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ABSTRACT OF THE DISSERTATION 

 

 

From California sea lions to urban coyotes:  

Maximizing insights from Leptospira surveillance in coastal California wildlife 

 

by 

 

Sarah Kate Helman 

 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2022 

Professor James O. Lloyd-Smith, Chair 

 

Many pathogens, and all zoonotic pathogens, are capable of infecting multiple hosts. 

Understanding the transmission dynamics of multi-host, generalist pathogens is a major frontier 

in disease ecology, with far-reaching implications for both animal and human health. A central 

challenge is that multiple lines of evidence are required to identify maintenance hosts and assess 

the relative transmission contributions of multiple species. This evidence can unfortunately be 

difficult to obtain, particularly in wildlife systems, due to resource limitations and low sample 

accessibility. To address these challenges, I utilize computational tools to maximize the insights 

gained from limited wildlife data, using the globally significant zoonotic pathogen Leptospira 

interrogans in California’s coastal wildlife as a case study.  
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 Leptospira interrogans serovar Pomona presents a unique long-term case study of multi-

host, generalist pathogen dynamics in California wildlife. This pathogen has affected the 

California sea lion (Zalophus californianus) population for decades, causing low levels of 

infection year-round and recurrent cyclical outbreaks of disease every few years. More recently, 

Leptospira has been found to be circulating among terrestrial wildlife in the California Channel 

Islands as well. Despite multi-year surveillance of the bacteria in California sea lions (Zalophus 

californianus) and Channel Island wildlife, the mechanisms governing transmission and 

persistence in this system are still unclear, as are potential connections to circulation of 

Leptospira among mainland wildlife host species. In the following chapters, I investigate the 

transmission potential and prevalence of Leptospira interrogans in California’s coastal wildlife. 

 Within ecological systems, infection prevalence is critical to understanding pathogen 

dynamics, as it reflects transmission risk to others. However, uncertainty in the accuracy of 

diagnostic assays makes prevalence estimation difficult, particularly in wildlife where test 

methods are often not validated, and sample sizes may be low. Bayesian latent class analysis 

(BLCA) offers a statistical solution to this problem, but research detailing its limitations and 

usefulness in biological systems is lacking. In my first chapter, I estimate disease prevalence and 

diagnostic test accuracy using simulations to assess the ability of BLCA to produce accurate 

estimates across a range of biological conditions. I demonstrate that this method is effective, but 

has the potential to bias estimates depending on underlying biological system traits (e.g., sample 

size, test accuracy, and true prevalence). I use the California sea lion system as a case study to 

assess infection prevalence and test accuracy, describing situations in which this method would 

be preferable to results from a single high quality diagnostic test. Our findings directly benefit 
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scientists and veterinary professionals working on the California sea lion system, and, more 

generally, they validate a statistical tool and show ecologists when this technique may be of use. 

 In chapter two, I develop models to predict Leptospira shedding, indicative of 

transmission potential, in California sea lions. Shedding can be detected via polymerase chain 

reaction (PCR) of urine or kidney samples to identify Leptospira DNA, but obtaining these 

samples is difficult, and historical data are limited. Antibody titers were previously identified as 

predictive of shedding in this species, but antibody results take time and are not always available. 

I utilized LASSO regression to assess if shedding predictions from antibody titers improve in the 

presence of additional environmental, clinical, and demographic data. I then exclude antibody 

results to identify more accessible data that are predictive of shedding in their absence, and show 

that these predictions are robust to differences in the underlying sample population. 

Extrapolations to out-of-sample data provide accurate shedding estimates in the broader sea lion 

population, providing key information for understanding Leptospira transmission and persistence 

in California sea lions.   

 Understanding multi-host pathogen dynamics requires identification of possible hosts and 

the assessment of pathogen prevalence and transmission links in relevant host species. A closely 

related strain of Leptospira interrogans serovar Pomona has been identified in California sea 

lions, Channel Island foxes (Urocyon littoralis), and island spotted skunks (Spilogale gracilis 

amphiala), but it is unknown if mainland coastal wildlife play a transmission role in this multi-

host pathogen system. In my final chapter, I conduct the first extensive survey of Leptospira in 

Southern California wildlife, using serology to investigate possible links to Leptospira in sea 

lions. Sampling primarily focused on five core species in the greater Los Angeles region: coyotes 

(Canis latrans), raccoons (Procyon lotor), Virginia opossums (Didelphis virginiana), striped 
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skunks (Mephitis mephitis) and fox squirrels (Sciuris niger). Infections were detected in all core 

species except fox squirrels, and all five species exhibited Leptospira exposure and were reactive 

to serovar Pomona. This evidence of widespread Leptospira circulation demonstrates a potential 

risk to both animal and human health across the Los Angeles region, and animals with primary 

reactivity to serovar Pomona represent future sampling targets to assess possible transmission 

links in the broader multi-host system. 

 Using statistical techniques to analyze multi-year surveillance data from California sea 

lions and mainland terrestrial mammals, I address critical knowledge gaps in the ecology of 

Leptospira in the coastal California ecosystem. Maximizing the information gained from limited 

data allows us to better understand the local prevalence and transmission ecology of this globally 

significant zoonosis, with direct applications for public health and wildlife management. 

Extending these methods to other systems will empower future multi-host pathogen studies, 

addressing key challenges in wildlife disease surveillance and ecology. 
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Abstract
1. Obtaining accurate estimates of disease prevalence is crucial for the monitoring 

and management of wildlife populations but can be difficult if different diagnostic 
tests yield conflicting results and if the accuracy of each diagnostic test is un-
known. Bayesian latent class analysis (BLCA) modeling offers a potential solution, 
providing estimates of prevalence levels and diagnostic test accuracy under the 
realistic assumption that no diagnostic test is perfect.

2. In typical applications of this approach, the specificity of one test is fixed at or 
close to 100%, allowing the model to simultaneously estimate the sensitivity and 
specificity of all other tests, in addition to infection prevalence. In wildlife sys-
tems, a test with near-perfect specificity is not always available, so we simulated 
data to investigate how decreasing this fixed specificity value affects the accuracy 
of model estimates.

3. We used simulations to explore how the trade-off between diagnostic test speci-
ficity and sensitivity impacts prevalence estimates and found that directional bi-
ases depend on pathogen prevalence. Both the precision and accuracy of results 
depend on the sample size, the diagnostic tests used, and the true infection preva-
lence, so these factors should be considered when applying BLCA to estimate 
disease prevalence and diagnostic test accuracy in wildlife systems. A wildlife dis-
ease case study, focusing on leptospirosis in California sea lions, demonstrated 
the potential for Bayesian latent class methods to provide reliable estimates under 
real-world conditions.

4. We delineate conditions under which BLCA improves upon the results from a sin-
gle diagnostic across a range of prevalence levels and sample sizes, demonstrating 
when this method is preferable for disease ecologists working in a wide variety of 
pathogen systems.
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1  | INTRODUC TION

Infection prevalence, or the fraction of individuals in a population 
that are infected with a pathogen at a given time, is a crucial met-
ric of pathogen dynamics within ecological systems (Buhnerkempe 
et al., 2015; Haydon, Cleaveland, Taylor, & Laurenson, 2002; Viana 
et al., 2014). Knowledge of infection prevalence can elucidate disease 
dynamics in a system, providing data to health professionals aiming 
to mitigate disease risk and to scientists seeking to understand key 
mechanisms. The true infection prevalence within an ecological sys-
tem is usually impossible to measure exactly but can be estimated 
by testing representative subsets of a population. However, it can 
be difficult to obtain large representative data sets to estimate dis-
ease prevalence in wildlife populations. Limitations including fund-
ing, personnel, regulatory restrictions, and the availability of tests 
appropriate to a specific study species typically determine which 
diagnostic tests can be used in a given wildlife system and how many 
individuals can be tested. Wildlife studies face additional challenges, 
as they are often restricted to the use of diagnostic tests whose ac-
curacy may not be known if the tests have been validated in domes-
tic animals, rather than the host species of interest (Moreno-Torres, 
Wolfe, Saville, & Garabed, 2016).

While diagnostic test accuracy is sometimes overlooked in favor 
of more immediate challenges such as obtaining representative 
samples, it can have substantial impacts on disease prevalence es-
timates. Diagnostic tests vary in their sensitivity (probability of de-
tecting true positives) and specificity (probability of detecting true 
negatives), so both individual diagnostic results and population-level 
prevalence estimates will vary depending on the tests used in a 
given system. Furthermore, a set of imperfect diagnostic tests may 
show conflicting results in the same individual (e.g., due to differ-
ences in test accuracy or what disease state the tests are measuring). 
Assessing the true infection status of individuals from imperfect in-
formation and using this information to estimate population prev-
alence is a challenge facing epidemiologists and disease ecologists 
worldwide.

To complicate matters further, when considering a test with 
continuous quantitative output, users must choose a diagnostic 
threshold that separates negative test results from positive re-
sults. A trade-off exists between sensitivity and specificity, such 
that this threshold can be lowered to make the test more sensitive 
(limiting the number of false-negative results) or raised to make the 
test more specific (limiting the number of false-positive results; 
Florkowski, 2008). Many tests that are conventionally viewed as bi-
nary, such as serology or even polymerase chain reaction (PCR), ac-
tually have underlying quantitative thresholds that could be tuned to 
maximize sensitivity or specificity, but not both. Disease ecologists 
and epidemiologists routinely use different thresholds for diagnostic 

assays, depending on their research aims and system characteristics 
(Almberg, Cross, Dobson, Smith, & Hudson, 2012).

In situations where careful choice of diagnostic threshold is 
not itself sufficient to improve prevalence estimates, a statistical 
method called Bayesian latent class analysis (BLCA) has been applied 
to facilitate estimates of infection prevalence and diagnostic test ac-
curacy (Gonçalves et al., 2012; Limmathurotsakul et al., 2012; Muma 
et al., 2007; Pan-ngum et al., 2013). When applying this technique, 
an individual's true clinical infection status is assumed to be a latent 
unobserved process. BLCA does not explicitly categorize each indi-
vidual as infected or uninfected. Rather, each tested individual has 
a probability of being infected or uninfected, given their observed 
combination of test outcomes and the accuracy of each test. The 
model integrates probabilistic information about the true infection 
status of all tested individuals to simultaneously estimate overall in-
fection prevalence, along with the sensitivity and specificity of each 
test, under the realistic assumption that no diagnostic test is perfect 
(Rindskopf & Rindskopf, 1986). Traditionally, BLCA methods assume 
conditional independence of test results, given the disease status 
of a tested individual. Recent research has addressed the issue of 
identifiability and potential for biases due to the underlying depen-
dence structure among test results, as well as approaches to mod-
eling conditional dependence and adding random effects to address 
these challenges (Albert & Dodd, 2004; Dendukuri & Joseph, 2001; 
Hadgu & Qu, 1998; Jones, Johnson, Hanson, & Christensen, 2010; 
Pepe & Janes, 2006; Qu, Tan, & Kutner, 1996). Since higher-order 
information (e.g., longitudinal sampling) is unlikely to be available for 
diagnostic tests in wildlife hosts, here we analyze the performance 
of BLCA under the assumption of conditional independence (Wang 
& Hanson, 2019). This assumption is reasonable when diagnostic 
tests measure distinct biological processes that are not expected 
to be substantially correlated (e.g., the presence of a pathogen in 
urine vs the antibody response to a pathogen in the bloodstream; 
Kostoulas et al., 2017), and this study assesses the application of 
BLCA in systems where this assumption is valid.

Bayesian latent class analysis has been used primarily to es-
timate disease prevalence and test accuracy in domestic animals 
(Basso et al., 2013; Boelaert, Aoun, Liinev, Goetghebeur, & Van der 
Stuyft, 1999; Hartnack et al., 2013; Mathevon, Foucras, Falguières, 
& Corbiere, 2017; Muma et al., 2007; Nielsen, Toft, & Ersbøll, 2004) 
or humans (Gonçalves et al., 2012; Limmathurotsakul et al., 2012; 
Pan-ngum et al., 2013; Schumacher et al., 2016), but it has also 
been applied sparsely in wildlife systems (Bronsvoort et al., 2008; 
Moreno-Torres et al., 2016; Verma-Kumar et al., 2012). The limita-
tions and biases from test sensitivity and specificity, and situations 
where BLCA improves upon single test estimates, have not previ-
ously been explored in the context of wildlife. Our study assesses 
the accuracy and potential for bias across a range of biologically 

K E Y W O R D S

Bayesian latent class, California sea lion, diagnostic test, disease, infection, prevalence, 
sensitivity, specificity
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Figure 1.1: Infection status for a group of individuals relative to the sensitivity and specificity of test thresholds (top), and the values we chose for simulations relative to levels reported in the literature. 
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realistic sample sizes and prevalence levels by applying BLCA to 
simulated data. When using BLCA models, the specificity of the 
most accurate test is typically fixed at or close to 100% (Hartnack 
et al., 2013; Limmathurotsakul et al., 2012; Mathevon et al., 2017; 
Pan-ngum et al., 2013; Schumacher et al., 2016), which is often not 
the case in real-world conditions, particularly when dealing with 
wildlife. Our analysis relaxes this assumption, simulating diagnos-
tic test data using multiple diagnostic test ensembles to investigate 
BLCA efficacy as fixed test specificity decreases from 100% to 80%. 
In doing so, we also provide actionable guidance for situations where 
the investigators can choose the diagnostic threshold to tune the 
specificity of their fixed test.

To demonstrate the application of this method in a wildlife sys-
tem, we apply BLCA to Leptospira surveillance data from California 

sea lions (Zalophus californianus). The bacteria Leptospira interrogans 
serovar Pomona is one of the primary causes of strandings in this 
species, having caused cyclical outbreaks since the mid-1980s that 
are associated with high morbidity and mortality (Greig, Gulland, 
& Kreuder, 2005; Lloyd-Smith et al., 2007; Prager et al., 2013). 
Animals with the disease, known as leptospirosis, present with 
clinical signs associated with Leptospira-induced kidney dysfunc-
tion (Cameron et al., 2008). While detection of Leptospira DNA in 
the urinary tract (Polymerase Chain Reaction - PCR) is the defini-
tive diagnosis, obtaining samples to test via PCR is often impossi-
ble, so high antibody titers (Microscopic Agglutination Test - MAT) 
and serum chemistry markers indicative of Leptospira-induced 
kidney dysfunction are also utilized to detect clinical infections. 
We used BLCA to estimate the prevalence of clinical infections in 

F I G U R E  1   Infection status for a group of individuals relative to the sensitivity and specificity of test thresholds (top), and the 
values we chose for simulations relative to levels reported in the literature. (a) The true infection status (red circles = infected, blue 
triangles = uninfected) is plotted for hypothetical test results in a group of individuals. The x-axis represents a range of quantitative test 
results, with lower test results on the left and higher test results on the right. A threshold must be chosen, above which value a test 
result is considered positive. Thresholds that correspond to points A-E in b are shown as dashed black lines, demonstrating the trade-off 
between sensitivity (True Positives/(True Positives + False Negatives)) and specificity (True Negatives/(True Negatives + False Positives)). 
(b) Diagnostic test sensitivities and specificities previously reported in the literature (Alberg et al. 2004; Maxim et al. 2014), shown as black 
circles. For data simulations, the sensitivity/specificity values of test 1 and test 2 were set at 70%/70% and 80%/80%, respectively (shown 
as red squares). The fixed specificity provided to the Bayesian model was selected from points A-E (table on right)

(a)

(b)
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stranded California sea lions, along with test sensitivity and spec-
ificity, using results from these three diagnostic tests. We then 
simulated data using the parameter estimates from the sea lion 
data to assess BLCA estimates for prevalence and test accuracy 
under real-world sample sizes and testing conditions. Finally, we 
compared prevalence estimates from the BLCA model to what 
would be estimated from a single diagnostic test, to understand 
the circumstances under which the BLCA method is most worth-
while. In combination, analyses of the simulated data and results 
of the wildlife case study provide insights into the use and limita-
tions of BLCA in disease ecology.

2  | METHODS

The Bayesian latent class model used in this analysis requires binary 
test outcomes. Thus, tests that yield results on a continuous scale 
(e.g., serological titers or quantitative PCR Ct values) must be clas-
sified as positive or negative, based on whether the test result falls 
above or below a diagnostic threshold. This classification threshold 
can be selected to maximize sensitivity (Se) or specificity (Sp) and 
must be chosen carefully for each test (Figure 1a). We simulated 
results from three diagnostic tests, using a hypothetical diagnostic 
test ensemble by selecting pairs of sensitivities and specificities 
from a range of previously reported values for 193 medical tests 
in the literature (Alberg, Park, Hager, Brock, & Diener-West, 2004; 
Maxim, Niebo, & Utell, 2014; Figure 1b). Two of the tests (tests 1 
and 2) were assigned lower Se/Sp combinations (Figure S1b,c), rep-
resentative of more mediocre diagnostic tests reported in the lit-
erature. The remaining test (test 3) in the ensemble was assigned 
properties chosen across an arc of Se/Sp values from 100%/80% 
to 80%/100% (Figure 1b: points A-E), which corresponded to the 
highest Se/Sp combination of the three tests. This range was chosen 
because nearly one third of tests in the literature survey (n = 63/193) 
had both sensitivity and specificity > 80%, so we assumed biologists 
would usually have at least one diagnostic test that fell within this 
range. In each simulation, the specificity of test 3 (which was always 
the highest specificity of all three tests) was fixed in the BLCA model.

2.1 | Parameter selection

We chose a range of biologically realistic parameter sets, using each 
one to simulate diagnostic test data that were then analyzed using 
BLCA. Each parameter set included the sample size, sensitivity and 
specificity values for three hypothetical diagnostic tests and the “true” 
underlying infection prevalence in a hypothetical sample population. 
Tests 1 and 2 had Se/Sp fixed at 70%/70% and 80%/80%, respec-
tively (red squares in Figure 1b), and these values remained constant 
for all data simulations. Test 3 was selected sequentially from points 
A-E, such that the fixed specificity provided to the model decreased 
from 100% to 80% (A-E in Figure 1b). We simulated datasets using 
these five initial diagnostic test selections ((test1, test2) x (test A-E)), 

seven sample sizes (n = 20, 40, 80, 160, 320, 640 and 1,280) and 
three prevalence levels spanning a broad range of ecological scenar-
ios (10%, 50%, 90%), resulting in 105 unique parameter sets. To as-
sess whether observed patterns were influenced by the initial choices 
for tests 1 and 2 (which had Se:Sp ratios of 1:1), the following two 
alternate selections for these tests were used: Se/Sp for tests 1 and 
2 set to 90%/70% and 70%/90%, respectively (Figure S1b), and the 
Se/Sp for tests 1 and 2 set to 80%/60% and 50%/90%, respectively 
(Figure S1c). These alternative scenarios explore different Se:Sp ra-
tios as well as different overall quality of tests 1 and 2.

2.2 | Data simulation

For each parameter set (i.e., sample size, prevalence, and hypo-
thetical test combination), a number of individuals (equal to sample 
size*prevalence) were assigned the status infected, and all remaining 
individuals in the population were assigned the status uninfected 
(Figure 2a). Once infection status was set, a series of Bernoulli trials 
was used to simulate the outcome of each hypothetical diagnostic 
test. Among infected individuals, the probability of a positive result 
was equal to test sensitivity, and the probability of a negative result 
was equal to (1-Se). Among uninfected individuals, the probability of 
a positive result was equal to (1-Sp), and the probability of a negative 
result was equal to test specificity. These simulations generated a 
set of three binary test outcomes for each individual, assuming inde-
pendence among tests, with eight possible combinations of positive 
and negative test results (ranging from all negative to all positive). 
The number of individuals that fell into each of the eight possible 
test result combinations was counted (test profiles a-h; Figure 2b), 
and this vector was saved to input in the BLCA model. Test results 
were simulated 1,000 times for each set of parameters.

