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Accept–reject Metropolis–Hastings
sampling and marginal likelihood

estimation

Siddhartha Chib*

John M. Olin School of Business, Washington University,

Campus Box 1133, 1 Brookings Drive, St. Louis, MO 63130

Ivan Jeliazkov�

Department of Economics, University of California, Irvine,

3151 Social Science Plaza, Irvine, CA 92697-5100

We describe a method for estimating the marginal likelihood, based
on CHIB (1995) and CHIB and JELIAZKOV (2001), when simulation from
the posterior distribution of the model parameters is by the accept–
reject Metropolis–Hastings (ARMH) algorithm. The method is devel-
oped for one-block and multiple-block ARMH algorithms and does not
require the (typically) unknown normalizing constant of the proposal
density. The problem of calculating the numerical standard error of
the estimates is also considered and a procedure based on batch
means is developed. Two examples, dealing with a multinomial logit
model and a Gaussian regression model with non-conjugate priors,
are provided to illustrate the efficiency and applicability of the method.

Key Words and Phrases: Model comparison, Bayes factor, Gaussian
regression, lognormal density, log-t density, Markov chain Monte
Carlo, logit model.

1 Introduction

In this article we describe a method for estimating the marginal likelihood of a

model, for the purpose of comparing models via Bayes factors, from the building

blocks of the accept–reject Metropolis–Hastings (ARMH) algorithm (TIERNEY,

1994; CHIB and GREENBERG, 1995). The method is based on the framework of CHIB

(1995), which has been widely used to estimate the marginal likelihood of Bayesian

models from the output of Markov chain Monte Carlo (MCMC) simulations. CHIB

and JELIAZKOV (2001) present a useful version of this approach for the case where

some of the full-conditional densities are non-standard and sampling requires the use

of the Metropolis–Hastings (M–H) algorithm (METROPOLIS et al., 1953; HASTINGS,

1970; TIERNEY, 1994; CHIB and GREENBERG, 1995).
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When MCMC simulation is implemented by the ARMH algorithm, one

interesting challenge is that the normalizing constant of the M–H proposal density

is typically unknown, as it depends on the target density of interest. A second

difficulty arises in determining the variability of the marginal likelihood estimate,

which utilizes draws from both the accept–reject (A–R) and the M–H part of the

ARMH algorithm. While the A–R and M–H sequences are mutually dependent by

construction, the dependence is complicated since A–R draws can be rejected and

M–H draws can be repeated. Moreover, the two sequences are of unequal lengths – if

one of the simulation sizes is fixed, the other is randomly determined. Here we show

how these obstacles can be overcome to produce estimates that are efficient and

economical in terms of programming, additional tuning effort, and computational

intensity.

The proposed method joins a substantial literature concerned with the estimation

of marginal likelihoods and Bayes factors (e.g. NEWTON and RAFTERY, 1994;

GELFAND and DEY, 1994; CARLIN and CHIB, 1995; CHIB, 1995; GREEN, 1995;

VERDINELLI and WASSERMAN, 1995; MENG and WONG, 1996; CHEN and SHAO, 1997;

DICICCIO et al., 1997; CHIB and JELIAZKOV, 2001; BASU and CHIB, 2003). HAN and

CARLIN (2001) offer a recent comparative review of some of these methods, in which

they consider features such as computational simplicity, efficiency, and the additional

overhead due to tuning and convergence concerns. In line with the procedure

developed in CHIB (1995), the approach proposed here reduces the implementation

costs by estimating the marginal likelihood from the components of the sampling

algorithm without requiring additional inputs (e.g. auxiliary densities or asymptotic

approximations). Thus, once the coding of the simulation algorithm is completed,

estimation of the marginal likelihood is conceptually straightforward.

The proposed techniques are illustrated in two examples involving logistic and

Gaussian regression models. The first example considers data on commuters’ work

trips from SMALL (1982), while the second deals with data on women’s wages from

MROZ (1987). The examples provide practical evidence on the performance of the

estimation and model choice methods under different ARMH designs.

The rest of the paper is organized as follows. Section 2 outlines the marginal

likelihood estimation framework of CHIB (1995) and Section 3 presents the ARMH

algorithm. Section 4 contains our main results on the estimation of the marginal

likelihood and its numerical standard error. We present two applications in

Section 5, and concluding remarks in Section 6.

