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available, then the value of the variable SEX assigned on the school
roster was used. If SEX was still missing, it was imputed from the
respondent’s name. On any records for which this could not be done
unambiguously, this variable had a value of 1 or 2 randomly assigned.
The values for SEX are:

1 = Male
= Female
Percent
Label Code Frequency Raw WGTD
Male. ...t eie e i, 1 12241  49.8Y% 50.1%
Female......ovveieenenennnnnn. 2 12358  50.2% 49.9%
TOTALS: 24599 100.0% 100.0%
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Variable: RACE COMPOSITE RACE
Module: 1S2 Position: 384-384

RACE was constructed from BYS314. See NELS:88 First Follow-Up:
Student Component Data Users’ Manual Vol. 1 for more details on how
this composite was constructed. The values for RACE are:

= Asian or Pacific Islander

= Hispanic, regardless of race

= Black, not of Hispanic origin

White, not of Hispanic origin

= American Indian or Alaskan Native

= Missing, BYS31A was not answered or
more than one race category was chosen

0 0k WwWN
1]

Percent

Label Code Frequency Raw WGTD
1 1527 6.2%  3.5%
Hispanic, regardless of race.. 2 3171 12.9% 10.4Y%
Black, not of Hispanic origin. 3 3009  12.2% 13.2%
4 16317  66.3% T71.6%

Asian or Pacific Islander.....

White, not of Hispanic origin.
American Indian or Alaskan

Native. ..o i, 5 299 1.2% 1.3%
MISSING..... o' 8 276 1.1% (MISS)
TOTALS: 24599 100.0% 100.0Y%
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Variable: BYSES SOCIO-ECONOMIC STATUS COMPOSITE
Module: 1S2 Position: 416-420 .3

BYSES was constructed using the following parent questionnaire
data: father’s education level, mother’s education level, father'’s
occupation, mother’s occupation, and family income (data coming from
BYP30, BYP31, BYP34B, BYP37B, and BYP80).

For cases where all parent data components were missing (8.1
percent of the participants), student data were used to compute the
BYSES. The first four components from the student data are the same
as the components used from parent data (i.e., educational-level
data, BYS34A and BYS34B, similarly recoded; occupational data, BYS4B
and BYS7B of student questionnaire part one, also recoded). The fifth
component for BYSES from the student data consisted of summing the
non-missing household items listed at BYS3A-P (after recoding "Not
Have Item" from "2" to "0"), calculating a simple mean of these
items, and then standardizing this mean. The actual range for BYSES
is —-2.97 through 2.56, with 99.998 indicating - Missing. See
NELS:88 First Follow-Up: Student Component Data File User’s Manual
for more details.

Percent

Label Code Frequency Raw WGTD
-2.97 thru 2.56............... 1.000 24588 100.0% 100.0%
MISSING.....ovviiinnnnn... 99.998 11 .0% (MISS)
TOTALS: 24599 100.0% 100.0%

> (def ses (remove nil ses))
SES

> (length ses)

24588

> (mean ses)
-0.06753810802017091

> (standard-deviation ses)
0.7994172446174057

> (min ses)

-2.97

> (max ses)

2.56
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Variable: SEX COMPOSITE SEX
Module: 1S2 Position: 383-383

SEX was taken first from the "Your Background" (BYS12) section
of the student questionnaire. If this source was missing or not
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(Metropolitan Statistical Area)
3 = Rural -- outside MSA

Percent

Label Code Frequency Raw WGTD
{05 Y- KR 1 7484  30.9% 25.0%
SUbUTbAN .ot vt 2 10068 41.5%  43.5Y%
RUTAL o tte i 3 6694 27.6% 31.5Y%

TOTALS: 24246 100.0 100.0

URBAN IS A 0-1 INDICATOR 0
FORMED FROM ABOVE 1

NON-URBAN
URBAN
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Variable: G8LUNCH PERCENT FREE LUNCH IN SCHOOL
Module: 2C2 Position: 262-262

GBLUNCH categorizes the percentage of free or reduced price
lunch at the school calculated from the school questionnaire. It was
constructed by dividing BYSC164 by BYSC2, multiplying by 100,
rounding to the nearest whole number and coding the result. If the
school questionnaire was missing or if BYSC16A was missing, GSLUNCH
was set to missing. The value for GS8LUNCH are:

0 = None 5 = 31-50%
1 = 1-5% 6 = 51-75%
2 = 6-10% 7 = 76-100%
3 = 11-20% 8 = Missing
4 = 21-30%

NOTE: This variable was recoded by NCES in accordance with
the confidentiality provisions of PL100-297 (1988).