2.3 | Bayesian latent class analysis

Bayesian latent class analysis is a likelihood-based statistical method 
that estimates the prevalence of particular class types within a 
population sample. Here, individuals fall into one of eight observed 
classes (a-h), based on the profile of their diagnostic test outcomes 
(Limmathurotsakul et al., 2012; Figure 2b). Our model assumes the 
outcome of each diagnostic test is independent of the others, con-
ditional on the individual's underlying (and unknown) state with 
respect to pathogen infection and disease. Thus, the probability of 
obtaining a given diagnostic profile depends on the probability that 
an individual was truly infected (equal to population prevalence) and 
on the outcome of each diagnostic test given the underlying infec-
tion status. As sensitivity is defined as the probability of detecting 
true positives and specificity is defined as the probability of detect-
ing true negatives, the probability of three negative test outcomes 
(diagnostic profile a), is:

p (a) = !

(

1 −Se1
) (

1 −Se2
) (

1 −Se3
)

+
(

1 −!

) (

Sp1
) (

Sp2
) (

Sp3
)

.
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where π denotes prevalence, Se1 denotes the sensitivity of test 
1, Sp1 denotes the specificity of test 1, and so on. The first term 
in this expression represents the probability of being infected 
and having a false-negative result for all three tests, while the 
second term represents the probability of being uninfected and 
having a true-negative result for all three tests. Similar logic 
can be used to find the probability of each diagnostic profile 
(b-h, Figure S2), and the observed distribution of diagnostic 
profiles can be modeled by a multinomial likelihood, with prob-
abilities for each class given by {p(a),p(b),…p(h)} (Rindskopf & 
Rindskopf, 1986).

2.4 | Parameter estimation

We estimated parameters in a Bayesian framework using Markov 
chain Monte Carlo (MCMC). We ran three chains for 10,000 it-
erations each, with the first 5,000 steps discarded as burn-in. 
Uninformative priors (uniform distributions on [0,1]) were assumed 
for the prevalence, sensitivity of tests 1–3, and specificity of tests 
1 and 2 (Figure S2). The fixed specificity for test 3 (one value from 
points A-E; Figure 1b) and the frequency of each test profile type (fre-
quency of observations) were used as model inputs (Figure 2b). We 
modified Bayesian inference code (WinBUGS (Lunn, Thomas, Best, 

F I G U R E  2   Possible infection categories and test results for a sample population (a), and the workflow for assessment in Bayesian latent 
class analysis (b). (a) The relationship between sample size, prevalence, and the probability of a positive or negative result for three different 
diagnostic tests. For infected individuals, the probability of a given test result is proportional to the sensitivity (Se) of that test (top right). 
For uninfected individuals, the probability of a given test result is proportional to the specificity (Sp) of that test (bottom right). (b) Workflow 
diagram for Bayesian latent class analysis, taking results from data along with the fixed specificity of one test to obtain posterior probability 
estimates for all unknown (latent) parameters

(a)

(b)
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& Spiegelhalter, 2000)) from a previous study (Limmathurotsakul 
et al., 2012), and JAGS (Plummer, 2003) model estimation was per-
formed using the package R2jags (R2jags, Su, & Yajima, 2015) in R 
(R Foundation for Statistical Computing, 2016; version 3.3.2). We 
checked that the Gelman and Rubin statistic was < 1.1 to verify con-
vergence of all MCMC chains (Gelman, Carlin, Stern, & Rubin, 2003) 
and reported the median and marginal composite 95% credible in-
terval (CrI) for all estimated parameters. Prevalence estimates and 
95% CrI were computed for all hypothetical test sets (left panels of 
Figure 3, S3 and S4), and residuals for all estimated parameters were 
computed for the fixed test assuming the sensitivity and specificity 
combination at arc point C (Se3 = 0.95/Sp3 = 0.95; right panels of 
Figure 3, S3 and S4). We ran additional simulations using informed 
priors to determine how an investigator's prior knowledge or suspi-
cion of low, medium or high prevalence levels in a system would af-
fect the estimates of prevalence obtained from BLCA (π ~ beta(2,9), 

beta(9,9) and beta(9,2) for low, medium, and high prevalence, respec-
tively; Figure S5). Results were compared to the original estimates 
obtained using uninformative priors (Figure S6).

2.5 | Wildlife case study

To assess BLCA in a wildlife dataset, we analyzed results of three 
different tests used to determine Leptospira infection status in 
California sea lions admitted to The Marine Mammal Center 
(TMMC). TMMC is a marine mammal rehabilitation center that main-
tains a detailed database of health and medical diagnostic records 
for individual marine mammals stranding along the California coast. 
Clinical Leptospira infections are diagnosed by clinicians at TMMC 
using the following diagnostic criteria: high serum MAT antibody ti-
ters (>1:3,200) against serovar Pomona, Leptospira DNA present in 

F I G U R E  3   Parameter estimates 
at three true prevalence levels (10%, 
50%, and 90%). Left: Median prevalence 
estimates and 95% credible intervals 
(CrI) are shown for points A-E at a true 
prevalence of 10% (a), 50% (b), and 90% 
(c), with true prevalence shown as dashed 
black lines (y-axes scaled equally). Right: 
Residuals for all parameter estimates 
(prevalence, sensitivities for tests 1–3, 
specificities for tests 1 and 2) using 
simulated samples (n = 1,000) generated 
with fixed arc point C (test 3 fixed 
Se = 95% and Sp = 95%), with zero shown 
as dashed red line
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urine or kidney samples (tested via PCR; Wu et al., 2014), or serum 
chemistry markers indicative of kidney dysfunction (BUN > 100 mg/
dl, creatinine > 2 mg/dl, sodium > 155 meq/L and phosphorus > cal-
cium; Colagross-Schouten, Mazet, Gulland, Miller, & Hietala, 2002; 
Greig et al., 2005). In this system, we judged that conditional inde-
pendence among tests was a reasonable assumption, due to the dif-
ferent biological systems targeted by these three diagnostic tests 
(humoral immune response, presence of pathogen DNA in the uri-
nary tract, and measures of renal function, respectively). To mini-
mize the effects of clinical treatment on test outcomes, we selected 

only California sea lions at TMMC that had test results for all three 
Leptospira diagnostics from samples collected within one week of 
admission (n = 290; years: 2006–2016). We summed the total num-
ber of animals with each test result profile (the frequency of ob-
servations) and fixed the specificity of test 3 (PCR) to 97.2% based 
on a recent estimate for Leptospira in humans (Limmathurotsakul 
et al., 2012). While the PCR method utilized here was previously re-
ported with 100% analytic specificity in CSL urine or kidney tissue 
(Wu et al., 2014), we chose this slightly more conservative specificity 
level to reflect the possibility that sample contamination could lead 

BLCA Estimates from 
California sea lion data

Values selected for 
CSL simulated data CSL simulated data

Prevalence (π) 20.2% (15.6−25.5%) 20% 20.6% (15.8−26.2%)

Sensitivity – MAT 
(Se1)

64.4% (52.0−78.1%) 65% 64.0% (50.5−76.6%)

Sensitivity – SC 
(Se2)

61.1% (48.2−74.3%) 61% 60.0% (46.7−72.7%)

Sensitivity – PCR 
(Se3)

96.0% (86.4−99.9%) 96% 93.9% (90.3−99.6%)

Specificity – MAT 
(Sp1)

98.1% (95.8−99.6%) 98% 98.0% (95.3−99.7%)

Specificity – SC 
(Sp2)

93.2% (89.6−96.3%) 93% 92.9% (89.0−99.7%)

Specificity – PCR 
(Sp3)

NA (fixed at 97.2%) Fixed at 97.2% NA (fixed at 97.2%)

Note: These estimated values were chosen as set values for a CSL data simulation (middle). BLCA 
parameter estimates were then calculated from this simulated CSL data to see how well the model 
performed (right).

TA B L E  1   BLCA median parameter 
estimates and 95% CrIs obtained from 
three Leptospira diagnostic test results in 
California sea lions (left)

TA B L E  2   Comparison of prevalence estimates from BLCA versus a single test (sample size, n = 320)

Note: Both BLCA and single test estimates within 5% of true prevalence. Only BLCA estimate within 5% of true prevalence. The BLCA estimates were 
obtained using the original test 1 (Se1 = 70%/Sp1 = 70%) and test 2 (Se2 = 80%/Sp2 = 80%) settings, along with point A (left; Se3 = 100%/Sp3 = 80%), 
point C (middle; Se3 = 95%/Sp3 = 95%), or point E (right; Se3 = 80%/Sp3 = 100%). Single test estimates and 95% CI were obtained using 1,000 
Bernoulli trials weighted by the test Se/Sp for test A, C, or E alone. Scenarios where both BLCA and single test estimates were within 5% of the true 
value are shown in yellow, while scenarios where BLCA alone was within 5% of the true prevalence are shown in green.
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to rare false positives. Parameter estimation was conducted as de-
scribed above using R2jags, yielding median estimates with 95% CrIs 
for all unknown parameters.

To test model performance under these estimated real-world 
conditions, we simulated CSL data (n = 300) using our best parame-
ter estimates as known parameter values (“Values Selected for CSL 
Simulated Data” in Table 1), then used BLCA on the simulated CSL 
data to see how accurate model estimates were across 1,000 simu-
lations (Table 1). To assess when BLCA prevalence estimates would 
be preferable to those obtained using the single best diagnostic 
test, we compared BLCA estimates from our initial hypothetical test 
set (Figure 1b) to results generated solely from the single best test 
(points A, C, and E), which were simulated by Bernoulli trials as de-
scribed above (Tables 2 and S2).

3  | RESULTS

3.1 | Simulation study

For all simulated scenarios (i.e., all prevalence levels and all hypotheti-
cal 3-test combinations), BLCA prevalence estimates converged on the 
correct value as the sample size grew (Figure 3). There was some di-
rectional bias in prevalence estimates, particularly at low sample sizes, 
that varied depending on the true infection prevalence. Prevalence 
of infection was consistently overestimated when infections were 
rare (true prevalence = 10%) and to a lesser degree when infections 
were moderately common (true prevalence = 50%). At these preva-
lence levels, when we varied the specificity of fixed test 3 according to 
arc points A-E (Figure 1b), tests with higher specificity returned more 
accurate estimates at lower sample sizes, although credible intervals 
across these tests largely overlapped (Figure 3, S3 and S4; Table S1). 
These patterns were reversed when infections were common (true 
prevalence = 90%), with prevalence being slightly underestimated and 
higher sensitivity tests returning more accurate estimates at lower 
sample sizes, although again credible intervals across these tests 
largely overlapped (Figure 3, S3 and S4; Table S1).

When infections were rare (true prevalence = 10%), the 95% CrIs 
for prevalence did not contain the true value until sample size was 
relatively large (n ≥ 160; 95% CrIs for points D & E). At the largest 
sample sizes (n > 320) the true value was contained within the 95% 
CrIs for all points, and median prevalence estimates were within 
3% of the true value (in absolute terms). When true prevalence was 
moderate (50%), the true value was contained in the 95% CrIs at all 
sample sizes, and median prevalence estimates were within 8% of 
the true value at all sample sizes and within 2% at the highest sample 
sizes (n = 640 & n = 1,280; Table S1B. In contrast, at higher true prev-
alence (90%) where prevalence was underestimated at lower sample 
sizes, the 95% CrIs always contained the true value and prevalence 
estimates converged quickly to the true prevalence value across all 
hypothetical test sets (Figure 3c, S3C and S4C; Table S1C).

As with the prevalence estimate, the BLCA estimates of the sensi-
tivity and specificity of each test became more precise and accurate as 

sample sizes increased (right panels of Figure 3, S2 and S3). However, 
there were directional biases in these estimates, which exhibited more 
complex structure than the biases of prevalence estimates. Test sen-
sitivity tended to be underestimated when true prevalence was low, 
while specificity was underestimated at high prevalences (Figure 3, S2 
and S3). When infections were rare (true prevalence = 10%), specificity 
estimates were more accurate and precise across all sample sizes than 
sensitivity estimates, while sensitivity estimates were more accurate 
and precise than specificity estimates when infections were common 
(true prevalence = 90%; Figure 3, S2 and S3). The residuals of both sen-
sitivity and specificity estimates were generally symmetric, indicating 
little bias, when infection level was moderate (true prevalence = 50%; 
Figure 3, S2 and S3).

Considering the potential trade-off between sensitivity and 
specificity of a given test (i.e., from tuning the threshold value used 
to classify a result as positive; Figure 1), we found that the optimal 
parameters of the best test depend on infection prevalence. When 
true prevalence is low (10%) or moderate (50%), a fixed specificity 
of 1.0 of the best test (Point E) yields the most accurate estimate of 
prevalence (Figure 3a,b). However, when prevalence is high (90%), 
a fixed sensitivity of 1.0 of the best test (Point A) is preferable 
(Figure 3c). The influence of this trade-off is greatest at low preva-
lence (10%) and weakest at high prevalence (90%) where any Point 
(A-E) gives a reasonable prevalence estimate (Table 2).

These broad patterns remained the same regardless of the 
hypothetical test set used. That is, as the parameters of the two 
lower-quality tests change (Figure S1), the patterns of prevalence, 
sensitivity, and specificity estimation did not vary qualitatively 
(Figures S3 and S4). However, the quantitative results were notice-
ably worse (i.e., larger residuals and larger sample sizes needed for 
accuracy) when these two tests had lower sensitivity and specificity 
(Figure S4). When we used informative priors in the BLCA to rep-
resent investigator knowledge of the prevalence level, estimates of 
prevalence improved if the prior was close to the true prevalence 
level, but worsened if the prior was not close to the true prevalence 
value (Figure S6). Adjusting the prevalence prior did not qualitatively 
alter the estimates of other parameters.

3.2 | Wildlife case study

Results from the sea lion case study were concordant with our analy-
ses of the broader simulated data. Although disease prevalence was 
low in the sea lion system, our sample size was well within the range 
at which BLCA could produce accurate prevalence estimates using 
simulated CSL data. The estimated prevalence of clinical Leptospira 
infections in this sample of California sea lions was 20.2% (95% CrI, 
15.6%–25.5%; Table 1). Estimates of PCR, MAT and serum chemistry 
relative test accuracy were broadly consistent with expert knowl-
edge (Table 1). Marine mammal veterinarians consider PCR the best 
diagnostic test for leptospirosis in sea lions, whereas MAT and serum 
chemistry are known to be less sensitive and typically used as sec-
ond-line tests when urine samples cannot be obtained for PCR.
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We also simulated data to verify that BLCA was accurate when 
using parameters and sample sizes consistent with the best estimates 
returned by real CSL data. Using these simulated data, the median 
BLCA prevalence estimate was 20.6% (95% CrI, 15.8%–26.2%; Table 1; 
Figure S7B), and differed negligibly from the true input prevalence 
(20%). Sensitivity and specificity values were slightly underestimated, 
but always within 2.1% of the true value (Table 1). Although this test 
of simulated data returned very accurate estimates, the direction and 
magnitude of observed errors were consistent with the error struc-
tures reported above for data simulated using other parameters.

3.3 | Comparing BLCA to results of a single 
diagnostic test

The BLCA prevalence estimate for the California sea lion sample 
(20.2%) was very similar to the crude estimate obtained from PCR 
alone (62/290 positive; 21.4%). This prompted us to consider the 
marginal value of BLCA and whether it was worth the additional ef-
fort. In particular, we explored the circumstances under which the 
3-test BLCA prevalence estimates would improve upon results from 
a single best test, exploring the influence of the trade-off between 
sensitivity and specificity of the best test by considering points A, 
C, and E from our simulation analysis. At a sample size similar to our 
CSL case study (n = 320), prevalence estimates obtained using BLCA 
and using the single best test (points A, C, or E alone) were compara-
ble in most cases, but in several scenarios BLCA was clearly superior 
(Table 2). A single test at point A (Se3 = 0.8/Sp3 = 1) alone overes-
timated prevalence at low and mid true prevalence levels, while a 
single test at point E (Se3 = 1/Sp3 = 0.8) alone underestimated preva-
lence at mid and high true prevalence levels; in contrast, BLCA was 
accurate in both these scenarios (Table 2). Thus, the BLCA method 
can yield stabilizing estimates that are more robust to fluctuations in 
prevalence than estimates produced by any single test with unbal-
anced sensitivity and specificity (Tables 2 and S2). These stabilizing 
effects of BLCA would be particularly useful in a system with cyclical 
outbreaks.

When comparing BLCA to single test estimates across all sample 
sizes, these broad patterns held for larger sample sizes, but differed 
at lower sample sizes (n < 320; Table S2). Regardless of sample size, 
a balanced high-quality test with very high sensitivity and specificity 
(test C) is comparable to BLCA. However, at high sample sizes BLCA 
converges on the true value at all prevalence levels whereas test C 
alone converges on over- or under-estimates of prevalence. At 50% 
prevalence, test C converges on the true estimate, but this is due 
to canceling of symmetric errors from its identical sensitivity and 
specificity values.

Bayesian latent class analysis also usually outperformed es-
timates from a single test when test specificity or sensitivity was 
low (closer to points A or E; Figure 1b), but neither method worked 
well when prevalence, test specificity, and sample size were all low. 
Thus, in circumstances when sample size and disease prevalence are 
both low, we recommend choosing a diagnostic test threshold that 

optimizes test specificity, as this can improve the performance of 
both BLCA and of the single-test method (Table S2).

4  | DISCUSSION

Estimating infection prevalence is challenging in wildlife disease sys-
tems, where researchers are often confronted with limited sample 
sizes and imperfect diagnostic tests that lack species-specific vali-
dation. Here, we have explored the utility of Bayesian latent class 
analysis (BLCA) as a technique to improve estimates of prevalence 
and of diagnostic test sensitivity and specificity. We have assumed 
conditional independence among test results, which is reasonable 
for the biological system we examined due to differences in the 
biological systems targeted by our diagnostic assays and our lack of 
longitudinal sampling (Kostoulas et al., 2017; Wang & Hanson, 2019), 
but in situations where this is not the case the conditional de-
pendence structure should be considered (Albert & Dodd, 2004; 
Dendukuri & Joseph, 2001; Hadgu & Qu, 1998; Jones et al., 2010; 
Pepe & Janes, 2006; Qu et al., 1996). Using simulated data and a 
case study to explore the utility of BLCA, we demonstrate that the 
accuracy of prevalence estimates depends on multiple factors: the 
sample size being tested, the true prevalence in the study system 
and the sensitivity/specificity of the diagnostic tests being used. 
We compare BLCA prevalence estimates to those from a single test, 
demonstrating the stabilizing effects of the BLCA method under dif-
ferent sample sizes and prevalences. In addition, recognizing that 
many diagnostic tests have an intrinsic trade-off between sensitivity 
and specificity (which can be tuned by altering the threshold value 
used to define a positive test result), we show how the accuracy of 
prevalence estimates can be optimized depending on the epidemio-
logical context.

The precision and accuracy of parameter estimates increased 
with sample size across all simulations, providing accurate estimates 
at large sample sizes regardless of the true infection prevalence 
(Figure 1, S2, S3, S7). The use of informed priors has the potential 
to further improve prevalence estimates, highlighting the potential 
for this Bayesian framework to incorporate expert knowledge from 
the field. However, in the absence of accurate prior information the 
use of uninformed priors provides more stable prevalence estimates 
(Figure S6). We observed directional biases in the prevalence, sen-
sitivity, and specificity estimates depending on whether infections 
are common (high prevalence) or rare (low prevalence; Greiner & 
Gardner, 2000). For example, when sample size is relatively low, an 
overrepresentation of false positives can elevate prevalence esti-
mates when diseases are rare. Conversely, an overrepresentation of 
false negatives can bias prevalence estimates downward when dis-
eases are common.

