabilities allow for recognition and execution
of event sequences not previously possible. For example, the
patterns run by pass receivers in football require execution of
a sequence of simpler motions with specific temporal rela-
tions among them. Previously, even if ICARUS executed such
a sequence, it could not evaluate whether it had done so suc-
cessfully either during or after execution. The revised concept
language and belief memory provides support for both.

Numeric time stamps on beliefs also has implications for
the representational power of ICARUS’ concept language and
inferred beliefs. First, they let the architecture avoid distin-
guishing between instantaneous and extended events, while
still allowing agents to make such determinations. For exam-
ple, an agent can have a concept that tests the equality of two
time stamps to determine whether some belief held for only
one cycle. Likewise, the architecture does not distinguish be-
tween ongoing and completed events, but an agent can do so
simply by testing the value of a belief’s end time stamp.

This approach is a strict departure from past work on time
in agent architectures. For example, Allen (1984) relies on
temporal intervals that are compared relationally, but does
not specify specific times as end points. He maintains that
this is important because it supports the notion that intervals
and events are infinitely decomposable. While mathemati-
cally true, this idea is cognitively implausible. Limits on hu-
man perception imply that support for such capabilities at the
architectural level is unnecessary. ICARUS’ use of the cogni-
tive cycle to determine time stamp values implements exactly
this restriction in a qualitative manner.

Providing architectural support for time in ICARUS has so
far been about generalizing the existing architecture, rather
than about adding new modules and mechanisms. The knowl-
edge representation expanded to accommodate temporal in-
formation in beliefs and concepts, and the belief memory ex-
panded to include beliefs about the past, but no new struc-
tures or memories were required. Likewise, the revised infer-
ence process performs additional steps, but relies on the same
fundamental procedures. The execution module requires no
modification, relying instead on information passed through
concepts and beliefs to achieve temporal goals.

Looking deeper into the architecture, the next steps of inte-
grating temporal capacity into the learning and problem solv-
ing modules should similarly be matters of generalization.
Each module depends on both concepts and skills, so the
parts of the modules that depend on concepts must be mod-
ified to use the information contained in the temporal con-
straints. Specifically, these constraints will inform the partial

order in which subgoals should be considered (problem solv-
ing) or stored (skill learning). Aspects of problem solving and
learning that depend on skills should not require substantial
change. Further research is needed to determine the details of
the integration, but we do not anticipate any major changes to
the content of the architecture.

The relatively uncomplicated integration of temporal rep-
resentation and reasoning capabilities into ICARUS suggests
that some of the architecture’s other assumptions and com-
mitments are also beneficial. In particular, the distinction be-
tween conceptual and skill memories substantially simplifies
the integration by separating the potentially complex tempo-
ral constraints and associated reasoning issues from the skill
knowledge that uses the inferred beliefs. Likewise, the close
relationship between the two types of knowledge, and the
strong interdependence between inference and execution al-
lows both modules to exploit the temporal information.

A noted earlier, one temporal belief state is sufficient to re-
construct the sequence of events that led to that state within
the limits of the concept hierarchy. This is consistent with
Bartlett’s (1932) theory of reconstructive memory, which
states that only some information about the past is avail-
able in memory and the mind reconstructs the missing parts.
ICARUS’ ability to remember perfectly all beliefs is not psy-
chologically plausible, and one area of future work is to add a
mechanism for forgetting. Bartlett’s theory suggests that de-
tailed beliefs (lower-level in the context of ICARUS) tend to
be lost and reconstructed while the more abstract, big-picture
beliefs that form the core of an experience are retained. Such
a process in ICARUS would let symbols in the arguments of
high-level beliefs flow down through the hierarchy toward the
lower-levels. However, this may not bind symbols to all low-
level concept arguments, so additional reasoning would be
required.

A second avenue for future work relates to the intentions of
an agent with respect to execution. Currently, the inference
process does not have access to current goals or to those that
were achieved or abandoned in the past. Generating new tem-
poral beliefs that represent the intentions would let ICARUS
reason about past goals and current goals. The addition of
time-stamped intentions to belief memory would make a new
class of goals available to the architecture. For example, the
goal work on homework until dinner is ready states that the
agent should maintain the intention to complete homework
(which implies execution of skills for completing homework)
until a specific event is satisfied. This is distinctly less restric-
tive of an agent’s behavior than a goal of complete homework
before dinner.

The retrieval of beliefs from the episodic memory is
another possible line for future development. Currently,
ICARUS uses the same pattern-matching process that it uses
for temporal beliefs. In practice, the temporal belief mem-
ory holds far more information than in earlier versions. As a
result, the cost of matching (inferring) concepts grows with
the number of temporally distinct beliefs added to the mem-
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ory, although this is far less than the cross-product of beliefs
with states. Soar reduces the computation required to deter-
mine the relevance of an episode by focusing first on its most
recent experiences (Nuxoll & Laird, 2007). A similar mech-
anism may be beneficial for ICARUS, although the matching
details would be different since it would retrieves individual
beliefs rather than entire episodes.

Finally, a related issue concerns the architecture’s approach
of processing each perceptual state in its entirety, regardless
of the amount of processing time available. In the case of
play recognition, even coaches may be unable to recognize all
details of a play in real time. Instead, they process the most
salient features of the play during the initial viewing, and then
focus on finding more detailed behaviors during subsequent
reviews. Time-sensitive application of conceptual knowledge
and inference is particularly important in the context of a tem-
poral belief memory, as the volume of information available
is large. This suggests that we incorporate a utility-based in-
ference process that focuses on concepts with higher utility
first, while low utility concepts receive attention only if time
permits.

Concluding Remarks
Remembering past experiences and reasoning about relation-
ships over time are a fundamental cognitive abilities that hu-
mans rely on for a variety of tasks. However, very few cog-
nitive models or intelligent systems have been developed to
model this capability. In this paper, we showed how to inte-
grate an explicit representation of time and a temporal reason-
ing mechanism into the ICARUS architecture. The resulting
temporal belief memory serves as an episodic store, and the
architecture’s ability to refer to past beliefs individually sup-
ports a finer-grained episodic memory than other accounts.

We also argued that our approach is functionally adequate,
and that the relatively simple integration of temporal reason-
ing into ICARUS suggests that other aspects of the architec-
ture are also beneficial. Substantial evaluation will be re-
quired to confirm these points, but our initial tests and demon-
strations have been encouraging. Finally, the integration of
temporal reasoning capabilities into ICARUS opens a wide va-
riety directions for future research on the architecture.
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