Percent

Label Code Frequency Raw WGTD
HOME v vt tee e 0 4323  17.8% 11.6%
1-BY 1 3126 12.9% 14.2%
B=10% 2 2406 9.9% 10.5Y%
11-20% oo 3 3823 15.8Y% 17.4Y%
21-30% 4 3228 13.3% 14.9Y%
B31-50% i 5 3807 15.7% 16.5Y%
BA=TBY 6 2274 9.4%,  10.5Y%
T6-100% oo 7 1175 4.8% 4.5Y%
MISSING vt iee i, 8 85 .4%  (MISS)
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Morris, Carl (1983). “Parametric Empirical Bayes Inference: Theory and Applications,” Journal of the
American Statistical Association, vi8, pp. 47-5b.

Robinson, G.K. (1991). “That BLUP is a good thing: The estimation of random effects,” Statistical
Science, v6, pp. 15-32.

Van der Leiden, R. and Busing F. (1994). “First Iteration versus IGLS/RIGLS Estimates in Two-Level
Models: A Monte Carlo Study with ML3,” Technical Report PRM 94-03, Department of Psychomet-
rics and Research Methodology, University of Leiden, Leiden, Netherlands.

Appendix A: Variable Descriptions
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Variable: BYTXMSTD MATHEMATICS STANDARDIZED SCORE
Module: 1S2 Position: 483-488 .3

Mathematics Standardized Score

Percent

Label Code Frequency Raw WGTD
26.747 thru 71.222............ 1.000 23629  96.1% 100.0%
MISSING.....ovviiinnnnn... 999.998 970 3.9% (MISS)
TOTALS: 24599 100.0% 100.0%

> (length math)

23629

> (mean math)

50.642

> (standard-deviation math)

10.218

> (min math)

26.747

> (max math)

71.221

ko ok ok ok ok ok ok ok ook ok ok ok ok ki ok ok ok okok sk ok sk sk ok ok sk ko o ok ok ok sk sk sk ko ok ok ok o o o o ok ok sk sk skok sk sk sk sk ok sk ok sk ok ok ok
Variable: G8URBAN URBANICITY COMPOSITE
Module: 2C2 Position: 259-259

GBURBAN classifies the urbanicity of the student’s school. It
was created directly from QED (Quality Education Data) data (position
199-199). The classifications are the Federal Information Processing
Standards as used by the U.S. Census. Classifications reflect the
sample school’s metropolitan status at the time of the 1980 decennial
census. The values for GS8URBAN are:

1 = Urban -- central city
Suburban —- area surrounding a central city
within a county constituting the MSA
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the scope of this paper. The sub-sampling method employed in this analysis represents a
simple but effective method with which to examine multilevel models. There exists several
extensions for future research:

1. Sub-sampling can be viewed from a variety of perspectives, e.g., boostrap, data com-
pression, or sampling design. I have taken the perspective sampling design perspective
in this paper. Research needs to be directed towards the other perspectives.

2. My analysis is specific to a given data set. Future research should investigate these
issues with other real data sets.

3. My analysis of the covariance components relies upon a composite statistics, the cor-
relation, that is necessarily bounded. Further research that examines the distribution
of the covariance components, not a function of them as I've done here, may prove to
be more illustrative.

4. Sub-sampling of both level-1 and level-2 units simultaneously would may provide ad-
ditional insight.
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increased to 320 schools, but this is eight times as large as the corresponding size that was
necessary to produce unbiasedness for the fixed effects. With regard to the spread of our
estimates, the situation is also worse than that for the fixed effects. The initial doubling
of the sub-sample design has little effect; Indeed, the interquartile range actually increases.
Moreover, given that the correlation statistic lies in the [—1,1] interval, the repeated sub-
samples of 40 and 80 schools do not provide much guidance in narrowing down the original
parameter space.