Our work demonstrates the potential to improve the accuracy of 
prevalence estimates by altering the threshold for positivity for the 
highest quality test (Figure 1a). If results from the best test (the test 
with the fixed specificity provided to the BLCA model) are quanti-
tative, choosing a threshold that maximizes specificity will improve 
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prevalence estimate accuracy when infections are rare, while max-
imizing sensitivity will improve estimates when infections are com-
mon (Figure 3, S2 and S3; Table S2). This choice follows naturally, 
because higher specificity allows you to detect more true negatives, 
which are prevalent when infections are rare. In contrast, higher sen-
sitivity allows you to detect more true positives, which are prevalent 
when infections are common. In addition, this logic can guide the 
choice of single tests (or the choice of a threshold for a single test) to 
use for estimation of prevalence without the need for advanced sta-
tistical analysis: our work shows that maximizing test sensitivity for 
common diseases, or test specificity for rare diseases, can produce 
single test estimates of comparable accuracy to BLCA.

Analyzing our wildlife case study of Leptospira interrogans in 
California sea lions, we report new estimates for the sensitivity 
and specificity of key diagnostic tests in this system to explore 
the statistical power of BLCA for a given sample size. The samples 
used in this study span a ten-year period across a range of dif-
ferent epidemiologic conditions, so here our prevalence estimates 
reflect the prevalence in the sample of stranded animals rather 
than the prevalence in the wild population at any point in time. At 
a titer cutoff 1:3,200, our estimates for the sensitivity and spec-
ificity of MAT were 64.4% (95% CrI: 52%-78.1%) and 98.1% (95% 
CrI: 95.8%-99.6%), respectively, which differ from previous CSL 
estimates using this titer cutoff obtained from known positive and 
negative animals (Se = 100% and Sp = 100%; Colagross-Schouten 
et al., 2002). These previous estimates were likely idealized due 
to small samples and the study design (Greiner & Gardner, 2000), 
as the negative controls were born in captivity with no possibil-
ity of residual titers from a previous exposure, and the positive 
animals were selected based on clear clinical signs and renal le-
sions indicating leptospirosis. Diagnosis in wild animals is likely to 
be complicated by residual titers from previous exposures, or by 
chronic infections that are no longer associated with a high titer 
(Buhnerkempe et al., 2017). Due to these and other complicating 
factors, sensitivity and specificity are unlikely to be perfect in 
stranded wild animals.

This contrast highlights the influence of the underlying study 
population and the importance of considering system-specific 
characteristics and ecological context when utilizing BLCA. Test 
sensitivity and specificity estimates likely vary with underlying 
prevalence and sample size due to the probability of sampling in-
dividuals that are truly infected or truly uninfected, which in turn 
modulates the ratio of false positives to false negatives in the 
data. For example, at 90% true prevalence, most individuals will 
be true positives, so testing regimes will have the potential to pick 
up more true positives/false negatives and fewer true negatives/
false positives, leading to a higher estimated sensitivity and lower 
estimated specificity.

Broadly, we demonstrate that BLCA works well for estimat-
ing prevalence and test accuracy, but some caution is warranted 
because its performance does not always beat that of the single 
best available test. In particular, there are scenarios with low sam-
ple size and low-to-moderate prevalence where a single test with 

high specificity can yield more accurate prevalence estimates than 
BLCA. A rule of thumb, apparent in Table S2, is that this can hap-
pen when the expected number of infected individuals in the sam-
ple is ≤10. When the best test has lower specificity (e.g., Test A in 
Table S2), neither approach worked well if the expected number 
of infections is ≤20. In all other situations, prevalence estimates 
from BLCA are comparable to or better than estimates from a 
single diagnostic test, and this performance advantage increases 
as the highest quality diagnostic test decreases in sensitivity or 
specificity (i.e., moving toward points A or E). Furthermore, prev-
alence estimates made using BLCA will be more robust to changes 
in prevalence across cyclical epidemics than estimates made using 
a single test. Our data simulations provide quantitative insight into 
the relative performance of these approaches, to help research-
ers assess whether the additional effort of BLCA is worthwhile. 
In many circumstances, the BLCA method provides more accurate 
estimates than researchers would otherwise be able to obtain, 
making it a worthwhile tool that addresses many challenges faced 
by disease ecologists.
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1.7 Supplement 

 

 

Figure S 1.1: Sensitivity and specificity values for test 1 & test 2 (red points) that were used in 
conjunction with Test 3 (fixed arc points A-E) for data simulations. (A) Original test 1 and test 2 
values, corresponding to the simulation results in Figure 3. (B) Alternate test 1 and test 2 values, 
corresponding to the simulation results in Figure S3. (C) Alternate test 1 and test 2 values, corresponding 
to the simulation results in Figure S4. 

 

Test 1
• Specificity:  70%
• Sensitivity:  90%

Test 2
• Specificity:  90%
• Sensitivity:  70%

Test 3
• Same as S1A

Test 1
• Specificity:  70%
• Sensitivity:  70% 

Test 2
• Specificity:   80%
• Sensitivity:   80%

Test 3

Test 1
• Specificity:  60%
• Sensitivity:  80%

Test 2
• Specificity:  90%
• Sensitivity:  50%

Test 3
• Same as S1A

Arc Point Specificity Sensitivity

A 0.8 1

B 0.875 0.975

C 0.95 0.95

D 0.975 0.875

E 1 0.8

C

B

A
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Figure S 1.2: JAGS Model and probability functions for each test result profile (a-h).                        
(A) Conditional independence model used in JAGS, assuming that each individual’s test results are 
independent given true disease status. (B) Explanation of the JAGS model. (C) Probabilities for the 
number of individuals expected in each test profile category for a given sample size (!) and prevalence 
(").   

freqobs: frequency of observations for each test 
profile (1:8 refers to profiles a-h)

Sum(freqobs[1:8]): total individuals tested

Likelihood
p[i]: probability of each test profile (å p[i]=1)

positive[i]: probability that an individual has test 
profile [i] given the individual is truly positive

negative[i]: probability that an individual has test 
profile [i] given the individual is truly negative

Tests: JAGS model input designating test results 
(0=negative, 1=positive). These test vectors 
jointly represent all possible test profiles.

test1 <- c(0,0,1,1,0,0,1,1)
test2 <- c(0,1,0,1,0,1,0,1) 
test3 <- c(0,0,0,0,1,1,1,1) 

Priors
Prev: Prevalence (noninformative)
Se[3]: Sensitivity of test 3 (noninformative)
Sp[3]: Specificity of test 3 (fixed value=XX)

Se[1:2]: Sensitivity of test 1 & 2 (noninformative)
Sp[1:2]: Specificity of test 1 & 2 (noninformative)

model{ 
#total<-sum(freqobs[1:8])

#Likelihood
freqobs[1:8]~ dmulti(p[1:8],total) 

for (i in 1:8){

p[i]<- prev*(positive[i]) + (1-prev)*(negative[i]) 

positive[i] <-

negative[i] <-

#Priors     
prev~dbeta(1,1)
Se[3]~dbeta(1,1)
Sp[3]<- XX

for (j in 1:2){
s[j]~dbeta(1,1) 
x[j]~dbeta(1,1) }

}

A. JAGS Model

Test 1 
Result

Test 2
Result

Test 3
Result

Total number with 
this test profile

Expected Total Number for Each Test Profile
!": $%$&' $()* +%,-$-.*, !(0 − "): total true negatives

- - - a !" ∗ (0−4*0)(0−4*5)(0−4*6)   +   !(0−") ∗ (4+04+54+6)

- + - b !" ∗ (0−4*0)4*5(0−4*6)    +   !(0−") ∗ 4+0(0−4+5)4+6
+ - - c !" ∗ 4*0(1-4*5)(1-4*6)     +    !(0−") ∗ (0−4+0)4+54+6
+ + - d !" ∗ 4*04*5(1-4*3)     +   !(0−") ∗ (0−4+0)(0−4+5)4+6
- - + e !" ∗ (1-4*0)(1-4*5)4*6 +    !(0−") ∗ 4+04+5(0−4+6)

- + + f !" ∗ (1-4*0)4*54*6 +    !(0−") ∗ 4+0(0−4+5)(0−4+6)

+ - + g !" ∗ 4*0(1-4*5)4*6 +   !(0−") ∗ (0−4+0)4+5(0−4+6)

+ + + h !" ∗ 4*04*54*6 +   !(0−") ∗ (0−4+0)(0−4+5)(0−4+6)

B. JAGS Model Explanation 

C. Probability Table

(Se[1]) ∗ test1[i] + (1-Se[1]) ∗ (1-test1[i])) ∗
(Se[2]) ∗ test2[i] + (1-Se[2]) ∗ (1-test2[i])) ∗
(Se[3]) ∗ test3[i] + (1-Se[3]) ∗ (1-test3[i]))

((1-Sp[1]) ∗ test1[i] + Sp[1] ∗ (1-test1[i])) ∗
((1-Sp[2]) ∗ test2[i] + Sp[2] ∗ (1-test2[i])) ∗
((1-Sp[3]) ∗ test3[i] + Sp[3] ∗ (1 -test3[i]))}
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Figure S 1.3: Parameter estimates at three true prevalence levels (10%, 50% & 90%) using the first 
alternate scenario test 1 (Se1=0.9 and Sp1=0.7) and test 2 (Se2=0.7 and Sp2=0.9).  Left: Median 
prevalence estimates and 95% credible intervals (CrI) are shown for points A-E at a true prevalence of 
10% (A), 50% (B) and 90% (C), with true prevalence shown as dashed black lines (y-axes scaled 
equally). Right: Residuals for all parameter estimates (prevalence, sensitivities for tests 1-3, specificities 
for tests 1 & 2) using simulated samples (n=1000) generated with fixed arc point C (test 3 fixed Se=95% 
and Sp=95%), with zero shown as dashed red line. 

B

A

C
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Figure S 1.4: Parameter estimates at three true prevalence levels (10%, 50% & 90%) using the 
second alternate scenario for test 1 (Se1=0.8 and Sp1=0.6) and test 2 (Se2=0.5 and Sp2=0.9). Left: 
Median prevalence estimates and 95% credible intervals (CrI) are shown for points A-E at a true 
prevalence of 10% (A), 50% (B) and 90% (C), with true prevalence shown as dashed black lines (y-axes 
scaled equally). Right: Residuals for all parameter estimates (prevalence, sensitivities for tests 1-3, 
specificities for tests 1 & 2) using simulated samples (n=1000) generated with fixed arc point C (test 3 
fixed Se=95% and Sp=95%), with zero shown as dashed red line. 

B

A

C
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Figure S 1.5: Prior distributions used to estimate prevalence. Panel A shows an uninformed prior 
(uniform distribution on [0,1]). Panels B-D show informed prevalence priors (prevalence ~ 
beta(2,9), beta(9,9) and beta(9,2) for suspected low, medium and high prevalence respectively). 
 
 
 
 
 
 
 
 
 
 
 

A B

DC
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Figure S 1.6: Comparison of simulation results using uninformative prevalence priors versus 
informed priors with suspected low, medium and high prevalence.  Each row represents results for a 
known true prevalence: 10% (top), 50% (middle) or 90% (bottom).  Each pair of columns represents the 
prevalence prior: uninformed (left), low (left middle), medium (right middle) and high (right). Within 
each column pair, the left column represents the median prevalence by sample size (true prevalence 
shown as dashed black line; y-axes scaled equally), and the right column illustrates the residuals for all 
estimated parameters (zero shown as dashed red line).  
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Figure S 1.7: Simulation results from model estimates using California sea lion (CSL) data.  (A) 
Diagram showing the location of the CSL test estimates (shown in red) relative to tests previously 
reported in the literature (shown in black). (B) Model estimates of prevalence by sample size, using 
simulated data based on CSL tests, when true prevalence = 20% (dashed black line). (C) Residuals for all 
parameter estimates, with the true values at zero (dashed red line).  
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Table S 1.1: Median prevalence estimates with 95% CrI for all arc points (A-E),  shown at 
increasing sample sizes (n=20, 40, 80, 160, 320, 640, 1280), when true prevalence is 10% (top), 50% 
(middle) and 90% (bottom).  

 

 

Sample 
Size

Prevalence

Point A Test 3:
Sp=0.8/Se=1

Prevalence

Point B Test 3:     
Sp=0.875/Se=0.975

Prevalence

Point C Test 3:
Sp=0.95/Se=0.95

Prevalence

Point D Test 3:
Sp=0.975/Se=0.875

Prevalence

Point E Test 3:     
Sp=1/Se=0.8

n=20 0.323 (0.203-0.549) 0.296 (0.18-0.52) 0.273 (0.169-0.466) 0.244 (0.159-0.47) 0.232 (0.145-0.418)

n=40 0.269 (0.181-0.479) 0.243 (0.155-0.486) 0.218 (0.141-0.44) 0.207 (0.132-0.408) 0.194 (0.122-0.363)

n=80 0.218 (0.143-0.424) 0.199 (0.125-0.391) 0.18 (0.121-0.358) 0.173 (0.113-0.31) 0.162 (0.105-0.289)

n=160 0.173 (0.113-0.307) 0.161 (0.107-0.29) 0.151 (0.105-0.261) 0.144 (0.1-0.245) 0.138 (0.097-0.231)

n=320 0.145 (0.099-0.259) 0.14 (0.098-0.235) 0.131 (0.096-0.215) 0.125 (0.094-0.202) 0.121 (0.094-0.191)

n=640 0.129 (0.093-0.194) 0.124 (0.096-0.175) 0.117 (0.096-0.166) 0.113 (0.092-0.165) 0.11 (0.09-0.162)

n=1280 0.118 (0.093-0.157) 0.115 (0.094-0.152) 0.112 (0.097-0.148) 0.108 (0.091-0.144) 0.103 (0.088-0.137)

Table S1A: True prevalence = 10%.

Table S1C:  True prevalence = 90%. 

Table S1B:  True prevalence = 50%. 

Sample 
Size

Prevalence

Point A Test 3:
Sp=0.8/Se=1

Prevalence

Point B Test 3:     
Sp=0.875/Se=0.975

Prevalence

Point C Test 3:
Sp=0.95/Se=0.95

Prevalence

Point D Test 3:
Sp=0.975/Se=0.875

Prevalence

Point E Test 3:     
Sp=1/Se=0.8

n=20 0.58 (0.462-0.765) 0.566 (0.46-0.75) 0.562 (0.475-0.713) 0.549 (0.438-0.698) 0.54 (0.419-0.676)

n=40 0.559 (0.472-0.698) 0.548 (0.467-0.687) 0.55 (0.476-0.668) 0.536 (0.454-0.655) 0.53 (0.438-0.641)

n=80 0.547 (0.475-0.647) 0.541 (0.473-0.633) 0.536 (0.476-0.615) 0.525 (0.448-0.617) 0.518 (0.435-0.615)

n=160 0.537 (0.482-0.612) 0.529 (0.478-0.601) 0.524 (0.478-0.591) 0.513 (0.451-0.596) 0.508 (0.434-0.594)

n=320 0.527 (0.485-0.58) 0.518 (0.482-0.571) 0.513 (0.479-0.57) 0.504 (0.454-0.576) 0.502 (0.437-0.579)

n=640 0.519 (0.491-0.556) 0.512 (0.482-0.551) 0.506 (0.48-0.548) 0.501 (0.46-0.556) 0.498 (0.444-0.558)

n=1280 0.514 (0.493-0.54) 0.507 (0.486-0.536) 0.502 (0.482-0.53) 0.499 (0.463-0.539) 0.50 (0.458-0.542)

Sample 
Size

Prevalence

Point A Test 3:
Sp=0.8/Se=1

Prevalence

Point B Test 3:     
Sp=0.875/Se=0.975

Prevalence

Point C Test 3:
Sp=0.95/Se=0.95

Prevalence

Point D Test 3:
Sp=0.975/Se=0.875

Prevalence

Point E Test 3:     
Sp=1/Se=0.8

n=20 0.889 (0.842-0.956) 0.882 (0.818-0.943) 0.882 (0.817-0.931) 0.867 (0.763-0.92) 0.846 (0.733-0.904)

n=40 0.902 (0.858-0.957) 0.897 (0.849-0.942) 0.894 (0.84-0.937) 0.875 (0.803-0.926) 0.861 (0.765-0.915)

n=80 0.906 (0.873-0.948) 0.9 (0.864-0.942) 0.895 (0.856-0.934) 0.883 (0.821-0.933) 0.872 (0.801-0.92)

n=160 0.909 (0.884-0.937) 0.901 (0.873-0.931) 0.896 (0.866-0.928) 0.887 (0.836-0.927) 0.879 (0.803-0.925)

n=320 0.908 (0.891-0.93) 0.902 (0.878-0.926) 0.897 (0.869-0.924) 0.892 (0.84-0.925) 0.888 (0.824-0.927)

n=640 0.907 (0.895-0.924) 0.901 (0.881-0.922) 0.899 (0.873-0.923) 0.897 (0.849-0.925) 0.894 (0.83-0.926)

n=1280 0.905 (0.896-0.918) 0.9 (0.882-0.917) 0.9 (0.874-0.918) 0.9 (0.864-0.924) 0.899 (0.847-0.922)
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Table S 1.2: Comparison of prevalence estimates using BLCA to those obtained with a single 
diagnostic test. BLCA results (using fixed point A) versus test A alone (left two columns), BLCA results 
(using fixed point C) versus test C alone (middle two columns), and BLCA results (using fixed point E) 
versus test E alone (right two columns). Results are shown for all sample sizes when true prevalence is 
10% (S2A), 50% (S2B) and 90% (S2C). Sensitivity and specificity for tests A, C and E were 
Se3=1.0/Sp3=0.8, Se3=0.95/Sp3=0.95 and Se3=0.8/Sp3=1.0 respectively. 

