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Abstract

Single-cell approaches have shone a spotlight on discrete context-specific tissue macrophage 

states, deconstructed to their most minute details. Machine learning approaches have recently 

challenged that dogma by revealing a context-agnostic continuum of states shared across 

tissues. Both approaches agree that ‘brake’ and ‘accelerator’ macrophage subpopulations must 

be balanced to achieve homeostasis. Both approaches also highlight the importance of ensemble 

fluidity as subpopulations switch between wide ranges of accelerator and brake phenotypes to 

mount the most optimal wholistic response to any threat. A full comprehension of the rules that 

govern these brake and accelerator states is a promising avenue because it can help formulate 

precise macrophage re-education therapeutic strategies that can selectively boost or suppress the 

disease-associated states and phenotypes across various tissue.
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The chaotic (and often contentious) panoply of macrophage states

Macrophage represent one of the most functionally versatile cell types in our body [1]. 

In addition to recognizing and neutralizing foreign threats (e.g., pathogens), macrophages 

remove damaged, senescent, and exhausted cells, facilitate wound healing, and help achieve 

and maintain homeostasis [1,2]. Macrophages accomplish all this via responses that include 

wide ranges of reactivity, tolerance, proliferation and priming; they are also capable of 

trained innate immunity (such as during repeated exposure to microbes) [3–7]. Given 

the vastly complex nature of these cells, it is unsurprising that predicting their population 

level behavior upon perturbation, or defining their immunophenotypes in ways that are 

actionable and/or translatable (e.g., as in the development of therapeutics or biomarkers) 

remains a challenge [2]. In this article, we summarize the efforts to generate formal 

definitions and/or understand the rules that govern macrophage responses that span over 

~3 decades; these efforts chronicle the swing of the pendulum from the extremes of 
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‘oversimplification’ to the extremes of ‘deconstructed complexity’, to the most recent 

years of artificial intelligence (AI)-guided identification of universally conserved patterns 

within such complexity [8–11]. If one were to look past the obvious chaos and the 

contention (surrounding the divergent terminologies, approaches, model systems, species, 

tissues, and disease states), the revelations of all efforts point in the same direction. 

The most recent AI-enabled revelations have helped reinterpret the results of the past 

decades and converge on a unifying concept and hypothesis, one that offers some sort of 

rationale and/or framework in the seemingly chaotic world of ever-expanding macrophage 

states in both health and disease. The major conceptual hypothesis that emerges, is that 

while mounting an immune response, macrophages finetune inflammation by splitting 

the whole population into two major antagonistic subpopulations: some become reactive 

(or inflammatory, i.e., accelerators) while others become tolerant (or non-inflammatory, 

i.e., brakes). These major subpopulations enable macrophages to multitask (i.e., neutralize 

threats, restore homeostasis, replenish pool) through optimal population and/or phenotypic 

drifts that are mediated via autocrine and/or paracrine signals and are highly contextual, 

dynamic, and finite. This conceptual hypothesis—of brakes and accelerators--is extended 

with surprising ease and sophistication to also explain the observed imbalances in the 

functional subpopulations and the basis for the same in diseased tissues. Finally, we discuss 

how such population and phenotypic changes could be interpreted immediately to extract 

actionable insights, interrogated further to answer exciting questions, and even optimized or 

manipulated for therapeutic purposes to re-educate macrophages.

The era of oversimplification

In 2000, Mills [12] and colleagues put forth the so-called ‘M1/M2’ macrophage polarization 

paradigm which was built on the observation that lipopolysaccharides (LPS; see Glossary) 

and interferon gamma (IFNγ) elicit divergent effects on murine macrophages isolated 

from different strains of mice, namely C57BL/6 and Balb/c. This M1/M2 paradigm was 

confused with the concept of classical vs. alternative macrophage polarization that was 

proposed earlier by Gordon in 1992 [13]. Gordon showed that IL-4 augments the expression 

of the mannose receptor on murine peritoneal macrophages without inducing TNFα 
production. This “alternative” activation of less inflammatory macrophages became, over 

time, synonymous with “M2” macrophages. In 2014, Murray and colleagues [14] proposed 

a nomenclature, calling for M(LPS) and M(IL-4), instead of M1 and M2, respectively, 

without tinkering with the M1/M2 paradigm. Conceptually, the M1/M2 paradigm continues 

to represent a highly reproducible response of murine macrophages in vitro to either LPS 

and/or IFNγ (M1) or Interleukin (IL)-4 (M2). Most agree that upon stimulation with a 

defined set of factors in vitro, these cultured macrophage states (i.e., taken out of their native 

environments) constitute an oversimplification of a highly complex and dynamic continuum 
(See Glossary) of functional states in vivo. Thus, The M1/M2 paradigm is currently believed 

to have stifled the discovery of new states, paradigms, or conceptual advances for nearly a 

decade.
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The era of deconstructed complexity

With rapid advances in single-cell technologies (multiomic approaches), the past decade 

(2010-2020) has witnessed an explosive growth in our understanding of macrophage 

states, each dissected at an unprecedented level of detail. We learned of the existence of 

macrophage populations that perform diverse context-, threat-, and tissue-specific functions 

[15,16]. Such diversity is imprinted by their ontogenic origin, organ context, activation, 

or deactivation in response to signals stemming from microbial invasion, tissue damage, 

and metabolic derangement, as well as by their polarization, influencing adaptive T cell 

responses. Analyses on healthy and pathological tissues in humans and mice have helped 

build a near-complete catalog of these discrete macrophage functional states (see Figure 

1A; [17–25]). It is akin to zooming in on a puzzle piece (discrete macrophage states) to 

understand the bigger picture (at tissue level). single-cell endeavors are helping to provide 

insight into Key puzzles related to macrophage states, including immune quorum sensing 
[26,27], homo- and heterotypic cell-cell contacts/interactions [28–33], rare functional states 

associated with specific disease phenotypes [34,35], and cellular and molecular mechanisms 

that support these discrete states [28–34], perhaps even spatially restricted at times, such as 

those demonstrated in the gut and the brain recently (summarized in Figure 1B) [35–37]. 