2 Preliminaries

The marginal likelihood, m(y) ” � f(y|h)p(h) dh, where f(y|h) is the sampling density

of the data y and p(h) is the prior density of the model parameters h, is of

fundamental importance in Bayesian model comparison, because of its role in

determining the posterior model probability. Specifically, the posterior odds of any
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two models are given by the prior odds of the models times their Bayes factor,

defined as the ratio of their marginal likelihoods (JEFFREYS, 1961). CHIB (1995)

provides a method for estimating the marginal likelihood that amounts to finding an

estimate of the posterior density p(h|y) at a single point in its support Q, by using the

fact that m(y) is the normalizing constant of the posterior density and hence can be

found through the expression

mðyÞ ¼ f ðyjhÞpðhÞ
pðhjyÞ ; ð1Þ

which follows from Bayes’ formula, and is referred to as the basic marginal likelihood

identity. Evaluating this expression on the log scale at some specific point h�, one
obtains log m(y) ¼ log f(y|h�) + log p(h�) ) log p(h�|y), where the first two

terms on the right hand side are usually available by direct calculation. An estimate of

the marginal likelihood, therefore, requires simply an estimate of the posterior

ordinate p(h�|y). For estimation efficiency, the point h� is chosen in a high density

region of the support Q.
Suppose that the parameters in a general MCMC sampler are grouped into B

blocks h ¼ (h1,…,hB), with hk 2 Qk ˝ <dk, k ¼ 1,…,B. To facilitate the nota-

tion, let wi ¼ (h1,…,hi) denote the blocks up to i and wi+1 ¼ (hi+1,…,hB) denote
the blocks beyond i, and write the posterior ordinate at h� as

p h�1; . . . ; h
�
Bjy

� �
¼

YB
i¼1

p h�i jy; h�1; . . . ; h�i�1

� �
¼

YB
i¼1

p h�i jy;w�
i�1

� �
: ð2Þ

Consider the estimation of a typical reduced ordinate pðh�i jy; w
�
i�1Þ. In the context of

Gibbs sampling when the full-conditional densities, including their normalizing

constants, are fully known, CHIB (1995) proposed finding the ordinate pðh�i jy; w
�
i�1Þ

by Rao–Blackwellization

p h�i jy;w
�
i�1

� �
¼

Z
p h�i jy;w

�
i�1;w

iþ1
� �

p wiþ1jy;w�
i�1

� �
dwiþ1

� G�1
XG
g¼1

p h�i jy;w
�
i�1;w

iþ1; gð Þ
� �

;

where wiþ1; gð Þ � p wiþ1jy; w�
i�1

� �
come from a reduced run, where the blocks w�

i�1 are

held fixed and sampling is only over wi (so that wi+1,(g) results by leaving out h gð Þ
i ).

The ordinate p h�1jy
� �

for the first block h1 is estimated with draws h � p(h|y) from
the main MCMC run, while the ordinate p h�Bjy; w

�
B�1

� �
is available directly.

When one or more of the full-conditional densities are not of standard form and

have intractable normalizing constants, posterior sampling is usually conducted via

the M–H algorithm. In this case, CHIB and JELIAZKOV (2001) use the local

reversibility of the M–H Markov chain to show that

pðh�i jy;w�
i�1Þ ¼

E1 aMH hi; h
�
i jy;w

�
i�1;w

iþ1
� �

q hi; h
�
i jy;w

�
i�1;w

iþ1
� �� �

E2 aMH h�i ; hijy;w
�
i�1;w

iþ1
� �� � ; ð3Þ
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where E1 is the expectation under the conditional posterior pðwijy; w�
i�1Þ and E2 is

that under the conditional product measure pðwiþ1jy; w�
i Þqðh�i ; hijy; w�

i�1; w
iþ1Þ. Here

q(h, h0|y) denotes the candidate generating density of the M–H chain for moving

from the current value h to a proposed value h0, and the corresponding M–H

probability of accepting the move, aMH ðhi; h0ijy; w
�
i�1; w

iþ1Þ, is given by

min 1;
f yjh0;w�

i�1;w
iþ1

� �
p h0;w�

i�1;w
iþ1

� �
qðh0; hjy;w�

i�1;w
iþ1Þ

f yjh;w�
i�1;w

iþ1
� �

p h;w�
i�1;w

iþ1
� �

qðh; h0jy;w�
i�1;w

iþ1Þ

( )
:

Although (3) is a widely applicable formula that can be used in most M–H samplers,

it does require knowledge of the normalizing constant of the proposal density q. This

condition, however, is not satisfied in the ARMH algorithm.

