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Behavioral/Cognitive

Neural Mechanisms of Updating under Reducible and
Irreducible Uncertainty

X Kenji Kobayashi1 and X Ming Hsu1,2

1Helen Wills Neuroscience Institute and 2Haas School of Business, University of California, Berkeley, Berkeley, California 94720

Adaptive decision making depends on an agent’s ability to use environmental signals to reduce uncertainty. However, because of multiple
types of uncertainty, agents must take into account not only the extent to which signals violate prior expectations but also whether
uncertainty can be reduced in the first place. Here we studied how human brains of both sexes respond to signals under conditions of
reducible and irreducible uncertainty. We show behaviorally that subjects’ value updating was sensitive to the reducibility of uncertainty,
and could be quantitatively characterized by a Bayesian model where agents ignore expectancy violations that do not update beliefs or
values. Using fMRI, we found that neural processes underlying belief and value updating were separable from responses to expectancy
violation, and that reducibility of uncertainty in value modulated connections from belief-updating regions to value-updating regions.
Together, these results provide insights into how agents use knowledge about uncertainty to make better decisions while ignoring mere
expectancy violation.
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Introduction
Adaptive decision making in the real world depends critically on
an agent’s ability to constantly make use of environmental signals
to reduce uncertainty. Agents should take into account not only
physical properties of signals but also the nature of uncertainty, as
not all kinds of uncertainty can be reduced in the same way. In
particular, two types of uncertainty, risk and ambiguity, have
received widespread emphasis in decision-making literature
(Keynes, 1921; Knight, 1921; Ellsberg, 1961). While ambiguity
can be reduced by signals that carry new information and supple-
ment an agent’s prior knowledge about the environment, risk
cannot be reduced by any signals.

To illustrate the implication of these types of uncertainty for
the adaptive use of signals, consider a variation on the classic
example of gambler’s fallacy (Tversky and Kahneman, 1974), a
gamble that depends on tosses of two coins A and B. You know
that coin A is fair (risk), but you do not know whether coin B is
biased or fair (ambiguity). If you observe 10 consecutive “heads”
of B, it would suggest that B is biased, but the same sequence of A
does not provide any new information. Although these two sig-
nals are similar and both surprising, appropriate decision making
requires agents to use them differently because of the different
natures of uncertainty.

This, however, poses a challenge for theoretical frameworks,
such as reinforcement learning (RL), which do not incorporate
explicit notions of uncertainty. Under RL, values of actions are
updated to the extent that an observed outcome violates prior
expectancy, such that agents cannot ignore merely expectancy-
violating outcomes under risk (Sutton and Barto, 1998). One
solution to this, possible under normative Bayesian and model-
based RL accounts, is to posit that agents construct internal mod-
els or beliefs about the environment, which may be sensitive to
the nature of uncertainty (Behrens et al., 2007; Itti and Baldi,
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Significance Statement

To make good decisions, a person must observe the environment carefully, and use these observations to reduce uncertainty about
consequences of actions. Importantly, uncertainty should not be reduced purely based on how surprising the observations are, particu-
larly because in some cases uncertainty is not reducible. Here we show that the human brain indeed reduces uncertainty adaptively by
taking into account the nature of uncertainty and ignoring mere surprise. Behaviorally, we show that human subjects reduce uncertainty
in a quasioptimal Bayesian manner. Using fMRI, we characterize brain regions that may be involved in uncertainty reduction, as well as
the network they constitute, and dissociate them from brain regions that respond to mere surprise.
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2009; Nassar et al., 2010; Payzan-LeNestour and Bossaerts, 2011;
Ma and Jazayeri, 2014). This allows agents to update beliefs based
on signals under conditions of ambiguity, but not under risk, and
use updated beliefs to update values.

There is growing evidence that the human brain constructs
and makes use of beliefs about the external world (Behrens et al.,
2007, 2008; Gläscher et al., 2010; Daw et al., 2011), and that it
represents risk and ambiguity (Hsu et al., 2005; Huettel et al.,
2006; Bach et al., 2011). However, we know little about how the
reducibility of uncertainty is taken into account in neural pro-
cesses involved in belief updating. In this study, we aim to go
beyond the presence of beliefs or uncertainty representation and
investigate how the reducibility of uncertainty affects processing
of environmental signals for adaptive decision making.

We adapted the classic Ellsberg three-color urn problem. Sub-
jects know the number of balls of one color in the urn, but not the
number of balls of the other two colors. The monetary outcome is
contingent on the color of a ball drawn from the urn upon the reso-
lution of the gamble (Ellsberg, 1961). We introduced an environ-
mental signal to this problem in the form of a draw, which was
shown to subjects and returned to the urn before the resolution.
From a Bayesian perspective, this draw may or may not reduce un-
certainty in beliefs on urn contents and expected value, depending
on its color and outcome contingency (Fig. 1), allowing trial-by-trial
manipulation of the reducibility of uncertainty. Notably, since the
draw’s color is probabilistic, it violates expectancy to a certain extent,
even under irreducible uncertainty (Itti and Baldi, 2009; O’Reilly et
al., 2013).

We hypothesized that neural processes of uncertainty reduc-
tion would be dissociable from responses to expectancy violation.
Specifically, we predicted that the lateral frontoparietal cortex
and the medial prefrontal cortex (MPFC), which have been asso-
ciated with updating in belief and value respectively (Gläscher et
al., 2010; Daw et al., 2011; O’Reilly et al., 2013), would respond to
uncertainty reduction as opposed to mere expectancy violation.
We further tested whether the reducibility of uncertainty would
modulate interactions among regions involved in updating.

Materials and Methods
We conducted two experiments, one a behavioral experiment and one
involving fMRI, using almost identical paradigms. The behavioral exper-
iment was conducted first to examine whether subjects were sensitive to
the reducibility of uncertainty in value updating, and to what extent their
behavior could be characterized by our Bayesian model. The fMRI ex-
periment was conducted to look for neural correlates of belief updating,
value updating, and expectancy violation. Below, the task paradigm is
illustrated first, followed by the procedures of each experiment.