Consequently, we now know more about the epigenetic landscapes, transcription factors, and 

microRNA networks that enable macrophages to adapt to diverse environmental cues in a 

tissue-specific manner [38].

We have also learned that the balancing act of inflammation and immunity--in any tissue--

relies upon the delicate crosstalk between many discrete macrophage populations with 

themselves (homotypic) or with other cell types (heterotypic). Besides a few instances where 

the macrophage subtypes are either yet to be fully characterized or represent naïve or 

dendritic cell (DC)-like states (Figure 1A), in most other instances, they might be lumped 

into two broader subsets: (i) ‘inflammatory’ or ‘i’ and (ii) non-inflammatory or ‘ni’, a.k.a. 

regenerative or tolerogenic (Figure 1A)[24]. Although the proportion of the two broad 

subsets remain balanced in health, their disbalance has been consistently encountered in 

the diseased tissues[24]. For example, in the case of the non-inflammatory macrophage 

subpopulation, their selective reduction or loss has been observed in specific tissues and 

associated with certain diseases. For example, a non-inflammatory macrophage subtype 

was found to be associated with neurodegenerative diseases; it was identified during 

the creation of a comprehensive map of all immune cell populations in wild-type and 

Alzheimer’s disease (AD)-transgenic (Tg-AD) mouse brains using single-cell sequencing 

and validated in human brain tissue of AD disease using histology [36]. A decrease in this 

non-inflammatory macrophage subpopulation was found to be consistently associated with 

progressive neurodegeneration in Alzheimer’s disease. Such association was not only in 

experimental mouse models but also in humans [36]. Similarly, single-cell RNA sequencing 

also revealed a reduction or loss of these non-inflammatory macrophages in human and 

murine livers identified using in the context of non-alcoholic steatohepatitis (NASH; a 

disease that is characterized by inflammation in response to fat accumulation, contributing 

to progressive liver fibrosis [17, 25]) and in human lungs afflicted byidiopathic pulmonary 

fibrosis (IPF; a chronic lung disease characterized by scarring and impaired lung function 
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[39,40]). The expansion of these non-inflammatory macrophage populations, on the other 

hand, has been observed using single cell analysis in human lung and breast tumors and are 

believed to favor tumor progression [19,41–44] and or therapeutic resistance [45].

In the case of the inflammatory macrophage subtype, their expansion in the lamina propria 

of the afflicted intestine in patients with inflammatory bowel disease and in the synovium 

of arthritic joints is a consistent observation (Figure 1A) [20,22]. Thus, the gathering 

consensus from these studies is that a balance between non-inflammatory macrophage 

and inflammatory subsets is key to achieving homeostasis. Here, non-inflammatory subsets 

might be likened to a ‘brake’ which opposes the inflammatory macrophages; the latter might 

be likened to an ‘accelerator’ that is mostly dispensable unless an inflammatory response is 

desired (Figure 1C). Diseased tissues show evidence of ‘broken’ (too few, or constitutively 

‘off’) or ‘jammed’ (too many, or constitutively ‘on’) states of either the ‘brake’ or the 

‘accelerator’ populations (Figure 1C) [28–34,46], thereby accounting for runaway responses.

Despite the knowledge gained, the true impact of single cell-based insights into discrete 

macrophage states remains uncertain. While we know of their existence, we are yet to 

understand where these discrete states fit into the compendium of continuum states across 

a spectrum of activation and tolerance. We are yet to translate the knowhow into actionable 

biomarkers or therapeutic targets for clinical use. Nevertheless, the hope is that these 

insights might help to predictably restore balance between subtypes in diseased tissues. 

Consequently, we argue that deconstructing the complexity of macrophage states down to 

minute details may yield an overwhelming amount of information on tiny details that can 

obscure the big picture, and thereby, risking our ability to see the forest for the trees.

The era of simplified complexity through pattern recognition

In 2023, using a machine learning (ML)-guided network transcriptomics-based approach, 

researchers [46][9,10,46–48] explored a large number of highly diverse macrophage bulk 

and single-cell datasets (which included circulating monocytes and macrophages from 

diverse tissues of murine and human origin, as well as murine and human macrophage 

cell lines; Figure 2A) with a singular intent: to find patterns within a seemingly chaotic 

process. The approach (i.e., Boolean implication networks[49]) that was prioritized had 

a decade-long track record [8–11] of being able to identify fundamental universally 

conserved changes in gene expression (or ‘invariant’ events) by blurring the thunderous 

noise that arises from other variables, e.g., the heterogeneity of tissues, circadian rhythms, 

metabolic states, species, and even perturbations (stimuli, disease states or conditions) [8–

11]. Although they trained their initial model on a diverse pooled dataset comprised of 

isolated human monocytes and tissue macrophages, rigorous validation studies including 

human and disease analyzed by single cell-sequencing showed that the resultant model was 

bipartite; it accurately and independently identified both physiologic and pathologic spectra 

of “reactivity” and “tolerance” [46]. Specifically, A cluster of 42 genes on one side of this 

bipartite model were found to be primarily associated with the wide ranges of functions 

encountered in activated or inflammatory macrophages (‘accelerator’ function); two clusters 

of 296 genes on the other side carried similar information on the functions encountered 

in tolerant or non-inflammatory macrophages (‘brake’ function) (Figure 2B) [46]. When 
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used as gene signatures to interrogate >12,500 diverse datasets, both sides of the bipartite 

model were able to objectively detect and quantify the two seemingly opposing--reactive 

and tolerant--functional states, independently of each other. Notably, the model was able to 

accurately pick up these states across tissues, organs, species, and, surprisingly, even other 

immune cells [46]. This relatively simple model could identify macrophage polarization 

states even at single-cell resolution, i.e., on single-cell sequencing datasets, suggesting that 

simplification did not sacrifice the real-world complexity in tissues. Moreover, the model 

could identify dysregulated ‘brakes’ or ‘accelerators’ across diverse human diseases such 

as cancer, atherosclerosis, inflammatory bowel disease and liver fibrosis (Figure 2C), as 

well as murine pre-clinical disease models [46]. In many ways, this model captured the 

big picture (i.e., inflammation at tissue level) of most of the key puzzle pieces (discrete 

antagonistic macrophage states), all in the right place, and confirmed that dysregulated 

“brakes” or “accelerators” is consistently observed across diverse human diseases and 

murine pre-clinical disease models.

