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available, then the value of the variable SEX assigned on the schoolroster was used. If SEX was still missing, it was imputed from therespondent's name. On any records for which this could not be doneunambiguously, this variable had a value of 1 or 2 randomly assigned.The values for SEX are:1 = Male2 = Female PercentLabel Code Frequency Raw WGTD-----------------------------------------------------------------Male.......................... 1 12241 49.8% 50.1%Female........................ 2 12358 50.2% 49.9%---- ------ ------TOTALS: 24599 100.0% 100.0%*********************************************************************Variable: RACE COMPOSITE RACEModule: 1S2 Position: 384-384RACE was constructed from BYS31A. See NELS:88 First Follow-Up:Student Component Data Users' Manual Vol. 1 for more details on howthis composite was constructed. The values for RACE are:1 = Asian or Pacific Islander2 = Hispanic, regardless of race3 = Black, not of Hispanic origin4 = White, not of Hispanic origin5 = American Indian or Alaskan Native8 = Missing, BYS31A was not answered ormore than one race category was chosen PercentLabel Code Frequency Raw WGTD-----------------------------------------------------------------Asian or Pacific Islander..... 1 1527 6.2% 3.5%Hispanic, regardless of race.. 2 3171 12.9% 10.4%Black, not of Hispanic origin. 3 3009 12.2% 13.2%White, not of Hispanic origin. 4 16317 66.3% 71.6%American Indian or AlaskanNative........................ 5 299 1.2% 1.3%MISSING..................... 8 276 1.1% (MISS)---- ------ ------TOTALS: 24599 100.0% 100.0%17



*********************************************************************Variable: BYSES SOCIO-ECONOMIC STATUS COMPOSITEModule: 1S2 Position: 416-420 .3BYSES was constructed using the following parent questionnairedata: father's education level, mother's education level, father'soccupation, mother's occupation, and family income (data coming fromBYP30, BYP31, BYP34B, BYP37B, and BYP80).For cases where all parent data components were missing (8.1percent of the participants), student data were used to compute theBYSES. The first four components from the student data are the sameas the components used from parent data (i.e., educational-leveldata, BYS34A and BYS34B, similarly recoded; occupational data, BYS4Band BYS7B of student questionnaire part one, also recoded). The fifthcomponent for BYSES from the student data consisted of summing thenon-missing household items listed at BYS3A-P (after recoding "NotHave Item" from "2" to "0"), calculating a simple mean of theseitems, and then standardizing this mean. The actual range for BYSESis -2.97 through 2.56, with 99.998 indicating - Missing. SeeNELS:88 First Follow-Up: Student Component Data File User's Manualfor more details. PercentLabel Code Frequency Raw WGTD------------------------------------------------------------------2.97 thru 2.56............... 1.000 24588 100.0% 100.0%MISSING..................... 99.998 11 .0% (MISS)---- ------ ------TOTALS: 24599 100.0% 100.0%> (def ses (remove nil ses))SES> (length ses)24588> (mean ses)-0.06753810802017091> (standard-deviation ses)0.7994172446174057> (min ses)-2.97> (max ses)2.56*********************************************************************Variable: SEX COMPOSITE SEXModule: 1S2 Position: 383-383SEX was taken first from the "Your Background" (BYS12) sectionof the student questionnaire. If this source was missing or not16



(Metropolitan Statistical Area)3 = Rural -- outside MSA PercentLabel Code Frequency Raw WGTD-----------------------------------------------------------------Urban ........................ 1 7484 30.9% 25.0%Suburban ..................... 2 10068 41.5% 43.5%Rural ........................ 3 6694 27.6% 31.5%---- ------ ------TOTALS: 24246 100.0 100.0URBAN IS A 0-1 INDICATOR 0 = NON-URBANFORMED FROM ABOVE 1 = URBAN*********************************************************************Variable: G8LUNCH PERCENT FREE LUNCH IN SCHOOLModule: 2C2 Position: 262-262G8LUNCH categorizes the percentage of free or reduced pricelunch at the school calculated from the school questionnaire. It wasconstructed by dividing BYSC16A by BYSC2, multiplying by 100,rounding to the nearest whole number and coding the result. If theschool questionnaire was missing or if BYSC16A was missing, G8LUNCHwas set to missing. The value for G8LUNCH are:0 = None 5 = 31-50%1 = 1-5% 6 = 51-75%2 = 6-10% 7 = 76-100%3 = 11-20% 8 = Missing4 = 21-30%NOTE: This variable was recoded by NCES in accordance withthe confidentiality provisions of PL100-297 (1988).PercentLabel Code Frequency Raw WGTD-----------------------------------------------------------------None ......................... 0 4323 17.8% 11.6%1-5% ......................... 1 3125 12.9% 14.2%6-10% ........................ 2 2406 9.9% 10.5%11-20% ....................... 3 3823 15.8% 17.4%21-30% ....................... 4 3228 13.3% 14.9%31-50% ....................... 5 3807 15.7% 16.5%51-75% ....................... 6 2274 9.4% 10.5%76-100% ...................... 7 1175 4.8% 4.5%MISSING ...................... 8 85 .4% (MISS)15