Task paradigm
Subjects were presented with a gamble, involving a number of balls in an
urn. They knew the exact number of balls of one color (hereafter the risky
color), but they did not know the exact number of balls of the other two
colors (the ambiguous colors). For example, an urn contains four balls,
two balls in yellow and two in either red or green; it could contain two red
balls, one red ball and one green ball, or two green balls (Fig. 1a). The
monetary outcome of the gamble was determined by a resolution draw
from the urn; subjects could win $10 if the ball drawn matches a prede-
termined winning color, and nothing otherwise (Fig. 1b). We called a
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Figure 1. Experimental paradigm. a, An exemplar urn. This urn contains two balls in yellow (the risky color) and two balls in either red or green (the ambiguous colors). Subjects do not know
whether the urn contains two red balls, two green balls, or a red and a green ball. See Table 1 for urn contents in the actual experiments. b, Gambles. Subjects received $10 if a resolution draw from
the urn matched a predetermined winning color. The gamble is called ambiguous when the winning color is an ambiguous color, and risky otherwise. c, Belief updating and expectancy violation of
observed draws. A ball is drawn from the urn, revealing its color, and is returned. Top, A draw of a red ball (ambiguous color) updates belief, because it demonstrates that at least one red ball is in
the urn [�P( R)�0]. The draw also violates prior expectancy to a certain extent [1� P( R)�0]. Bottom, A draw of a yellow ball (risky color) does not update belief, because the urn is already known
to contain two yellow balls [�P( Y) � 0]. It is still associated with expectancy violation [1 � P( Y) � 0]. d, Value updating. Left, When the winning color is red, a red observed draw increases the
expected value [$10 � �P( R) � 0]. Middle, When the winning color is green, a red draw decreases the expected value [$10 � �P( G) � 0]. Right, When the winning color is yellow, a red draw does
not affect winning probability [$10 � �P( Y) � 0]. e, Presence of belief updating, value updating, and expectancy violation. Expectancy violation does not guarantee belief updating or value
updating.
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gamble ambiguous when its winning color was one of the ambiguous
colors, and risky when it was the risky color.

We introduced environmental signals to this gamble in the form of a
draw. Prior to the resolution of the gamble, a ball was drawn from the
urn, so that the subject knew its color, and then returned to the urn. We
postulated that this observed draw first updates the prior belief about
the urn content (Fig. 1c, belief updating) and then the value of the gamble
(Fig. 1d, value). Note that the draw’s color was well specified and there
was no perceptual ambiguity.

This paradigm specifies and manipulates the reducibility of uncertainty in
beliefs and value as follows. First, because the subject does not know the
composition within ambiguous-color balls in the urn, a draw of an
ambiguous-color ball, but not a draw of a risky-color ball, should update
the subject’s belief. In our exemplar urn, a red draw updates belief be-
cause it demonstrates that the urn holds at least one red ball, increasing
probability of a future draw in red [�P(R) � 0; Fig. 1c]. On the other
hand, a yellow draw does not carry any information, because it is already
known that the urn contains two yellow balls [�P(Y) � 0].

Second, value should be updated as a consequence of belief updating only
in ambiguous gambles, but not in risky gambles. This is because the chance
to win $10 is not perfectly specified when the winning color is an ambiguous
color. In our exemplar urn, a red draw increases the probability of a red
resolution draw and decreases that of a green draw (Fig. 1d). As a conse-
quence, the value of the gamble increases if the winning color is red
[$10 � �P(R) � 0] and decreases if the winning color is green [$10 � �P(G) �
0]. On the other hand, if the winning color is yellow, a red draw does not
update its value, because probability of a yellow draw is unaffected
[$10 � �P(Y) � 0].

Therefore, if subjects rationally combine the prior knowledge about un-
certainty with the color of the observed draw, they would update belief only
after ambiguous-color draws, and update value only in ambiguous gambles
(Fig. 1e). Such sensitivity would not be observed if updating is primarily
driven by expectancy violation; since the draw’s color is unpredictable, any
draw in any gamble is associated with some level of expectancy violation,
measured as 1 � P(draw) [since P(draw) � 1, 1 � P(draw) � 0 for any draw;
Figure 1c]. To decouple updating from expectancy violation more clearly, we
manipulated the urn composition across trials (Table 1). For instance, in-
creasing yellow balls in our exemplar urn would increase expectancy viola-
tion of a red draw, but decrease the magnitudes of belief updating and value
updating the red draw causes. The manipulation of the urn composition
enabled us to look for neural correlates of belief updating and value updating
while statistically controlling for expectancy violation, and vice versa, in
fMRI analysis.

Behavioral experiment
Subjects. Ten undergraduate students in University of California, Berke-
ley (six women) participated. They provided written informed consent.
All procedures were approved by the University of California, Berkeley
Committee for the Protection of Human Subjects. The experiment was
conducted individually in a self-paced manner in isolated cubicles.
The experiment program was written on Matlab (Mathworks, RRID:
SCR_001622) and Psychtoolbox (Brainard, 1997; Pelli, 1997; RRID:
SCR_002881) and run on a laptop.

Procedure. Subjects were presented with gambles, each of which con-
sisted of a winning color and an urn containing a number of balls in red,

green, or yellow. One of the gambles was randomly selected and resolved
at the end of the experiment; a ball was randomly drawn from the urn,
and subjects received $10 only if it matched the gamble’s winning color
(in addition to the baseline payment for task completion). Subjective
values of these gambles, both predraw and postdraw, were elicited as
willingness to sell (WTS), i.e., the amount of money subjects were willing
to give up for the opportunity to gamble. A standard Becker–DeGroot–
Marschak (BDM) bidding procedure was used (Becker and Brownson,
1964); the gamble’s price was randomly determined at the end of the
experiment (uniform distribution between $0 and $10), and subjects
sold the gamble for its price only if it exceeded their WTS. In total, 18
gambles were presented in a randomized order [6 urn contents (Table
1) � 3 winning colors].

