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Impeding 99Tc(IV) mobility in novel waste forms
Mal-Soon Lee1, Wooyong Um2,3, Guohui Wang2, Albert A. Kruger4, Wayne W. Lukens5, Roger Rousseau1

& Vassiliki-Alexandra Glezakou1

Technetium (99Tc) is an abundant, long-lived radioactive fission product whose mobility in the

subsurface is largely governed by its oxidation state. Tc immobilization is crucial for radio-

active waste management and environmental remediation. Tc(IV) incorporation in spinels has

been proposed as a novel method to increase Tc retention in glass waste forms during

vitrification. However, experiments under high-temperature and oxic conditions show

reoxidation of Tc(IV) to volatile pertechnetate, Tc(VII). Here we examine this problem with ab

initio molecular dynamics simulations and propose that, at elevated temperatures, doping

with first row transition metal can significantly enhance Tc retention in magnetite in the order

Co4Zn4Ni. Experiments with doped spinels at 700 �C provide quantitative confirmation of

the theoretical predictions in the same order. This work highlights the power of modern,

state-of-the-art simulations to provide essential insights and generate theory-inspired design

criteria of complex materials at elevated temperatures.
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T
echnetium (99Tc) is an abundant long-lived radioactive
fission product present in used nuclear fuel and waste
generated from nuclear fuel reprocessing. Owing to its

long half-life (2.1� 105 years) and relatively high fission yield
(B6%), 99Tc can generate the greatest radiation dose in the
vicinity of a waste repository, and for a much longer time
compared with other fission products, such as 90Sr and 137Cs
(with half-life B30 years)1,2. In addition, TcO4

� is highly
soluble and weakly adsorbed in the near-field, while Tc(IV) is
highly adsorbable to geological materials and clays3. Thus,
migration of Tc from a waste repository may be prevented by
immobilizing Tc(IV) in durable waste forms, such as glass or
ceramic materials4–6. Although Tc(VII)O4

� is the most stable Tc
species under aerobic conditions, it is highly volatile at glass
vitrification temperatures (B1,200 �C), leading to poor Tc
retention in the final waste glass4–7. Retention of Tc in the
glass is generally improved by reducing conditions since
Tc(IV) is less volatile6,8,9. Tc(VII) may be effectively
reduced to Tc(IV) by Fe(II) in oxide and sulfide minerals or
by Fe(II) adsorbed to mineral surfaces such as iron oxides
or aluminium oxides9–17. However, retention of Tc is still
limited because of re-oxidation of Tc(IV) back to Tc(VII)
(refs 18–21). Consequently, simply reducing Tc(VII) to Tc(IV)
before vitrification is unlikely to stabilize Tc and prevent
its volatilization as Tc(VII). An alternative approach would
be to trap Tc(IV) in the lattice of a metal oxide by
co-precipitation. Spinels are attractive targets for Tc
stabilization during vitrification because of their physical and
chemical stability under the high temperatures used in
preparing borosilicate glasses4,6. In this respect, efficient
incorporation and high retention of Tc by glass-incorporated
spinels is very important for radioactive waste management and
offers substantial economic benefit because of reduction in the
amount of glass needed to immobilize 99Tc.

Magnetite (Fe3O4) has a cubic inverse spinel structure, where
the oxygen anions form a slightly distorted face-centred-cubic
sublattice and the iron cations occupy tetrahedral and
octahedral interstitial sites. In the [001] direction, two types of
layer stacking occur: A layers with tetrahedral Fe(III) and
B layers with O and octahedral Fe(II)/Fe(III) (see Fig. 1).
Marshall et al.8 showed that Tc(VII) can be reduced to Tc(IV)
and incorporated into the magnetite structure under high pH
conditions (pH 10.5� 13.1). They also observed that Tc(IV)
incorporation occurred at the octahedral sites and remobi-
lization of Tc(IV) was limited during subsequent air oxidation.
Kobayashi et al. observed Tc(IV) incorporation into the
magnetite structure at pH 6 and pH 7.5 (ref. 22). However,
magnetite oxidizes to maghemite (g� Fe2O3) in oxic conditions