Morris, Carl (1983). \Parametric Empirical Bayes Inference: Theory and Applications," Journal of theAmerican Statistical Association, v78, pp. 47-55.Robinson, G.K. (1991). \That BLUP is a good thing: The estimation of random e�ects," StatisticalScience, v6, pp. 15-32.Van der Leiden, R. and Busing F. (1994). \First Iteration versus IGLS/RIGLS Estimates in Two-LevelModels: A Monte Carlo Study with ML3," Technical Report PRM 94-03, Department of Psychomet-rics and Research Methodology, University of Leiden, Leiden, Netherlands.Appendix A: Variable Descriptions*********************************************************************Variable: BYTXMSTD MATHEMATICS STANDARDIZED SCOREModule: 1S2 Position: 483-488 .3Mathematics Standardized Score PercentLabel Code Frequency Raw WGTD-----------------------------------------------------------------26.747 thru 71.222............ 1.000 23629 96.1% 100.0%MISSING..................... 999.998 970 3.9% (MISS)---- ------ ------TOTALS: 24599 100.0% 100.0%> (length math)23629> (mean math)50.642> (standard-deviation math)10.218> (min math)26.747> (max math)71.221*********************************************************************Variable: G8URBAN URBANICITY COMPOSITEModule: 2C2 Position: 259-259G8URBAN classifies the urbanicity of the student's school. Itwas created directly from QED (Quality Education Data) data (position199-199). The classifications are the Federal Information ProcessingStandards as used by the U.S. Census. Classifications reflect thesample school's metropolitan status at the time of the 1980 decennialcensus. The values for G8URBAN are:1 = Urban -- central city2 = Suburban -- area surrounding a central citywithin a county constituting the MSA14



the scope of this paper. The sub-sampling method employed in this analysis represents asimple but e�ective method with which to examine multilevel models. There exists severalextensions for future research:1. Sub-sampling can be viewed from a variety of perspectives, e.g., boostrap, data com-pression, or sampling design. I have taken the perspective sampling design perspectivein this paper. Research needs to be directed towards the other perspectives.2. My analysis is speci�c to a given data set. Future research should investigate theseissues with other real data sets.3. My analysis of the covariance components relies upon a composite statistics, the cor-relation, that is necessarily bounded. Further research that examines the distributionof the covariance components, not a function of them as I've done here, may prove tobe more illustrative.4. Sub-sampling of both level-1 and level-2 units simultaneously would may provide ad-ditional insight. ReferencesBassiri, D. (1988). \Large and Small Sample Properties of Maximum Likelihood Estimates for the Hierar-chical Linear Model," Ph.D. dissertation, Michigan State University.Bryk, A. S., and Raudenbush, S. W. (1992). Hierarchical Linear Models: Applications and data analysismethods. Newbury Park, CA: Sage Press.Busing, F. (1993). \Distribution Characteristics of Variance Estimates in Two-level Models," TechnicalReport PRM 93-04, Department of Psychometrics and Research Methodology, University of Leiden,Leiden, Netherlands.Cochran, W. (1976). Sampling Techniques, 3rd Edition, John Wiley & Sons, New York.De Leeuw, Jan & Kreft, Ita (1995). \Questioning Multilevel Models," Journal of Educational and Behav-ioral Statistics. Forthcoming.Hartigan, J.A. (1969). \Using Subsample Values as Typical Values," Journal of the American StatisticalAssociation, v64, pp. 1303-1317.Harville, David A. (1977), \MaximumLikelihood Approaches to Variance Component Estimation," Journalof the American Statistical Association, v72, pp. 320-338.Hilden-Minton, James (1994). TERRACE-TWO: A New Xlisp-Stat Package for Multilevel Modeling withDiagnostics, UCLA Statistics Series.Hilden-Minton, James (1995). Multilevel Diagnostics for Mixed and Hierarchical Linear Models, Ph.D.dissertation, UCLA.Kim, K.S. (1990). \Multilevel Data Analysis: A Comparison of Analytical Alternatives," Ph.D. disserta-tion, UCLA. 13