Each trial started with the presentation of the urn content and the
winning color. Subjects were informed of the number of balls of one
color (the risky color) and the total number of balls of the other two
colors (the ambiguous colors), but not of the exact composition within
the latter. Each ball in the risky color was visually represented as a full
circle, and each ball in the ambiguous colors as a pair of half circles.
The winning color was shown above the urn contents. After subjects
indicated predraw WTS, observed draws in red, green, and yellow
were presented in a randomized order, after each of which, postdraw
WTS was indicated. Thus, four WTSs in total were obtained in each
gamble. Upon the resolution of the gamble, the experiment program
randomly determined whether subjects observed the draw or not
(50%), and which color the observed draw had (probability following
the urn composition).

Data analysis. To examine value updating in a model-free manner,
trial-wise difference between predraw and postdraw subjective values
(WTSs) were calculated and categorized according to the normative pre-
diction of its valence. To more quantitatively characterize subjective val-
ues, predictions from our quantitative Bayesian model (see below) were
fitted to WTSs in mixed-effect modeling implemented on R software
(RRID:SCR_001905) and lmer package, with subjects as a random effect.
To test one-sided deviation, the fixed-effect constant term (intercept)
was compared against zero.

Bayesian modeling. Our quantitative Bayesian model consists of two
stages, belief and valuation. The belief stage concerns probability distri-
bution on a future draw’s color. Before the observed draw, subjects were
informed of the total number of balls in the two ambiguous colors na and
the number of balls in the risky color nr, but the number of balls in each
ambiguous color na1 or na2 was unknown. Thus, while the probability of
a future draw in the risky color Ppre(r) can be easily uniquely specified as
nr/(nr � na), the probabilities of a future draw in the ambiguous colors
Ppre(a1) and Ppre(a2) cannot. To generate their unique point estimates,
all possible urn contents were considered, weighted according to their
probability, and averaged. Specifically, we assumed that prior probability
over urn contents followed a binomial distribution, i.e., the number of

balls in one ambiguous color na1 followed Ppre	na1
 �
1

2na� na

na1
�. The

probability of a future draw in one ambiguous color can then be obtained
as: Ppre	a1
 � �na1�0

na Ppre	na1
 � na1/	nr � na
.
After the observed draw, probability over urn contents was updated

according to Bayes’ rule. As we adopted binomial distribution in

Table 1. The urn contents used in the experiments, and the quantitative measurement of belief updating, value updating, and expectancy violation (derived under the
Bayesian model with binomial prior probability distribution over urn contents)

Urn contents Ambiguous-color draw Risky-color draw

Balls in
ambiguous colors

Balls in
risky color

Belief
updating

Value updating
Expectancy
violation

Belief
updating

Value updating
Expectancy
violationAmbiguous gamble Risky gamble Ambiguous gamble Risky gamble

1 1 0.250 �2.50 0 0.750 0 0 0 0.500
1 2 0.167 �1.67 0 0.833 0 0 0 0.333
2 1 0.167 �1.67 0 0.667 0 0 0 0.667
1 3 0.125 �1.25 0 0.875 0 0 0 0.250
2 2 0.125 �1.25 0 0.750 0 0 0 0.500
3 1 0.125 �1.25 0 0.625 0 0 0 0.750
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Ppre(na1), the posterior probability over urn contents Ppost(na1) also fol-
lows binomial distribution (proof omitted). Namely, if the observed

draw is in a1, then Ppost	na1
 �
1

2na1�1� na � 1
na1 � 1�; if the observed draw is

in a2, then Ppost	na1
 �
1

2na1�1�na � 1
na1

�; if the observed draw is in r, no

belief updating occurs [Ppost(na1) � Ppre(na1)].
In the valuation stage, predraw and postdraw values of gambles are

calculated as expected outcome, i.e., $10 � probability of a draw in the
winning color.

It is straightforward to prove that this modeling is mathematically equiv-
alent to a more heuristic account, which only considers “effective” urn con-
tent (proof omitted). In this account, each ambiguous ball is treated as a pair
of half (0.5) balls in the ambiguous colors. When an ambiguous-color draw
is observed, one of such pairs is replaced with a full ball in the draw’s color.
Critically, agents taking this heuristic strategy are still sensitive to the empir-
ically manipulated reducibility of uncertainty. Due to this mathematical
equivalence, the current study does not directly test whether updating pro-
cesses are fully Bayesian or not; rather, our interest lies in whether updating
processes take into account the reducibility of uncertainty, which is an im-
portant feature of Bayesian theories.

fMRI experiment
Subjects. Twenty subjects (mean age, 21.7 years; 11 women) participated
after being screened for standard MRI contraindications. They provided
written informed consent. All procedures were approved by University of
California, Berkeley Committee for the Protection of Human Subjects.
One subject declined to participate after the task instructions but before
the scanning, and two subjects were discarded from analysis due to un-
satisfactory performance in auxiliary tasks (see below), resulting in data
from 17 subjects analyzed. During scanning, the experiment program
was run on Matlab and Psychtoolbox, with which subjects interacted via
an MRI-compatible button box.

Main task procedure. During scanning, subjects observed gambles in a
randomized order one of which was randomly selected and resolved at
the end of the experiment. Thirty gambles were presented in each of the
three echo-planar imaging (EPI) runs (90 in total), and the winning color
was changed across runs (remained the same within each run). Six urn
contents (Table 1) were presented 15 times each, 5 times for risky gam-
bles and 10 for ambiguous gambles (6 � 15 � 90). Frequency of the
observed draw’s color across gambles approximately followed the urn
composition.

Each trial started with the fixation cross in the winning color (2 s),
followed by the urn content presentation (visual representation similar
to the behavioral experiment). The urn content was presented for 5–12 s
(after a variable delay of 4 – 6 s, the urn lid opened in a 0.5 s animation, on
which subjects were asked to press a button within 5 s; upon their button
press, the balls moved into the urn in another 0.5 s animation; this
process was introduced to keep subjects alert). After a variable interval
(3– 6 s), a gray ball moved out of the urn in a 0.5 s animation, and revealed
its color after another variable interval (1–3 s). After 3 s, the drawn ball
was returned to the urn in a 0.5 s animation, followed by a variable
intertrial interval (2.5– 4.5 s).