0.5
}—
l_

-0.5

Tau (correlation)

Intercept 1.0000 0.6002
BYSES 0.6002 1.0000

5 Summary

The results of this paper provide some guidelines with regard to sample size consideration.
For instance, the fixed effects and variance components behave quite differently under small
sample size situations. Thus, if one’s research interests are mainly concerned with obtaining
accurate and reliable estimates of variance components, a relatively large number of level-2
units are necessary. On the other hand, if one is solely interested in the estimates of fixed
effects, the number of necessary level-2 units that are necessary decreases substantially. In
either case, additional level-2 units improves the accuracy and reliability of the estimates.
Moreover, the reliability of the fixed effects estimates may be related to the type of fixed
effect, e.g., intercept or slope, being studied.

Although my preliminary results generally agree with the results of the Monte Carlo
studies mentioned previously, a full discussion of the similarities and differences is beyond
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corresponding reduction for slope fixed effects is relatively constant each time the sub-sample

is doubled.

10
0,5

T

-0.5
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Figure 4: ~5, (intercept) and 5, (GS8LUNCH), respectively.

BYSES
By Intercept 5.1726 ( 0.1568) 32.9888
By G8LUNCH -0.2746 ( 0.0411) -6.6758

4.2 Variance Components

With regard to the variance components, | concentrate on the T' matrix of level-2 variance
components. Recall that this is a 2 x 2 matrix for our given model, containing elements for
the estimated variance of level-1 intercept, level-1 SES effect, and covariance between them.
With these three estimates, one may estimate the correlation between level-1 intercept and
level-1 SES effect.!! Thus, for each design condition, we obtain 100 values of the estimated
correlation between level-1 intercept and level-1 SES slope. The estimate based on the
entire data is .6, which suggests that schools with high average mathematics score are likely
to exhibit a high SES effect, i.e., the impact of student SES on student mathematics score is
likely to be more pronounced in such schools. The boxplot below shows the distribution of
this statistic over the various sub-sample design conditions. Unlike the results for the fixed
effects, a relatively unbiased estimate is unlikely to be obtained from a small samples of
schools. Indeed, even for samples as large as 160 schools, the boxplot clearly demonstrates
that an unbiased estimate is unlikely. Matters improve greatly once the sub-sample size is

1 Recall that the correlation between two random variables is simply the ratio of their covariance to the
square root of the product of their respective variances.
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Figure 3: 75, (intercept) and ~,, (Urban), respectively.

Fixed Effects for race: 100 repeated samples of 40, 80,
160, and 320 schools. Complete-data estimates below:

Whites
By Intercept 1.8862 ( 0.1770) 10.6569
By Urban 0.1684 ( 0.3018) 0.5581

Now, let us examine the distribution of the fixed effects for the student variable SES.
Recall that there exists two fixed effects with regard to the level-1 SES variable: an overall
fixed effect and a fixed effect conditional upon the extent to which school lunches are sub-
sidized. The boxplots below graphically lay out the distribution of these parameters over
the different sub-sample designs. Compared to the estimates obtained from the entire data,
the boxplots demonstrate that a relatively unbiased estimate of each fixed effect may be
obtained from repeated sub-samples of size as small as 40 schools. With regard to variabil-
ity, a substantial reduction in spread is again evident. In addition, there exists differential
reduction for the two fixed effects. The reduction in variability for the intercept fixed effect
is again somewhat quadratic, while that for the Lunch fixed effect behaves erratically. Thus,
the reduction in spread for the intercept fixed effect is relatively more pronounced the first
time the sub-sample is doubled, while there the second design condition (80 schools) impedes
a simple statement about the relationship for the Lunch fixed effect.