or under high temperature through maghemitization, where all
the Fe(II) atoms oxidize to Fe(III), while the oxygen sublattice
remains unchanged23. When maghematization takes place, iron
atoms diffuse towards the surface, leaving octahedral cation
vacancies23,24. As a result, maghematization could lead to re-
oxidation of Tc(IV) because of the increase in Fe(III), a highly
efficient oxidizing agent8. Sidhu et al.23 suggested that
incorporation of trace elements into magnetite stabilizes Fe(II)
and suppresses maghematization by decreasing electron
mobility. The majority of experimental studies on Tc retention
are conducted at low temperatures, while theoretical studies
employ static structural models that neglect temperature effects.
Under these conditions, these studies cannot address Tc
volatilization during vitrification that leads to poor Tc
retention in the glass waste form. Thus, elucidation of high-
temperature effects is important for understanding Tc retention
by magnetite at elevated temperatures. Ab initio molecular
dynamics (AIMD) simulations can describe the temperature
effects on the change in structure, bonding and associated
change in the oxidation states of Tc and Fe, which ultimately
affects Tc retention. Here our simulations indeed show that
leaching of Tc is accompanied with re-oxidation of Tc(IV) to
Tc(VII) at high temperatures, but it can be suppressed by
doping. We propose that inclusion of first transition metal
dopants (Co, Zn and Ni) significantly improves Tc retention in
magnetite at high temperature. Quantitative confirmation is
further provided by X-ray absorption near edge structure
(XANES) measurements and gravimetric analysis.

Results
Temperature effects on Tc(IV)-incorporated spinel. The
Fe3O4(001) surface has been studied extensively25–30. Pentcheva
et al.28 compiled a phase diagram for the Fe3O4(001)
surface in an ab initio thermodynamics study showing that
the most stable surface structure is a B-terminated surface with
octahedral iron and oxygen atoms forming a wave-like structure
along the (001) direction. On the basis of these results, we
generated a Fe3O4(001) model of a B-terminated surface (Fig. 1)
that we let fully relax. Below the Verwey transition (125 K), the
surface possesses a permanent dipole that has been shown to
drive the formation of surface defects in these types of
material25. However, above this temperature, magnetite is
metallic, and the surface dipole is quenched31 and is not likely
to affect surface charge defects. Details on the computational
models and methods can be found in the Methods section.

To assess the temperature effects on Tc retention in
magnetite, we replaced one octahedral Fe on the surface with
Tc and performed AIMD simulations at two different tempera-
tures, 25 and 600 �C, representing the ambient and the lower-
end temperature range of the vitrification process, respectively.
Figure 2a shows the calculated atomic density profiles of the
different species with Tc scaled by 5 for clarity. The dotted grey
line denotes the edge of the magnetite surface defined by the
average position of the topmost oxygen atoms. At 25 �C, Tc
stays within the top surface layer for the duration of the
simulation (B20 ps). Computation of pair distribution func-
tions, g(R), reveals that, on average, surface-incorporated Tc has
five nearest O neighbours with an average Tc–O distance 1.98 Å
(Fig. 2b upper panel, Supplementary Fig. 1 and Supplementary
Table 1). Additional exploratory simulations with Tc in an inner
lattice position show a g(R) maximum at 2.01 Å for the Tc–O
distance, compatible with the reduced Tc(IV) in magnetite
(Supplementary Table 2). According to X-ray absorption
fine structure (XAFS) analysis, the Tc(IV)–O distance is
B2.0 Å (see Supplementary Table 2 and (refs 22, 32) for addi-

A

B

A Bba

[100]

[0
10

]

[100]

[0
01

]

Figure 1 | The B-truncated (octahedral Fe) Fe3O4(001) structure. (a) Top

view and (b) side view of surface structure. Red and cyan circles represent

oxygen and iron, respectively. A (blue circle) can be either Fe or Tc and

B (yellow circle) can be either Fe or an impurity atom (Ni/Zn/Co).
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tional structural parameters). These observations imply that
(i) within the surface layer the oxidation state of Tc is essentially
Tc(IV) and (ii) at 25 �C (the glass-feed stage) reduced Tc(IV) is
the prevalent oxidation state. However, the completely opposite
picture emerges at high temperatures, 600 �C or higher. Tc
moves above the surface, dragging coordinating surface oxygens
along with it (see Supplementary Movie 1). The local Tc
geometry is consistent with a tetrahedral Tc(VII)O4

� species,
with two or three of the coordinating oxygens dynamically
connected to Fe atoms on the surface (Fig. 2c). Analysis of g(R)
for Tc–O pairs shows a peak at 1.79 Å (Fig. 2b, lower panel),
an almost 10% reduction compared with the Tc(IV)–O distance
at 25 �C. This change is compatible with the shorter Tc(VII)�O
distances of B1.75 Å as determined by XAFS (Supplementary
Table 2 and refs 22, 33). From this observation, we infer, that
beginning at 600 �C, Tc oxidation is in process, commensurate
with the tetrahedrally coordinated Tc transitioning to TcO4