Auxiliary tasks. To verify each subject’s engagement and understand-
ing throughout the main observation task, we asked them to respond to
three types of auxiliary tasks. They were presented immediately after
randomly selected 27 gambles (nine for each task type). In the memory
task, subjects were asked to choose the correct description of the previous
gamble (the winning color, the urn content, and the observed draw) from
two options. In the value-updating judgment task, subjects were asked to
indicate whether it is (1) less likely, (2) equally likely, or (3) more likely to
win the gamble after the draw. In the surprise rating task, subjects were
asked to rate their surprise of the observed draw on a three-point scale.
Since the surprise rating task was purely subjective, we used the memory
task and the value-updating judgment task to test each subject’s engage-
ment and understanding. Subjects each received up to $10 based on their
performance in these two tasks. Two subjects were excluded from the
subsequent analyses because of their unsatisfactory performance (�2
wrong responses or �2 trials without responses within 10 s in either

task). The remaining subjects were able to classify the valence of value
updating consistently with the Bayesian prediction, which was in line
with the behavioral experiment’s results.

fMRI data acquisition. MR images were acquired by a 3T Siemens Trio
scanner and a 12-channel head coil. Functional images were obtained
using T2*-weighted gradient-echo EPI pulse sequence (TR � 2000 ms;
TE � 30 ms; voxel size, 3 � 3 � 3 mm; interslice gap, 0.3 mm;
in-plane resolution, 64 � 64; 32 oblique axial slices). Slices were tilted
by 30° from the anterior commissure–posterior commissure line to
alleviate signal dropout from the orbitofrontal cortex (Weiskopf et
al., 2006). T1-weighted structural images (1 � 1 � 1 mm) were also
obtained using a magnetization-prepared rapid-acquisition gradient-
echo pulse sequence.

Preprocessing. Preprocessing was conducted using SPM8 (http://www.fil.
ion.ucl.ac.uk/spm/, RRID:SCR_007037). Structural images were seg-
mented into gray matter and white matter. Functional images were
motion corrected (aligned to the mean image), slice-time corrected,
coregistered with segmented structural images, normalized to the MNI
EPI template, and smoothed with a Gaussian kernel of 8 mm FWHM.

Whole-brain univariate analysis. Whole-brain analysis used general linear
modeling (GLM) of BOLD time series and group-level random-effect
models on SPM8. To quantitatively relate BOLD signals to belief
updating, value updating, and expectancy violation, these variables
were parametrically defined under the Bayesian model: belief updating
as the absolute difference between predraw and postdraw probability of
ambiguous colors, value updating as the signed difference between pre-
draw and postdraw expected value of gambles, and expectancy violation
as 1 � predraw probability of the observed draw. See Table 1 for their
variations as functions of urn contents. We noted that, although our
behavioral results may imply probability underweighting under ambigu-
ity, adopting such a model has minimal effects on parametric modulators
of belief updating and value updating (r � 0.97 and 0.99, respectively).

These variables were included in GLMs as parametric modulators of a
regressor at the observed draws. To adjust for the correlation between
belief updating and expectancy violation, we included both parametric
modulators in the GLMs so that their coefficients only captured variance
uniquely explained by each of them, not the shared variance (Mumford
et al., 2015). Since SPM8 orthogonalizes the second parametric modula-
tor against the first by default, we implemented two GLMs: one in which
the first parametric modulator was expectancy violation and the second
was belief updating (GLM 1), and the other one in which the order was
reversed (GLM 2). GLM 1 was used to look for neural correlates of belief
updating adjusted for expectancy violation, and GLM 2 was used to look
for neural correlates of expectancy violation adjusted for belief updating.
To illustrate how results could have been affected if the shared variance
were not removed and adjusted for, we also reported coefficient esti-
mates for unorthogonalized parametric modulators, i.e., expectancy
violation in GLM 1 and belief updating in GLM 2. GLM 3 included
value updating as a sole parametric modulator.

All GLMs also included regressors that modeled events of gamble pre-
sentation, button press, question presentation, and question response.
All event-related regressors were convolved with the SPM’s double-�
canonical hemodynamic response function. Additionally, they included
six movement parameters estimated in the motion-correction procedure,
128 s high-pass filtering, and the AR(1) model of serial autocorrelation.
Coefficient estimates of the parametric modulators were then entered into
group-level analysis. For clusters defined by voxel-level threshold p � 0.001
(uncorrected), cluster-level p values with whole-brain correction for family-
wise error (FWE) were calculated using nonparametric permutation in
SnPM13 package (Nichols and Holmes, 2002; Hayasaka and Nichols, 2003;
Woo et al., 2014; RRID:SCR_002092).

Regions-of-interest analysis. Activations in regions of interest (ROIs)
were examined using the Marsbar package (Brett et al., 2002; RRID:
SCR_009605) in the following steps. First, ROIs were determined based
on the group-level whole-brain analysis at the cluster-level threshold of
k � 20. Second, subject-specific ROIs were defined from group-level
activation maps based on the other 16 subjects’ data (leave-one-subject-
out; Boorman et al., 2013; Hunt et al., 2014). We used clusters that
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survived uncorrected voxel-level p � 0.001, k � 10, with the local max-
ima located within 16 mm from all-subject group-level peaks (one
cingulate value-updating ROI was discarded because it was not ro-
bustly identified in some iterations at this threshold). Third, mean
BOLD time series from each ROI was extracted from the hold-out
subject’s data, to which GLMs 1, 2, and 3 were fitted. The parametric
modulators’ coefficient estimates were normalized according to the
baseline of time series, similarly to conventional calculation of per-
centage signal change (although our coefficients were derived from
parametric modulators and thus could not be interpreted as percent-
age signal change per se). Fourth, estimates were entered into mixed-
effect modeling with subjects as a random effect, conducted on R and
lmer package.