In summary, unbiased estimates of fixed effects are readily obtainable from sub-samples
of relatively small size, e.g., 40 schools. With regard to the variability of these estimates,
there exists substantial improvement each time the sub-sample size is doubled. Furthermore,
there exists preliminary evidence that the rate of this improvement is dependent upon the
type of fixed effect being considered. Specifically, intercept fixed effects evince a propor-
tionally greater reduction in spread the first time the sub-sample size is doubled, while the
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this parameter estimate over the different sub-sample designs. Compared to the estimate
obtained from the entire data, the boxplot demonstrates that a relatively unbiased of the
sex fixed effect may be obtained from repeated sub-samples of size as small as 40 schools.
With regard to variability, there is once again a substantial decrease in the spread of these
estimates each time we double the number of schools selected. Connecting the “whiskers” of
the boxplots does not form a relatively straight line; Rather, the relationship appears to be
somewhat quadratic, indicating that the reduction in spread is relatively more pronounced
the first time the sub-sample is doubled.

| B

Figure 2: 7, (intercept)

sex
By Intercept -0.3253 ( 0.1123) -2.8974

Now, let us examine the distribution of the fixed effects for the student level racial
variable. Recall that there exists two fixed effects with regard to the level-1 racial variable:
an overall fixed effect and a fixed effect conditional upon the urbanicity of the school. The
boxplots below graphically lay out the distribution of these parameter estimates over the
different sub-sample designs. Compared to the estimates obtained from the entire data, the
boxplots demonstrate that a relatively unbiased estimate of each fixed effect may be obtained
from repeated sub-samples of size as small as 40 schools. With regard to variability, although
a substantial reduction in spread is once again evident, the two fixed effects behave somewhat
differently. The reduction in variability for the intercept fixed effect is somewhat quadratic,
while that for the Urban fixed effect is more linear. Thus, the reduction in spread for the
intercept fixed effect is relatively more pronounced the first time the sub-sample is doubled,
while there is more of a constant relationship for the urban fixed effect.
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4.1 Fixed Effects

Let us first examine the fixed effects, i.e., the v estimates. Recall that there exists three fixed
effects with regard to the level-1 intercept: an overall fixed effect, a fixed effect conditional
upon the urbanicity of the school, and a fixed effect conditional upon the extent to which
school lunches are subsidized at the school. The boxplots below graphically lay out the
distribution of these parameter estimates over the different sub-sample designs. For instance,
the four boxplots in each figure correspond to a sample design condition, e.g., the boxplot on
the far left of each figure displays the distribution for repeated samples 40 schools, while the
boxplot on the far right of each figure displays the distribution for repeated samples of 320
schools. Estimates obtained from the entire data are given below the boxplots. Compared
to the estimates obtained from the entire data, the boxplots demonstrate that a relatively
unbiased estimate of each fixed effect may be obtained from repeated sub-samples of size
as small as 40 schools. With regard to variability, there is a substantial decrease in the
spread of these estimates each time we double the number of schools selected. Connecting
the “whiskers” of the boxplots forms a relatively straight line, indicating that the relative
reduction in spread is constant each time the sub-sample size is doubled.

] g | F_I_j
—Hem - HEReass ET%

Figure 1: 740 (intercept), v; (Urban), and 74, (GSLUNCH), respectively.

Intercept
By Intercept 52.0761 ( 0.2952) 176.4347
By Urban -0.4413 ( 0.2854) -1.5462
By G8LUNCH -0.7164 ( 0.0525) -13.6528

Now, let us examine the distribution of the fixed effects for the student level variable sex.
Recall that there exists only one fixed effect (intercept) with regard to the level-1 sex effect.
Moreover, since level-1 sex was not modeled as random, the estimate of this fixed effect and
level-1 sex effect are identical.l® The boxplot below graphically lays out the distribution of

10For random level-1 variables, the corresponding estimate is obtained from the mean of a posterior
distribution. However, as stated previously, these estimates are not of interest in this paper.

.
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Intercept

By Intercept 52.0761 ( 0.2952) 176.4347

By Urban -0.4413 ( 0.2854) -1.5462

By G8LUNCH -0.7164 ( 0.0525) -13.6528
sex

By Intercept -0.3253 ( 0.1123) -2.8974
Whites

By Intercept 1.8862 ( 0.1770) 10.6569

By Urban 0.1684 ( 0.3018) 0.5581
BYSES

By Intercept 5.1726 ( 0.1568) 32.9888

By G8LUNCH -0.2746 ( 0.0411) -6.6758

Sigma”2: 69.0143
Tau (covariance)

Intercept 8.1002 1.3878
BYSES 1.3878 0.6600

Tau (correlation)

Intercept 1.0000 0.6002
BYSES 0.6002 1.0000

The results above are based upon analysis of over 1,000 schools. Specifically, we have
J = 1034?, and a given n; for each school, ranging from 1 to 70. The sub-sampling routines
were carried out under the following design conditions. Random samples of size 40, 80, 160
and 320 schools were drawn from the sample population of schools, and the above model was
fit to each of these sub-samples. This procedure was repeated 100 times, thereby providing
data with which to assess sampling variability of estimates both within and across the given
design conditions. Thus, for each design condition, e.g., a sample of 40 schools, we have 100
values for each parameter in our given model.