There are several key advantages of this model (summarized in Figure 2D), the most 

important one being that it provided a formal and universally relevant definition of 

macrophage states via an objective measure of expressed gene signatures in any sample, 

encompassing both circulating monocytes and tissue macrophages. The nature of the 

connectivity between the gene clusters in the model provided a predictive framework; 

tugging at the network at one end, could trigger changes elsewhere, exactly as predicted 

by machine learning. For example, using crowd-sourced studies, the authors showed that 

the predicted impacts due to network perturbations (genetic or pharmacologic) consistently 

matched the observed fates of both the reactive and tolerant macrophage states [46]. 

Consistent with the dysregulated ‘brake’ vs ‘accelerator’ states as putative drivers of disease 

(Figure 1C), the reactive and tolerant gene signatures derived from the model could detect 

broken (too little) and/or jammed (too much) brakes and accelerators in diseased tissues; 

they could also use such objectively quantifiable dysfunctions to prognosticate outcomes 

across diverse acute and chronic diseases, e.g., sepsis, liver fibrosis, aging, and cancers. 

Overall, this model provided some sort of framework for the scientific community to begin 

developing macrophage-targeted precision diagnostics and therapeutics. A notable limitation 

of this model, however, is that its predictive potential is yet to be rigorously tested through 

prospective studies employing diverse network-level perturbations, such as gene editing, 

infectious and non-infectious stimuli, and drugs/toxins.

It may be unsurprising that the network transcriptomics approach worked so well because 

the abundance of transcripts likely reflected the culmination of the actions of all other 

factors enabling macrophages to adapt to diverse environmental cues. These factors include 

epigenetic landscapes, which are modifications on DNA and proteins that can influence 

how genes are expressed, thereby shaping macrophage responses and determining their 

functional states [50]. Transcription factors are another key class of molecules that are also 

known to regulate macrophage polarization states, e.g., the role of STAT6 in curtailing 

the tolerant macrophage states in the tumor microenvironment [51]. Finally, microRNAs, 

which are small RNA molecules that modulate gene expression by binding to and inhibiting 

the translation of mRNA into proteins, also shape macrophage states, as shown in the 
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setting of atherosclerosis [52,53] and cancers [54]. What came as a surprise, however, was 

that the gene clusters identified through the network transcriptomics approach consistently 

exhibited a higher degree of overlap between transcriptome and proteome data compared 

to conventional macrophage signatures. Such transcriptome-proteome overlap raises hope 

that several candidate genes in the reactive and tolerant network-derived signatures could 

serve as high-value protein targets for therapeutic interventions with small molecules and/or 

biologics. Further rigorous examination through pre-clinical and clinical trials is required to 

validate the feasibility and effectiveness of these putative interventions.

Building a consensus through systems-level thinking.

Now that we have explored macrophage states through in vitro reductionist approaches 

(the M1/M2-like paradigm), in vivo single-cell technologies, and by a set of ML-derived 

unifying formal definitions (i.e. objective and quantifiable) that can identify a compendium 

of continuum states in which macrophages are capable of existing, two questions loom large: 

(i) How much agreement exists among these approaches, and where do they differ? This 

question seeks to understand the extent of consensus and discrepancies between the different 

methods in defining macrophage states. (ii) What comes step?

For starters, all three approaches – in vitro reductionist approaches focusing on the 

M1/M2-like paradigm, in vivo single-cell technologies, and by a set of ML-derived 

unifying formal – aiming to define macrophage states---despite spanning ~3 decades---

probably saw the same ‘accelerator’- and ‘brake’-like functional populations from their 

own perspectives. For example, a third of the ‘accelerator’ genes in the ML-derived 

network model were overlapped with Murray’s definition of the M1 state; the ‘brake’ 

genes, however, were notably absent in the M2 state [46]. There were significant overlaps 

between ‘brake’ genes identified by single-cell studies and the ML-derived network model; 

the ‘accelerator’ genes however were notably distinct between these approaches [46]. Here, 

the analogy to the parable of the 5 blind men and an elephant is quite fitting [55], in 

which each blind man encounters an elephant for the first time and forms a distinct 

perspective based on their limited perception. Similarly, different approaches to study 

macrophage subpopulations provide unique insights into each subpopulation while lacking 

a comprehensive understanding of all delicate balances within them all within the entire 

ensemble.

As for what is next, further refinement of the model, perhaps to tissue/disease states 

with or without perturbation is an immediate priority on the computational side. Testing 

the performance of model-rationalized therapeutics and diagnostics in animal and human 

preclinical models is a high priority before one can truly estimate the translational potential 

of the model.

On a foundational level, however, solving individual versus collective macrophage behavior 

is a challenging problem, and likely to require transdisciplinary approaches. In fact, the need 

to navigate through complex and exhaustive catalogs of cell states resulting from single-cell 

studies is not a problem that is unique to macrophage biology. Most agree that cellular 

states often exist in a continuum rather than in distinct phases [56], and that understanding, 
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predicting, and manipulating those cell states is a cornerstone goal in any field of biomedical 

sciences. There is also a consensus that the continuum of states is a direct consequence 

of continuum gene expression (influenced by genetics and epigenetics), translating into 

continuum protein expression, and ultimately responsible for the multi-tasking behavior of 

that cell type [57–60]. The fields of developmental and regenerative biology [57] have set 

the precedent of using single-cell multi-omics and lineage tracing to dissect decision-making 

for switching cell states during development and differentiation [61]. In immunology, the 

recent revelation of the existence of shared continuum states among macrophages upon 

perturbation (Figure 3A–C) [9,46] presents an opportunity to infuse systems-level thinking 

when exploring complex paracrine interactions among these states (Figure 3D) [9,46]. 