Note that, although the circularity problem in ROI definition (Krieges-
korte et al., 2009) is slightly alleviated by the leave-one-subject-out pro-
cedure, it is not eliminated. This is because the sets of ROIs were
determined based on data from all subjects, including the one held out.
As a consequence, for belief-updating ROIs, coefficient estimates for
belief updating (GLM 1) may have a slightly positive bias, and estimates
for expectancy violation (GLM 2) may be negatively biased; vice versa for
expectancy-violation ROIs (since value updating is orthogonal to belief
updating and expectancy violation by design, there is no bias in any
coefficient estimates from value-updating ROIs, as well as in coefficient
estimates for value updating from any ROIs).

Also note that our statistical inference in ROI analysis did not compare
coefficients of different parametric modulators (belief updating, value
updating, and expectancy violation); it only concerned whether each
coefficient was different from zero, not whether one coefficient was
higher than others. The parametric modulators are not in the same unit,
and their coefficient estimates are not directly comparable.

Dynamic causal modeling. Dynamic causal modeling (DCM) analysis
was conducted using the DCM module in SPM8. DCM is a generative

model of BOLD time series from multiple ROIs, and includes three types
of factors: direct regional input, stationary inter-regional connections,
and, importantly for our purpose, temporal modulations in inter-
regional connections (Friston et al., 2003). DCM is agnostic about
whether connections are monosynaptic.

To test modulation of inter-regional connections based on the type of
gambles (ambiguous or risky), we constructed and compared three fam-
ilies of DCMs; Family 1 allowed for modulations in connections from
belief-updating ROIs to value-updating ROIs, Family 2 allowed for mod-
ulations in connections from expectancy-violation ROIs to value-
updating ROIs, and Family 3 did not allow for any modulations. We
adopted this familywise approach because, while we were interested in
testing existence of modulations among the sets of ROIs, we were not
interested in discriminating among contributions of specific ROIs. We
aimed in particular to allow the possibility that ROIs exhibiting modu-
lation are heterogeneous across individuals (e.g., handedness might af-
fect laterality). Modulations were implemented as differential strength of
connections during ambiguous and risky gambles (boxcar functions
from gambles’ presentations to the trials’ termination).

We constructed DCMs with eight ROIs: four belief-updating ROIs
(bilateral frontal and parietal cortex), two value-updating ROIs (MPFC
and right ventromedial PFC [VMPFC]), and two expectancy-violation
ROIs (bilateral anterior insula). Instantiating all possible sets of modu-
lated connections from belief-updating ROIs to value-updating ROIs,
Family 1 thus contained 2 8 � 1 � 255 models. Similarly, instantiating all
possible sets of modulated connections from two expectancy-violation
ROIs to two value-updating ROIs, Family 2 contained 2 4 � 1 � 15
models. Family 3 contained 1 model with no modulations. We chose
these ROIs primarily because they were identifiable for every subject (see
below). Due to large model space, it is computationally prohibitive to
explore alternative network specifications (e.g., including additional
ROIs). Although it is possible that the DCM results depend on this selec-

Table 2. Clusters associated with belief updating (adjusted for expectancy violation), value updating, and expectancy violation (adjusted for belief updating)

Region # Voxels
Cluster-level
p (whole-brain FWE corrected)

Peaks
Mean (SD) of
# voxels in leave-
one-subject-outx y z T(16)

Voxel-level
p (uncorrected)

Belief updating
Right middle frontal gyrus/superior frontal sulcus 61 0.0568 27 2 55 5.77 0.000014 50 (29)

27 14 46 4.30 0.000275
Precuneus 96 0.0280 6 �61 31 5.61 0.000020 82 (26)

�6 �61 40 4.81 0.000096
�6 �58 28 4.40 0.000224

Right IPS 146 0.0128 30 �40 49 5.54 0.000022 117 (45)
45 �31 46 5.06 0.000058
27 �52 46 4.64 0.000136

Left IPS 51 0.0724 �24 �43 46 5.18 0.000046 40 (33)
�42 �37 40 4.66 0.000131

Left middle frontal gyrus/superior frontal sulcus 39 0.1000 �30 11 58 4.67 0.000128 40 (42)
Value updating

Right VMPFC 39 0.0966 15 29 �14 6.36 0.000005 34 (17)
15 38 �11 4.68 0.000125
24 26 �11 4.13 0.000393

Left superior temporal gyrus 43 0.0868 �48 �7 �2 5.75 0.000015
MPFC 210 0.0118 �15 53 7 5.66 0.000018 168 (72)

15 53 4 4.77 0.000104
�12 41 4 4.66 0.000131

Cingulate cortex 107 0.0302 �9 �22 43 5.55 0.000022 104 (88)
�18 �22 40 5.16 0.000047
�6 �10 37 4.47 0.000193

Subgenual area 31 0.1194 9 26 7 5.53 0.000023 26 (9)
Cingulate cortex 29 0.1284 �6 �1 52 4.40 0.000224 N/A

3 2 46 4.20 0.000339
Left inferior parietal lobule 21 0.1690 �48 �37 25 4.37 0.000238 38 (10)

Expectancy violation
Right insula 45 0.0660 30 20 �8 6.22 0.000003 42 (12)
Left insula 27 0.1060 �30 26 �2 5.05 0.000059 23 (17)

�42 20 �2 4.13 0.000393

Clusters were formed at voxelwise threshold p � 0.001. All clusters �20 voxels are reported here. VMPFC, ventromedial prefrontal cortex.
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tion of ROIs, type-I error has not been affected because ROI selection was
not conditional on DCM results.

ROIs were defined in a subject-specific manner. From subject-wise
activation maps (GLMs 1–3), ROIs that survived uncorrected voxelwise
threshold p � 0.20 with local maxima located within 16 mm from all-
subject group-level peaks were selected (Smith et al., 2006). Three sub-
jects were discarded from DCM analysis because some ROIs could not be
identified (one subject for the left frontal belief-updating cluster, one for
the MPFC value-updating cluster, and one for left insula expectancy-
violation cluster). Next, we extracted the principal eigenvariate of BOLD
time series from 4-mm-radius spheres centered on the local maxima.