3 The ARMH algorithm

Let p(h|y) / f(y|h)p(h) denote the target density and let h(h|y) denote a source

density. In the classical accept–reject method a key requirement is that there exists a

constant c such that the condition

D ¼ h : f ðyjhÞpðhÞ � chðhjyÞf g

holds for all h in the support Q of the target density. The ARMH algorithm is an

MCMC sampling procedure in which the domination condition f(y|h)p(h) �
ch(h|y) is not satisfied for some h 2 Q, and hence h(h|y) is often called a pseudo-

dominating density. In this case, let Dc be the complement of D, and suppose

that the current state of the chain is h. Then the ARMH algorithm is defined as

follows.

Algorithm 1 One block accept–reject Metropolis–Hastings (ARMH) algorithm

1. A–R step: Generate a draw h0 � h(h|y); accept h0 with probability

aARðh0jyÞ ¼ min 1;
f ðyjh0Þpðh0Þ
chðh0jyÞ

� �
:

Continue the process until a draw h0 has been accepted.
2. M–H step: Given the current value h and the proposal value h0:

(a) if h 2 D, set aMH(h, h0|y) ¼ 1;

(b) if h 2 Dc and h0 2 D, set aMHðh; h0jyÞ ¼ chðhjyÞ
fðyjhÞpðhÞ;

(c) if h 2 Dc and h0 2 Dc, set aMHðh; h0jyÞ ¼ min 1; fðyjh0Þpðh0ÞhðhjyÞ
fðyjhÞpðhÞhðh0jyÞ

n o
.

Return h0 with probability aMH(h, h0|y). Otherwise return h.

As discussed by CHIB and GREENBERG (1995), the ARMH algorithm is

reversible and, under appropriate regularity conditions, produces draws from the

correct density p(h|y) as the sampling process is iterated. CHIB and GREENBERG
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(1995) also show that the draws produced at the completion of the A–R step

have a density

qðhjyÞ ¼ d�1aAR hjyð Þh hjyð Þ; ð4Þ

which serves as the proposal density for the M–H step. Here d ” �aAR(h|y)
h(h|y) dh, the normalizing constant of that density, is not available analytically, in

contrast to the standard M–H algorithm where the proposal density is fully

known. In addition, while a general M–H chain is based on a proposal density

q(h, h0|y), which may depend on the current state h as in random walk chains, the

ARMH algorithm is an independence chain sampler since the proposal density is

of the type q(h0|y) ¼ q(h, h0|y), meaning that it is independent of the current

state of the Markov chain. We exploit this feature to simplify our estimation

approach.

4 Proposed approach

4.1 Single-block case

In the single-block case of a general M–H sampler, CHIB and JELIAZKOV (2001) use

the reversibility of the Markov chain to obtain the following expression

pðh�jyÞ ¼
R
aMH h; h�jyð Þq h; h�jyð Þp hjyð ÞdhR

aMH h�; hjyð Þq h�; hjyð Þdh : ð5Þ

A simulation consistent estimate of (5) is obtained by averaging aMH(h, h�|y)
q(h, h�|y) in the numerator with draws h � p(h|y), while a reduced run provides the

draws h � q(h�, h|y) to average aMH(h�, h|y) in the denominator. The marginal

likelihood estimate can subsequently be calculated by (1). To apply this estimator to

the current setting, we substitute (4) into (5), obtaining

pðh�jyÞ ¼
R
aMH h; h�jyð Þd�1aAR h�jyð Þh h�jyð Þp hjyð ÞdhR

aMH h�; hjyð Þq hjyð Þdh : ð6Þ

An important simplification of (6) results by letting h� 2 D, so that

aMH(h�, h|y) ¼ 1 and f(y|h�)p(h�) � ch(h�|y). It then follows that (6) can be written

as

pðh�jyÞ ¼ f ðyjh�Þpðh�Þ
R
aMH ðh; h�jyÞpðhjyÞdh
cd

¼ f ðyjh�Þpðh�Þ
R
aMH ðh; h�jyÞpðhjyÞdh

c
R
aARðhjyÞhðhjyÞdh

;

which, upon substitution into (1), produces our first main result that

mðyÞ ¼ c
R
aARðhjyÞhðhjyÞdhR

aMH ðh; h�jyÞpðhjyÞdh
: ð7Þ

A simulation consistent estimate of m(y), based on (7), can now be obtained as
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m̂ðyÞ ¼ c
J�1