We now know that a single perturbation (e.g., Salmonella sp. infection in mouse bone 

marrow derived macrophage [62] or LPS in human monocyte derived macrophage [63]) 

is sufficient to trigger dose-dependent multi-tasking behavior (such as reactive, tolerant, 

regenerative, cycling, etc.; Figure 3C), among a population of macrophages in ways that 

each subpopulation influences the functions of the other via a complex network of auto-/

paracrine communication (e.g., TNFα, IFNβ, IFNγ, reactive oxygen species [ROS], IL-, 

Nitric Oxide, etc.) (see legend, Figure 3D), and consequently, that of the whole ensemble in 

inflammatory homeostasis.

We argue that a deeper understanding of cooperation or competition among macrophage 

populations and the threats they seek to neutralize may require methods and concepts from 

evolutionary game theory [64–67]; the latter is the study of strategic interactions where 

everyone’s payoff not just depends on their own traits, but also on the traits of others (as 

illustrated in Figure 3D). In other words, game theory is the study of optimization problems 

in which fitness of individuals depends not only on the environment (dose or nature of 

the stimuli) but also on the changing frequencies of other phenotypes in the population, 

which might include competitors (e.g., macrophages vs pathogens) and cooperators (e.g., 

homotypic interactions between macrophage subpopulations, and heterotypic interactions 

with other immune and non-immune cells). Such problems are called ‘games’, the 

individuals, or groups of individuals in subpopulations are called ‘players’, and the 

phenotypic behavior each player adopts, is a ‘strategy’ [64–67]. Evolutionary game theory 

has been used successfully in other areas of biology (e.g., cancers [65]) but has been 

underutilized in immunology. To our knowledge, the only examples that exist include studies 

evaluating the best strategy employed by macrophages to switch from a proliferating state to 

that of attacking the fungal cells (simulated using Candida albicans to stimulate J774 murine 

macrophage cell line) [68,69], and another study evaluating the best strategy employed by 

human polymorphonuclear neutrophils (PMNs) for their preferred mode of death upon LPS 

stimulation (simulating infections/injury) [70]. In the case of macrophages, it is tempting 

to speculate that brake and accelerator populations can cooperate to accomplish the most 

optimal outcome (see legend, Figure 3E) – a hypothesis that remains to be further explored.

Concluding remarks

The surprising new revelation that diverse macrophage states that were thought to be unique 

to each tissue niche, line up along the same shared continuum path of reactivity and 

tolerance suggests that we may be looking at some core fundamental rules that govern 
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how opposing populations of macrophages work together to respond to and neutralize any 

threat. While the full understanding of those rules is lacking currently (see Outstanding 

questions) it is beginning to get clearer that ensemble fluidity in macrophage functions and 

phenotypes and temporal drift in those functional populations may be crucial to support 

flexibility in mounting an inflammatory response while maintaining homeostatic stability. It 

is likely that the pursuit of these foundational questions will face the same challenges and 

limitations that come with any monumental cross-disciplinary effort, i.e., careful translation 

of the languages of each discipline (immunobiology, medicine, systems, and computation) 

while making cautious interpretations.
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Glossary:

Trained Innate Immunity
This refers to the ability of the innate immune system to form immune memory and provide 

long-lasting protection against foreign invaders.

Antagonistic
Actively opposing each other, in this case, conducting opposing functions regarding 

mounting an inflammatory response.

Autocrine
A form of signaling in which a cell secretes a hormone or a chemical substance that binds to 

the receptors on the same cell, leading to functional changes in the cell.

Paracrine
A form of cell signaling in which the target cell is near the signal-releasing cell.

Lipopolysaccharides (LPS)
outer membrane components of gram-negative bacteria.

Continuum
a continuous sequence in which adjacent elements are not perceptibly different from each 

other, although the extremes are quite distinct.

Immune quorum sensing
This refers to mechanisms that allow immune cells to regulate their activity concurrently 

in a spatial and temporal manner via autocrine or paracrine signals, which in turn favor 

the emergence of population-level behaviors and synchronized responses, two features that 

make the immune system robust and resilient to external perturbations.

Machine learning
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A branch of artificial intelligence (AI) and computer science which focuses on the use of 

data and algorithms to find patterns that humans cannot find.

Boolean implication network
Is a pair-wise gene expression relationship between two genes with respect to their gene 

expression values and a Boolean implication network is simply a collection of Boolean 

implication relationships.

Crowd-sourced studies
Crowdsourcing is a beneficial research method that allows aggregating efforts of members 

of the public to advance studies to solve a problem, in this case, numerous perturbation 

studies on macrophages from laboratories around the world.

Game theory
The science of strategy, or at least the optimal decision-making of independent and 

competing actors in a strategic setting.

Payoff
The reward from the outcome of the interaction (for macrophages, this refers to its 

evolutionary fitness).

Optimization
The choice of the best set of actions to maximize a payoff function.

Strategy
The decision or type adopted by a player (in this case, macrophage phenotype or functional 

state).

Perturb-Seq
A method that combines perturbation by CRISPR-based genetic screening with information-

rich, single-cell RNA-sequencing phenotypes.

DRUG-Seq
A cost-effective, target-agnostic, high-throughput RNA-seq method for drug discovery.

Ensemble fluidity
A collection of diverse states that are unstable or constantly changing viewed as whole 

rather than individuals.

Temporal drift
This refers to the problem of data changing over time, in this case, the macrophage states 

and the fraction of population that is at any state.

Equilibrium
A stable state to which a population converges over time.