 

 

 

 

 

 

 

  

A Sample Size Prevalence BLCA - Fixed A Test A Only BLCA - Fixed C Test C Only BLCA - Fixed E Test E Only
20 0.1 0.32 (0.2-0.55) 0.25 (0.15-0.45) 0.27 (0.17-0.47) 0.15 (0.05-0.25) 0.23 (0.14-0.42) 0.1 (0-0.1)
40 0.1 0.27 (0.18-0.48) 0.28 (0.15-0.4) 0.22 (0.14-0.44) 0.12 (0.08-0.22) 0.19 (0.12-0.36) 0.08 (0.05-0.1)
80 0.1 0.22 (0.14-0.42) 0.28 (0.2-0.36) 0.18 (0.12-0.36) 0.14 (0.1-0.19) 0.16 (0.11-0.29) 0.09 (0.05-0.1)
160 0.1 0.17 (0.11-0.31) 0.28 (0.22-0.34) 0.15 (0.1-0.26) 0.14 (0.11-0.18) 0.14 (0.1-0.23) 0.08 (0.06-0.09)
320 0.1 0.15 (0.1-0.26) 0.28 (0.24-0.32) 0.13 (0.1-0.21) 0.14 (0.12-0.16) 0.12 (0.09-0.19) 0.08 (0.07-0.09)
640 0.1 0.13 (0.09-0.19) 0.28 (0.25-0.31) 0.12 (0.1-0.17) 0.14 (0.12-0.16) 0.11 (0.09-0.16) 0.08 (0.07-0.09)
1280 0.1 0.12 (0.09-0.16) 0.28 (0.26-0.3) 0.11 (0.1-0.15) 0.14 (0.13-0.15) 0.1 (0.09-0.14) 0.08 (0.07-0.09)

B Sample Size Prevalence BLCA - Fixed A Test A Only BLCA - Fixed C Test C Only BLCA - Fixed E Test E Only
20 0.5 0.58 (0.46-0.76) 0.6 (0.5-0.75) 0.56 (0.48-0.71) 0.5 (0.4-0.6) 0.54 (0.42-0.68) 0.4 (0.25-0.5)
40 0.5 0.56 (0.47-0.7) 0.6 (0.52-0.7) 0.55 (0.48-0.67) 0.5 (0.42-0.57) 0.53 (0.44-0.64) 0.4 (0.32-0.48)
80 0.5 0.55 (0.48-0.65) 0.6 (0.55-0.66) 0.54 (0.48-0.62) 0.5 (0.45-0.55) 0.52 (0.43-0.62) 0.4 (0.32-0.46)
160 0.5 0.54 (0.48-0.61) 0.6 (0.56-0.64) 0.52 (0.48-0.59) 0.5 (0.47-0.53) 0.51 (0.43-0.59) 0.4 (0.36-0.44)
320 0.5 0.53 (0.48-0.58) 0.6 (0.57-0.63) 0.51 (0.48-0.57) 0.5 (0.48-0.52) 0.5 (0.44-0.58) 0.4 (0.37-0.43)
640 0.5 0.52 (0.49-0.56) 0.6 (0.58-0.62) 0.51 (0.48-0.55) 0.5 (0.48-0.52) 0.5 (0.44-0.56) 0.4 (0.38-0.42)
1280 0.5 0.51 (0.49-0.54) 0.6 (0.58-0.61) 0.5 (0.48-0.53) 0.5 (0.49-0.51) 0.5 (0.46-0.54) 0.4 (0.38-0.42)

C Sample Size Prevalence BLCA - Fixed A Test A Only BLCA - Fixed C Test C Only BLCA - Fixed E Test E Only
20 0.9 0.89 (0.84-0.96) 0.9 (0.9-1) 0.88 (0.82-0.93) 0.85 (0.75-0.95) 0.85 (0.73-0.9) 0.75 (0.55-0.85)
40 0.9 0.9 (0.86-0.96) 0.92 (0.9-0.95) 0.89 (0.84-0.94) 0.88 (0.8-0.92) 0.86 (0.77-0.91) 0.72 (0.6-0.82)
80 0.9 0.91 (0.87-0.95) 0.91 (0.9-0.95) 0.9 (0.86-0.93) 0.86 (0.8-0.9) 0.87 (0.8-0.92) 0.72 (0.64-0.8)
160 0.9 0.91 (0.88-0.94) 0.92 (0.9-0.94) 0.9 (0.87-0.93) 0.86 (0.82-0.89) 0.88 (0.8-0.93) 0.72 (0.66-0.78)
320 0.9 0.91 (0.89-0.93) 0.92 (0.91-0.93) 0.9 (0.87-0.92) 0.86 (0.83-0.88) 0.89 (0.82-0.93) 0.72 (0.68-0.76)
640 0.9 0.91 (0.9-0.92) 0.92 (0.91-0.93) 0.9 (0.87-0.92) 0.86 (0.84-0.88) 0.89 (0.83-0.93) 0.72 (0.69-0.75)
1280 0.9 0.9 (0.9-0.92) 0.92 (0.91-0.93) 0.9 (0.87-0.92) 0.86 (0.85-0.87) 0.9 (0.85-0.92) 0.72 (0.7-0.74)

Neither test within 5% of the true prevalence

Both tests within 5% of the true prevalence

Only test within 5% of the true prevalence
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2 He Shed She Shed: Predictors of Leptospira shedding in California 
sea lions (Zalophus californianus) 

 

2.1 ABSTRACT 

Pathogen shedding is a critical component of host-pathogen dynamics and disease transmission, 

but direct measurements of shedding are often challenging to obtain, particularly in wildlife. 

However, pathogen shedding can be assessed indirectly if predictors can be identified, drawing 

on biological knowledge of a given system to inform statistical modeling of surveillance data. In 

this chapter, we explore Leptospira interrogans in California sea lions (Zalophus californianus) 

to investigate drivers of shedding in an endemic pathogen of concern. Antibody titers against 

Leptospira interrogans serovar Pomona, measured using microscopic agglutination testing 

(MAT), were previously identified as an important predictor of shedding. Unfortunately, 

obtaining this type of data is expensive and difficult, so it is often unavailable in 

wildlife systems. Utilizing biological samples from stranded and wild-caught sea lions sampled 

between 2010-2018, we used a regression approach to investigate possible intrinsic and extrinsic 

drivers of Leptospira shedding in California sea lions to see: 1) if we could improve upon 

predictions made using antibody titer data alone, and 2) if we could accurately predict shedding 

using other, more readily available data. We found that we can predict shedding with 91% 

accuracy using antibody titers, and that additional clinical, demographic and environmental 

information does not significantly improve these estimates. Encouragingly, when antibody titer 

data were excluded, other significant predictors (season, sex, and indicators of kidney function) 

were still able to estimate shedding status with 87% accuracy, and results were robust to 

differences in underlying sample populations. Both models maintained their predictive accuracy 

when tested against out-of-sample data. The models were then used to project shedding 



 23 

prevalence in the broader sea lion population, yielding patterns that aligned with independent 

epidemiological data. This work demonstrates an approach to leverage biological information to 

estimate pathogen shedding from more readily available data, generating useful insights at 

individual and population scales which address this universal challenge in infectious disease 

ecology. 

 

2.2 INTRODUCTION 

Pathogen transmission is a fundamental component of host-pathogen dynamics. Understanding 

and controlling infectious diseases hinges on being able to detect infectious agents in individuals 

and estimate levels of transmission within and between populations (Caley & Hone, 2004; 

Charleston et al., 2011). Though transmission cannot generally be observed directly in natural 

settings, the potential for transmission can be measured by detecting pathogen shedding in 

infectious individuals. Unfortunately, it is difficult to collect the relevant tissues or excretions 

during the correct window of time, and pathogen detection in these samples can encounter 

technical barriers. This challenge is exacerbated in wildlife populations, where logistic hurdles 

and cost make it difficult or impossible to obtain the necessary samples and conduct diagnostic 

testing at sufficient scale to study population processes. Improving our ability to predict 

pathogen shedding from more readily obtained sample types and surveillance data is therefore 

critical for estimating transmission potential when direct measurements are not available.  

 

2.2.1 Past Efforts to Predict Shedding 

Efforts to predict pathogen shedding have been influential in humans (Hagan et al., 2016; 

Munywoki et al., 2015), domestic animals (Harkin et al. 2003; Schares et al. 2016; Huston et al. 
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2002) and peridomestic rodents (Costa, Wunder, et al., 2015). In humans, predicted shedding 

patterns have been used for understanding transmission risks and informing public health 

interventions. Recent efforts include using more readily available data to predict COVID-19 

shedding, employing various machine learning models to predict patient diagnosis as a 

contribution to large scale pandemic response efforts (Zhang et al., 2021). Predictions of 

shedding in domestic animals can highlight environmental risk factors and transmission risk to 

humans and other contact animals, with direct implications for animal welfare, public health and 

economics in the case of food animals. For example, multivariate analysis has been used to 

identify dairy herd size as a predictor of Salmonella shedding (Huston et al. 2002), as well as 

management practices (e.g., flooring type) as predictors of Cryptosporidium shedding on dairy 

farms (Trotz-Williams et al. 2008). 

 

Investigations into drivers of shedding in wildlife are less common and typically focus on 

population scale dynamics (Becker et al., 2021; Blanco & Díaz de Tuesta, 2021; Hernandez et 

al., 2016). Variation in individual shedding (e.g., duration and intensity) can arise due to 

heterogeneities in host biology and the environment (Germeraad et al., 2019; Siva-Jothy & Vale, 

2021). If identified, factors associated with pathogen shedding can potentially be used as proxies 

for shedding and transmission potential, which is highly beneficial in cases when comprehensive 

pathogen testing is unavailable. Increased knowledge of wildlife shedding drivers can also direct 

management of pathogens in wildlife populations. In Australia for example, habitat loss was 

identified as linked to Hendra virus shedding in bats, motivating habitat restoration efforts that 

reduced shedding along with the risk of cross-species transmission (Becker et al., 2021). In 

wildlife rehabilitation centers, identifying risk factors for shedding (e.g., seasons when patient 
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density and shedding prevalence of specific pathogens may be highest) can encourage enhanced 

hygiene and protective measures that may reduce the risk of transmission to humans and other 

animals (Siembieda et al., 2011). These are prime examples demonstrating that increased 

knowledge of shedding drivers in wildlife, particularly in the case of multi-host pathogens, has 

the potential to inform risk assessments and direct disease control and prevention across scales.  

 

2.2.2 Leptospira interrogans  

As a case study to investigate the drivers of shedding in an endemic wildlife pathogen, we 

examine leptospirosis in California sea lions (Zalophus californianus; CSL). Leptospirosis, the 

disease caused by pathogenic bacteria in the genus Leptospira, is the most widespread zoonotic 

disease in the world and affects virtually all species of mammals (Adler & de la Peña 

Moctezuma, 2010). With one million cases and 59,000 global deaths estimated annually in 

humans (Costa, Hagan, et al., 2015), and many more cases likely undiagnosed, it is surprising 

that Leptospira pathogen dynamics remain understudied (Lloyd-Smith et al., 2009). 

Transmission typically occurs through urinary excretion, known as shedding, following bacterial 

colonization of the kidneys that can lead to renal pathology (Adler & de la Peña Moctezuma, 

2010; Haake & Levett, 2015). Past exposure to Leptospira bacteria is typically assessed by 

detection of anti-Leptospira antibodies in serum using microscopic agglutination testing (MAT), 

and infections with active shedding are diagnosed based on polymerase chain reaction (PCR) 

detection of Leptospira DNA in urine or kidney samples. Clinical signs can vary, with 

asymptomatic infections often associated with maintenance hosts (a.k.a reservoir hosts), and 

symptomatic infections associated with accidental (a.k.a. spillover) hosts, though these 

classifications are not absolute (Ko et al., 2009; Lloyd-Smith et al., 2007). In symptomatic 
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clinical infections in humans and other species, clinical signs are often associated with primary 

renal pathology, though they can range from mild to severe, including kidney failure and death 

(Williams & Barker, 2001). Susceptible hosts contract infections through direct contact with 

contaminated host tissues, or via indirect contact with environments contaminated by urinary 

shedding (Casanovas-Massana et al., 2018). Transmissibility and environmental survival of the 

bacteria can vary with ecological conditions (Barragan et al., 2017), such as rainfall and flooding 

which have both been identified as environmental drivers of leptospirosis outbreaks (Lau et al., 

2010; Nakata et al., 2007). 

 

2.2.3 Study System: Leptospira interrogans in California Sea Lions 

Leptospira interrogans serovar Pomona has circulated endemically in sea lions since the early 

1980s, with seasonal peaks in the fall and periodic outbreaks every few years (Lloyd-Smith et al., 

2007). Clinical signs in infected sea lions range from asymptomatic to severe kidney failure and 

death associated with primary renal disease, with mortality in stranded sea lion infections 

approaching 60-70% (Greig et al., 2005; Gulland et al., 1996; Prager et al., 2013). This 

demonstration of both endemic and epidemic dynamics, along with clinical signs ranging from 

non-existent to fatalities, make sea lions a prime example of why the maintenance and accidental 

host paradigm does not universally apply (Lloyd-Smith et al., 2007; Prager et al., 2013). Higher 

disease prevalence and seroprevalence have been reported in males, putatively due to the 

differences in migratory patterns and contact rates (Greig et al., 2005; Gulland et al., 1996). 

Environmental conditions have known associations with sea lion prey abundance and 

demography (DeLong et al., 1991, 2017; Melin et al., 2008, 2010), and links between the 

environment and sea lion leptospirosis incidence and susceptibility have long been suspected 
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(Gulland et al., 1996). While early theories centered on El Nino effects mediated by 

demographic impacts, recent work has refined our knowledge of environmental influence on this 

system, with correlations between leptospirosis outbreak intensity and local oceanographic 

factors (sea surface temperature and upwelling) demonstrated even after accounting for 

demographic effects (Borremans et al., In Preparation). The underlying causes of these 

correlations with environmental factors are unknown, but effects mediated by individual level 

shedding (via changes in individual condition, due to trophic stress) are a leading hypothesis.  

 

Decades of past research efforts have provided extensive information about this disease process 

in sea lions, including stranding records dating back to the 1980s (Greig et al., 2005), long-term 

time series including serology and diagnostics (Lloyd-Smith et al., 2007), targeted clinical 

studies (Prager et al., 2015, 2020) and extensive field research on the wild sea lion population 

since 2010 (DeLong et al., 2017; Melin et al., 2012; Prager et al., 2020). Analyses of these data 

point to the possible roles of demography and environmental factors in this pathogen system 

(Buhnerkempe et al. 2017), in addition to identifying biomarkers such as high antibodies and 

serum chemistry alterations that are associated with recent cases of leptospirosis (Prager et al., 

2020). Acute cases typically present with high MAT titers, and long-term clinical data highlights 

the strong, predictive correlation between Leptospira interrogans serovar Pomona antibody titers 

and sea lion shedding status (Prager et al., 2020). Leveraging the wealth of existing information 

in this complex host-pathogen system can provide insights into additional factors associated with 

leptospirosis infections, which could be used to improve predictions of Leptospira shedding 

status. For example, alterations in serum biochemistry are associated with renal compromise in 

clinical leptospirosis cases (Greig et al., 2005; Gulland et al., 1996), and may be a better 
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indicator of very recent infections than high antibody titers (Prager et al., 2020). Additional 

information such as serum chemistry values may therefore be predictive of Leptospira shedding 

status, and, if used in conjunction with antibody titers, could improve upon individual shedding 

predictions generated from titer data alone.  

 

Accurate predictions of sea lion shedding status from readily available clinical, demographic or 

environmental data would advance our understanding of Leptospira infections, elucidating this 

key component of pathogen transmission in this system. This is particularly true since obtaining 

direct evidence of shedding is not easy, as PCR requires kidney samples (collected during 

necropsy) or sterile urine samples (collected under anesthesia, which presents major challenges 

under field conditions). Further, while a clear link has been established between antibody titers 

and shedding status, antibody titer data is not always available. Assessing antibodies using MAT 

is resource intensive, requiring the expertise of trained professionals at external laboratories 

(which can take several days), making it less useful for real-time risk assessments in clinical 

settings than more readily available clinical data such as serum chemistry. Consequently, marine 

mammal rehabilitation centers do not conduct MAT as part of routine testing in most California 

sea lions. Finding ways to estimate shedding from more readily available data would therefore 

enable individual and population-level shedding predictions in a wider array of circumstances.  

 

In this study, we probe the drivers of Leptospira shedding in California sea lions. Using 

established knowledge of sea lion and Leptospira biology, we analyze 21 possible predictors 

from four broad categories, representing classes that are biologically relevant to cases of 

leptospirosis: Leptospira covariates (MAT titers and leptospirosis cases), kidney pathology 
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covariates (serum chemistry results indicative of kidney function), demographic covariates (age 

class and sex) and environmental covariates (season, upwelling, sea surface temperature and 

spring transition). We develop predictive models of shedding, assessing whether additional 

information can improve upon shedding predictions made from antibody titer data alone. We 

then investigate whether shedding can be predicted in the absence of antibody titers using more 

commonly accessible data. We quantify the accuracy of each predictive model within training 

data and out-of-sample test data, and then demonstrate the application of our methods by 

predicting shedding frequency across the broader sea lion population. By leveraging surveillance 

data to gain a more in-depth understanding of Leptospira shedding in California sea lions, we 

demonstrate an effective method to elucidate drivers of transmission in this complex host-

pathogen system. 

 

2.3 DATA 

2.3.1 Study Animals  

2.3.1.1 Stranded Sea Lions  

California sea lions strand along California’s central coast due to injury or illness, including 

pneumonia, neoplasia, malnutrition, trauma, domoic acid toxicity and leptospirosis (Greig et al., 

2005; Gulland et al., 1996). The Marine Mammal Center (TMMC; Sausalito, CA, USA) is a 

marine mammal rehabilitation center that rescues and rehabilitates animals that strand between 

Mendocino and Santa Barbara counties. TMMC veterinary staff routinely collect serum as part 

of clinical examinations. Urine is collected when possible, such as during incidental procedures 

that involve anesthesia, or routine necropsies following the death of an animal. Only sea lions 
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with samples collected within a week of admission were included in this study to minimize 

alterations in test results due to treatment (Table 2.1).  

 

2.3.1.2 Wild Sea Lions 

Seemingly healthy wild sea lions (Table 2.1) were captured in the field along the California 

coast, anesthetized using isoflurane gas, and sampled under the authorization of Marine Mammal 

Protection Act Permit No. 932-1905-00/MA-009526. Wild-caught sea lions were sampled along 

the southern (San Miguel Island) and central (Año Nuevo Island and Pier 39 in San Francisco) 

California coast (Table 2.1). Sea lions from San Miguel Island were sampled in March and 

between August and October, on Año Nuevo Island between September and November, and 

between August and September at Pier 39. Venipuncture was performed using the caudal gluteal 

vein (Gili et al., 2018). Serum from centrifuged blood was transferred to cryovials and frozen 

until use, and sterile urine was collected via catheterization or cystocentesis as detailed in Prager 

et al. (2020). All samples were collected at the time of capture while animals were under 

isoflurane anesthesia.   

 

2.3.1.3 Training and Test Datasets 

Stranded and wild sea lion samples collected from 2010-2018 were used as training data for our 

predictive models; our research program on leptospirosis in sea lions intensified in 2010, greatly 

increasing the number of urine and kidney samples available during this period (Table 2.1). 

However, only data from years with endemic Leptospira circulation were included as part of the 

training data (2010-2012 and 2017-2018). Data from 2013-2016 were excluded due to an 

unprecedented pathogen fadeout event, during which time Leptospira was not present in the 
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population (Prager et al., In Preparation). The complete training dataset, composed of both 

stranded and wild sea lion samples, will be referred to as the aggregate dataset. Below we 

describe specific subsets of this dataset that were also analyzed separately. The test dataset 

consisted of sea lion samples collected from 2006-2009 (Table 2.1), and these samples were used 

to assess the out-of-sample predictive accuracy of our models. During this period, the majority of 

samples came from stranded animals with a slightly older age distribution than the training data 

(Table 2.1).  

 

2.3.2 Ethics Statement 

Samples from California sea lions were authorized for collection by Marine Mammal Protection 

Act Permits No. 932-1905-00/MA-009526 and No. 932-1489-10 (issued by the National Marine 

Fisheries Service - NMFS), and NMFS Permit Numbers 17115–03, 16087–03, and 13430 as 

detailed in Prager et al. (2000). Approval for the collection protocol was granted by the 

Institutional Animal Care and Use Committees (IACUC) of the University of California Los 

Angeles (UCLA ARC # 2012-035-12), The Marine Mammal Center (TMMC protocol # 2008–

3), and the National Marine Mammal Laboratory (NMML Alaska Northwest 2013–1 and 2013–

5). The University of California Los Angeles is accredited by AAALAC International, and all 

agencies (TMMC, NMML and UCLA) adhere to the United States Public Health Service Policy 

on the Humane Care and Use of Laboratory Animals and the United States Department of 

Agriculture (USDA) Welfare Act.  
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Table 2.1: Descriptive characteristics of California sea lion data by shedding status. Characteristics 
are shown by Leptospira PCR status for training data (left) and test data (right). Within group percentages 
are proportions of column totals for each category. 
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2.3.3 Leptospira PCR Data (Dependent Variable) 

Leptospira shedding was assessed using real-time polymerase chain reaction (PCR) targeting the 

LipL32 gene to detect Leptospira DNA in urine or kidney samples (Wu et al., 2014). Urine was 

collected aseptically by catheterization or cystocentesis, and kidney samples were collected 

aseptically at necropsy (Table 2.1).  Urine pellets were collected in cases where at least 4 ml of 

urine was available: 2 ml were aliquoted into a 2 ml cryovial tube, the remaining 2+ ml were 

centrifuged into a pellet and resuspended in supernatant or phosphate buffer saline (PBS). When 

available, urine pellets were prioritized for PCR testing as described in Prager et al. (2013). Of 

the animals that had both kidney and urine samples available (n=47), paired PCR results were 

100% consistent between the two sample types (19 positive and 28 negative). This was also true 

for the subset of those animals which had all three (kidney, urine and urine pellets) sample types 

available (n=8; 4 positive and 4 negative). Results from all sample types were therefore 

considered equivalent with regards to Leptospira shedding and infectiousness.  