increased to 320 schools, but this is eight times as large as the corresponding size that wasnecessary to produce unbiasedness for the �xed e�ects. With regard to the spread of ourestimates, the situation is also worse than that for the �xed e�ects. The initial doublingof the sub-sample design has little e�ect; Indeed, the interquartile range actually increases.Moreover, given that the correlation statistic lies in the [�1; 1] interval, the repeated sub-samples of 40 and 80 schools do not provide much guidance in narrowing down the originalparameter space.
Tau (correlation)Intercept 1.0000 0.6002BYSES 0.6002 1.00005 SummaryThe results of this paper provide some guidelines with regard to sample size consideration.For instance, the �xed e�ects and variance components behave quite di�erently under smallsample size situations. Thus, if one's research interests are mainly concerned with obtainingaccurate and reliable estimates of variance components, a relatively large number of level-2units are necessary. On the other hand, if one is solely interested in the estimates of �xede�ects, the number of necessary level-2 units that are necessary decreases substantially. Ineither case, additional level-2 units improves the accuracy and reliability of the estimates.Moreover, the reliability of the �xed e�ects estimates may be related to the type of �xede�ect, e.g., intercept or slope, being studied.Although my preliminary results generally agree with the results of the Monte Carlostudies mentioned previously, a full discussion of the similarities and di�erences is beyond12



corresponding reduction for slope �xed e�ects is relatively constant each time the sub-sampleis doubled.
Figure 4: 30 (intercept) and 31 (G8LUNCH), respectively.BYSESBy Intercept 5.1726 ( 0.1568) 32.9888By G8LUNCH -0.2746 ( 0.0411) -6.67584.2 Variance ComponentsWith regard to the variance components, I concentrate on the T matrix of level-2 variancecomponents. Recall that this is a 2� 2 matrix for our given model, containing elements forthe estimated variance of level-1 intercept, level-1 SES e�ect, and covariance between them.With these three estimates, one may estimate the correlation between level-1 intercept andlevel-1 SES e�ect.11 Thus, for each design condition, we obtain 100 values of the estimatedcorrelation between level-1 intercept and level-1 SES slope. The estimate based on theentire data is .6, which suggests that schools with high average mathematics score are likelyto exhibit a high SES e�ect, i.e., the impact of student SES on student mathematics score islikely to be more pronounced in such schools. The boxplot below shows the distribution ofthis statistic over the various sub-sample design conditions. Unlike the results for the �xede�ects, a relatively unbiased estimate is unlikely to be obtained from a small samples ofschools. Indeed, even for samples as large as 160 schools, the boxplot clearly demonstratesthat an unbiased estimate is unlikely. Matters improve greatly once the sub-sample size is11Recall that the correlation between two random variables is simply the ratio of their covariance to thesquare root of the product of their respective variances.11