Katkar and Ghosh Page 9

Trends Immunol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Lazarov T et al. (2023) Physiology and diseases of tissue-resident macrophages. Nature 618, 698–
707. 10.1038/s41586-023-06002-x [PubMed: 37344646] 

2. Gordon S and Plüddemann A (2017) Tissue macrophages: heterogeneity and functions. BMC Biol 
15, 53. 10.1186/s12915-017-0392-4 [PubMed: 28662662] 

3. Netea MG et al. (2020) Defining trained immunity and its role in health and disease. Nat Rev 
Immunol 20, 375–388. 10.1038/s41577-020-0285-6 [PubMed: 32132681] 

4. Braian C et al. (2023) Selected β-glucans act as immune-training agents by improving anti-
mycobacterial activity in human macrophages - a pilot study. J Innate Immun. 10.1159/000533873

5. Chan BC et al. (2023) Adjuvant activities of immunostimulating natural products: Astragalus 
membranaceus (Fisch.) Bge and Coriolus versicolor in BNT162b2 vaccination against COVID-19 
infection. J Leukoc Biol. 10.1093/jleuko/qiad106

6. Fang XH et al. (2023) Macrophage memory: Types, mechanisms, and its role in health and disease. 
Immunology. 10.1111/imm.13697

7. Lu Y et al. (2023) ER stress mediates Angiotensin II-augmented innate immunity memory and 
facilitates distinct susceptibilities of thoracic from abdominal aorta to aneurysm development. Front 
Immunol 14, 1268916. 10.3389/fimmu.2023.1268916 [PubMed: 37731512] 

8. Dalerba P et al. (2016) CDX2 as a Prognostic Biomarker in Stage II and Stage III Colon Cancer. N 
Engl J Med 374, 211–222. 10.1056/NEJMoa1506597 [PubMed: 26789870] 

9. Sahoo D et al. (2021) Artificial intelligence guided discovery of a barrier-protective therapy 
in inflammatory bowel disease. Nat Commun 12, 4246. 10.1038/s41467-021-24470-5 [PubMed: 
34253728] 

10. Sahoo D et al. (2021) AI-guided discovery of the invariant host response to viral pandemics. 
EBioMedicine 68, 103390. 10.1016/j.ebiom.2021.103390 [PubMed: 34127431] 

11. Ghosh P et al. (2022) AI-assisted discovery of an ethnicity-influenced driver of cell 
transformation in esophageal and gastroesophageal junction adenocarcinomas. JCI Insight 7. 
10.1172/jci.insight.161334

12. Mills CD et al. (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164, 6166–
6173. 10.4049/jimmunol.164.12.6166 [PubMed: 10843666] 

13. Stein M et al. (1992) Interleukin 4 potently enhances murine macrophage mannose receptor 
activity: a marker of alternative immunologic macrophage activation. J Exp Med 176, 287–292. 
10.1084/jem.176.1.287 [PubMed: 1613462] 

14. Murray PJ et al. (2014) Macrophage activation and polarization: nomenclature and experimental 
guidelines. Immunity 41, 14–20. 10.1016/j.immuni.2014.06.008 [PubMed: 25035950] 

15. Ginhoux F et al. (2016) New insights into the multidimensional concept of macrophage ontogeny, 
activation and function. Nat Immunol 17, 34–40. 10.1038/ni.3324 [PubMed: 26681460] 

16. Mulder K et al. (2021) Cross-tissue single-cell landscape of human monocytes and macrophages 
in health and disease. Immunity 54, 1883–1900.e1885. 10.1016/j.immuni.2021.07.007 [PubMed: 
34331874] 

17. MacParland SA et al. (2018) Single cell RNA sequencing of human liver reveals distinct 
intrahepatic macrophage populations. Nat Commun 9, 4383. 10.1038/s41467-018-06318-7 
[PubMed: 30348985] 

18. Hildreth AD et al. (2021) Single-cell sequencing of human white adipose tissue identifies new cell 
states in health and obesity. Nat Immunol 22, 639–653. 10.1038/s41590-021-00922-4 [PubMed: 
33907320] 

19. Weissleder R and Pittet MJ (2020) The expanding landscape of inflammatory cells affecting cancer 
therapy. Nat Biomed Eng 4, 489–498. 10.1038/s41551-020-0524-y [PubMed: 32203281] 

20. Zhang F et al. (2019) Defining inflammatory cell states in rheumatoid arthritis joint synovial 
tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol 20, 928–942. 
10.1038/s41590-019-0378-1 [PubMed: 31061532] 

Katkar and Ghosh Page 10

Trends Immunol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Kurowska-Stolarska M and Alivernini S (2022) Synovial tissue macrophages in joint 
homeostasis, rheumatoid arthritis and disease remission. Nat Rev Rheumatol 18, 384–397. 
10.1038/s41584-022-00790-8 [PubMed: 35672464] 

22. Kong L et al. (2023) The landscape of immune dysregulation in Crohn’s disease revealed through 
single-cell transcriptomic profiling in the ileum and colon. Immunity 56, 444–458.e445. 10.1016/
j.immuni.2023.01.002 [PubMed: 36720220] 

23. Li F et al. (2021) Single-cell RNA-seq reveals cellular heterogeneity of mouse carotid artery under 
disturbed flow. Cell Death Discov 7, 180. 10.1038/s41420-021-00567-0 [PubMed: 34282126] 

24. Ma F et al. (2021) The cellular architecture of the antimicrobial response network in 
human leprosy granulomas. Nat Immunol 22, 839–850. 10.1038/s41590-021-00956-8 [PubMed: 
34168371] 

25. Ramachandran P et al. (2019) Resolving the fibrotic niche of human liver cirrhosis at single-cell 
level. Nature 575, 512–518. 10.1038/s41586-019-1631-3 [PubMed: 31597160] 

26. Muldoon JJ et al. (2020) Macrophages employ quorum licensing to regulate collective activation. 
Nat Commun 11, 878. 10.1038/s41467-020-14547-y [PubMed: 32054845] 