 

2.3.4 Details of Covariates (Independent Variables) 

2.3.4.1 Leptospira Covariates  

2.3.4.1.1 Serum Antibody Titers 

Past exposure to Leptospira was assessed via (MAT) conducted at the Centers for Disease 

Control and Prevention (CDC; Atlanta, Georgia, USA) or the California Animal Health and 

Food Safety Laboratory (CAHFS; Davis, California, USA). This test detects the presence of anti-

Leptospira antibodies in serum, which clump when samples are combined with live cultures of 

Leptospira reference strains (Levett, 2001). Serum samples were assessed at doubling dilutions. 

Endpoint titers were the highest dilution that achieved 50% agglutination using the reference 
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strain being tested and are presented on a log-transformed scale, where zero corresponds to 

seronegativity and each unit increase corresponds to a two-fold dilution starting at 1:100 (Faine 

et al., 1999). Titers are higher following acute clinical infections (median of 1:102,400) and 

decay rapidly for 1-6 months, with lower titers persisting for as long as 3 years after an infection 

in some animals (Prager et al., 2020). Although samples were tested against a panel of potential 

serovars, only antibody titers against Leptospira interrogans serovar Pomona were used for this 

analysis because Pomona is the only serovar ever isolated from California sea lions (Zuerner & 

Alt, 2009). Hereafter, the phrase antibody titers will refer to results from the MAT diagnostic 

test. Seropositive and seronegative refers to animals that were positive or negative for antibody 

titers, respectively, using the conventional definition of titers less than 1:100 as negative (Table 

2.1).  

 

2.3.4.1.2 Leptospirosis Cases 

Current evidence shows that most symptomatic animals shed for 2-4 weeks, while others with 

chronic infections can shed for much longer (Buhnerkempe et al., 2017; Prager et al., 2013, 

2015, 2020). As a proxy for the incidence of leptospirosis in the CSL population during the prior 

3 months (acute) and 12 months (chronic), we use the total number of leptospirosis cases at 

TMMC recorded during those periods.  Leptospirosis cases at TMMC are designated by clinical 

staff and defined based on a combination of clinical signs, serum chemistry results indicative of 

kidney failure (BUN>100 mg/dl, creatinine >2 mg/dl, sodium >155 meq/L, and phosphorus > 

calcium), kidney pathology, serum antibody titers (MAT) to Leptospira interrogans serovar 

Pomona (>1:3200), or positive PCR or culture results (Greig et al., 2005; Gulland et al., 1996). 
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2.3.4.2 Environmental Covariates 

Both season and oceanographic indices have been associated with leptospirosis in California sea 

lions. Due to seasonal outbreaks that typically span the second half of the year with peaks in the 

fall (Buhnerkempe et al., 2017; Gulland et al., 1996), season was incorporated on a quarterly 

basis (Winter: Jan-Mar; Spring: April-June; Summer: July-Sept; Fall: Oct-Dec). We also 

incorporated a limited set of oceanographic indices, based on associations with productivity in 

the California Current, impacts on sea lion prey sources, and effects on Leptospira outbreak 

intensity in the sea lion population (Borremans et al., In Preparation): sea surface temperature 

(SST), upwelling index (UPW), and the timing of spring transition (ST) of upwelling intensity 

(Bograd et al., 2009; DeLong et al., 2017; Melin et al., 2008, 2010). Sea surface temperatures 

can affect the abundance and location of sea lion prey, and have also been linked to sea lion 

foraging and survival (Melin et al., 2010; DeLong et al., 2017). Upwelling can also impact sea 

lion survival and movement through prey abundance and location, as upwelling conditions drive 

marine productivity via transport of micronutrients to the coastal ecosystem which influence prey 

resources, and an earlier start to the upwelling season (known as spring transition) can result in 

longer periods of nutrient availability and ecosystem productivity (Chavez et al., 2003; Bograd et 

al., 2009). Variations in sea lion prey abundance and distributions can impact sea lion condition, 

with the potential to affect sea lion health and immunity.  

 

Upwelling data are freely available from the Pacific Fisheries Environmental Laboratory 

(www.pfeg.noaa.gov), and sea surface temperature data are freely available from the National 

Data Buoy Center (www.ndbc.noaa.gov). In addition to providing a measure of the upwelling 

index, data from these buoys were used to assess spring transition timing, calculated as the day 
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between January and June when the cumulative upwelling index reaches a minimum value 

(Bograd et al., 2009). Upwelling data were measured at 36N latitude to represent the prevailing 

conditions on the central California coast, where the majority of our data were collected. Sea 

surface temperature data were obtained from a combination of buoys since no single buoy had 

data available for the full study period: 46026 (37.755N, 122.839W), 46028 (35.712N, 

121.858W), and 46042 (36.785N, 122.398W). Monthly anomalies were calculated for SST and 

UPW by subtracting the mean value for each calendar month across all years from observed 

monthly values. Monthly anomalies were then averaged across the previous 3 and 12 months to 

approximate potential impacts at two time scales: short-term (reflecting direct effects on sea 

lions and their prey) and longer term (mediated by primary productivity effects which take 

longer to cascade up the food chain and impact sea lions). We also considered two possible 

indices for the spring transition of upwelling intensity, by calculating spring transition anomalies 

for both the current year and the year prior, as timing can be associated with reduced marine 

productivity the following year (Bograd et al., 2009).  

 

2.3.4.3 Demographic Covariates 

Age and sex were both included in the model, and were determined by experienced field 

biologists, veterinarians and personnel. Age classes were defined as follows : yearling males and 

females (12 - 23 months old), juvenile males (2 - 3 years old), juvenile females (2 - 4 years old), 

subadult males (4 - 7 years old), and adults (females 5+ years old and males 8+ years old; Greig, 

Gulland, and Kreuder 2005). Pups (less than 12 months old) were excluded from this study due 

to the very low number of animals (n=4) that met the data inclusion criteria.  
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2.3.4.4 Kidney Pathology Covariates 

Clinical leptospirosis cases are associated with primary renal pathology, leading to alterations in 

serum chemistry values that relate to kidney function (Gulland et al., 1996; Marcondes et al., 

1996; Prager et al., 2020). Following serum collection, serum chemistry was analyzed using an 

ACE Clinical Chemistry System (Alfa Wassermann, Inc., West Caldwell, New Jersey, USA), 

assessing concentrations of blood urea-nitrogen (BUN), calcium, chloride, creatinine, 

phosphorus, potassium and sodium. In stranded sea lions serum was collected within one week 

of admission to TMMC, and in wild sea lions serum was collected at the time of capture.   

 . 

2.4 STATISTICAL ANALYSIS 

2.4.1 Training Data  

2.4.1.1 Variable Selection with LASSO Regression 

To identify variables that are predictive of Leptospira shedding in CSL, the aggregate training 

dataset (n=617; Table 2.1) was analyzed using a least absolute shrinkage and selection operator 

(LASSO) logistic regression. This method aims to identify the most parsimonious predictors of 

an outcome (here, Leptospira shedding) by minimizing the residual sum of squares subject to a 

shrinkage parameter (λ) which restricts the coefficients of less important variables to zero 

(Tibshirani, 1996). This approach can yield more interpretable models when the number of 

predictors is large (Rasmussen & Bro, 2012), and has been applied in similar epidemiological 

contexts (Corsi et al., 2016; Zhang et al., 2021). LASSO is particularly well-suited for dealing 

with collinearity between predictor variables, which is useful in this analysis since 

oceanographic variables at different timescales were correlated (UPW 3 & 12 months: 

Spearman’s rho=0.61; SST 3 & 12 months: Spearman’s rho=0.71).  Using the R package 
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‘cv.glmnet’, the shrinkage parameter (λ) was selected through 10-fold cross-validation using 

binomial deviance as the cross-validated error measure (Friedman et al., 2010). We selected the 

largest lambda value with error within 1 standard error of minimum (‘Lambda.1se’), which is a 

standard approach to balance accuracy and parsimony (T. Hastie et al., 2009; Krstajic et al., 

2014). All analyses were done in R using version 3.6.1 (R Core Team, 2021). 

2.4.1.2 Estimating Parameter Uncertainty 

To assess uncertainty in the model parameters, we utilized the bootstrap approach introduced 

by Hastie et al. (2016). For each run of the bootstrap (n=1000), the aggregate training dataset 

was resampled with replacement to construct an equivalent sized dataset (n=617), after which 

the LASSO regression was used for variable selection as outlined above. This generated a set of 

1000 bootstrap coefficients for each covariate. We report the median coefficients with 95% 

confidence intervals (CI), which represent the central 95% of each bootstrapped coefficient 

distribution. We considered covariates to be significant predictors if they had non-zero median 

coefficients and did not contain zero in their 95% CI. Covariates are referred to as potential 

predictors if they had non-zero median coefficients but did contain zero in their 95% CI; as 

these variables were retained by the LASSO at least 50% of the time, they were considered to 

have some potential influence on shedding (which could be clarified with further research). For 

ease of interpretation, coefficients for our logistic regression models were presented as odds 

ratios (OR; Table S 2.1).  
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2.4.1.3 Final Model Construction 

The LASSO bootstrap was first performed on the aggregate training dataset (all data from 2010-

2018, excluding the period between 2013 and 2016) using all covariates (n=21), including anti-

Leptospira antibody data. To identify variables predictive of shedding in situations where 

antibody data may not be available, we excluded the antibody data and repeated the LASSO 

bootstrap using the remaining covariates (n=20). In each scenario, significant predictors from the 

LASSO bootstrap were incorporated into a predictive model of shedding. This resulted in two 

models: one model incorporating significant predictors when considering all available covariates 

(termed the Full model) and the other incorporating significant predictors when antibody data 

were excluded (termed the NoAb model). 

 

2.4.1.4 Assessment of Prediction Accuracy 

To generate shedding predictions from each selected model, along with associated uncertainties, 

we utilized the bootstrap distribution of model coefficients (n=1000). For each bootstrap run, the 

set of coefficients for significant variables was used to calculate the predicted probability of each 

animal being PCR positive using the logit equation. This yielded a bootstrap distribution of 1000 

predicted probabilities for each animal. We calculated the predicted shedding probability for 

each animal by taking the mean of this distribution, in order to average over model uncertainty 

while accounting for the covariance structure among the coefficient estimates.  

 

To assess the accuracy of each model at the individual level, we must choose a threshold for the 

predicted shedding probability above which an animal is predicted to be PCR positive. For each 

model, classification accuracy was assessed across different threshold probability levels to 
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identify the optimal predicted probability threshold that maximizes predictive accuracy (‘ROCit’ 

package in R). Using this optimal threshold, we calculated overall model accuracy based on the 

proportion of animals that were predicted correctly (accuracy = (true positives + true negatives) / 

total animals), and then resampled the data 1000 times to estimate 95% confidence intervals. 

 

2.4.1.5 Analysis in Data Subsets    

To assess what impact the sample population may have on predictors of shedding, we repeated 

the bootstrap LASSO regression using all covariates in three subsets of the training data (Table 

2.1). First, the aggregate dataset was divided into wild (n=404) and stranded (n=213) sea lions. 

Previous work identified occasional cases of shedding in seronegative animals, therefore we 

analyzed the subset of seronegative individuals (n=443) in a separate analysis to identify possible 

covariates beyond antibody titers that might predict shedding status in these unusual animals 

(Prager et al., 2020). In cases where significant predictors of shedding were present, we 

calculated accuracy using the models developed from the aggregate dataset (Full and NoAb 

models). 

 

2.4.2 Test data  

2.4.2.1 Out-of-sample Shedding Predictions 

To test the out-of-sample predictive accuracy of our models, the Full model and NoAb model 

(with coefficients estimated from the training data) were applied to the test dataset from 2006-

2009. To assess the Full model, data were selected from sea lions that had antibody titer data 

available during the 2006-2009 time period (n=805). The Full model and coefficients from the 

LASSO bootstrap were then applied to this dataset, yielding 1000 predicted shedding 
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probabilities, which were then averaged to get a predicted probability of shedding for each sea 

lion. Using the subset of animals in this dataset with PCR results (n=132), we calculated the out-

of-sample predictive accuracy of the model, and the dataset was resampled to calculate 95% 

confidence intervals. This process was repeated for the NoAb model using all animals that had 

serum chemistry results available (n=1074), with accuracy assessed as outlined above using the 

subset of those animals with PCR results (n=77).  

 

Results were then extrapolated to the broader population by plotting the monthly shedding 

predictions for all animals with suitable data in this time period, for each model (yielding n=805 

predictions from the Full model, and n=1074 predictions from the NoAb model). To assess the 

realism of these population-scale-predictions, we compiled estimates into monthly indices of the 

predicted prevalence of shedding in the sampled sea lion population, and compared these 

projections (with 95% binomial confidence intervals) to the time series of leptospirosis cases 

admitted at The Marine Mammal Center.  

 

2.5 RESULTS  

2.5.1 Training Data 

2.5.1.1 Variable Selection and Model Fitting - All Covariates 

To develop the Full model, we considered all 21 covariates, including antibody titer data. 

Antibody titers were the strongest predictor of shedding (Figure 2.1, Table S 2.1), with an odds 

ratio of 42.21 (95% CI: 20.35 - 121.86). This was the only significant variable and, therefore, the 

only one included in the Full model. Sex (male) and season (fall) were both potential predictors, 

though they had a much smaller influence on shedding, with odds ratios of 1.53 (95% CI: 1.00 - 
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3.48) and 1.36 (95% CI: 1.00 - 4.26) respectively. With a significant odds ratio approximately 

30-fold higher than both sex and season, antibody titer was the most important predictor of 

shedding within the full set of covariates considered here.  

 

2.5.1.2 Variable Selection and Model Fitting - Antibody Data Excluded 

To develop the NoAb model, we considered all covariates with the exception of antibody titer 

data. Both sex (male) and season (fall) were identified as significant predictors (Figure 2.1; Table 

S 2.1), with odds ratios of 2.96 (95% CI: 1.69-5.77) and 2.31 (95% CI: 1.2-5.08), respectively. 

Two additional variables indicative of kidney dysfunction also emerged as significant predictors 

of shedding: BUN (OR = 35.48, 95% CI: 12.20-384.64) and potassium (OR = 0.43, 95% CI: 

0.10-0.86). Additionally, upwelling anomalies (short and longer term) and spring transition were 

identified as potential predictors, indicating that they may have some additional but lesser 

influence on Leptospira shedding.  

 

2.5.1.3 Assessment of Prediction Accuracy  

To assess the accuracy of the Full model and the NoAb model, we needed to select a threshold 

for predicted shedding probability, above which an animal is predicted to be PCR positive. For 

each model, overall classification accuracy was assessed at different probability thresholds in 

order to identify the predicted probability threshold that maximizes predictive accuracy using the 

‘ROCit’ package in R (Figure S 2.1). Accuracy (true positives and true negatives / total samples) 

is maximized at a predicted shedding probability threshold of 0.37 for the Full model and 0.35 

for the NoAb model, yielding overall classification accuracy of 91.4% (95% CI : 88.9 - 93.5%) 

and 87.2% (95% CI : 84.4 - 89.8%), respectively (Figure 2.2; Table S 2.2). Adding potential 
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predictors to the Full model did not improve shedding predictions, resulting in an accuracy of 

91.9% (95% CI : 89.5 - 93.9%). Though we chose to optimize predictions by selecting the 

predicted probability threshold that maximized overall model accuracy, we note that a range of 

thresholds, including the intuitive threshold of 0.5 (i.e., 50% likelihood of shedding), would 

produce comparable accuracy for each model (Figure S 2.1).  This is likely because the predicted 

shedding probabilities are clustered at extreme values, with concentrations of points found near 

probabilities of zero and one, and fewer points at intermediate values (Figure 2.2). This 

clustering was mostly driven by high-confidence predictions that were correct, but one exception 

is the group of seronegative animals that were shedding (i.e., those with negative titers and 

positive PCR results). Since the Full model is based entirely on antibody titer, it predicts a very 

low shedding probability for animals with no titer value, resulting in a cluster of false negatives 

for these seronegative shedders (Figure 2.2).  

 

2.5.1.4 Variable Selection and Prediction Accuracy in Data Subsets 

2.5.1.4.1 Variable Selection in Stranded and Wild Sea Lions 

When evaluating the full set of covariates, predictors of shedding in wild (n=404) and stranded 

(n=213) sea lions mirrored those from the aggregate dataset. Antibody titers remained the only 

significant predictor of shedding in both wild (OR = 52.47, 95% CI: 1.49 - 1549.81) and 

stranded sea lions (OR = 24.41, 95% CI: 9.40 - 220.88; Table S 2.1). Potential predictors in 

stranded animals included sex (male), BUN and potassium, while season (fall) and sex (male) 

were potential predictors in wild sea lions. These potential predictors also echoed results from 

the aggregate dataset, where these variables were all significant and included in the NoAb model.  
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Figure 2.1 Predictors of Leptospira shedding in California sea lions, under models with and without 
antibody data available. Odds ratio distributions from a bootstrap LASSO regression (n=1000) are 
shown for all covariates including antibody titers (left), and all covariates excluding antibody data (right). 
Covariates were grouped into four broad classes: those that related to Leptospira (green), environment 
(orange), demographics (purple), and kidney pathology (pink). An odds ratio of 1 equates to a median 
coefficient of zero, indicating that the variable was not significant in that LASSO run.  
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Figure 2.2: Distributions of predicted shedding probabilities relative to true PCR test results for 
models with and without antibody data available. The left panel shows predicted shedding 
probabilities from the model developed considering all covariates (Full model), and the right panel shows 
predicted shedding probabilities from the model developed with antibody titer data excluded (NoAb 
model). Predicted probability of shedding (y-axis) is shown for all animals relative to true PCR status (x-
axis), with correctly classified individuals shown in blue and misclassified individuals shown in red. 
Predicted probability thresholds were selected to maximize model accuracy, above which animals were 
considered PCR positive. The optimal threshold estimated for the Full model was 0.37, while the optimal 
threshold for the NoAb model was 0.35 (horizontal dashed lines). 

 

 

When analyzing the wild and stranded subsets with antibody titers excluded, we identified the 

same four significant predictors as for the aggregate dataset, but they were split with two 

significant predictors for each subset. In stranded sea lions, BUN and potassium were both 

identified as significant predictors, with odds ratios of 12.80 (95% CI: 3.34-157.68) and 0.3 

(95% CI : 0.05 - 0.72), respectively. In wild sea lions, season (fall) and sex (male) were both 

significant, with odds ratios of 11.52 (95% CI : 2.52 - 49.66) and 2.48 (95% CI : 1.24 - 5.21), 

respectively. Potential predictors also echoed results from the aggregate training data, with sex 

(male) and BUN identified in stranded and wild sea lions, respectively.  
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2.5.1.4.2 Prediction Accuracy in Stranded and Wild Sea Lions 

The accuracy of the Full model and the NoAb model (as parameterized against the aggregate 

dataset) did not differ significantly in these subsets (Table S 2.2). When antibody data were 

included, accuracy of the Full model was 93.9% (95% CI : 89.8 - 96.7%) in stranded sea lions 

and 90.1% (95% CI: 86.8 - 92.8%) in wild sea lions, which was comparable to accuracy across 

the aggregate dataset (Table S 2.2). When antibody data were excluded, the accuracy of the 

NoAb model was 87.3% (95% CI : 82.1-91.5%) in stranded sea lions and 86.9% (95% CI: 83.2 - 

90.0%) in wild sea lions, which was again comparable to accuracy in the aggregate dataset 

(Table S 2.2). However, accuracy in wild sea lions appears to be driven largely by correct 

predictions for all of the wild animals that were PCR negative (n=343/404; 84.9%). Of the 

animals that were PCR positive, the model predicted 15% (n=9/61) correctly, while all of the 

others (n=52) had predicted probabilities of shedding that were non-zero but below the positivity 

threshold of 0.35 (median = 0.24; range 0.05-0.34).  