Figure 3: 20 (intercept) and 21 (Urban), respectively.Fixed Effects for race: 100 repeated samples of 40, 80,160, and 320 schools. Complete-data estimates below:WhitesBy Intercept 1.8862 ( 0.1770) 10.6569By Urban 0.1684 ( 0.3018) 0.5581Now, let us examine the distribution of the �xed e�ects for the student variable SES.Recall that there exists two �xed e�ects with regard to the level-1 SES variable: an overall�xed e�ect and a �xed e�ect conditional upon the extent to which school lunches are sub-sidized. The boxplots below graphically lay out the distribution of these parameters overthe di�erent sub-sample designs. Compared to the estimates obtained from the entire data,the boxplots demonstrate that a relatively unbiased estimate of each �xed e�ect may beobtained from repeated sub-samples of size as small as 40 schools. With regard to variabil-ity, a substantial reduction in spread is again evident. In addition, there exists di�erentialreduction for the two �xed e�ects. The reduction in variability for the intercept �xed e�ectis again somewhat quadratic, while that for the Lunch �xed e�ect behaves erratically. Thus,the reduction in spread for the intercept �xed e�ect is relatively more pronounced the �rsttime the sub-sample is doubled, while there the second design condition (80 schools) impedesa simple statement about the relationship for the Lunch �xed e�ect.In summary, unbiased estimates of �xed e�ects are readily obtainable from sub-samplesof relatively small size, e.g., 40 schools. With regard to the variability of these estimates,there exists substantial improvement each time the sub-sample size is doubled. Furthermore,there exists preliminary evidence that the rate of this improvement is dependent upon thetype of �xed e�ect being considered. Speci�cally, intercept �xed e�ects evince a propor-tionally greater reduction in spread the �rst time the sub-sample size is doubled, while the10



this parameter estimate over the di�erent sub-sample designs. Compared to the estimateobtained from the entire data, the boxplot demonstrates that a relatively unbiased of thesex �xed e�ect may be obtained from repeated sub-samples of size as small as 40 schools.With regard to variability, there is once again a substantial decrease in the spread of theseestimates each time we double the number of schools selected. Connecting the \whiskers" ofthe boxplots does not form a relatively straight line; Rather, the relationship appears to besomewhat quadratic, indicating that the reduction in spread is relatively more pronouncedthe �rst time the sub-sample is doubled.
Figure 2: 10 (intercept)sexBy Intercept -0.3253 ( 0.1123) -2.8974Now, let us examine the distribution of the �xed e�ects for the student level racialvariable. Recall that there exists two �xed e�ects with regard to the level-1 racial variable:an overall �xed e�ect and a �xed e�ect conditional upon the urbanicity of the school. Theboxplots below graphically lay out the distribution of these parameter estimates over thedi�erent sub-sample designs. Compared to the estimates obtained from the entire data, theboxplots demonstrate that a relatively unbiased estimate of each �xed e�ect may be obtainedfrom repeated sub-samples of size as small as 40 schools. With regard to variability, althougha substantial reduction in spread is once again evident, the two �xed e�ects behave somewhatdi�erently. The reduction in variability for the intercept �xed e�ect is somewhat quadratic,while that for the Urban �xed e�ect is more linear. Thus, the reduction in spread for theintercept �xed e�ect is relatively more pronounced the �rst time the sub-sample is doubled,while there is more of a constant relationship for the urban �xed e�ect.9



4.1 Fixed E�ectsLet us �rst examine the �xed e�ects, i.e., the  estimates. Recall that there exists three �xede�ects with regard to the level-1 intercept: an overall �xed e�ect, a �xed e�ect conditionalupon the urbanicity of the school, and a �xed e�ect conditional upon the extent to whichschool lunches are subsidized at the school. The boxplots below graphically lay out thedistribution of these parameter estimates over the di�erent sub-sample designs. For instance,the four boxplots in each �gure correspond to a sample design condition, e.g., the boxplot onthe far left of each �gure displays the distribution for repeated samples 40 schools, while theboxplot on the far right of each �gure displays the distribution for repeated samples of 320schools. Estimates obtained from the entire data are given below the boxplots. Comparedto the estimates obtained from the entire data, the boxplots demonstrate that a relativelyunbiased estimate of each �xed e�ect may be obtained from repeated sub-samples of sizeas small as 40 schools. With regard to variability, there is a substantial decrease in thespread of these estimates each time we double the number of schools selected. Connectingthe \whiskers" of the boxplots forms a relatively straight line, indicating that the relativereduction in spread is constant each time the sub-sample size is doubled.
Figure 1: 00 (intercept), 01 (Urban), and 02 (G8LUNCH), respectively.InterceptBy Intercept 52.0761 ( 0.2952) 176.4347By Urban -0.4413 ( 0.2854) -1.5462By G8LUNCH -0.7164 ( 0.0525) -13.6528Now, let us examine the distribution of the �xed e�ects for the student level variable sex.Recall that there exists only one �xed e�ect (intercept) with regard to the level-1 sex e�ect.Moreover, since level-1 sex was not modeled as random, the estimate of this �xed e�ect andlevel-1 sex e�ect are identical.10 The boxplot below graphically lays out the distribution of10For random level-1 variables, the corresponding estimate is obtained from the mean of a posteriordistribution. However, as stated previously, these estimates are not of interest in this paper.8