� . In
addition to the system with Tc at the surface, we also examined a
system with Tc at an inner lattice site at 600 �C. The calculated
g(R) gives the distance between Tc and O as 2.01 Å, consistent
with the reduced Tc(IV) in magnetite. As shown in
Supplementary Fig. 2, Tc remains in the same layer throughout
the simulation timescale. When comparing the energetics of the
configurations with Tc below or at the surface layer, the energy
with Tc below the surface is 2.5 eV higher than when Tc is at the
surface. This implies that there is a thermodynamic driving
force that will eventually move Tc out to the surface.

Experimentally, Tc-magnetite samples, heated from room
temperature to 600 �C and then cooled back to room tempera-
ture, were analysed to determine the Tc oxidation state using

XANES as shown in Fig. 2d. In the figure, the grey diamonds and
black line indicate the measured data and a linear combination fit,
respectively, for Tc-magnetite samples, while the red and blue
lines represent the contribution from Tc(IV) and Tc(VII),
respectively. At 25 �C, the spectrum of the sample shows only
Tc(IV) (feed, red) but no Tc(VII) (blue), indicating that all Tc in
the sample is in its reduced form. In the sample heated to 600 �C,
however, the spectrum shows a mixture of both Tc(IV)
and Tc(VII). All these observations are compatible with the
simulations.

Effects of dopants on Tc retention. To simulate the effect of
dopants on the Tc redox chemistry and immobilization, we
modified the magnetite by substituting one surface Fe atom with
Ni, Zn or Co (B1% wt each) at a site close to Tc. This choice was
motivated by earlier experiments by Sidhu et al.23, who observed
stabilization of Fe(II) and suppression of maghematization when
first row transition metal dopants were present in magnetite even
at concentrations B1 wt %. The atomic density profiles along the
surface normal from AIMD at 600 �C in the presence of the
doping elements are shown in Fig. 3 (Co) and Supplementary
Fig. 3 (Ni and Zn), exhibiting an increase in Tc retention in the
order Co4Zn4Ni.

In the case of Ni, the Tc population is bi-modal where Tc
remains mostly on top of the surface with only a small
population within the top surface layer. In the case of Zn, the
bi-modal Tc distribution is shifted towards a larger Tc
population within the surface. Analysis of trajectories also
shows that the distance between Tc and the coordinating O
fluctuates between 1.71 and 1.92 Å, compatible with an
equilibrium between Tc(VII) and Tc(IV) oxidation states
(see Supplementary Fig. 4). This behaviour implies that Ni
and Zn only partially, and to a similar degree, hinder Tc
oxidation. Finally, in the presence of Co, Tc remains almost in
its entirety within the surface at all times indicative of a Tc(IV)
state. We examined Tc(IV) stabilization in the presence of
Co by conducting a simulation starting with TcO4

� on top of the
surface. As shown in Supplementary Movie 2, Tc(VII) rapidly
migrates into the surface becoming Tc(IV), within 1.5 ps of
simulation time.

To validate these findings, we prepared three different
magnetite samples doped with B10% wt of Ni, Zn and Co.
Details on the preparation of samples can be found in the
Methods section. The samples were heated at 700 �C in a furnace
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Figure 2 | Structural properties and XANES spectra in the presence of Tc.

(a) Atomic-density profile showing atomic arrangement along the z-

direction at 25 and 600 �C obtained from AIMD simulations, where dotted

vertical line denotes the magnetite surface. (b) Pair distribution function

g(R) obtained from AIMD simulation trajectories at 25 and 600 �C.

(c) Snapshot of the structure at 600 �C from AIMD trajectories where a

blue circle represents Tc, red for O and cyan for Fe. The dotted vertical line

denotes the magnetite surface. (d) Normalized XANES spectra at 25 and

600 �C.
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those shown in Fig. 2.
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for 1 h, and the remaining Tc was measured (see Supplementary
Table 3). Gravimetric measurement showed that doping with Co
resulted in the highest Tc retention (29% wt) compared with less
than half that amount for Zn (12% wt) and B1/8 of that for Ni
(4% wt). No detectable amount of Tc was found in the
Tc-magnetite sample prepared without dopant and treated at
700 �C. We also performed XANES measurements for the
samples prepared at 25 and 700 �C (see Supplementary
Methods for details) and confirmed our theoretical prediction
of the highest Tc retention with Co dopant at high temperature,
as shown in Supplementary Table 4 and Fig. 3b and
Supplementary Fig. 5.