In addition to modulated connections, all DCMs included the same
regional inputs and stationary inter-regional connections. Regional in-
puts modeled the events of the observed draws. To explain away intrare-
gional computational processes captured in univariate analysis, we
included parametric modulators of both belief updating and expectancy
violation to inputs to belief-updating and expectancy-violation ROIs (as
in GLM 1 and 2, with which these ROIs were originally defined), and
value updating to value-updating ROIs (as in GLM 3). Stationary inter-
regional connections modeled bidirectional influence between ROIs
from the different categories (belief updating, value updating, and expec-
tancy violation), but not from the same category.

Group-level, random-effect, family-level inference was conducted to
compare the three families of models. The family comparison procedure
takes into account both goodness of fit and model complexity, aggregates
performance across all models in each family, and calculates exceedance
probability, i.e., probability in which each family was better than the
other two families (Stephan et al., 2009; Penny et al., 2010).

Results
Behavioral sensitivity to the nature of uncertainty
First, we tested the extent to which value updating is sensitive to
the nature of uncertainty at the behavioral level. Subjective values
of gambles were elicited via a BDM bidding procedure before and
after the draw (Fig. 2a). If subjects are sensitive to the nature of
uncertainty as normatively predicted, they would update value
only when they observe ambiguous-color draws in ambiguous
gambles. On the other hand, if the updating process is driven by
expectancy violation, value would be also updated by risky-color
draws or in risky gambles. We tested these predictions by classi-
fying trials according to whether positive, negative, or zero value

updating was normatively predicted given the draw color (Fig.
2b). Distribution of observed value updating indeed varied con-
sistently with the normative prediction (� 2 test of independence,
�(4)

2 � 1493.432, p � 10�10).

Quantitative modeling of updating
To quantitatively relate updating processes to BOLD responses in
the following fMRI analysis, we next sought to provide a quanti-
tative model of updating. We postulated that agents first con-
struct and update belief about probability of a future draw, and
then use it to determine the expected value of the gamble ($10 �
the probability of winning). We further assumed that, in belief,
probability over all possible urn contents is considered and up-
dated according to Bayes’ rule (see Materials and Methods for
modeling details; note that this formalization instantiates so-
called second-order probability, one of the most widely used ap-
proaches to ambiguity in decision theory; Camerer and Weber,
1992; Klibanoff et al., 2005; Nau, 2006; Ergin and Gul, 2009; Seo,
2009). More specifically, prior probability over urn contents is
assumed to follow a binomial distribution.

We found that this model explained subjective values of gam-
bles well (Fig. 2c). Predraw and postdraw subjective values were
consistent with model predictions in both ambiguous and risky
gambles (log-likelihood ratio test, predraw ambiguous gambles,
p � 2.84 * 10�5; predraw ambiguous gambles, p � 7.07 * 10�9;
postdraw ambiguous gambles, p�1.12 * 10�5; predraw ambiguous
gambles, p � 5.72 * 10�8; Fig. 2c, left and middle). More impor-
tantly, our model successfully predicted significant value up-
dating after ambiguous-color draws in ambiguous gambles
(p � 8.05 * 10�5; Fig. 2c, top right), as well as negligible value
updating in the other cases (�$0.068 after risky-color draws in
ambiguous gambles, p � 0.300; �$0.228 after risky-color draws
in risky gambles, p � 0.182; but �$0.143 after ambiguous-color
draws in risky gambles, p � 0.004; Fig. 2c, right). We also noted
that subjects exhibited ambiguity aversion (Ellsberg, 1961); while
neither overvaluation nor undervaluation was observed in risky
gambles (�$0.063 before draws, p � 0.714; �$0.234 after draws,
p � 0.272 respectively), ambiguous gambles exhibited small un-
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Figure 2. Behavioral results. a, Experiment procedure. First, the urn content and the winning color were presented, and predraw subjective value of gambles were elicited. Next, the observed
draw was presented, followed by elicitation of postdraw value. Postdraw valuation was repeated for all of the three draw colors. The urn content and the winning color content of the urn and the
color of the winning ball were manipulated across trials. b, Histogram of value updating. Trials were classified based on the predicted valence (Fig. 1e). Proportions of the observed valence agreed
with the predictions (� 2 test of independence, p � 0.05). c, Quantitative modeling of subjective values. Observation was compared against prediction of our Bayesian model. Error bars are SEMs,
but not visible in some cases due to their small sizes. Left, Reported predraw values were successfully predicted in both ambiguous (top) and risky (bottom) gambles (log-likelihood ratio test, p �
0.05). Middle, Reported postdraw values were successfully predicted in both ambiguous (top) and risky (bottom) gambles, after both ambiguous-color draws (blue open dots) and risky-color draws
(red closed dots; p � 0.05). Right, Nonzero updating was only predicted in ambiguous gambles after ambiguous-color draws (top, blue open dots), and linear prediction was successful ( p � 0.05).
Although ambiguous-color draws slightly decreased values of risky gambles (bottom, blue open dots; p � 0.05), its effect size was negligible compared with ambiguous gambles. Risky-color draws
did not update values both in ambiguous and risky gambles (red closed dots, p � 0.10).

Kobayashi and Hsu • Neural Mechanisms of Updating under Uncertainty J. Neurosci., July 19, 2017 • 37(29):6972– 6982 • 6977



dervaluation (�$0.252 before draws, p �
0.065; �$0.292 after ambiguous-color
draws, p � 0.001; but �$0.184 after risky-
color draws, p � 0.239). Overall, even
though our model did not aim to account
for ambiguity aversion, it is a successful
first-order approximation of updating.

Neural correlates of belief updating
After establishing each subject’s behav-
ioral sensitivity to the reducibility of
uncertainty, we conducted an fMRI ex-
periment to examine how the brain pro-
cesses environmental signals according to
uncertainty. Specifically, we looked for
neural correlates of belief updating and
value updating and tested whether they
were dissociable from expectancy viola-
tion. During scanning, subjects observed
a series of gambles (Fig. 3a); each trial
started with presentation of the gamble’s
winning color, followed by the urn con-
tent and the observed draw. The gambles
were resolved only after the scanning. This
observational task was adopted to isolate
processes related to updating as opposed
to choices. To ensure that subjects paid
enough attention to the task, we used aux-
iliary tasks to elicit subjective assessment
of the directionality of value updating and
memory on the urn contents (see Materi-
als and Methods).