27. Postat J et al. (2018) A Metabolism-Based Quorum Sensing Mechanism Contributes 
to Termination of Inflammatory Responses. Immunity 49, 654–665.e655. 10.1016/
j.immuni.2018.07.014 [PubMed: 30266340] 

28. Vallejo J et al. (2021) Heterogeneity of immune cells in human atherosclerosis revealed by 
scRNA-Seq. Cardiovasc Res 117, 2537–2543. 10.1093/cvr/cvab260 [PubMed: 34343272] 

29. Slysz J et al. (2023) Single-cell profiling reveals inflammatory polarization of human carotid 
versus femoral plaque leukocytes. JCI Insight 8. 10.1172/jci.insight.171359

30. Oguri Y et al. (2020) CD81 Controls Beige Fat Progenitor Cell Growth and Energy Balance via 
FAK Signaling. Cell 182, 563–577.e520. 10.1016/j.cell.2020.06.021 [PubMed: 32615086] 

31. Sun W et al. (2020) snRNA-seq reveals a subpopulation of adipocytes that regulates 
thermogenesis. Nature 587, 98–102. 10.1038/s41586-020-2856-x [PubMed: 33116305] 

32. Wu M et al. (2023) Single-cell RNA-seq uncovers distinct pathways and genes in endothelial cells 
during atherosclerosis progression. Front Mol Biosci 10, 1176267. 10.3389/fmolb.2023.1176267 
[PubMed: 37325477] 

33. Kuppe C et al. (2021) Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 
281–286. 10.1038/s41586-020-2941-1 [PubMed: 33176333] 

34. Li C et al. (2019) Single cell transcriptomics based-MacSpectrum reveals novel macrophage 
activation signatures in diseases. JCI Insight 5. 10.1172/jci.insight.126453

35. Jordão MJC et al. (2019) Single-cell profiling identifies myeloid cell subsets with distinct fates 
during neuroinflammation. Science 363. 10.1126/science.aat7554

36. Hammond TR et al. (2019) Single-Cell RNA Sequencing of Microglia throughout the Mouse 
Lifespan and in the Injured Brain Reveals Complex Cell-State Changes. Immunity 50, 253–
271.e256. 10.1016/j.immuni.2018.11.004 [PubMed: 30471926] 

37. Viola MF and Boeckxstaens G (2021) Niche-specific functional heterogeneity of intestinal resident 
macrophages. Gut 70, 1383–1395. 10.1136/gutjnl-2020-323121 [PubMed: 33384336] 

38. Lavin Y et al. (2014) Tissue-resident macrophage enhancer landscapes are shaped by the local 
microenvironment. Cell 159, 1312–1326. 10.1016/j.cell.2014.11.018 [PubMed: 25480296] 

39. Reyfman PA et al. (2019) Single-Cell Transcriptomic Analysis of Human Lung Provides Insights 
into the Pathobiology of Pulmonary Fibrosis. Am J Respir Crit Care Med 199, 1517–1536. 
10.1164/rccm.201712-2410OC [PubMed: 30554520] 

40. Adams TS et al. (2020) Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell 
populations in idiopathic pulmonary fibrosis. Sci Adv 6, eaba1983. 10.1126/sciadv.aba1983 
[PubMed: 32832599] 

41. Chung W et al. (2017) Single-cell RNA-seq enables comprehensive tumour and immune cell 
profiling in primary breast cancer. Nat Commun 8, 15081. 10.1038/ncomms15081 [PubMed: 
28474673] 

42. Lavin Y et al. (2017) Innate Immune Landscape in Early Lung Adenocarcinoma by Paired 
Single-Cell Analyses. Cell 169, 750–765.e717. 10.1016/j.cell.2017.04.014 [PubMed: 28475900] 

Katkar and Ghosh Page 11

Trends Immunol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



43. Zilionis R et al. (2019) Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals 
Conserved Myeloid Populations across Individuals and Species. Immunity 50, 1317–1334.e1310. 
10.1016/j.immuni.2019.03.009 [PubMed: 30979687] 

44. Ma RY, Black A and Qian BZ (2022) Macrophage diversity in cancer revisited in the era of 
single-cell omics. Trends Immunol 43, 546–563. 10.1016/j.it.2022.04.008 [PubMed: 35690521] 

45. Rodell CB, Koch PD and Weissleder R (2019) Screening for new macrophage therapeutics. 
Theranostics 9, 7714–7729. 10.7150/thno.34421 [PubMed: 31695796] 

46. Ghosh P et al. (2023) Machine learning identifies signatures of macrophage reactivity and 
tolerance that predict disease outcomes. EBioMedicine 94, 104719. 10.1016/j.ebiom.2023.104719 
[PubMed: 37516087] 

47. Pandya R et al. (2023) A machine learning classifier using 33 host immune response mRNAs 
accurately distinguishes viral and non-viral acute respiratory illnesses in nasal swab samples. 
Genome Med 15, 64. 10.1186/s13073-023-01216-0 [PubMed: 37641125] 

48. Zhang Z et al. (2023) Deciphering the crosstalk of immune dysregulation between COVID-19 and 
idiopathic inflammatory myopathy. Front Immunol 14, 1197493. 10.3389/fimmu.2023.1197493 
[PubMed: 37638007] 

49. Sahoo D et al. (2008) Boolean implication networks derived from large scale, whole genome 
microarray datasets. Genome Biol 9, R157. 10.1186/gb-2008-9-10-r157 [PubMed: 18973690] 

50. Ivashkiv LB (2013) Epigenetic regulation of macrophage polarization and function. Trends 
Immunol 34, 216–223. 10.1016/j.it.2012.11.001 [PubMed: 23218730] 

51. Yu T et al. (2019) Modulation of M2 macrophage polarization by the crosstalk between Stat6 and 
Trim24. Nat Commun 10, 4353. 10.1038/s41467-019-12384-2 [PubMed: 31554795] 