 

2.5.1.4.3 Variable Selection in Seronegative Sea Lions 

When seronegative animals (n=443) were assessed using all covariates, no significant predictors 

of shedding were identified. Only 36/443 (8%) of the seronegative animals were PCR positive, 

so the sample size of seronegative shedders may have been too small to detect any relationships 

that do exist. Season (fall) was the only potential predictor, though the magnitude of the median 

odds ratio was low (OR = 1.16, 95% CI : 1.00 - 2.31), so there is no evidence of a strong effect 

of season in these animals. Since no significant predictors were identified, prediction accuracy 

was not assessed in these animals.  
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2.5.2 Test Data  

2.5.2.1 Out-of-sample Prediction Accuracy 

Out-of-sample predictive accuracy was calculated by applying the Full model and NoAb model 

(both trained on the aggregate dataset from 2010-2018) to sea lion data from 2006-2009, 

comparing shedding predictions to known individual shedding status. Predictive accuracy of the 

Full model, calculated from animals that had antibody titer data available and a PCR test result 

(n=132/805), was 92.9% (95% CI 85.3-97.4%; Table S 2.2). Predictive accuracy for the NoAb 

model, calculated from animals that had serum chemistry and PCR test results available 

(n=77/1074), was 88.3% (95% CI 79.0-94.5%). For each model, out-of-sample predictive 

accuracy closely matched the predictive accuracy from the training dataset (Table S 2.2).  

 

2.5.2.2 Extrapolation to Population Scale 

After determining that the two models retained accuracy in the out-of-sample period, we applied 

them to back-project population-scale shedding prevalence in sea lions from 2006-2009. For 

each model, we estimated monthly shedding prevalence by compiling all shedding predictions 

from the broader test data, now including animals that did not have PCR results available. 

Despite using different covariates, the two models predicted similar population-scale patterns 

across seasons and across years (Figure 2.3A & B). Predictions from both models captured the 

known seasonality of leptospirosis outbreaks despite different seasonality in overall sample 

numbers, most notably the surges in 2007 and 2009, which were dominated by malnourished 

yearlings (Figure 2.3A & B). As a rough assessment of the accuracy of these population scale 

extrapolations, we compared them to data on monthly strandings due to leptospirosis at TMMC 

(Figure 2.3C). Predictions of both models aligned closely with the surveillance data, and both 
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accurately capture the 2009 season when total stranding numbers were high, but leptospirosis 

cases were low, with a corresponding lull in predicted shedding.   

 

 

 

Figure 2.3: Out-of-sample predictions of monthly shedding prevalence in the sea lion population, 
2006-2009. Using the Full model for animals with antibody titers available (A; n=805) and the NoAb 
model for animals with serum chemistry available (B; n=1074), we estimated the number of shedding 
individuals in each out-of-sample dataset. Animals predicted to be shedding by each model are shown as 
blue (A) and orange (B) filled bars, respectively, and monthly error bars denote the estimated 95% 
binomial confidence intervals. In these two panels (A & B), the filled gray bars show the number of 
samples tested by each model. The bottom panel (C) illustrates monthly strandings attributed to 
leptospirosis (gray bars; left y-axis) with simultaneous comparison of the proportion of shedders as 
predicted by the Full and NoAb models (blue and orange lines, respectively; right y-axis). The transparent 
colored ribbons denote the 95% binomial confidence interval for each model. The classifications from 
both models broadly track monthly sea lion leptospirosis strands at The Marine Mammal Center (n=382) 
during this time period. 
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2.6 DISCUSSION 

Pathogen shedding is a critical component of infectious disease transmission but understanding 

drivers of shedding is a complex challenge that involves disentangling multiple host traits and 

environmental factors that influence host-pathogen interactions. We leveraged a long-term 

intensive study of Leptospira in California sea lions to demonstrate the potential to develop 

predictive models of shedding even in free-ranging wildlife hosts. Our analysis found that highly 

accurate predictions of individual shedding status can be made across a range of datasets and 

available candidate predictors.  We confirmed that serum antibody titers are strong predictors of 

Leptospira shedding, which can yield >90% accurate predictions without the need for additional 

information. For the common circumstance when antibody data are not available, we 

demonstrate that almost equally accurate predictions of shedding status can be achieved using 

more readily available data. Remarkably, both models (with and without antibody titers) 

maintained their high accuracy when predicting shedding in out-of-sample data despite some 

differences in underlying data structure (Table 2.1). Encouraged by this success, we projected 

shedding estimates across the broader California sea lion population, obtaining patterns that 

aligned with epidemiological trends observed across a four-year period. 

 

The significant predictors of Leptospira shedding identified in this study align with established 

knowledge of this host-pathogen system. We confirmed that antibody titers are highly accurate 

(91.4%) predictors of Leptospira shedding in sea lions (Prager et al., 2020), and that the addition 

of other covariates examined here did not significantly improve predictions. Indeed, the effect of 

this relationship is so strong that it wasn’t until antibody titers were excluded that other 

covariates emerged as significant. When antibody data were excluded, significant predictors of 
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shedding (sex, season, BUN and potassium) were consistent with known patterns in leptospirosis 

cases, which have known associations with sex and season, and often experience serum 

chemistry alterations due to renal pathology (Greig et al., 2005; Gulland et al., 1996; Marcondes 

et al., 1996; Prager et al., 2020). Though antibody titers were far and away the most significant 

predictor of shedding, we were still able to produce highly accurate (87.2%) predictions by 

modeling this alternate set of significant covariates (Table S 2.2).  

 

Despite known associations of oceanographic indices with marine productivity, sea lion 

demography and leptospirosis outbreak intensity (Borremans et al., In Preparation), season was 

the only environmental covariate that emerged as a significant driver of individual shedding 

(Table S 2.1). Season (fall) was a potential predictor when antibody titer data were included, and 

became significant in the absence of titer data; this makes sense in light of the strong seasonality 

of leptospirosis incidence (Buhnerkempe et al., 2017), and the fact that shedding is most 

prevalent during the initial weeks of infection. In the absence of antibody titer data, upwelling 

and spring transition arose as potential predictors of shedding in the aggregate dataset, and the 

full suite of oceanographic covariates were potential predictors for wild sea lions. Oceanographic 

perturbations disrupt marine productivity, and may cause negative impacts on sea lion body 

condition that contribute to shedding in some, but not all, animals (e.g., perhaps only in those 

that remain chronically infected). However, our results do not reveal any consistent impact of 

oceanographic conditions on shedding at the individual scale. The impact of oceanographic 

conditions on leptospirosis outbreak intensity (Borremans et al., In Preparation) may instead be 

mediated by population-level effects such as alterations in sea lion movement, mixing, or contact 

rates, or by impacting individual susceptibility to infection rather than pathogen shedding. Future 
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work is needed to investigate the mechanisms underlying environmental impacts on leptospirosis 

outbreak intensity in sea lions, and additional data may help to clarify the role of these potential 

predictors.  

 

Our data for this analysis arose from animals sampled from two very different sources, so to 

assess the impact of sample population on our findings we examined predictors of shedding for 

stranded and wild sea lions separately. Significant coefficients were consistent with the findings 

from the aggregate training dataset, and antibody titers remained the most important predictor of 

shedding across all subgroups (Table S 2.1). When antibody data were excluded, the four 

variables that emerged as significant in the aggregate training dataset were evenly split between 

stranded and wild sea lions, with variables indicative of kidney disease (BUN and potassium) 

influencing shedding in stranded animals, and other variables (sex and season) influencing 

shedding in wild caught sea lions. This separation of predictors makes sense in light of selection 

conditions imposed on both groups. Stranded sea lions were affected by an injury or illness (e.g., 

clinical leptospirosis) severe enough to be admitted to TMMC, while wild sea lions were only 

caught, anesthetized and sampled if deemed apparently healthy on visual inspection. It was 

therefore unsurprising that kidney function was not a significant predictor of shedding in the 

apparently healthy wild sea lions. Conversely, signs of renal dysfunction were more predictive of 

Leptospira shedding in stranded animals (Prager et al., 2020), and it is possible that the heavy 

influence of kidney disease in stranded animals overshadowed the seasonal effect seen in the 

wild and aggregate datasets. Encouragingly, despite these differences, shedding prediction 

accuracy remained high in these subgroups (87 - 94%), demonstrating that these predictive 

models are broadly robust to differences in underlying sample populations. 
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Our study corroborated that a small proportion of seronegative sea lions were found to be 

shedding Leptospira (Table 2.1; Prager et al. 2020). Their lack of antibody titers makes it hard to 

predict shedding status in these animals, and indeed, this is the major source of prediction 

failures for our model that includes antibody data (Figure 2.2). Despite exploring a suite of 

possible shedding drivers in this group, no significant predictors were found, and it remains 

unclear what factors influence shedding in these animals. Previous work hypothesized that 

seronegative shedders may be either chronic carriers whose titer levels declined below detection, 

or animals in the early stages of infection whose immune systems hadn’t yet mounted a robust 

antibody response (Prager et al. 2020). The chronic carrier theory is consistent with the fact that 

64% of these animals (n=23/36) were sampled in 2012, the year following a large leptospirosis 

outbreak, though this explanation does not align well with age data since most of these animals 

were yearlings (n=13/23). The early infection theory is consistent with the fact that, though there 

were no significant predictors of seronegative shedding, season (fall) was a potential predictor in 

this group. This corresponds with the timing of incident leptospirosis cases, and therefore may 

represent a true effect if some of these individuals are in early stages of infection that have not 

yet mounted an antibody titer response (Table S 2.1). The hidden drivers of seronegative 

shedding may be uncovered by future work that increases the sample size of this group or 

focuses on other possible explanations, such as genetic or immune system markers that may be 

associated with chronic carriage and seronegative shedding. 

 

This analysis has some limitations, pertaining to both the data and modeling methods. With 

regard to the data, the composition of the sampled population was not split evenly between 

stranded (n=213/617; 35%) and wild-caught (n=404/617; 65%) sea lions. In addition to these 
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datasets being more or less likely, respectively, to have symptomatic infections than a true 

random sample of the wild population, the stranded data were further biased since 60% of all 

stranded animals with PCR data (n=129/213) were clinical leptospirosis cases. These differences 

likely contributed to the differences in significant predictors between the two datasets, and had 

differences been more extensive this would have affected the accuracy of the aggregate models. 

Fortunately, our models were quite robust to these differences, as evidenced by the high accuracy 

obtained when testing the aggregate models against the data subsets. Though accuracy in the 

wild animals was driven largely by correct predictions of the non-shedding majority, improved 

identification of shedding in wild animals could potentially be achieved by adjusting the 

positivity threshold in these animals, so it is important to take your sample population into 

consideration when making these selections. There were also limitations in the way we 

developed the models. We examined a targeted set of 21 possible covariates (to avoid data 

dredging), but this list was not comprehensive, and the specific definitions used for some 

variables may have masked associations. For example, the quarterly classification we used for 

season separates late summer cases from the fall cluster, and a broader seasonal classification 

dividing the year in two (January - June and July - December) might be more likely to capture 

earlier seasonal peaks of leptospirosis in stranded animals (Buhnerkempe et al., 2017; Gulland et 

al., 1996). Environmental covariates reflected conditions at certain spatial coordinates which 

may not capture variability across the system, and time lags for environmental data and 

leptospirosis cases, which were incorporated in an attempt to reflect short and long-term 

timescales, may have missed underlying spatiotemporal patterns. While alternative choices could 

reveal associations not uncovered in this analysis, these selections were made in a best effort to 

capture patterns without overfitting by using all possible covariate divisions. Future work should 
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continue to consider data patterns and sample population characteristics in order to minimize 

potential bias in model inferences.  

 

This study leveraged a long-term multidisciplinary research effort to develop predictive models 

of shedding for the globally significant zoonotic pathogen, Leptospira interrogans. Models 

generated highly accurate predictions of shedding status at the individual scale, which enabled 

shedding projections in broader sample populations that align with independently measured 

epidemiological patterns. This capacity for shedding prediction opens new opportunities to gain 

knowledge about shedding and transmission potential across both space (from sea lion 

rehabilitation centers with more limited resources) and time (from periods when research funding 

and shedding data were more limited). Understanding the drivers of shedding in host-pathogen 

systems is critical to disentangling transmission mechanisms, yielding benefits that are both 

fundamental and applied, from individual, population and ecosystem scales. In this system for 

example, these models could be used by clinicians to predict the shedding risk of individual 

animals in clinical settings to inform decisions on co-housing, or by ecologists or population 

managers at the population scale to direct future leptospirosis surveillance efforts or inform 

studies of epidemic dynamics in this species. More broadly, efforts to understand pathogen 

shedding have implications for cross-species transmission risk, as shedding is a direct contributor 

to the pathogen pressure that can cause spillover transmission to humans and other sympatric 

species (Plowright et al., 2017). This work builds on a growing body of research working to 

understand and predict pathogen shedding, highlighting the potential for the quantitative analysis 

of long-term ecological studies to obtain greater insights into transmission, host-pathogen 

dynamics, and disease control and prevention. 
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2.7 SUPPLEMENT 

 

 

 

Figure S 2.1: Test diagnostic performance estimates vary depending on the probability threshold 
for PCR classification. The sensitivity (blue), specificity (pink), and accuracy (black) of each model 
varies depending on the probability threshold chosen for PCR classification. Accuracy (true 
classifications / total samples) is maximized at a threshold of 0.37 for the Full model (A) and 0.35 for the 
NoAb model (B), denoted by vertical dashed lines. The gray bars surrounding the thresholds represent 
predictive accuracy within 1% of that reached at the optimum (dashed vertical line), indicating a wide 
range of probability thresholds that would produce comparable results.    
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Table S 2.1: Estimated odds ratios from a LASSO regression of Leptospira shedding outcome in the 
training data. Estimated odds ratios from bootstrap LASSO regression coefficients (n=1000) for all 
covariates. Values were calculated using all training data with and without titers included (A & B), in 
addition to the following data subsets: stranded (C & D), wild (E & F), and seronegative (G) sea lions. All 
values were converted to odds ratios for ease of interpretation, and an odds ratio of 1 equates to a median 
coefficient of zero. Median odds ratio values and 95% CI are presented in the table for each coefficient 
distribution. Significant covariates (those with a median OR≠1 that did not include one in 95% CI) are 
shown in bold with a gray background. 
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Table S 2.2: Model Accuracy in training and test data. Total accuracy ((true positives + true 
negatives) / total animals) is shown for the model developed with antibody titers included (Full model; 
left) and without antibody titers (NoAb model; right). The overall accuracy for the Full model and the 
NoAb model were based on predicted shedding probability thresholds of 0.37 and 0.35 respectively. 

 

 Full Model NoAb Model 

 
Training Data (2010-2018) 

Accuracy 
(95% CI) 

Accuracy 
(95% CI) 

Full (n=617) 91.4% 
(88.9-93.5%) 

87.2% 
(84.4-89.8%) 

Wild (n=404) 90.1% 
(86.8-92.8%) 

86.9% 
(83.2-90.0%) 

Strands (n=213) 93.9% 
(89.8-96.7%) 

87.3% 
(82.1-91.5%) 

Test Data (2006-2009) 

Animals with  
Antibody Data (n=805) 

92.9% 
(85.3-97.4%) 

 

Animals with Serum 
Chemistry Data (n=1074) 

 88.3% 
(79.0-94.5%) 
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3 An investigation of Leptospira in Southern California wildlife 
 

3.1 ABSTRACT 

This study contributes to cross-species surveillance efforts for the multi-host zoonotic pathogen 

Leptospira interrogans in the wildlife of coastal California. Leptospira interrogans serovar 

Pomona has affected California sea lions (Zalophus californianus) and Channel Island terrestrial 

mammals for years, and mainland terrestrial wildlife species remain a candidate source for 

observed pathogen introductions in local marine and island ecosystems. Though broad 

Leptospira surveys have been conducted in mainland mammals in coastal and northern 

California, less is known about Leptospira prevalence in southern California. To address this 

knowledge gap, we assess prevalence levels and risk factors for Leptospira in five common 

mammal species across the greater Los Angeles region: striped skunks (Mephitis mephitis), 

Northern raccoons (Procyon lotor), coyotes (Canis latrans), Virginia opossums (Didelphis 

virginiana), and fox squirrels (Sciuris niger). Three of these species are native to the Los 

Angeles region (striped skunks, raccoons and coyotes), while two are introduced (opossums and 

fox squirrels). Additional species and regions were sampled whenever possible. All five species 

exhibited exposure to Leptospira with seroprevalences ranging from 5-60%, and infections were 

detected in all species except fox squirrels, with infection prevalences ranging from 0.8-15.2%. 

Individuals from all host species were serologically reactive to serovar Pomona, with skunks, 

raccoons and coyotes reacting most strongly to this serovar, indicating that these mesocarnivores 

may contribute to a broader multi-host reservoir for this pathogen in coastal California. Sample 

distribution across a heterogeneous landscape provided us with the additional opportunity to 

assess potential risk factors for Leptospira in each species. None of the covariates explored here 

(age, sex, rainfall, or land class distribution within individual home range) were significant 
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drivers of exposure. This finding, together with Leptospira exposure or infection detected in all 

species of mammals sampled, indicates that Leptospira is present across the southern California 

landscape, and therefore poses a risk to both animal and human health in this region.  

 

3.2 INTRODUCTION 

Leptospirosis, the disease caused by pathogenic bacteria from the genus Leptospira, is the most 

widespread zoonotic pathogen in the world (Adler and de la Peña Moctezuma 2010; Fouts et al. 

2016). Though many pathogens, and all zoonotic pathogens, are capable of infecting multiple 

hosts, studying complex generalist pathogen systems remains a challenge, particularly in wildlife 

since multiple lines of data are required but resources and sample access are often limited (Viana 

et al., 2014). Leptospira is among the most generalist pathogens known to science, and has been 

detected in almost every species of mammal that has been tested (Adler & de la Peña 

Moctezuma, 2010). This bacteria is listed as an emerging pathogen of concern for humans 

(Levett, 2001), and is estimated to cause a million cases and 60,000 human deaths annually 

(Costa et al., 2015; Munoz-Zanzi et al., 2020). Transmission typically occurs indirectly when the 

mucus membranes of a susceptible host come in contact with a urine-contaminated environment 

(Monahan et al., 2008). Alternate routes of transmission also occur, including vertical or pseudo-

vertical transmission (in utero or through milk), sexual transmission, or direct contact with 

contaminated host tissues or urine (Ellis, 2015; Harrison & Fitzgerald, 1988; Minter et al., 2017). 