InterceptBy Intercept 52.0761 ( 0.2952) 176.4347By Urban -0.4413 ( 0.2854) -1.5462By G8LUNCH -0.7164 ( 0.0525) -13.6528sexBy Intercept -0.3253 ( 0.1123) -2.8974WhitesBy Intercept 1.8862 ( 0.1770) 10.6569By Urban 0.1684 ( 0.3018) 0.5581BYSESBy Intercept 5.1726 ( 0.1568) 32.9888By G8LUNCH -0.2746 ( 0.0411) -6.6758Sigma^2: 69.0143Tau (covariance)Intercept 8.1002 1.3878BYSES 1.3878 0.6600Tau (correlation)Intercept 1.0000 0.6002BYSES 0.6002 1.0000The results above are based upon analysis of over 1,000 schools. Speci�cally, we haveJ = 10349, and a given nj for each school, ranging from 1 to 70. The sub-sampling routineswere carried out under the following design conditions. Random samples of size 40, 80, 160and 320 schools were drawn from the sample population of schools, and the above model was�t to each of these sub-samples. This procedure was repeated 100 times, thereby providingdata with which to assess sampling variability of estimates both within and across the givendesign conditions. Thus, for each design condition, e.g., a sample of 40 schools, we have 100values for each parameter in our given model.9Eighteen schools were dropped by Terrace-Two due to missing data.7



Within-school model:Mathij = �0j + �1j � Sexij + �2j �Whiteij + �3j � SESij + rijBetween-school model:�0j = 00 + 01 �Urbanj + 02 � GLUNCHj + u0j�1j = 10�2j = 20 + 21 �Urbanj�3j = 30 + 31 �GLUNCHj + u3jAlthough the substantive implications of this model, along with the diagnostic methodsused to test the �t of the model, are both important and interesting, they are both beyondthe scope of this paper.7 I focus on the distribution of sub-sampled estimates. This modelis estimated with respect to the entire NELS:88 data.8 The output is as follows:> Maximizing Likelihood...Deviance MethodIteration 1: 167354.2684 EM, init.Iteration 2: 166247.2691 FisherIteration 3: 165657.9647 FisherIteration 4: 165642.0690 FisherIteration 5: 165641.0928 FisherIteration 6: 165641.0408 FisherIteration 7: 165641.0380 FisherIteration 8: 165641.0378 FisherFinal Iteration 9: 165641.0378 FisherTERRACE-TWO: Full Maximum Likelihood EstimatesParameters Estimates (S.E.) T7See Hidden-Milton (1995) for discussion of diagnostics.8An XLISP-STAT program written by James Hilden-Minton, which incorporates both the EM algorithmand Fisher scoring for parameter estimation. See \Terrace-Two User's Guide: An XLISP-STAT Packagefor Estimating Multi-Level Models" by Afshartous & Hilden-Minton for a full description of Terrace-Two.Software and manuals accessible via World Wide Web site http://www.stat.ucla.edu. XLISP-STAT wasdeveloped by Luke Tierney and is written in the Xlisp dialect of Lisp, which was developed by David Betz.6