52. van Ingen E et al. (2021) Inhibition of microRNA-494-3p activates Wnt signaling and reduces 
proinflammatory macrophage polarization in atherosclerosis. Mol Ther Nucleic Acids 26, 1228–
1239. 10.1016/j.omtn.2021.10.027 [PubMed: 34853722] 

53. Ouimet M et al. (2015) MicroRNA-33-dependent regulation of macrophage metabolism directs 
immune cell polarization in atherosclerosis. J Clin Invest 125, 4334–4348. 10.1172/jci81676 
[PubMed: 26517695] 

54. Curtale G, Rubino M and Locati M (2019) MicroRNAs as Molecular Switches in Macrophage 
Activation. Front Immunol 10, 799. 10.3389/fimmu.2019.00799 [PubMed: 31057539] 

55. Backstein K (1992) The Blind Men and the Elephant Scholastic

56. Becker WR et al. (2022) Single-cell analyses define a continuum of cell state and composition 
changes in the malignant transformation of polyps to colorectal cancer. Nat Genet 54, 985–995. 
10.1038/s41588-022-01088-x [PubMed: 35726067] 

57. Adler M et al. (2019) Continuum of Gene-Expression Profiles Provides Spatial Division of Labor 
within a Differentiated Cell Type. Cell Syst 8, 43–52.e45. 10.1016/j.cels.2018.12.008 [PubMed: 
30638811] 

58. Delfini M et al. (2022) Macrophages in the gut: Masters in multitasking. Immunity 55, 1530–1548. 
10.1016/j.immuni.2022.08.005 [PubMed: 36103851] 

59. Casano AM and Peri F (2015) Microglia: multitasking specialists of the brain. Dev Cell 32, 469–
477. 10.1016/j.devcel.2015.01.018 [PubMed: 25710533] 

60. Moore KJ, Sheedy FJ and Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. 
Nat Rev Immunol 13, 709–721. 10.1038/nri3520 [PubMed: 23995626] 

61. Sagar D (2020) Deciphering Cell Fate Decision by Integrated Single-Cell Sequencing Analysis. 
Annu Rev Biomed Data Sci 3, 1–22. 10.1146/annurev-biodatasci-111419-091750 [PubMed: 
32780577] 

62. Saliba AE et al. (2016) Single-cell RNA-seq ties macrophage polarization to growth rate 
of intracellular Salmonella. Nat Microbiol 2, 16206. 10.1038/nmicrobiol.2016.206 [PubMed: 
27841856] 

63. Tiemeijer BM et al. (2023) Single-cell analysis reveals TLR-induced macrophage heterogeneity 
and quorum sensing dictate population wide anti-inflammatory feedback in response to LPS. Front 
Immunol 14, 1135223. 10.3389/fimmu.2023.1135223 [PubMed: 36911668] 

64. Myerson R (1997) Game Theory: Analysis of Conflict Harvard Univ. Press

Katkar and Ghosh Page 12

Trends Immunol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



65. Archetti M and Pienta KJ (2019) Cooperation among cancer cells: applying game theory to cancer. 
Nat Rev Cancer 19, 110–117. 10.1038/s41568-018-0083-7 [PubMed: 30470829] 

66. Osborne MJ (2003) An Introduction to Game Theory Oxford Press

67. Fudenberg DT, J. (1991) Game Theory MIT Press

68. Dühring S et al. (2017) Modelling the host-pathogen interactions of macrophages and Candida 
albicans using Game Theory and dynamic optimization. J R Soc Interface 14. 10.1098/
rsif.2017.0095

69. Hummert S et al. (2010) Game theoretical modelling of survival strategies of Candida albicans 
inside macrophages. J Theor Biol 264, 312–318. 10.1016/j.jtbi.2010.01.022 [PubMed: 20100495] 

70. Presbitero A et al. (2019) Game of neutrophils: modeling the balance between apoptosis and 
necrosis. BMC Bioinformatics 20, 475. 10.1186/s12859-019-3044-6 [PubMed: 31823711] 

71. Roca FJ et al. (2019) TNF Induces Pathogenic Programmed Macrophage Necrosis in Tuberculosis 
through a Mitochondrial-Lysosomal-Endoplasmic Reticulum Circuit. Cell 178, 1344–1361.e1311. 
10.1016/j.cell.2019.08.004 [PubMed: 31474371] 

72. Simpson DS et al. (2022) Interferon-γ primes macrophages for pathogen ligand-induced killing 
via a caspase-8 and mitochondrial cell death pathway. Immunity 55, 423–441.e429. 10.1016/
j.immuni.2022.01.003 [PubMed: 35139355] 

73. Xaus J et al. (2000) LPS induces apoptosis in macrophages mostly through the autocrine 
production of TNF-alpha. Blood 95, 3823–3831 [PubMed: 10845916] 

74. Alexander AF et al. (2021) Single-cell secretion analysis reveals a dual role for IL-10 in 
restraining and resolving the TLR4-induced inflammatory response. Cell Rep 36, 109728. 
10.1016/j.celrep.2021.109728 [PubMed: 34551303] 

Katkar and Ghosh Page 13

Trends Immunol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIGHLIGHTS

• The era of single-cell biology has witnessed an explosive growth in our 

inventory of macrophage states, contributing to the belief that diverse 

macrophage states are unique to each tissue niche.

• This tenet has recently been challenged by machine learning (ML) approaches 

that are geared to identify what is common (shared), while ignoring what 

differs. Macrophages anywhere and everywhere, were found to share a 

universally conserved continuum of inflammatory and non-inflammatory 

states, regardless of tissues, species, or stimuli.

• Both approaches underscore the importance of maintaining a population-

level equilibrium between inflammatory (accelerators) and non-inflammatory 

(brake) macrophages to mount a physiologic immune response.