PJ
j¼1 aARðh

ðjÞjyÞ
G�1

PG
g¼1 aMH ðhðgÞ; h�jyÞ

; ð8Þ

where in the numerator h(j) � h(h|y), and in the denominator h(g) � p(h|y). This
estimate is particularly simple and uses only quantities which are computed in the

course of the ARMH sampling. Therefore, the additional coding and computation

for the estimation of the marginal likelihood are minimal.

We make several additional remarks. First, the two quantities in (8) come from the

same MCMC run – the draws from p(h|y) are obtained by accepting or rejecting the

candidates from h(h|y). Thus the fact that the ARMH algorithm is an independence

chain M–H algorithm eliminates the need for a reduced run in the estimation of the

marginal likelihood. Second, because the draws from h(h|y) are independent and

identically distributed (iid), while those from p(h|y) are generally closer to iid under

ARMH sampling than under independence chain M–H sampling, the variance of the

resulting estimate will generally be lower. Third, despite its simplicity, this estimator

can be applied to many Bayesian models, because the ARMH algorithm does not

require that conjugacy be maintained in order to sample from the posterior.

4.2 Multi-block case

Grouping all parameters into one block is often a good strategy, but if the

dimensionality of the parameter space is large, or if one wishes to exploit the

conditional structure of the model to allow for direct sampling, it may be necessary

to split the parameter vector into several smaller and more manageable pieces. The

current approach readily generalizes to the multi-block case. In fact, the single-block

approach is applicable if there are multiple blocks of parameters but only one is

sampled by ARMH, since that density ordinate may be estimated at the end of (2),

when all other blocks are fixed. Hence, the interesting case is one in which the

ARMH output is used to estimate one or more of the reduced conditional density

ordinates in (2).

Under the notation introduced in Section 2, let the A–R proposal density be

h(hi|y, wi)1, w
i+1), which is allowed to depend on the data and the remaining

parameters. Now, in the sampling of the ith block hi, the region of domination is

Di ¼ hi : f yjwi�1;w
iþ1

� �
pðhijwi�1;w

iþ1Þ � ci wi�1;w
iþ1

� �
h hijy;wi�1;w

iþ1
� �� �

;

which is generally block and iteration-specific. The M–H proposal density in the ith

reduced run takes the form

q hijy;w�
i�1;w

iþ1
� �

¼
aAR h�i jy;w

�
i�1;w

iþ1
� �

h h�i jy;w
�
i�1;w

iþ1
� �

d y;w�
i�1;w

iþ1
� � ;

where d y; w�
i�1; w

iþ1
� �

is the unknown normalizing constant of q hijy; w�
i�1; w

iþ1
� �

. It

can easily be shown that the Markov chain reversibility condition used by CHIB and

JELIAZKOV (2001) to obtain (3) can be re-written in terms of q hijy; w�
i�1; w

iþ1
� �

, and
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that its normalizing constant d y; w�
i�1; w

iþ1
� �

, being the same on both sides of the

reversibility equation, will cancel, so that upon integration pðh�i jy; w�
i�1Þ equals

E1 aMH hi; h
�
i jy;w�

i�1;w
iþ1

� �
aAR h�i jy;w�

i�1;w
iþ1

� �
h h�i jy;w�

i�1;w
iþ1

� �� �
E2 aMH h�i ; hijy;w�

i�1;w
iþ1

� �
aAR hijy;w�

i�1;w
iþ1

� �� � ;

where E1 is the expectation with respect to the conditional posterior p wijy; w�
i�1

� �
and E2 is that with respect to the product measure p wiþ1jy; w�

i

� �
h hijy; w�

i�1; w
iþ1

� �
.

Because of the changing conditioning sets, in the ith block ci and Di are iteration

specific, so h�i will not necessarily be in Di for every iteration. We caution against

attempting the further simplifications used in the single block case because of the risk

of decreasing the efficiency of the sampler, which will occur if domination at h�i is

enforced by an excessively large choice of ci. In summary, we present the method in

the following steps.