9FEighteen schools were dropped by Terrace-Two due to missing data.



Within-school model:

Between-school model:

Boj = 7Yoo + Vo1 * Urban; + 75 * GLUNCH; + uy,

51]‘ = Y10
ﬂQj = Y20 + Yo1 * Urbanj
53]‘ = Va0 T Y31 * GLUNCH]‘ + Ug;

Although the substantive implications of this model, along with the diagnostic methods
used to test the fit of the model, are both important and interesting, they are both beyond
the scope of this paper.” 1 focus on the distribution of sub-sampled estimates. This model
is estimated with respect to the entire NELS:88 data.® The output is as follows:

> Maximizing Likelihood...

Deviance Method

Iteration 1: 167354.2684 EM, init.
Iteration 2: 166247.2691 Fisher
Iteration 3: 165657.9647 Fisher
Iteration 4: 165642.0690 Fisher
Iteration 5: 165641.0928 Fisher
Iteration 6: 165641.0408 Fisher
Iteration 7: 165641.0380 Fisher
Iteration 8: 165641.0378 Fisher
Final Iteration 9: 165641.0378 Fisher

TERRACE-TWO: Full Maximum Likelihood Estimates

Parameters Estimates (S.E.) T

“See Hidden-Milton (1995) for discussion of diagnostics.

8 An XLISP-STAT program written by James Hilden-Minton, which incorporates both the EM algorithm
and Fisher scoring for parameter estimation. See “Terrace-Two User’s Guide: An XLISP-STAT Package
for Estimating Multi-Level Models” by Afshartous & Hilden-Minton for a full description of Terrace-Two.
Software and manuals accessible via World Wide Web site http://www.stat.ucla.edu. XLISP-STAT was
developed by Luke Tierney and is written in the Xlisp dialect of Lisp, which was developed by David Betz.



4 Sub-Sampling Analysis

I investigate the effects of sample size on multilevel model estimates from a different per-
spective. Moreover, my method fits nicely into the “sample reuse” or “resampling” methods
that are currently popular in various statistical literatures. I investigate an actual hierar-
chical data set as follows. First, care is taken to specify a reasonable two-level model with
respect to the entire data. Next, repeated sub-samples of various sizes are taken from the
population of level-two units (schools).* Given the already small number of level-1 units
(students) within each level-2 unit (school), only level-2 units are sub-sampled. Under this
resampling scheme, both fixed effects and covariance component estimates are observed. Fi-
nally, the results are presented in a graphical manner such that the researcher may obtain
useful information, given his/her specific needs. This sub-sampling scheme may be viewed
from a variety of perspectives:

o Model Bootstrap: Given an estimated model, the distribution of the sub-sampled
estimates is an empirical measure of the stability of the original estimates. In addition,
the location of the original estimate within this distribution provides an indicator of
the “extremeness” of the original estimate.

e Data Compression: Using multilevel models to analyze large data sets is often tediously
slow. It is often useful to perform exploratory analysis with a smaller portion of the
data, formulating a number of hypotheses that may be examined with respect to the
entire data? How large should this sub-sample be in relation to the entire data?

e Sampling Design: If one desires to collect multilevel data, how should resources be
allocated to collecting data at various levels of the design, e.g., amongst schools and
students.?