• Both approaches conclude that diseases are a consequence of either 

population imbalance (too many/too few) and/or inability to switch states 

(‘jammed’ brakes/accelerators).
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Significance Box

Macrophages are known to assume countless number of states in diverse tissue 

niches. Landmark studies using single cell technologies and, more recently, machine 

learning approaches establish that these states represent two opposing populations 

of macrophages: inflammatory macrophages that respond to neutralize threats, and 

non-inflammatory macrophages that promote healing and maintain homeostasis. 

Understanding how these two opposing populations originate or influence each-other’s 

fitness, and what population-level strategy triggers them to switch states is a must before 

we can decode macrophage states.
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OUTSTANDING QUESTIONS

• Can the ML-derived continuum model (Figure 2A–B) be refined 

to incorporate tissue-specific and disease-specific states, taking into 

consideration the types of perturbations that are unique to such disease?

Any model that is optimal for all macrophages is expected to be suboptimal for a specific 

kind of tissue macrophage. Therefore, model refinement should be a priority and can be 

done on datasets of either human diseased tissues, or macrophages isolated from such 

tissues or perturbed with the relevant stressor(s). Such refinement is expected to enhance 

the model’s translational potential.

• What is the predictive accuracy of model-rationalized perturbations (genetic 

or drugs), and how should that be tested?

Testing the effectiveness of model-based therapeutics was only partially evaluated using 

with retrospectively curated crowd-sourced datasets and requires to be prospectively 

tested using RNA Seq technologies such as Perturb-Seq (which uses gene editing 

approach) or Drug-seq (which uses drugs/chemicals). Concordance between the two will 

ensures reliable performance of drug targets in real-world scenarios. Successful vetting 

of network-prioritized targets is expected to usher in a new therapeutic strategy, i.e., 

macrophage re-education therapy.

• How can we further our understanding of individual versus collective 

macrophage behavior to answer key questions, e.g., what triggers state-

switching and/or temporal population drifts, and how does the population 

level behavior differ in response to various doses and types of threats?

Solving the puzzle of how macrophage populations cooperate or compete as they 

neutralized threats may require us to apply methods and concepts from evolutionary 

game theory. Application of this theory has the potential to reveal strategic interactions 

between accelerator and brake-like populations (and others, shown in Figure 3) where 

everyone’s payoff not just depends on their own traits, but also on the traits of others.
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Figure 1. Macrophage diversity in health and disease, as revealed by single-cell studies [17–25].
A. A catalog of discrete macrophage states in diverse tissues can be identified using single-

cell-based approaches, represented here as 5 broad subtypes (see color key below).

B. Added value of knowledge of discrete cell states that enabled a deeper understanding of 

the existence and characteristics of diverse macrophage populations and how they interact 

among themselves and other cell types in diverse tissue and disease contexts.

C. An equilibrium between non-inflammatory (‘brake’) and inflammatory (‘accelerator’) 

macrophage subsets can maintain homeostasis in health (left). Deregulation in diseased 
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tissues may present in two ways; excessive inflammation is often accompanied by a broken 

‘brake’ and/or a jammed ‘accelerator’ (middle), whereas those characterized by inadequate 

inflammation (excessive tolerance) is often accompanied by a jammed ‘brake’ and/or a 

broken ‘accelerator’ (right). Macrophage (MΦ).
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Figure 2: An universally conserved model of monocyte/macrophage states, as identified by 
machine learning [46].
A. An overview of steps (top left) involved in the derivation of formal definitions for 

macrophage reactivity and tolerance using network-transcriptomics and machine learning 

(ML). The resultant bipartite model (bottom left) could independently and accurately 

indicate the degrees of reactivity and tolerance. Numbers (n) in the box indicate the number 

and diversity of samples used for model training, validation and for testing its performance. 

Katkar and Ghosh Page 19

Trends Immunol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hs, Homo sapiens; Mm, Mus musculus. Derivation of formal definitions of ‘brake’ and 

‘accelerator’ states in health (top-right) and disease (bottom-right).
B. The altered balance of reactive and tolerant macrophage states that is observed in 

different diseased states.

C. Added value of a bipartite network model of macrophage states that enables objective 

assessment and quantification of macrophage states in bulk tissue.
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Figure 3. A proposed framework for comprehending macrophage states and their strategic 
interaction(s) in health and disease.
A-C. A schematic showing macrophage states (each colored sphere) distributed in three-

dimensional data space before (A) and after (B) any perturbation. The colors of the sphere 

represent macrophage subpopulations multi-tasking along a reactivity↔tolerance spectrum 

(C). Although reactive (accelerators) and tolerant (brakes) cell states that occupy the ends of 

the spectrum are the most consequential when mounting a balanced inflammatory response, 

other supportive states may exist. For example, inert cells on standby awaiting signals to join 
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either the reactive or the tolerant group as needed, or cycling cells that replenish the dying 

cells. Colors in panel A indicate that the potential of any macrophage to reach any state is 

pre-determined by genetic and epigenetic heterogeneity in the resting population.

D. Complex auto- and paracrine crosstalk between brake and accelerator populations that 

regulate their own and each other’s behaviors. Continuous grey arrows indicate key pro-

inflammatory (top) and anti-inflammatory (bottom) factors produced by each subpopulation. 

Interrupted black arrows indicate pro-apoptotic and genomic stress inducing effects of the 

proinflammatory factors on the entire population. Blue lines show suppressive or stimulative 

effects of one population over the other. While too much of either TNFα [71] or IFNγ [72] 

(via TLRs) [73] can trigger macrophage death, they have opposing effect on IL10 production 

[63]. IL10 [63,74] and NO [27], both are known to antagonize the reactive populations 

and the production of proinflammatory cytokines to restrict inflammation and/or promote 

resolution; their actions are also highly dependent on cell density. Cell density also impacts 

the levels of production of TNFα [26].

E. Characterization of macrophage states by Evolutionary Game Theory. Upon perturbation 

with any inflammatory agent, strategic interactions between brake and accelerator 

subpopulations (via crosstalk, as in D) is essential to have a most optimal outcome that 

is dependent on the type of injury, cell density, and perhaps tissue niche.
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