We first looked for brain regions where
activation was correlated with belief up-
dating. We quantified belief updating as
the absolute difference between predraw
and postdraw probability of ambiguous-
color draws under our Bayesian model
(Table 1). Even though our paradigm
quantitatively dissociates belief updating
from expectancy violation (measured as 1�
prior probability of the draw), the activa-
tion map of belief updating overlapped
that of expectancy violation (Fig. 3b). This
is because the correlation between these
two variables was still not negligible (r �
0.70; Fig. 3c, left). To adjust for the corre-
lation, we included both trial-wise belief
updating and expectancy violation as
parametric modulators in a single GLM
and looked for regions where a significant
amount of variance could be explained
uniquely by belief updating (Mumford et
al., 2015). We found bilateral clusters in
the posterior middle frontal gyrus and the
superior frontal sulcus, bilateral clusters
in the intraparietal sulcus (IPS), and a
cluster in the precuneus (Fig. 3d; cluster-
forming voxel-level threshold p � 0.001,
uncorrected, and cluster-size threshold
k � 20; see Table 2 for cluster-level p val-
ues corrected for whole-brain FWE). The
clusters in the frontal cortex may corre-

a

b c

d e

Figure 3. fMRI results. a, Experiment procedure. The winning color was first presented in the fixation cross, followed by the urn content
andthentheobserveddraw.WeanalyzedBOLDsignalstime-lockedtotheobserveddraw.Thecontentoftheurnandthecolorofthedrawn
ballweremanipulatedacrosstrialswhilethewinningcolorwasmanipulatedacrossthescanruns. b,Activationmapsofbeliefupdatingand
expectancy violation without adjustment for their correlation. They greatly overlap because of correlation between the variables. Shown
are clusters that survived voxel-level threshold p � 0.001 (uncorrected) and cluster-size threshold k � 20. c, Correlation between belief
updating, value updating, and expectancy violation, in our experiment settings (Table 1). Left, Even though belief updating does not
coincide with expectancy violation, the correlation between belief updating and expectancy violation is not negligible (r�0.70). Right, As
value updating could be positive or negative, it is orthogonal to both belief updating (top) and expectancy violation (bottom) by design.
d, Activation maps of belief updating adjusted for expectancy violation (top), value updating (middle), and expectancy violation adjusted
for belief updating (bottom). Belief updating was correlated with activation in the premotor/FEF, IPS, and precuneus; value updating with
theMPFCandthecingulatecortex;expectancyviolationwiththeAI.SeeTable2forcluster-levelwhole-brainFWE-corrected p values. e, ROI
analysis. Top, Coefficient estimates for belief updating. Belief updating was not associated with value-updating ROIs or expectancy-
violation ROIs ( p � 0.10). Middle, Coefficient estimates for value updating. Value updating was not associated with belief-updating ROIs
( p�0.05) or expectancy-violation ROIs ( p�0.10). Bottom, Coefficient estimates for expectancy violation. Expectancy violation was not
associated with belief-updating ROIs or value-updating ROIs ( p�0.10). Note that the coefficient estimates for belief updating (top), value
updating (middle), and expectancy violation (bottom) are not directly comparable due to differences in scale of regressors. Error bars: SEMs.
*p � 0.05.
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spond to premotor region or frontal eye field (FEF; Vernet et al.,
2014).

Neural correlates of value updating
We then examined neural correlates of value updating. While
belief can be updated both in ambiguous and risky gambles, value
should be updated only in ambiguous gambles. Given this differ-
ence, we expected that neural correlates of value updating are
anatomically distinct from belief updating. We looked for brain
regions in which activation was correlated with value updating
(quantified as the signed difference between predraw and post-
draw expected values; Table 1; this parametric modulator is or-
thogonal to belief updating and expectancy violation by design;
Fig. 3c, right). We found clusters in the VMPFC, the anterior and
middle cingulate, and the left superior temporal gyrus (Fig. 3d;
Table 2). These clusters did not overlap with the belief-updating
clusters.

Neural correlates of expectancy violation
Next, we tested whether these updating regions responded to
expectancy violation. Responses to expectancy violation, salience,
or surprise has been long studied in cognitive neuroscience
(Sokolov, 1963; Courchesne et al., 1975; Squires et al., 1975).
However, those studies have been motivated by the assumption
that surprising signals tend to be relevant for agents, and dissoci-
ation between expectancy violation and uncertainty reduction
has not been well studied. We found that activation in bilateral AI
was correlated with expectancy violation, even when the correla-
tion with belief updating was adjusted for (Fig. 3d; Table 2).
Importantly, these clusters did not overlap with the belief-
updating clusters or the value-updating clusters. This localization
of expectancy violation is consistent with previous reports that
the AI responds to salient events in various domains (Corbetta et
al., 2008; Singer et al., 2009; Menon and Uddin, 2010).

ROI analysis of separable neural correlates
To further illustrate the dissociation among neural correlates of
belief updating, value updating, and expectancy violation, we
conducted an ROI analysis, where ROIs were defined in a leave-
one-subject-out fashion (see Materials and Methods; see Table 2
for ROI sizes in this analysis). We found that BOLD activation in
belief-updating ROIs was correlated with belief updating as ex-
pected (p � 10�4), but not with value updating or expectancy
violation (p � 0.096 and 0.559, respectively; Fig. 3e). Similarly,

activation in value-updating ROIs was correlated with value up-
dating (p � 10�4), but not with belief updating or expectancy
violation (p � 0.281 and 0.874, respectively). More critically,
activation in expectancy-violation ROIs was correlated with ex-
pectancy violation (p � 0.004), but not with belief updating or
value updating (p � 0.953 and 0.875, respectively). These results
show that neural processes of uncertainty reduction are anatom-
ically dissociable from expectancy violation.