The data consists of the base-year sample from the National Educational Longitudinal
Study of 1988 (NELS:88). This data set consists of 24,599 eighth grade students, distributed
amongst 1052 school nationwide. (See Appendix A for more detailed description of NELS:88
data.) Given the plethora of student and school level variables available from the NELS:88
data (over 6,000), an endless number of multilevel models may be proposed and estimated.
The multilevel model used in this paper represents a reasonable model that, in the interests
of parsimony, relies on a small number of variables. Student mathematics score is modeled as
a function of the sex, race, and socio-economic status (SES) of the student, while schools are
differentiated according to urbanicity and the extent to which school lunches are subsidized.®
Formally, the model is as follows:

“For a general discussion of sub-sampling methods, see Hartigan (1969).

°If one’s sample consists of the entire population, there exists little difference between the issues involved
in the previous item.

5The extent to which school lunches are subsidized may be considered as an indicator of the poverty level
of the students within a given school.



viewed as a constrained optimization problem. Although the sampling literature (Cochran,
1976) provides some simple results for cluster sampling, there exists little discussion of this
issue within the multilevel model literature, where most papers deal with estimation issues.

Depending upon one’s research interests, multilevel models may be utilized for a variety
of purposes. Similar to Empirical Bayes estimation (Morris, 1983), multilevel modeling is
a way of “borrowing strength” in order to obtain improved estimates of individual effects
(#’s). On the other hand, one might be interested in the impact of a particular group-
level characteristic on a specific individual effect (3;,); The multilevel modeling framework
provides a conceptual framework with which to model such hypotheses.® In addition, one
might be interested in the variation and covariation of the individual effects (3’s) from group
to group. If so, one pays close attention to the T' dispersion matrix.

Given these various aspects of multilevel modeling, the “determination of sample size”
is a somewhat amorphous task. It is necessary to first specify one’s priorities, e.g., from a
statistical perspective, one must rank the types of inferences one wishes to make. For the
purposes of this paper, two characteristics of multilevel models will be analyzed. First, the
stability of the fixed effects under a variety of sample size situations will be investigated. The
stability or lack thereof is directly relevant to inference associated with cross-level interaction.
Second, the stability of the covariance components in the standard multilevel model will be
analyzed. The stability or lack thereof is directly relevant to inference associated with level-1
parameter variance and covariance.

Although the multilevel model literature is quite extensive and growing rapidly, most of
the research deals with estimation issues, e.g., producing improved algorithms to generate
parameter estimates. However, there exists several articles dealing with sample size consid-
erations. For instance, Busing (1993) and Van der Leeden & Busing (1994) examined the
small sample behavior of multilevel model variance components. Bassiri (1988) examined the
behavior of fixed parameter estimates, while Kim (1990) reviewed several existing estimation
methods for multilevel models, paying attention to sample size considerations. Each of these
studies is a Monte Carlo study, i.e., data from a known distributional form is simulated in
order to learn about the sampling variability of parameter estimation.

Although the results from simulation studies are often instructive, additional research is
useful. To be sure, one should be wary of situations where true models are “created.” In
actual data analysis, the model is never true. In the aforementioned studies, a “correct”
model is fit to data from a known distribution. Given the heightened specification difficul-
ties of multilevel models, above and beyond those of general linear models, the thought of
fitting the “true” model in practice is highly optimistic. Consider the following alteration:
one researcher generates the data and another unknowing researcher, given a long list of
explanatory variables, fits a multilevel model to the data. Surely there will exist substantial
variation in model specification, even amongst experienced users of multilevel models. To be
sure, [ am not advocating that Monte Carlo studies are not useful; They should be combined
with analyses based on more realistic situations.

3In our notation, v measures the magnitude of this impact.



models by considering the §; as random.! Given that 3, is random, a second regression
model may be specified as follows:

B, = Z;y+uj, (2)

where 7, is a matrix of group level explanatory variables, v is a vector of fixed coefficients, u;
is a vector of error terms, and u; ~ (0,7). Thus, we may consider 3; as normally distributed
with mean Z;v and dispersion matrix 7', independent of j. The diagonal elements of T
represent the variances of each element of 3;, while the off-diagonal elements represent
covariance between different elements of 3,. Along with o2, the elements of T comprise
the covariance components of the multilevel model.2 For an extensive review of covariance
component estimation, see Harville (1977).
Combining (1) and (2), one obtains

Thus, given the aforementioned distributional assumptions, Y; is normally distributed with
mean X,;W;y and dispersion matrix V; = X;TX," + o?l,,. The combined model clearly
demonstrates that a multilevel model is a special mixed model, since Y; is modeled according
to both fixed (v) and random (u,,r;) effects.