4 Sub-Sampling AnalysisI investigate the e�ects of sample size on multilevel model estimates from a di�erent per-spective. Moreover, my method �ts nicely into the \sample reuse" or \resampling" methodsthat are currently popular in various statistical literatures. I investigate an actual hierar-chical data set as follows. First, care is taken to specify a reasonable two-level model withrespect to the entire data. Next, repeated sub-samples of various sizes are taken from thepopulation of level-two units (schools).4 Given the already small number of level-1 units(students) within each level-2 unit (school), only level-2 units are sub-sampled. Under thisresampling scheme, both �xed e�ects and covariance component estimates are observed. Fi-nally, the results are presented in a graphical manner such that the researcher may obtainuseful information, given his/her speci�c needs. This sub-sampling scheme may be viewedfrom a variety of perspectives:� Model Bootstrap: Given an estimated model, the distribution of the sub-sampledestimates is an empirical measure of the stability of the original estimates. In addition,the location of the original estimate within this distribution provides an indicator ofthe \extremeness" of the original estimate.� Data Compression: Using multilevelmodels to analyze large data sets is often tediouslyslow. It is often useful to perform exploratory analysis with a smaller portion of thedata, formulating a number of hypotheses that may be examined with respect to theentire data? How large should this sub-sample be in relation to the entire data?� Sampling Design: If one desires to collect multilevel data, how should resources beallocated to collecting data at various levels of the design, e.g., amongst schools andstudents.5The data consists of the base-year sample from the National Educational LongitudinalStudy of 1988 (NELS:88). This data set consists of 24,599 eighth grade students, distributedamongst 1052 school nationwide. (See Appendix A for more detailed description of NELS:88data.) Given the plethora of student and school level variables available from the NELS:88data (over 6,000), an endless number of multilevel models may be proposed and estimated.The multilevel model used in this paper represents a reasonable model that, in the interestsof parsimony, relies on a small number of variables. Student mathematics score is modeled asa function of the sex, race, and socio-economic status (SES) of the student, while schools aredi�erentiated according to urbanicity and the extent to which school lunches are subsidized.6Formally, the model is as follows:4For a general discussion of sub-sampling methods, see Hartigan (1969).5If one's sample consists of the entire population, there exists little di�erence between the issues involvedin the previous item.6The extent to which school lunches are subsidized may be considered as an indicator of the poverty levelof the students within a given school. 5



viewed as a constrained optimization problem. Although the sampling literature (Cochran,1976) provides some simple results for cluster sampling, there exists little discussion of thisissue within the multilevel model literature, where most papers deal with estimation issues.Depending upon one's research interests, multilevel models may be utilized for a varietyof purposes. Similar to Empirical Bayes estimation (Morris, 1983), multilevel modeling isa way of \borrowing strength" in order to obtain improved estimates of individual e�ects(�'s). On the other hand, one might be interested in the impact of a particular group-level characteristic on a speci�c individual e�ect (�jp); The multilevel modeling frameworkprovides a conceptual framework with which to model such hypotheses.3 In addition, onemight be interested in the variation and covariation of the individual e�ects (�'s) from groupto group. If so, one pays close attention to the T dispersion matrix.Given these various aspects of multilevel modeling, the \determination of sample size"is a somewhat amorphous task. It is necessary to �rst specify one's priorities, e.g., from astatistical perspective, one must rank the types of inferences one wishes to make. For thepurposes of this paper, two characteristics of multilevel models will be analyzed. First, thestability of the �xed e�ects under a variety of sample size situations will be investigated. Thestability or lack thereof is directly relevant to inference associated with cross-level interaction.Second, the stability of the covariance components in the standard multilevel model will beanalyzed. The stability or lack thereof is directly relevant to inference associated with level-1parameter variance and covariance.Although the multilevel model literature is quite extensive and growing rapidly, most ofthe research deals with estimation issues, e.g., producing improved algorithms to generateparameter estimates. However, there exists several articles dealing with sample size consid-erations. For instance, Busing (1993) and Van der Leeden & Busing (1994) examined thesmall sample behavior of multilevelmodel variance components. Bassiri (1988) examined thebehavior of �xed parameter estimates, while Kim (1990) reviewed several existing estimationmethods for multilevel models, paying attention to sample size considerations. Each of thesestudies is a Monte Carlo study, i.e., data from a known distributional form is simulated inorder to learn about the sampling variability of parameter estimation.Although the results from simulation studies are often instructive, additional research isuseful. To be sure, one should be wary of situations where true models are \created." Inactual data analysis, the model is never true. In the aforementioned studies, a \correct"model is �t to data from a known distribution. Given the heightened speci�cation di�cul-ties of multilevel models, above and beyond those of general linear models, the thought of�tting the \true" model in practice is highly optimistic. Consider the following alteration:one researcher generates the data and another unknowing researcher, given a long list ofexplanatory variables, �ts a multilevel model to the data. Surely there will exist substantialvariation in model speci�cation, even amongst experienced users of multilevel models. To besure, I am not advocating that Monte Carlo studies are not useful; They should be combinedwith analyses based on more realistic situations.3In our notation,  measures the magnitude of this impact.4