Step 1: Set wi�1 ¼ w�
i�1 and sample the set of full conditional distributions

p(hk|y, h)k), k ¼ i,…,B. Let the generated draws be fhðgÞi ; . . . ; hðgÞB g,
g ¼ 1,…,G.

Step 2: Fix hi at h
�
i in the conditioning set to produce w�

i ¼ ðw�
i�1; h

�
i Þ, and sample

the remaining distributions p(hk|y, h)k), k ¼ i + 1,…,B, to generate

fhðjÞiþ1; . . . ; h
ðjÞ
B g, j ¼ 1,…,G. At each step of the sampling also draw

hðjÞi � h hijy; w�
i�1; w

iþ1;ðjÞ
� �

.

Step 3: Estimate the reduced ordinate p̂ðh�i jy; w
�
i�1Þ as

1
G

PG
g¼1aMH ðhðgÞi ;h�i jy;w�

i�1;w
iþ1;ðgÞÞaARðh�i jy;w�

i�1;w
iþ1;ðgÞÞhðh�i jy;w�

i�1;w
iþ1;ðgÞÞ

1
G

PG
j¼1aMH ðh�i ;h

ðjÞ
i jy;w�

i�1;w
iþ1;ðjÞÞaARðhðjÞi jy;w�

i�1;w
iþ1;ðjÞÞ

:

ð9Þ

Step 4: Estimate the marginal likelihood on the log scale as

logm̂ðyÞ ¼ log fðyjh�Þ þ logpðh�Þ �
PB

i¼1 log p̂ðh
�
i jy; h

�
1; . . . ; h

�
i�1Þ.

Therefore, in the multi-block ARMH setting, the marginal likelihood estimate is

readily available after a straightforward modification of the technique in CHIB and

JELIAZKOV (2001). The approach is also easily applicable in conjunction with other

MCMC algorithms, such as M–H or direct sampling from the full-conditionals.

4.3 Numerical standard error of the marginal likelihood estimate

In this section we discuss how the numerical standard error (nse) of the marginal

likelihood estimate can be derived. The nse gives the variation that can be expected

in the marginal likelihood estimate if the simulation were to be repeated. We

specifically focus on the calculation of the nse for the one-block case of Section 4.1,

and show that the multi-block case can be handled by existing methods.

There are two complications in estimating the variance of the ratio in (8). One

obvious problem is that the lengths of the series of draws from the pseudo-
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dominating and target densities are different, and hence one can not directly

compute the covariance between the numerator and denominator draws. Second, in

considering the variability of an estimate obtained by (8), one has to account for the

variability in the numerator sample size J. We deal with these problems by applying

an approach based on the method of batch means. The denominator quantities

aMHðhðgÞ1 ; h�1jyÞ, g ¼ 1,…,G, are batched, or sectioned, into v non-overlapping

subsamples of length m with v ¼ G/m. Each of the denominator subsamples is

matched with the draws from the A–R step that were necessary to produce it, thus

forming the corresponding v non-overlapping numerator batches of length ni ‡ m,

i ¼ 1,…,v, with
Pv

i¼1 ni ¼ J. Denote the batch means of the numerator quantities

by {Ni}, and those in the denominator by {Di}, and let Bi ¼ Ni/Di, i ¼ 1,…,v.

Then the variance of

a ¼
J�1

PJ
j¼1 aARðh

ðjÞjyÞ
G�1

PG
g¼1 aMH ðhðgÞ; h�jyÞ

( )

is estimated as var(a) ¼ var(Bi)/v. The batch length m is chosen large enough to

guarantee that the first order serial correlation between the batch means is less than

0.05, and to avoid small values of Di that may produce explosive Bi (in the two

examples below, we used m ¼ 250). The variance of the log marginal likelihood can

be found by the delta method as varðlog m̂ðyÞÞ ¼ varðaÞ=a2. The nse of the log

marginal likelihood estimate is the square root of varðlog m̂ðyÞÞ.
Extending the calculation of the nse to the multi-block setting is straightforward

by following CHIB (1995) for blocks which are sampled directly, and by following

CHIB and JELIAZKOV (2001) for blocks sampled by the M–H algorithm. We

emphasize that the latter approach is also applicable to the multi-block ARMH case

of Section 4.2, since the numerator and denominator series in (9) have equal lengths.

If the prior or likelihood ordinates need to be estimated, then the variance of these

estimates must be incorporated by a separate calculation.