Humans may be more at risk if they work in close contact with animals (e.g., abattoir workers 

and veterinarians), and prevention measures such as protective clothing and rodent control have 

been emphasized as awareness increases surrounding this veterinary and public health concern 

(Hartskeerl et al., 2011). 
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Leptospires are motile aerobic spirochetes comprising more than 12 pathogenic species, which 

are further classified into over 250 pathogenic serovars based on the expression of cell surface 

antigens and serologic reactivity (Adler & de la Peña Moctezuma, 2010). Antigenically related 

serovars were traditionally grouped into serogroups, but neither serovar nor serogroup are 

reliable predictors of Leptospira species (Levett, 2015). Serovars are said to be adapted to 

specific maintenance host species that are typically less susceptible to severe disease (acquiring 

asymptomatic or flu-like infections), and maintenance host individuals can become chronic 

carriers which excrete leptospires in urine for extended periods (e.g., up to 60 weeks in cattle; 

Leonard et al., 1992). In contrast, when susceptible species referred to as accidental hosts acquire 

the disease, more severe infections can occur with symptoms ranging from asymptomatic to 

severe kidney failure and death. Current infection status can be tested from urine or kidney 

samples, using either polymerase chain reaction (PCR) to detect Leptospira DNA or cultures to 

detect live infectious leptospires. Past exposure to Leptospira (i.e., evidence of anti-Leptospira 

antibodies) is assessed using serum microscopic agglutination testing (MAT), the most widely 

used diagnostic test for Leptospira spp. (Adler & de la Peña Moctezuma, 2010; Faine et al., 

1999), with MAT panels typically including multiple serovars. Within an individual host, cross-

reacting antibodies can be detected by MAT, manifesting as detection of antibody titers against 

multiple different serovars included in an MAT panel (Blanco et al., 2016). The highest MAT 

titer from a given individual is often taken to reflect the serovar (or broader serogroup) of the 

causative infection, but this relationship is known to be imperfect (André-Fontaine & Triger, 

2018). Further work is needed to better understand the relationship between serology and 

infection, particularly in wildlife (Pedersen et al., 2018). 
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In the United States, roughly 100-150 human cases of leptospirosis are reported annually, with 

the majority occurring in Puerto Rico and Hawaii (Centers for Disease Control and Prevention, 

2018). Livestock, domestic dogs, and horses are also routinely vaccinated for, tested for, and 

diagnosed with Leptospira infections and leptospirosis, with many infections associated with 

wildlife-domestic animal spillover (Blessington et al., 2020; Davis et al., 2008; Gautam et al., 

2010). There is increasing awareness of leptospirosis in domestic dogs, who, like humans, are 

often infected by wildlife (Moore et al., 2006; Smith et al., 2021; Ward et al., 2004; White et al., 

2017). A reduction of urinary shedding remains a key objective of canine vaccination efforts 

(Schreiber et al., 2005), which have reduced the risk of human transmission and severe cases in 

children in the United States (Brown & Prescott, 2008). A previous survey conducted by the 

United States Department of Agriculture (USDA) demonstrated that Leptospira titers are 

common in a variety of wildlife species across the country, though more regional work is needed 

to understand the risk this poses to the health of humans, domestic pets and livestock (Pedersen 

et al., 2018). 

 

Extensive work has been done exploring Leptospira in coastal California wildlife, where both 

marine and terrestrial island mammals have been significantly impacted (Buhnerkempe et al., 

2017; Colagross-Schouten et al., 2002; Greig et al., 2005; Gulland et al., 1996; Lloyd-Smith et 

al., 2007; Mummah, 2021; Prager et al., 2020; Zuerner et al., 2009). Leptospira interrogans 

serovar Pomona has been circulating in California sea lions (Zalophus californianus) since the 

mid-1980s (Greig et al., 2005; Gulland et al., 1996). Sea lions present with symptoms ranging 

from asymptomatic chronic carriage to severe acute cases and fatalities (Lloyd-Smith et al., 

2007; Prager et al., 2013, 2015; Buhnerkempe et al., 2017; Prager et al., 2020), demonstrating 
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characteristics of both reservoir and accidental hosts with their endemic and epidemic cycles 

(Lloyd-Smith et al., 2007; Zuerner et al., 2009). A strain of Leptospira interrogans serovar 

Pomona, closely related to that seen in sea lions, is known to circulate in Channel Island foxes 

(Urocyon littoralis) and spotted skunks (Spilogale gracilis amphiala; Lloyd-Smith, 2021; 

Mummah, 2021). Phylogenetic analyses of Leptospira genomes isolated from sea lions, island 

foxes and spotted skunks show evidence of repeated introductions of new strains of serovar 

Pomona into the broader coastal ecosystem, but it remains unclear to what degree mainland and 

terrestrial wildlife contribute to past or ongoing cross-ecosystem transmission in this multi-host 

pathogen system (Borremans et al., 2019; Mummah, 2021). 

In mainland California, cases of leptospirosis are reported in humans, domestic animals, and 

wildlife annually, with an average of 7 human cases per year between 2017-2019 (California 

Department of Public Health, 2020; Gulland et al., 1996; Hennebelle et al., 2014; Meites et al., 

2004). It has been considered a potentially reemerging human pathogen in the region, and while 

reported human cases often originate out of state, it is likely underdiagnosed (Meites et al., 

2004).  A broad historical wildlife survey reported infections or evidence of prior exposure in 

multiple species, including bobcats (Lynx rufus), coyotes (Canis latrans), Northern raccoons 

(Procyon lotor), and striped skunks (Mephitis mephitis; Cirone et al., 1978), and other surveys 

have detected Leptospira in individual wildlife species such as black bears (Ursus americanus; 

Ruppanner et al., 1982) and wild pigs (Sus scrofa; Clark et al., 1983). Leptospira has been 

reported in southern California animals, including dogs (Greene, 1941), deer (Roug et al., 2012), 

and wild felids (Straub et al., 2021), though surveillance has been more thorough in more 

northern regions of California. Spatiotemporal patterns in northern domestic dogs revealed 
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spatial clusters of L. interrogans serovar Pomona, suggesting that wildlife contact is an important 

route of exposure (Hennebelle et al., 2013, 2014). A recent large-scale survey of wildlife in 

northern California detected Leptospira interrogans serovar Pomona in numerous host species 

(Straub & Foley, 2020). Mesocarnivores were recently demonstrated to play a substantial role in 

Leptospira circulation in California, and suggested that skunks and raccoons are potential 

reservoir hosts (Straub et al., 2020). Despite the comprehensive studies of Leptospira in coastal 

and northern California, there are many outstanding questions regarding the ecology of this 

pathogen, particularly concerning the prevalence levels in different host species of southern 

California wildlife. 

Disease ecology in urban ecosystems presents a particular set of challenges, owing to distinct 

ecological pressures on host communities, and higher human densities offering opportunities for 

zoonotic spillover. Urbanization affects wildlife in a variety of ways, including changes in 

resource use, higher exposure to toxicants, and alterations in community structure, contact rates, 

and movement barriers (Riley et al., 2014). All of these factors have the potential to influence 

pathogen dynamics and, crucially, the risk of transmission for zoonotic pathogens. Globally, 

urbanization has been highlighted as a potential risk factor for leptospirosis. Increased 

urbanization and climate change can lead to increased flood risk and more favorable 

environmental conditions for Leptospira survival and transmission (Lau et al., 2010). Past work 

on Leptospira in cities has often focused on rodents, which are known to be key hosts of specific 

serovars, in high-density urban centers and informal settlements (Boey et al., 2019; Costa et al., 

2015; Ko et al., 1999; Minter et al., 2018). There has been much less attention on other urban 

wildlife species, and connections to landscapes surrounding cities, despite the fact that 
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mesocarnivores and other urban-adapted species may play a significant role in the epidemiology 

of this multi-host pathogen (Straub et al., 2020; Straub & Foley, 2020). With more than half of 

the global population currently residing in urban areas (Neiderud, 2015), urbanization is 

becoming increasingly pervasive, making it crucial to understand and mitigate the impacts of 

anthropogenic change on wildlife health. Ongoing work to understand the impacts of land use 

modifications on public health risks is particularly important. The diverse landscape of greater 

Los Angeles features a range of environments, from natural areas and agricultural land to a dense 

urban center. In addition to the ten million humans that live in the region (United States Census 

Bureau, 2020), many sympatric wildlife species are also potential carriers of Leptospira bacteria, 

making it imperative to investigate the prevalence of this pathogen across host species in greater 

Los Angeles.  

 

We conducted the first in-depth surveillance of Leptospira in wildlife in the greater Los Angeles 

area. We assessed the prevalence of Leptospira exposure and active infections in mesocarnivores 

and rodents represented by five common mammal species, with additional non-target species and 

regions sampled opportunistically to complement existing knowledge of this pathogen in 

California. We examine patterns in serologic reactivity across species to gain insights into 

circulating serovars, with emphasis on illuminating the broader reservoir of L. interrogans 

serovar Pomona in southern California. The greater Los Angeles region additionally provides a 

unique opportunity to assess this multi-host pathogen, and potentially multiple infecting 

serovars, across a complex urban landscape. We explore a variety of possible predictors for 

Leptospira exposure, including land use, allowing us to evaluate how landscape may impact the 

prevalence of this bacteria in individual species throughout a diverse urbanization matrix. 
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Assessing the prevalence of and risk factors for this multi-host zoonotic pathogen in Los Angeles 

wildlife has implications for the public health of over ten million people and will additionally 

inform both veterinary and wildlife management agencies that manage the health of animals 

across the region.   

3.3 METHODS  

3.3.1 Study Animals 

This study focused primarily on wildlife from the greater Los Angeles region in Southern 

California. Opportunistic sample collection was approved by the California Department of Fish 

and Wildlife under scientific collecting permits SC-13267 & SC-13700 and took place from 

September 2015 to June 2020. For the purposes of this study, the greater Los Angeles region 

refers to Los Angeles County and surrounding counties: Orange, Riverside, San Bernardino, and 

Ventura. Sample collection focused on the following five common mammals in the Los Angeles 

region: striped skunk, Northern raccoon, coyote, Virginia opossum (Didelphis virginiana), and 

fox squirrel (Sciuris niger). These five species will be referred to as the core five (Table 3.1, 

Figure 3.1). Collaborating agencies that donated carcasses or existing samples include the 

California Wildlife Center (CWC), the Los Angeles County Department of Animal Care and 

Control (LADACC), the United States Department of Agriculture Animal and Plant Health 

Inspection Service (USDA APHIS), the Department of Defense (DOD) and the National Park 

Service (NPS). The majority of samples came from animals that were deceased following 

vehicle collisions, planned wildlife removal, or animals that were euthanized by animal control 

or rehabilitation agencies due to illness or injury. Carcasses were necropsied immediately or 

frozen at -20ºC and thawed in a refrigerator prior to necropsy. Animal measurements and 
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demographic information were collected at the time of necropsy, with age class 

(adult or juvenile) determined using a combination of animal size and tooth wear 

(Grau et al., 1970).  

Figure 3.1: Distribution of land classes and Leptospira sample locations for the core five species of 
wildlife in the greater Los Angeles region. Land classification data was obtained from the National 
Land Cover Database (2019). Data collection occurred from 2015-2020.  
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Table 3.1: Descriptive characteristics of the core five species of wildlife. Within group percentages are 
proportions of column totals. 

3.3.2 Sample Collection 

Serum and urine samples from external agencies were analyzed and included when available. In 

fresh carcasses, intracardiac blood was collected into serum separation tubes, then kept in a 

cooler with an ice pack until centrifugation using an Ample Scientific Champion E-33 benchtop 

centrifuge (1350 x g for 10-15 minutes). Kidney samples were collected from all animals that 

underwent a necropsy, and urine was collected when available using cystocentesis. The largest 

possible kidney sample that would fit in a 58 ml Whirl-PakⓇ was excised (approximate size: 

entire kidney from smaller mammals such as squirrels or half a kidney from larger mammals 

such as coyotes) and homogenized in the sealed Whirl-PakⓇ using manual pressure. Serum and 



74 

urine samples were transferred into cryovials prior to storage, and all cryovials and Whirl-PaksⓇ 

were stored at -20ºC or -80ºC prior to testing (-80ºC preferred when space was available).  

3.3.3 Leptospira Serology  

Past exposure to Leptospira was assessed by using microscopic agglutination testing (MAT). In 

this test, dark-field microscopy is used to assess the presence of anti-Leptospira antibodies in 

serum by evaluating agglutination (i.e., clumping) when samples are combined with live cultures 

of Leptospira species (Faine et al., 1999). Serum samples are tested at doubling dilutions, and the 

reported endpoint titers represent the highest dilution that achieved a 50% agglutination using the 

reference strain being tested. Samples from 2015-2017 were run at the California Animal Health 

and Food Safety Laboratory (CAHFS; Davis, California, USA) using their panel of 6 common 

serovars: Bratislava, Canicola, Grippotyphosa, Hardjo, Icterohaemorrhagiae, and Pomona. 

Samples from 2017-2019 were analyzed at the Centers for Disease Control and Prevention 

(CDC; Atlanta, Georgia, USA) using an expanded 20 serovar panel: Alexi, Australis, 

Autumnalis, Ballum, Bataviae, Borinca, Bratislava, Canicola, Celledoni, Cynopteri, Djasiman, 

Georgia, Grippotyphosa, Icterohaemorrhagiae, Javanica, Mankarso, Pomona, Pyrogenes, 

Tarassovi, Wolffi. To assess consistency between these two laboratories, a subset of wildlife 

samples was tested at both laboratories (n=469), demonstrating 98.3% agreement in 

seropositivity and minor quantitative differences between titers. 

3.3.4 Leptospira PCR Analysis 

Leptospira infections were assessed using a quantitative polymerase chain reaction (qPCR) assay 

targeting the LipL32 gene as detailed in Wu et al. (2014). Pathogenic Leptospira DNA was 
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assessed in sterile urine (collected by cystocentesis) and homogenized kidney samples. Testing 

was conducted at either the Hollings Marine Laboratory in Charleston, South Carolina, USA or 

Colorado State University Veterinary Diagnostic Laboratory in Denver, Colorado, USA. 

Samples run at Colorado State University were additionally tested using the VetMAXTM qPCR 

Master Mix kit, using VetMAXTM suggested reagent volumes in conjunction with the primer and 

probe concentrations as specified by Wu et al. (2014). Samples that had a cycle threshold less 

than 37 were considered positive.  

 

3.3.5 Data Analysis 

Prevalence was estimated for Leptospira exposure and infections. For Leptospira serology, 

individuals could be reactive to multiple serovars, so seroprevalence was calculated by species in 

two ways: proportion positive against any serovar, and proportion positive within each specific 

serovar. All 95% binomial confidence intervals were estimated using package ‘PropCIs’ in 

program R using version 3.6.1 (R Core Team, 2021). Additional analyses were done in R using 

version 3.6.1 (R Core Team, 2021), and maps were created using ArcGIS version 10.8.2 (ESRI 

Inc., 2017). 

 

Annual rainfall at each sample location was estimated from high resolution (1km2) precipitation 

data (Fick and Hijmans, 2017). Land cover analysis was conducted as detailed in Adducci II et 

al. (2020) using freely available land cover data from the National Land Cover Database (US. 

Geological Survey (USGS), 2019).  The localities of our samples were spread across a landscape 

gradient, ranging from natural vegetation and open space to the urban core of the city (Figure 

3.1)To account for land cover variation within home ranges, we extracted 2019 land cover data 
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(30 x 30m resolution) from home range buffers around each georeferenced sampling locality 

using the ‘raster’ and ‘rgdal’ packages in R (R Core Team, 2021). Buffer size varied by species 

based on home range estimates previously reported in the literature: 5 km2 for coyotes (Adducci 

II et al., 2020), 2 km2 for raccoons and striped skunks (Šálek et al., 2015), 1 km2 for opossums 

(Wright et al., 2012), and 0.5 km2 for fox squirrels (Prince et al., 2014). As detailed in Adducci II 

et al. (2020) we grouped land cover classifications into three composite categories: 

urban/suburban land (20-100% impervious surface cover), agricultural/open land (made up of 

agricultural and open development zones with <20% impervious surface cover), and natural land 

(zones dominated by shrublands, forest, grassland and wetland). We then calculated the relative 

proportions of these three land classes for each individual buffer, and used ternary plots to show 

Leptospira exposure (i.e., presence of antibodies) relative to land class categories (Figure S 3.1).  

 

We used logistic regression to explore potential predictors of Leptospira exposure (as indicated 

by an antibody titer of 1:100 or higher to any serovar). The following covariates were 

considered: age class, sex, annual rainfall, season (wet Nov-April; dry May-Oct), and composite 

land class category (developed vs. agricultural/open vs. natural). Antibody titers have been 

identified as significant predictors of PCR status in California sea lions (Prager et al., 2020). We 

therefore explored this association in raccoons, the only species with a sufficient number of 

paired antibody-PCR samples available (n=81). Since this data exhibited complete separation 

(i.e., a clear distinction between the two outcome levels), we applied a Firth’s bias-reduced 

logistic regression (Firth, 1993) using the ‘logistf’ package in R to assess the association between 

antibody titers and PCR data. A Firth’s regression is a penalized maximum likelihood approach, 

which is effective in the presence of data separation (Firth, 1993). 
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3.3.6 Additional Species & Regions 

On an opportunistic basis, we also tested samples provided by other agencies that included non-

target regions of California and non-target species, including ground squirrels (Otospermophilus 

beecheyi), desert cottontails (Sylvilagus audubonii), feral pigs, bobcats, gray foxes (Urocyon 

cinereoargenteus), and red foxes (Vulpes vulpes). A total of 255 additional samples were 

collected from September 2015 thru May 2020. This included non-target species in the greater 

Los Angeles region (n=93), and all species from the following additional counties: Monterey 

(n=86), San Luis Obispo (n=61), Santa Barbara (n=15; Table S 3.1). 

3.4 RESULTS 

3.4.1 Leptospira Serology to Detect Exposure 

We detected evidence of Leptospira exposure in all five core species sampled in the greater Los 

Angeles region (Figure 3.2, Table 3.2). We first considered overall seroprevalence in each 

species, calculated as the proportion positive against any serovar. Fox squirrels had the highest 

overall seroprevalence at 60.6% (n=66/109, 95% CI: 50.7-69.8; Table 3.2), though titer levels in 

this species were typically low, and 65.2% (n=43/66) of seropositive squirrels had maximum 

titers measured at 1:100 or 1:200 (Table 3.2). Other species had lower seroprevalence levels; 

positivity in raccoons was 32.6% (n=31/95, 95% CI: 23.4-43.0), followed by striped skunks at 

28.6% (n=6/21; 95% CI: 11.3-52.2), coyotes at 25.5% (n=14/55, 95% CI: 14.7-39.0), and 

opossums at 5.2% (n=5/97; 95% CI: 1.7-11.6). These levels were similar to seroprevalence 

levels reported in northern California by Straub and Foley (2020), who detected antibodies in 

42% of fox squirrels (n=15/36; 95% CI: 27-58), 44% of raccoons (n=52/119; 95% CI: 35-53), 

38% of striped skunks (n=78/206; 95% CI: 32-45), 30% of coyotes (n=6/20; 95% CI :15-52), 
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and 6% of opossums (n=2/32; 95% CI: 2-20). To gain insight into the strains giving rise to these 

overall levels of exposure, we first considered only the focal serovars which were tested for all 

animals in the study (serovars Bratislava, Canicola, Grippotyphosa, Icterohaemorrhagiae, and 

Pomona). We examined all positive MAT results to determine the full range of titer magnitude, 

the frequency of antibody detection against specific serovars, and the presence of antibody cross-

reactivity within each of the five core host species (Figure 3.3, Table S 3.2). All host species 

were serologically reactive to multiple serovars, and serovar Pomona was detected in all species 

(Figure 3.3). We then determined the serovar with the maximum MAT titer in each individual as 

the best available indication of infecting serovar (Table 3.3; André-Fontaine & Triger, 2018). 

Antibody titers against serovar Pomona were most frequently the highest in skunks, raccoons, 

and coyotes (100%, 85%, and 57%; Table 3.3), consistent with recent work in northern 

California that identified serovar Pomona as predominant in these species (Straub & Foley, 

2020). Fox squirrels exhibited a clearly distinct pattern, with highest titers most often to serovar 

Icterohaemorrhagiae (71%), which was not highly reactive in any of the other species. Of the 

two opossums that were reactive to this panel, one individual (the only opossum in this study 

with an active infection) had a maximum titer to serovar Pomona (1:12800). We emphasize that 

these maximum titer patterns do not give definitive information on the infecting serovar; 

confirmation would require genetic analysis of a culture isolate.  

 

We then considered MAT results for serovars that were not tested at both laboratories, so results 

are available for only a subset of animals (Table S 3.2). The serovar with the highest proportion 

of positive titers varied by species, with skunks, raccoons, coyotes, opossums and fox squirrels 

respectively testing positive most often to serovars Autumnalis (42.9%; n=3/7), Pomona (42.5%; 
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n=54/127), Autumnalis (27.9%; n=12/43), Hardjo (9.3%; n=7/75) and Hardjo (66.7%; n=34/51). 