Equilibrium constants and free energy estimates. To best
connect with the experimental observations, we determined the
ratio of the equilibrium populations between the two different
oxidation states of Tc(IV) ([Tcin]) and Tc(VII) ([Tcout]). This can
be achieved by integrating the area under the atomic density
profiles for Tc in Fig. 3. An equilibrium constant between the two
populations, determined as the ratio Keq¼ [Tcin]/[Tcout], was
used to calculate the Gibbs free energy for this equilibrium from
the relation DG¼ �RT ln Keq, where R is the gas constant and
T is the absolute temperature. Negative values indicate that the
equilibrium favours a higher population of Tc(IV). Table 1
summarizes the computed values of Keq and DG, as well as the
measured Tc retention for the different doping agents Ni, Zn and
Co. These results show a remarkable agreement between the
theoretical prediction and experimental validations, not only in
terms of relative order but also in magnitude. The underlying
reason is based on the increase in the reducing capacity of the
Tc-containing spinels upon doping. This can be quantified by the
difference in energy between the Fermi level, EF, and the highest
occupied molecular orbital (HOMO) of Tc d states, DEgap, see last
column in Table 1. The calculated total and projected density of
states (DOS) of the d-band for Tc and dopant are shown in
Supplementary Fig. 6. Whereas in the case of Ni only a marginal
stabilization of the Tc d-states occurs (small DEgap), in the case of
Zn and Co, a much higher stabilization takes place that ultimately
hinders Tc re-oxidation.

Discussion
In conclusion, we propose that standard reduction potentials of
transition metal ions relative to those of parent spinel, combined
with their available oxidation states, can be a useful diagnostic
tool for identifying appropriate additives. The reduction potential
for magnetite ranges from þ 0.22 to þ 0.66 V (ref. 34), while
those for Co2þ , Ni2þ and Zn2þ are � 0.28, � 0.26 and
� 0.76 V, respectively35, and in principle Co2þ and Ni2þ should
have similar and limited effect upon Tc retention, while Zn2þ

should have a more pronounced influence. However, Co2þ with
a wide range of redox values towards Co3þ (refs. 35, 36), it
greatly increases the overall reducing capacity of the spinel
material. This is reflected in the increased stabilization of the Tc

d-states, see Table 1. Both simulations and experiment show that
cobalt is by far the most effective additive for Tc retention
compared with the undoped magnetite. We postulate that Tc
retention, during the glass vitrification, can be controlled by
balancing the redox capacity of oxide materials and doping
agents. The current study underscores the impact of complex
models incorporating both electronic structure and temperature
effects that reveal the critical variables needed for predictive
materials’ design.

Methods
Density functional theory (DFT) parameters. Spin-polarized DFT simulations
were performed with periodic boundary conditions (3D PBC) as implemented in
the CP2K package37. The Perdew, Burke and Ernzerhof (PBE) generalized gradient
approximation was used for the exchange-correlation functional38. The core
electrons were described by the norm-conserving pseudopotentials39, while the
valence wave functions were expanded in terms of double-zeta quality basis sets
optimized for condensed systems to minimize linear dependencies and
superposition errors40. An additional auxiliary plane wave basis set with a 500-Ry
cutoff was used to calculate the electrostatic terms. The GGAþU scheme was used
to provide more accurate electronic structure for the localized d-orbitals. The
Hubbard parameter (U–J) of 3.5 eV was taken for the Fe 3d states, which results in
a work function of 5.32 eV, in good agreement with that obtained by Pentcheva
et al.28 Owing to large supercell simulations, the G-point approximation was used
for the Brillouin zone integration.