We mention that the accuracy of the proposed approach for estimating the nse has

been verified in the subsequent examples by repeating the posterior simulations 100

times. The variability of the marginal likelihood estimates from the replications

closely mirrored those from the above approach, thus providing a useful validation

of this method.

5 Examples

We apply the above methods in the context of a multinomial logit and a Gaussian

regression model, and illustrate the impact of several ARMH designs on the

performance of the MCMC sampler and the marginal likelihood estimation

approach. The modelling employs non-conjugate priors because a researcher may

wish to incorporate prior information in a more flexible way than that afforded by
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some particular family of conjugate distributions (as in the Gaussian case) or

because such conjugate priors may simply be unavailable (as in the logit model).

With non-conjugate priors, however, there is no guarantee that the posterior or its

full conditionals will be well behaved, e.g. they could exhibit multimodality,

skewness, or kurtosis (O’HAGAN, 1994, Chapter 3), thus complicating estimation and

marginal likelihood computation. Fortunately, ARMH sampling is well suited to

these settings as it does not require conjugate priors or global domination of the

proposal over the posterior; the ARMH algorithm also tends to produce MCMC

draws that are closer to iid than those from a similarly constructed M–H chain.

5.1 Data and models

Our first example deals with a discrete choice model, the multinomial logit, which

has been widely used in many fields of economics (TRAIN, 2003). Specifically, we

consider estimation and marginal likelihood computation in the context studied by

SMALL (1982) and BROWNSTONE and SMALL (1989), where 522 San Francisco Bay

Area commuters reported a regular time of arrival relative to the official work start

time. These arrival times (ranging between 42.5 minutes early and 17.5 minutes late)

are grouped into twelve 5-minute intervals and the probability that commuter i’s

arrival interval is t is modelled as pit ¼ ex
0
itb=

P12
k¼1 e

x0
ik
b, where the characteristics x

include 13 socioeconomic, behavioral, and transportation-mode variables as

described in Appendix 1. Under the prior b � N13(b0, B0), the posterior density is

given by pðbjyÞ / fNðbjb0; B0Þ
Q522

i¼1

Q12
t¼1 p

yit
it , where yit 2 {0, 1} is the binary

variable indicating whether individual i chose alternative t and fN(Æ|Æ) denotes the

normal density. The posterior can not be sampled directly as it does not belong to a

known family of distributions.

Our second application is based on a simple wage determination model using data

from MROZ (1987). The goal is to estimate a wage offer function for a sample of 428

employed married women, conditional on four covariates – an intercept, experience

in the labor market, experience squared, and education. Linear Gaussian models

have been well studied under the usual (normal-gamma) conjugate and semi-

conjugate priors (ZELLNER, 1971). Here, however, we allow for an added degree of

flexibility in assessing the prior information and discuss estimation under heavy-

tailed non-conjugate prior distributions. Specifically, for i ¼ 1,…,428, the model is

given by yi ¼ x0ib þ ei, where yi represents woman i’s log-wage, xi is her vector of

covariates, and ei � N(0, r2). The priors for the parameters b and r2 are given by the

multivariate-t and the log-t distributions b � Tmb(b0, B0) and r2 � log Tms(s0, S0),

respectively. These priors allow for additional flexibility by varying the tail behavior

through the degrees of freedom parameters mb and ms.
To illustrate this point, Figure 1 shows the log-pdfs of the inverse gamma, the

lognormal, and two log-t densities with 5 and 40 degrees of freedom (the means and

variances match those of the lognormal distribution). The figure shows that the

inverse gamma assigns less mass in the left tail of the distribution than any of the

other alternatives; depending on the degrees of freedom parameter, the log-t density
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can have a right tail that is either heavier or thinner than that of the inverse gamma.

As expected, the log-t density approaches the lognormal as ms becomes large. Other

general priors are also conceivable and can be handled similarly.

5.2 Implementation

In many models estimated by ARMH, including the two discussed above, it is

possible to sample the posterior distribution p(h|y) in one block by using a tailored

source density h(h|y) ¼ fT(h|l, sV, m), where fT(Æ|Æ) denotes a multivariate-t density

with mean l, symmetric positive definite scale matrix sV (with s being a tuning

parameter whose role is illustrated below), and m degrees of freedom. We take l as

the mode of the log-likelihood and V to be the inverse of the negative Hessian of the

log-likelihood evaluated at l, and set m ¼ 10. Having obtained the proposal

density, posterior simulation is conducted as in Section 3, while the marginal

likelihood and its nse are obtained as in Sections 4.1 and 4.3, respectively.