Jr g

3 Sample Sizes

The purpose of this paper is to examine the small sample properties of multilevel model
estimates. Or, since the total sample size is merely the sum of the level-1 units, this problem
is similar to the problem of examining the behavior of parameter estimates under various
specifications of level-1 (n;) and level-2 (J) sample size. For example, if one were planning
to gather educational data on a national scale, one would need to determine (amongst other
things) two things:

1. How many schools to sample.
2. How many students to sample from each school.

The differential monetary costs of these two processes makes sample size determination an
important issue. For instance, although it may be relatively inexpensive to obtain infor-
mation from an additional student within an already sampled school, the sampling of an
additional school may be prohibitively costly. Thus, sample size determination may be

'Some or all of the elements of 3; may be considered random; For the sake of clarity, I will focus on the
“full” model where all of the level-1 coefficients are random. To be sure, a fixed constant may be viewed as
a random variable as well.

2A generalization of this model would consist of separate o;2 for each j. However, this generalization is
often difficult to implement, since small n; makes the estimation of o;? difficult.



1 Introduction

Statisticians and social scientists must often analyze data that comes in hierarchical form. A
classic example is educational data, where students are nested within schools. There exists a
growing literature concerning the statistical techniques that should be employed to analyze
such data. To be sure, one technique is to ignore the hierarchical structure in the data and
merely employ conventional techniques, by either aggregating or disaggregating the data.
However, the problems associated with such methods are well documented, e.g., ecological
fallacies, underestimated standard errors, etc. (See De Leeuw & Kreft, 1995, and Bryk &
Raudenbush 1992, for a review). Multilevel modeling is an increasingly popular technique
for analyzing hierarchical data. The major purpose of this paper is to investigate the small
sample properties of multilevel model estimates, thereby providing information with which
to guide sample size considerations. If one desires to gather multilevel data on a large scale,
the cost savings incurred by having a firm understanding of sample size determination could
be quite significant.

Although relevant software has surfaced only in the past ten to fifteen years, relevant
multilevel model theory and applications have been around for quite some time. To be sure,
when one recognizes that a multilevel model is special kind of mixed linear models, e.g.,
a model containing both fixed and random effects, the extensive mixed model literature
becomes relevant. Mixed models are extensively employed in agriculture experiments, where
Best Linear Unbiased Predictors (BLUP) of fixed and random effects have been derived by
various methods. See Robinson (1991) for an excellent review. Nevertheless, since the mixed
linear model does not deal with hierarchical data per se, the statistical issues that arise from
multilevel modeling are distinct as well as similar. Given the many potential applications of
multilevel models, a thorough understanding of their performance characteristics will surely
aid their implementation. Before going any further, it is instructive at this point to introduce
some notation.

2 Description of a multilevel model

Suppose we have N subjects naturally grouped into J units, where there are n; subjects in
the jth unit and Z;]:l n; = N. In addition, suppose that for the J units we want to regress
the response variable Y; on a matrix of P predictor variables X;. Thus, for the jth unit we
model

Y, = X,8,+r;, (1)
where each X; has dimensions n; x P, and

o~ n((),a?]nj).

These models will be referred to as level-1 models. So far, model (1) is no different than
the conventional regression model. Multilevel models diverge from conventional regression
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ABSTRACT:

Multilevel modeling is an increasingly popular technique for analyzing hier-
archical data. Suppose a data set consists of J level-2 units with n; level-1 units
within each level-2 unit, e.g., J schools with n; students per school. If there are
no covariates examined at either level, the scenario is identical to simple cluster
sampling. Given that one wants to model clustered data, the determination of
optimal values for J and n;, for which a closed form solution does not exist, is
of interest. The small sample properties of multilevel model parameter estimates
provides insight to this problem. I investigate these small sample properties as
follows: A fixed data set exists, from which I repeatedly sub-sample according to
various specifications of J. After a reasonable model is estimated for the entire
data, the same model is estimated for each of these sub-samples. The data used
is the National Educational Longitudinal Study (NELS), a large multilevel data
set from the U.S. Department of Education.
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