Computational models. To study Tc incorporation in magnetite with and without
dopants, we used a 2� 2� 2 supercell in all simulations to minimize periodic
images. Optimization of the bulk structure of magnetite had a cell parameter of
8.391 Å, which agrees well with experimental data (8.390 Å (ref. 41)). Using this
optimized cell parameter, we constructed a magnetite(001) surface model
terminated at an octahedral Fe sublattice, since it is known to be the most stable
surface structure in magnetite. A more recent surface model was also considered42,
but was found not to have significant impact on the present problem, see SI.
Our model system consisted of a symmetric slab with seven octahedral and six
tetrahedral Fe sublattices (384 atoms) with a vacuum region of 12.5 Å between
slabs. To study Tc incorporation, one surface octahedral Fe was replaced with Tc,
followed by structural optimization. We also optimized a structure with one
octahedral Fe in the third layer replaced by Tc. For the doping studies, we
substituted a surface Fe atom with Co, Ni or Zn (B1 wt%) at a lattice position close
to Tc. In all simulations, we fixed the atomic positions of the four bottom atomic
layers.

AIMD simulations. AIMD simulations were performed with and without Tc at
25 �C and with the dopants Co/Ni/Zn at 600 �C, with the Nosé–Hoover thermostat
for NVT ensemble and a time step of 1.0 fs. Each simulation was equilibrated for at
least 20–28 ps, and the last 10–12 ps of the trajectories was used for the analysis.
Owing to the big computational cost of high-temperature simulations, we chose
lower range of vitrification temperatures (600 �C), while experiments were
performed at somewhat higher temperatures (B700 �C).

Spinel synthesis and XAFS analysis. Ni-, Zn- or Co-doped Tc-incorporated
magnetite was synthesized at high pH (413). Three solutions of 0.05 M Ni, Zn and
Co in distilled deionized water (DDI) were prepared using analytical-grade NiCl2,
ZnCl2 and CoCl2. Technetium solution (0.001 M) was prepared by spiking
10,000 p.p.m. NaTcO4 stock solution into 1 M NaOH solution. Synthesized
Fe(OH)2 dry powder (0.09 g) was mixed with 5 ml of NiCl2, ZnCl2 or CoCl2
solution in 20-ml poly vials and shaken on an orbital shaker (120 r.p.m.) for 24 h at
room temperature (RT). After 24 h shaking, 15 ml of the Tc-spiked 1-M NaOH was
added to each vial and heated in an oven at 75 �C for 72 h. After cooling to RT, the
precipitates were separated using 0.45-mm filters and washed using B120 ml DDI

Table 1 | Equilibrium constants and free energy estimates considering doping effects.

Doping Keq DG (kJ mol� 1) Exp. retention (%wt) DEgap(eV)

Tc 0.15 14.2 – 0.15
Tc/Ni 0.56 4.3 4 0.35
Tc/Zn 2.79 � 7.7 12 1.03
Tc/Co 21.80 � 23.1 29 1.12

Tc implies system without dopant. Relative populations determined as a ratio from the computed Keq values. Experimental values correspond to the amount of Tc remaining in the doped magnetite after
exposure to 700 �C. DEgap represents the energy difference between the Fermi level EF and the Tc HOMO energy from the projected DOS.
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water immediately after filtering. The collected solid precipitates were air-dried at
RT overnight and stored in glass vials. Strong microwave-assisted digestion with a
solution consisting of 16 M HNO3 (17%), 12 M HCl (7%), 32 M HF (3.3%), 0.5 g
H3BO3 (1.5%) and DDI water (71.2%) on a volume basis was used to determine the
total Tc concentration in the final solid samples. For the 600 �C XANES sample,
B5 g of Tc-magnetite was mixed with other basic glass feeds in a Pt crucible and
heated in a furnace to 1,000 �C at 5 �C increase per minute. After air quenching, the
final glass was pulverized and used for XANES analysis. Additional Tc XAFS
samples were also prepared for Ni-, Zn- or Co-doped Tc-incorporated magnetite at
room temperature without basic glass feeds and treated at 700 �C inside an oven.
The XAFS spectra were collected at room temperature on Beamline 4-1 at the
Stanford Synchrotron Radiation Laboratory. A Si(220) double-flat crystal mono-
chromator was used, and the energy was calibrated by using the first inflection
point of the Tc K edge spectrum of the Tc(VII) standard (KTcO4) defined as
21.044 keV. The XAFS spectra of Tc standards and Tc-magnetite samples were
collected in transmission and fluorescence mode, respectively, at RT using a 13-
element germanium detector. Data reduction and analysis were performed using
the software IFEFFIT and Athena/Artemis43 after detector dead-time correction.
The XANES spectra for Tc samples were fit using a linear combination of the
XANES spectra of KTcO4 as the Tc(VII) standard spectrum and TcO2�2H2O as
the Tc(IV) standard spectrum, see Supplementary Fig. 7 and Supplementary
Methods for more details.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its supplementary information files.
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