We noted that titers against serovars Pomona and Autumnalis were strongly correlated in coyotes 

(Spearman’s rho = 0.81), which is consistent with a similar correlation identified between these 

serovars in domestic dogs (Moore et al., 2006). Though Autumnalis was most frequently positive 

in skunks and coyotes, Pomona was not significantly lower and comprised a larger sample size 

(and total that tested positive) in both species, with 29.2% (n=7/24) and 19.7% (n=14/71) of 

animals testing positive, respectively. Furthermore, in Channel Island foxes we have found that 

animals infected with serovar Pomona (as confirmed by genetic analysis of an isolate) frequently 

have higher MAT titers against serovar Autumnalis than against serovar Pomona (Mummah et 

al., In Preparation). In aggregate, the data from coyotes and skunks are consistent with serovar 

Pomona being the major strain causing their infections. An additional seven opossums were 

reactive to serovar Hardjo, making this the most commonly positive serovar overall in this 

species, though Pomona was still the highest peak titer in this species (1:12800) in the animal 

with an active infection (Table S 3.2). Aside from the low titer reactions to serovar Hardjo that 

more than doubled the overall seroprevalence of opossums, the majority of our conclusions did 

not change with the consideration of the expanded serovar panel, with Icterohaemorrhagiae still 

predominant in squirrels and Pomona still considered predominant in all other species (Table S 

3.2; Mummah et al., In Preparation).  
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Table 3.2: Leptospira exposure and infection results by species. Leptospira antibody (MAT) and DNA 
(PCR) results in the five core species sampled in the greater Los Angeles region. Antibody results include 
seropositives to all serovars tested. 

 

 

 

Figure 3.2: Location of sample collection and associated Leptospira exposure and infection results 
for the five core wildlife species. Host sample locations are indicated in the left-hand panels, with the 
locations of positive results shown in maps on the right. Samples tested by MAT for serum antibodies are 
shown in the top row, and those tested by PCR for Leptospira DNA are shown on the bottom row.  



 81 

 

Figure 3.3: Samples positive for antibodies shown by serovar, species and titer level. Positive 
antibody results (MAT) for each of the five serovars that were tested at both laboratories. Antibody 
titer (x-axis) is shown on a log scale (1:100 equivalent to 1, 1:200 equivalent to 2, etc.). 

 

 

Table 3.3: Maximum antibody titers for the five core wildlife species. Maximum antibody titers 
(MAT) for each of the five serovars tested at both laboratories (serovars Bratislava, Canicola, 
Grippotyphosa, Icterohaemorrhagiae, and Pomona), reported for the five core species sampled in the 
greater Los Angeles region. Serovars that are not shown never had a maximum titer. In cases where there 
were ties for maximum titer, both serovars were counted in the table. 
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3.4.2 Leptospira PCR to Detect Active Infections 

Infections were detected in all species except fox squirrels, with the prevalence of infection 

within species consistently lower than corresponding seroprevalence levels (Table 3.2, Figure 

3.2). The lack of active infections detected in fox squirrels was surprising because 

seroprevalence was highest in this species. Infection prevalence ranged from 0.8% in opossums 

(n=1/132; 95% CI : 0.0-4.2) to 15% in skunks (n=5/34; 95% CI : 5.1-31.9), with coyotes and 

raccoons both intermediate at 3.7% (n=4/107; 95% CI : 1.0-9.3) and 8.6% (n=14/163; 95% CI : 

4.8-14.1), respectively. Infection levels detected here were lower than reported in northern 

California by Straub and Foley (2020), who detected positive results in 28% of striped skunks 

(n=40/141; 95% CI: 22-36), 26% of raccoons (n=23/87; 95% CI : 18-37), 100% of coyotes  

(n=2/2; 95% CI : 34-100), 17% of opossums (n=1/6; 95% CI : 3-56), and 13% fox squirrels 

(n=4/31; 95% CI : 5-29).  

 

3.4.3 Data Analysis 

Leptospira exposure was detected throughout the sampled ranges of each host species (Figure 

3.2). When we evaluated sample location relative to the composite land cover classes, we could 

see indications that different species were using the landscape in different ways. For instance, 

fox squirrel and opossum samples were clustered around areas with higher levels of human 

development, providing evidence for increased use of urban and suburban regions in these non-

native species (Figure S 3.1). In contrast, coyotes and raccoons were found across all land 

classes. When we evaluated Leptospira exposure data in light of these land classes, no clear 

patterns emerged to distinguish the locations of positive and negative samples (Figure 3.2, Figure 

S 3.1), indicating that Leptospira circulates throughout the sampled range of each host species.  
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To probe how exposure patterns are influenced by landscape type alongside seasonal and 

demographic factors, we used logistic regressions to assess possible correlates for Leptospira 

exposure in all species except skunks, which were excluded due to small overall sample size 

(n=21). Of the covariates explored here (age, sex, rainfall, county, season, and composite land 

class), none exhibited significant correlations with Leptospira exposure in any of the core species 

(all p-values > 0.12 in univariate analysis). The lack of correlation between Leptospira exposure 

and composite land classification aligns with what is seen in the ternary plots (Figure S 3.1), 

supporting that Leptospira is distributed throughout the sampled range of these species.  

 

In Chapter 2, I demonstrated that MAT titers can be effective predictors of Leptospira shedding 

in California sea lions, which is consistent with previous findings (Prager et al., 2020). Based on 

this finding, we used paired titer-PCR results to analyze the association between maximum 

antibody titer against any serovar and active infection, for which only raccoons had a sufficient 

sample size (n=81). Of the 81 animals that had paired samples available, 29 were seropositive, 

and 86% of seropositive animals (n=25/29) had maximum titers to serovar Pomona. We found 

that individual maximum titers were significant predictors of shedding status in this species 

(Firth’s logistic regression; p-value = 2.09 x 10-9). Individuals with titers above log 5 (1:1600) 

were predicted to be highly likely to be actively shedding Leptospira (Figure 3.4).  
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Figure 3.4: The predicted probability of raccoons being PCR positive relative to maximum 
antibody titer to any serovar. When paired antibody-PCR data were fit with a Firth’s logistic regression 
(black line), individuals with titers greater than 1:1600 (Log 5) are predicted to be at least 80% likely to 
be PCR positive. 

 

3.4.4 Additional Species & Regions 

The non-core dataset (n=241 from 12 species) was comprised of samples from non-target 

counties (n=153) and species (n=143). Though none of the 72 animals tested by PCR were 

positive, antibodies were detected in 31.6% of non-core animals (n=61/19), with seroprevalence 

levels in individual species ranging from 0% to 100% (Table S 3.1). Of the non-target species in 

the greater Los Angeles region, 10% (n=3/38) of desert cottontails were seropositive, with 

maximum titers (ranging from 1:100 to 1:800) split between serovars Georgia, 

Icterohaemorrhagiae, and Pomona (Table S 3.2). Of the bobcats tested, 45% (n=5/11) were 

seropositive, with titers to Pomona and Bratislava most frequently positive (Table S 3.2). Wild 

pigs, all from San Luis Obispo (Table S 3.1), were more frequently reactive to serovars 
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Bratislava (20%; n=8/40), Autumnalis (12.5%; 5/40), Djasiman (10%; 4/40) and Pomona (7.5%; 

3/40; Table S 3.2).   

 

3.5 DISCUSSION 

We conducted a large-scale survey of Leptospira interrogans in mainland terrestrial mammals in 

California, focusing on the understudied region of southern California, with two goals: 1) to 

identify the prevalence, potential risk factors and public health risks associated with this bacteria 

in the greater Los Angeles region, and 2) to assess serological patterns to inform our knowledge 

of broader multi-host circulation of Leptospira in coastal California wildlife. We identified 

Leptospira exposure in all target species sampled and detected active infections in most species. 

Widespread evidence of exposure, along with the fact that exposure patterns were not correlated 

with any tested risk factors, highlight that this pathogen is endemic and circulating throughout 

the sampled range of these wildlife species.  

 

In our core five species (skunks, raccoons, coyotes, opossums and fox squirrels) sampled in the 

greater Los Angeles area, we detected low to moderate levels of Leptospira infection (0-15%) 

and markedly higher seroprevalence levels (5-60%; Table 3.2). As serovar Pomona has been 

commonly detected in the broader coastal California ecosystem, we focused on identifying hosts 

that were reactive to this serovar of interest. Seroreactivity patterns detected here provide further 

evidence that serovar Pomona is common in California wildlife (Mummah, 2021; Zuerner et al., 

2009), particularly mesocarnivores (Straub et al., 2020; Straub & Foley, 2020), indicating that 

these terrestrial species may be playing a role in the better-studied circulation of serovar Pomona 

in the broader coastal ecosystem (Lloyd-Smith et al., 2007; Mummah, 2021; Prager et al., 2013). 
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Antibody titers to serovar Pomona were detected in all species, though it is likely that some of 

these detections reflect cross-reactivity among serovars in the MAT assay. We focused on which 

serovar had the highest titer, as a rough, though not foolproof, proxy for the serovar causing 

infection (Table 3.3; André-Fontaine & Triger, 2018). Among serovars tested for all animals, 

serovar Pomona was the most common maximum titer in coyotes, raccoons, and skunks, 

consistent with findings in northern California where serovar Pomona predominated in these 

mesocarnivores (Straub & Foley, 2020). Conversely, squirrels showed minimal reactivity to 

serovar Pomona and typically had low maximum titers to serovar Icterohaemorrhagiae, which 

was not highly reactive in other species.  

 

Though the prevalence of infection was lowest in Los Angeles opossums and fox squirrels, 

interesting patterns emerged in the results of these species. Only one opossum tested had an 

active infection, and their seroprevalence was the lowest of all species in our study (Table 3.2). 

This is consistent with smaller Leptospira surveys of opossums in California which have found 

negative (Krueger et al., 2016) or low prevalence results (Straub & Foley, 2020). Some 

opossums fail to mount strong antibody responses to some Leptospira (Reilly, 1970), and the 

only opossum found to be shedding by Straub & Foley (2020) was seronegative. However, the 

one infected opossum detected in this study exhibited a high (1:12800) antibody response to 

serovar Pomona, indicating that strong serologic responses are possible in this species. Prior 

findings of seronegative shedders may represent later phases of infection, after antibody 

responses decline, or could represent a subset of individuals who do not mount antibody 

responses. Fox squirrels exhibited the highest seroprevalence of all our core hosts, but no active 

infections were detected in this species (Table 3.2). This could be due to a shorter duration of 
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shedding, longer duration of titer decay (and hence seropositivity), or potentially an alternate 

route of transmission (e.g., sexual) and associated tissue distribution which could explain the 

lack of detection in the urinary tract. Leptospira spp. have been isolated from fox squirrels before 

in cases where antibody titers were low, though high titers in this species are possible. 

Leptospira interrogans serovar Grippotyphosa was isolated from the kidney of a fox squirrel that 

had a low serum antibody titer (1:50) against its own isolate (Diesch et al., 1967). A more recent 

study of Colorado fox squirrels found evidence of L. interrogans infections with associated renal 

disease, and antibody titers against serovars Grippotyphosa, Hardjo, Icterohaemorrhagiae and 

Pomona ranging from 1:100 to 1:102,400 depending on the serovar (Dirsmith et al., 2013). These 

prior studies in fox squirrels show that Leptospira has been isolated from kidneys and that 

Icterohaemorrhagiae titers can be as high as 1:102,400, but active infections in this species may 

have low titers or be seronegative using conventional MAT. 

 

The prevalence of infection that we detected in urban mammals of the greater Los Angeles was 

lower than reported for the same species in northern California (Straub & Foley, 2020). This may 

reflect true regional differences, though comparisons across studies should be considered 

carefully, as differences between laboratory assay protocols can impact PCR results. For 

example, Straub et al. (2020) used a Ct cycle threshold of 45 to define positivity in their PCR 

assay, which would have higher sensitivity than the cycle threshold of 37 used in this study. 

However, we expect quantitative differences to be relatively minor, and qualitative comparisons 

should still be valid across studies. Regional differences in leptospirosis incidence could also be 

partially attributable to environmental differences between northern and southern California. 

Landscape and environmental factors are known to impact Leptospira, as wet environmental 
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conditions facilitate the bacteria’s survival and transmission. Higher rainfall is associated with 

higher Leptospira incidence in domestic dogs (Ward, 2002), including the wetter region of 

northern California (Adin & Cowgill, 2000). Though Straub and Foley (2020) did not detect a 

seasonal pattern in wildlife data, neither this nor previous studies compared extensive results 

from both regions, and a broader survey across the state may be more likely to detect 

environmental patterns in the future. 

 

Across all regions and species, the majority of seropositive animals were reactive to multiple 

serovars (65%; n=120/184), which aligns with typical patterns of cross-reactivity in MAT data, 

though infections with multiple serovars could also be possible in some cases. Distinguishing 

these outcomes and making sense of serological patterns and associated PCR data is a field of 

ongoing research in Leptospira ecology. Serovar reactivity patterns in several species in our 

dataset echo patterns observed in the terrestrial mammals on the Channel Islands. Namely, titers 

against serovars Pomona and Autumnalis were found to be positively correlated in coyotes, 

mirroring the association commonly observed in island foxes (Mummah et al., In Preparation). 

These patterns suggest that the same (or closely related) strains of L. interrogans serovar 

Pomona may be circulating in coastal mesocarnivores and island foxes, but this is not definitive 

evidence since the same study showed clearly that MAT reactivity profiles can vary by host 

species (Mummah et al., In Preparation).  

 

Genetic analyses of Leptospira isolates from different host species are needed to establish strong 

evidence regarding the relatedness of strains, and hence to assess whether a given strain is 

circulating among multiple host species. Though it is not yet possible to genetically identify 
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Leptospira strains from PCR data, future work looking at conserved gene regions may provide 

finer scale identifications. The strongest confirmation would require Leptospira isolates from 

mainland terrestrial species, which would enable whole genome sequencing for comparison with 

sequences from other wildlife species along the California coast (and ideally, from other 

terrestrial isolates in the western United States). Such isolates, obtained through targeted trapping 

efforts or in the course of species removals for animal control, would yield key insights into 

multi-host dynamics of serovar Pomona including possible transmission links between terrestrial, 

marine and island ecosystems (Borremans et al., 2019). Efforts to obtain isolates would be best 

directed at raccoons, striped skunks and coyotes in the greater Los Angeles region, or other 

species identified as reactive to serovar Pomona in coastal northern California (Straub & Foley, 

2020). 

 

In 2021, the Los Angeles area experienced an outbreak of leptospirosis in domestic dogs, caused 

by L. interrogans serovar Canicola (LA County Department of Public Health (LADPH), 2022). 

No wildlife species in our study had predominant maximum titers to serovar Canicola, and few 

individuals showed any reactivity at all against this serovar. This evidence supports the Los 

Angeles County Department of Public Health’s conclusion that this outbreak did not originate 

from local wildlife, highlighting the importance of longitudinal wildlife surveillance in 

determining the source (and ruling out possible sources) of outbreaks caused by multi-host 

pathogens. However, since these surveillance efforts were finite and only five species were 

sampled extensively, there could still be unobserved host species contributing to Leptospira 

persistence and transmission in the greater Los Angeles region. Identifying signatures of these 

cryptic contributors, or ‘epidemiological dark matter’, remains an ongoing frontier in disease 
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ecology, and emphasizes the need for ongoing research to understand multi-host pathogen 

dynamics (Buhnerkempe et al., 2015).  

 

The Los Angeles region provides a unique opportunity to investigate this multi-host zoonotic 

pathogen, and possibly the co-circulation of multiple infecting serovars, in a complicated urban 

landscape. In an effort to better understand the animal and human health risks arising from this 

pathogen, we investigated potential correlates of exposure (location, age, sex, land class and 

season). Positive test results were detected across the region in no clear spatial pattern with 

regard to geographic space (Figure 3.2) or land use types (Figure S 3.1). We were unable to 

identify any significant patterns among the set of landscape, seasonal, and demographic 

covariates considered here. Leptospira appears to be widespread across this landscape with no 

clear risk factors or geographic hot-spots, and likely presents a potential risk to both animal and 

human health throughout the region.  

 

Though we were unable to identify predictors of exposure in the region, we proceeded to 

investigate the association between antibody titers and PCR status, as critical knowledge gaps 

remain regarding the relationship between serology and pathogen shedding in wildlife species 

(Pedersen et al., 2018). Motivated by Chapter 2 and other work indicating that antibody titers are 

predictive of infection status (PCR) in California sea lions (Prager et al., 2020), we performed a 

regression of paired antibody-PCR results in raccoons, which revealed a positive correlation in 

this species as well (Figure 3.4). Despite the potential value of tools to predict individual 

shedding status, investigations into predictors of shedding status in wildlife are not common and 

often focus on population level host-pathogen dynamics. Efforts to better understand individual-
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level infection and shedding status represent a current frontier in disease ecology. This 

relationship could be explored further in raccoons and other species, and if confirmed, could be a 

useful screening tool for wildlife in situations where PCR results are not available or feasible to 

obtain.  

Results from non-target species and regions support the fact that Leptospira is widespread and 

common in multiple wildlife species in California (Cirone et al., 1978; Gulland et al., 1996; 

Mummah, 2021; Pedersen et al., 2018; Straub & Foley, 2020). We found evidence of exposure in 

all non-target species except gray foxes (Table S 3.1), and confirmed that additional species, 

including wild pigs and desert cottontails, serve as carriers of this pathogen in California (Table 

S 3.2). Animals were often seroreactive to multiple serovars (Table S 3.2). Our serologic 

findings identified wild pigs as an additional species with a profile of MAT reactivity (high titers 

to serovars Pomona, Bratislava, Autumnalis and Djasiman) similar to that found in terrestrial 

mammals on the Channel Islands. This makes wild pigs a species of interest, and potential 

sampling target, when considering possible mainland terrestrial reservoirs within the broader 

multi-host serovar Pomona system. 

While this study contributes a wealth of knowledge regarding the status of Leptospira in 

southern California wildlife, it wasn’t without limitations. We were dependent on salvaged and 

incidentally collected samples for pathogen testing, primarily from opportunistic sampling by 

collaborating agencies. This study design led to limited sample sizes, with a degree of spatial 

clustering around collaborator facilities (particularly for raccoons), which could have reduced 

our ability to detect spatial patterns. Samples may also have been biased towards more
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developed areas, as higher numbers of roads could have increased the numbers of traffic related 

deaths, and higher human density could also increase the likelihood of a sick or dead animal 

being reported. Additionally, the composite land use categories used here may have masked finer 

scale spatial associations, and our use of circular home range buffers could overlook important 

behavior patterns in habitat use. Further investigations into individual land use categories or 

other metrics of urbanization (e.g., population density) could reveal additional spatial 

relationships undetected in these analyses.   

This study provides the first in-depth look at Leptospira ecology in terrestrial wildlife across the 

greater Los Angeles area. Expanded knowledge of this pathogen in southern California, 

including comparisons of prevalence levels and serological patterns across host species, provide 

insights into multi-host pathogen dynamics and the potential for cross-species transmission. 

Evidence of Leptospira circulation in Los Angeles wildlife has been lacking, contributing to the 

perception that it does not pose a major risk in the area. Our study found evidence consistent 

with circulation of at least two serovars of Leptospira among our core five species in the region. 

Primary serovars differ between mesocarnivore species and squirrels, and high levels of 

exposure and wide geographic distribution indicate that this pathogen is ubiquitous across the 

region. While active infection rates appear lower than in northern California, they are still 

substantial enough to warrant concern and encourage domestic dog owners to vaccinate against 

this disease. An expanded understanding of Leptospira ecology in California wildlife is critical 

to the management of this widely circulating pathogen, highlighting the need for systematic, 

broad-scale research efforts that continue to monitor this pathogen in wildlife, domestic pets and 

humans in the greater Los Angeles region.  
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3.6 SUPPLEMENT 

 

Table S 3.1: Leptospira test results from non-target species and regions.  
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Table S 3.2: Leptospira serovars and antibody titer levels for all California wildlife samples. 
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Figure S 3.1: Leptospira antibody results relative to land classification. Positive (red) and negative 
(blue) results are shown for each individual species, relative to the proportion of natural, agricultural/open 
and developed land calculated within the home range of each species. 
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