models by considering the �j as random.1 Given that �j is random, a second regressionmodel may be speci�ed as follows: �j = Zj + uj; (2)where Zj is a matrix of group level explanatory variables,  is a vector of �xed coe�cients, ujis a vector of error terms, and uj � (0; T ). Thus, we may consider �j as normally distributedwith mean Zj and dispersion matrix T , independent of j. The diagonal elements of Trepresent the variances of each element of �j, while the o�-diagonal elements representcovariance between di�erent elements of �j. Along with �2, the elements of T comprisethe covariance components of the multilevel model.2 For an extensive review of covariancecomponent estimation, see Harville (1977).Combining (1) and (2), one obtainsYj = XjWj +Xjuj + rj : (3)Thus, given the aforementioned distributional assumptions, Yj is normally distributed withmean XjWj and dispersion matrix Vj = XjTXj 0 + �2Inj . The combined model clearlydemonstrates that a multilevel model is a special mixedmodel, since Yj is modeled accordingto both �xed () and random (uj; rj) e�ects.3 Sample SizesThe purpose of this paper is to examine the small sample properties of multilevel modelestimates. Or, since the total sample size is merely the sum of the level-1 units, this problemis similar to the problem of examining the behavior of parameter estimates under variousspeci�cations of level-1 (nj) and level-2 (J) sample size. For example, if one were planningto gather educational data on a national scale, one would need to determine (amongst otherthings) two things:1. How many schools to sample.2. How many students to sample from each school.The di�erential monetary costs of these two processes makes sample size determination animportant issue. For instance, although it may be relatively inexpensive to obtain infor-mation from an additional student within an already sampled school, the sampling of anadditional school may be prohibitively costly. Thus, sample size determination may be1Some or all of the elements of �j may be considered random; For the sake of clarity, I will focus on the\full" model where all of the level-1 coe�cients are random. To be sure, a �xed constant may be viewed asa random variable as well.2A generalization of this model would consist of separate �j2 for each j. However, this generalization isoften di�cult to implement, since small nj makes the estimation of �j2 di�cult.3



1 IntroductionStatisticians and social scientists must often analyze data that comes in hierarchical form. Aclassic example is educational data, where students are nested within schools. There exists agrowing literature concerning the statistical techniques that should be employed to analyzesuch data. To be sure, one technique is to ignore the hierarchical structure in the data andmerely employ conventional techniques, by either aggregating or disaggregating the data.However, the problems associated with such methods are well documented, e.g., ecologicalfallacies, underestimated standard errors, etc. (See De Leeuw & Kreft, 1995, and Bryk &Raudenbush 1992, for a review). Multilevel modeling is an increasingly popular techniquefor analyzing hierarchical data. The major purpose of this paper is to investigate the smallsample properties of multilevel model estimates, thereby providing information with whichto guide sample size considerations. If one desires to gather multilevel data on a large scale,the cost savings incurred by having a �rm understanding of sample size determination couldbe quite signi�cant.Although relevant software has surfaced only in the past ten to �fteen years, relevantmultilevel model theory and applications have been around for quite some time. To be sure,when one recognizes that a multilevel model is special kind of mixed linear models, e.g.,a model containing both �xed and random e�ects, the extensive mixed model literaturebecomes relevant. Mixed models are extensively employed in agriculture experiments, whereBest Linear Unbiased Predictors (BLUP) of �xed and random e�ects have been derived byvarious methods. See Robinson (1991) for an excellent review. Nevertheless, since the mixedlinear model does not deal with hierarchical data per se, the statistical issues that arise frommultilevel modeling are distinct as well as similar. Given the many potential applications ofmultilevel models, a thorough understanding of their performance characteristics will surelyaid their implementation. Before going any further, it is instructive at this point to introducesome notation.2 Description of a multilevel modelSuppose we have N subjects naturally grouped into J units, where there are nj subjects inthe jth unit and PJj=1 nj = N . In addition, suppose that for the J units we want to regressthe response variable Yj on a matrix of P predictor variables Xj. Thus, for the jth unit wemodel Yj = Xj�j + rj; (1)where each Xj has dimensions nj � P , andrj � n(0; �2Inj ):These models will be referred to as level-1 models. So far, model (1) is no di�erent thanthe conventional regression model. Multilevel models diverge from conventional regression2
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