Often, however, one may also wish to exploit the conditional structure of the

model and use the multi-block algorithm of Section 4.2. In the Gaussian model, the

multi-block approach is applied, quite naturally, by treating b and r2 as separate

blocks and sampling proceeds by iteratively drawing from p(b|y, r2) and p(r2|y, b).
The conditional pseudo-dominating densities are taken to be h(b|y, r2) ¼
fT (b|l1, s1V1, m1) and h(log(r2)|y, b) ¼ fT(log(r

2)|l2, s2V2, m2), where we take the

parameters l1, V1, l2, and V2 to be the (analytically available) mode and modal

dispersion of the full conditional Bayes updates under non-informative priors. The

marginal likelihood is then estimated by writing (1) as
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Fig. 1. Log-pdfs for the inverse gamma, lognormal, and two log-t densities.
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m yð Þ ¼ p b�ð Þ
p b�jyð Þ �

f yjb�; r2�
� �

p r2�jb�
� �

p r2�jy; b�ð Þ ; ð10Þ

where an estimate p(b�|y) can be obtained by (9), and the second fraction on the

right-hand side can be estimated as

c2 b�ð Þ
J�1

PJ
j¼1 aARðr2ðjÞjy; b

�Þ
G�1

PG
g¼1 aMH ðr2ðgÞ; r2�jy; b�Þ

( )
;

which is a simple application of the one-block estimator (8), since b is fixed at b�.
In the logit model, Appendix 1 suggests certain natural groupings, based on

covariate types, that can be used to partition the 13 · 1 vector b. To construct a two-

block algorithm, we collect the coefficients on the reporting error and travel time

variables in b1(5 · 1) and those on the early and late arrival covariates in b2(8 · 1).We

use the conditional pseudo-dominating densities h(b1|y, b2) ¼ fT (b1|l1|2, sV1|2, m)
and h(b2|y, b1) ¼ fT (b2|l2|1, sV2|1, m) where the parameters l1|2, V1|2, l2|1, and V2|1

are obtained from the overall mode l and modal dispersion matrix V of the single

block case, using as a rough approximation the conditional updates for the moments

of a Gaussian distribution. This method of tailoring performed competitively in our

example relative to tailoring by optimization at each iteration, and is considerably

faster and less demanding. Hence, m(y) is estimated similarly to (10), using (9) to

compute p b�1jy
� �

and (8) to estimate f yjb�1; b
�
2

� �
p b�2jb

�
1

� �
=p b�2jy; b

�
1

� �
.

The performance of the above algorithm designs can be illustrated by the

inefficiency factors for the sampled parameters. The inefficiency factors are

calculated as 1 þ 2
PL

l¼1 qkðlÞ, where qk(l) is the sample autocorrelation for the

kth parameter at lag l, and L is chosen at values where the autocorrelations taper off.

The inefficiency factors approximate the ratio of the numerical variance of the

posterior mean from the MCMC chain relative to that from hypothetical iid draws.

We consider three one-block ARMH Markov chains with different degrees of

pseudo-domination, using the quantity p ¼ (ch)/(fp) to represent the relative

heights at l, which, together with the tuning parameter s determine the region of

domination. Larger values of p and s produce larger regions of domination. In

Figure 2, we illustrate the inefficiency factors for three settings of the tuning

parameters, namely (s ¼ 1, p ¼ 1.25), (s ¼ 1.5, p ¼ 1.5), and (s ¼ 2,

p ¼ 1.75). The figure shows that ARMH simulation is generally efficient and the

sample becomes essentially iid as s and p are increased.

We emphasize that the choice of blocking is not unique and is something that

should be determined by the researcher in the context of the particular model and

data under consideration. Figure 2 indeed shows that one-block sampling can

produce more efficient samples in some settings, but that multi-block simulation can

dominate in others. In practice it is useful to (i) group parameters that are correlated

into one block and sample them jointly, and (ii) group parameters in a way that

allows for easy construction of suitable pseudo-dominating densities.
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It is interesting to look at the posterior distributions of the logit coefficients b9 and
b10 (on the late arrival variables SDL and SDL Æ WC, respectively). Both marginal

posteriors, shown in Figure 3, are non-Gaussian and skewed, with respective

skewness coefficients of )0.59 and 0.59. In cases like these, frequentist asymptotic

approximations for constructing confidence intervals (also shown in Figure 3), as

well as Bayesian approximations of the marginal likelihood assuming that the

posterior is approximately normal (DICICCIO et al., 1997) may be inaccurate. Here,
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Fig. 2. Inefficiency factors of the one- and two-block logit and Gaussian model parameters for three

settings of the tuning parameters s and p.
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the frequentist estimates would tend to understate blue-collar commuters’ desire to

avoid arriving too late; they also imply an understated and statistically insignificant

(at the 10% level of significance for a two-sided test) difference between the impact of

SDL on blue-collar and white-collar commuters. In contrast, the posterior

distribution assigns probability of 0.994 to positive b10.
In Table 1, we present the log marginal likelihood and nse estimates correspond-

ing to the simulations from Figure 2. We see that the variability of the estimates is

very small and decreases when the regions of domination increase. But the

computational loads increase as well for large s and p – approximately 11 000 A–R

draws are needed to generate the 10 000 ARMH draws for the smallest values of s
and p, about 1.5 times as many are needed for the intermediate values, but about five

times that number is needed for the largest s and p. This illustrates the trade-off

between numerical and statistical efficiency that is inherent in the ARMH sampler –

as the region of domination becomes larger more draws in the A–R step are needed

to generate a given sample, but that sample tends to be closer to iid, thus producing

more efficient parameter and marginal likelihood estimates than a typical M–H

algorithm.

6 Discussion

This paper has presented a method for estimating the marginal likelihood from the

building blocks of the ARMH algorithm. The approach is based on the general

framework of CHIB (1995) and the extension considered in CHIB and JELIAZKOV

(2001), where some of the full-conditional densities are intractable and simulation

requires the M–H algorithm. The current method deals with the presence of an

unknown normalizing constant in the proposal density and overcomes the difficulties

in determining the variability of the marginal likelihood estimate. We show that this

Table 1. Log marginal likelihood estimates for the Gaussian and logit models.

Simulation designs

(s ¼ 1, p ¼ 1.25) (s ¼ 1.5, p ¼ 1.5) (s ¼ 2, p ¼ 1.75)

One-block logit model

log m̂ðyÞ )1017.180 )1017.233 )1017.220
nse (0.033) (0.012) (0.007)

Two-block logit model

log m̂ðyÞ )1017.212 )1017.237 )1017.207
nse (0.027) (0.009) (0.011)

One-block Gaussian model

log m̂ðyÞ )458.590 )458.576 )458.584
nse (0.003) (0.003) (0.004)

Two-block Gaussian model

log m̂ðyÞ )458.582 )458.581 )458.587
nse (0.006) (0.006) (0.006)

42 S. Chib and I. Jeliazkov

� VVS, 2005



estimate and its variability are straightforward to obtain from the output of the

ARMH sampler. In two examples, we discuss implementation issues under several

ARMH designs and show that the techniques are efficient and generally applicable.

Appendix 1: Covariates in the largest model in SMALL (1982)

The analysis uses 13 covariates of four types – reporting error (R10 and R15),

travel time (TIM, TIMÆSGL, and TIMÆCP), early arrival (SDE, SDEÆSGL, and

SDEÆCP), and late arrival (SDL, SDLÆWC, SDLX, D1LÆWC, and D2L). In the

preceding, SD is Schedule Delay, i.e. arrival time minus official work start time

rounded to nearest 5 minutes (SD ¼ {)40, )35,… , 10, 15}); R10 ¼ 1{SD ¼
)40, )30, )20, )10, 0, 10}; R15 ¼ 1{SD ¼ )30, ) 15, 0, 15}; TIM is Travel

time in minutes; SDE ¼ max{)SD, 0}; SDL ¼ max{SD, 0}; D1L ¼ 1{SD ‡ 0};

FLEX is reported flexibility for arriving time; D2L ¼ 1{SD ‡ FLEX}; SGL is a

dummy for a one-person household; CP is carpool dummy reconstructed in

BROWNSTONE and SMALL (1989) to account for previously missing data; WC is a

dummy for a white collar worker; and SDLX ¼ max{SD ) FLEX, 0}. For further

details and some alternative models, see SMALL (1982) and BROWNSTONE and

SMALL (1989).
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