Interaction between updating regions
Last, we explored how these regions interact to drive appropriate
value updating. Based on our results, we made two predictions
about inter-regional interactions. First, we hypothesized that
connections from belief-updating regions to value-updating re-
gions would be modulated by the type of gamble. Since belief
updating should contribute to value computation only in ambig-
uous gambles, inter-regional connections would be temporarily
enhanced under ambiguous gambles (or temporarily weakened
under risky gambles). Second, we hypothesized that connections
from expectancy-violation regions to value-updating regions
would not show such modulation as much, since expectancy vi-
olation does not drive value updating regardless of the type of
gamble, both theoretically and behaviorally. To test these predic-
tions, we conducted DCM analysis. It is appropriate for our pur-
pose because it seeks to explain BOLD time series from more than
2 ROIs simultaneously and can include directional connections
modulated by experimental manipulations (Friston et al., 2003).

We compared three scenarios: (1) belief-updating ROIs con-
tribute to value updating, (2) expectancy-violation ROIs contrib-
ute to value updating, and (3) neither of them contributes to
value updating (Fig. 4a; see Materials and Methods). To imple-
ment the first scenario, we constructed a family of models that
instantiated every possible set of modulated connections from
belief-updating ROIs to value-updating ROIs (Family I). Similarly,
to implement the second scenario, another family of models instan-
tiated every possible set of modulated connections from expectancy-
violation ROIs to value-updating ROIs (Family II). The last scenario
was implemented as a single model with no modulation (Family III).
We included four belief-updating ROIs from the bilateral frontal
(premotor/FEF) and parietal (IPS) regions, two value-updating
ROIs in the MPFC and right VMPFC, and two expectancy-violation
ROIs from the bilateral AI in DCM.

If neural processes of belief updating contribute to value up-
dating in the way we hypothesized, our fMRI data should be best

a b

Figure 4. Dynamic causal modeling. a, Families of models. Dotted arrows indicate regional inputs, solid arrows indicate inter-regional connections, and dots on solid arrows indicate modulation
according to the type of gambles. All models contained four belief-updating ROIs (bilateral frontal and parietal), two value-updating ROIs (MPFC and right ventromedial PFC [VMPFC]), and two
expectancy-violation ROIs (bilateral insula). Families I and II instantiated all possible sets of modulation in connections from belief-updating ROIs or expectancy-violation ROIs to value-updating
ROIs, respectively. Family III contained no modulation in connections. b, Exceedance probability of the families, i.e., the probability of each family performing better than the other two families.
Family 1 was supported by data.
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explained by Family I. This prediction was supported by the re-
sults of a Bayesian model selection procedure (Stephan et al.,
2009; Penny et al., 2010; Fig. 4b). Probability that Family I out-
performed both Families II and III (“exceedance probability”)
was �80%, while that of Family II was �10% and Family III
�5%. Among the models in Family I, the most supported model
contained two modulated connections: from the right premotor/
FEF to the MPFC and from the left IPS to the MPFC. These results
suggest that uncertainty reducibility is reflected in interaction be-
tween belief-updating regions, rather than expectancy-violation re-
gions, to value-updating regions.

Discussion
For adaptive uncertainty reduction, it is critical to understand
whether current uncertainty is reducible, and by which signals it
can be reduced. Specifically, we should not rely solely on signals’
expectancy violation (Itti and Baldi, 2009; O’Reilly et al., 2013).
Distinction between uncertainty reduction and expectancy vio-
lation is not clear in some traditionally prevalent frameworks,
such as RL and Pearce-Hall (Rescorla and Wagner, 1972; Pearce
and Hall, 1980; Sutton and Barto, 1998; Pearce and Bouton, 2001;
Roesch et al., 2012). In both, learning is driven by the degree to
which prior expectancy about an event (e.g., the timing and
amount of reward delivery) is violated. These theories do not
explicitly state how agents can successfully ignore surprising, yet
irrelevant, signals widespread in natural environments.

In this study, we showed that the human brain is sensitive to
the nature of uncertainty by demonstrating dissociation between
uncertainty reduction and expectancy violation at the behavioral
and neural levels. This is relevant to two lines of decision-making
studies. First, model-based RL and Bayesian theories postulate
that agents construct and update beliefs about the environment.
Such agents may possess representation of uncertainty, by which
uncertainty reduction could be decoupled from expectancy vio-
lation (Behrens et al., 2007; Itti and Baldi, 2009; Nassar et al.,
2010; Payzan-LeNestour and Bossaerts, 2011; O’Reilly et al.,
2013; Ma and Jazayeri, 2014). Second, decision theory has long
emphasized a distinction between reducible and irreducible un-
certainty, often referred to as ambiguity and risk respectively
(Keynes, 1921; Knight, 1921; Ellsberg, 1961; Camerer and Weber,
1992). Past studies have mainly investigated influence of these
types of uncertainty on value-based choices and its neural basis
(Hsu et al., 2005; Huettel et al., 2006; Bach et al., 2011). Our
findings complement them and show that they are also important
determinants of neural processing of environmental signals as
well as signals’ behavioral consequences.

Behaviorally, we found evidence that value updating is sensi-
tive to the nature of uncertainty. Value was updated only under
reducible uncertainty, regardless of the extent to which expected
signals were violated (Fig. 2b), and could be quantitatively char-
acterized by a Bayesian model (Fig. 2c). Representation of uncer-
tainty has been shown in Bayesian sensory and sensorimotor
literature (Ernst and Banks, 2002; Körding and Wolpert, 2004;
Pouget et al., 2013; Ma and Jazayeri, 2014), and our results sug-
gest that such representation also plays a key role in the processes
that link perception of signals to valuation. Note that, given the
relatively simple nature of our task, it is possible that subjects
used some heuristics instead of full-Bayesian computation (see
Materials and Methods). Even if the updating processes may not
necessarily be Bayesian, subjects appear capable of incorporating
their knowledge about the reducibility of uncertainty into updat-
ing processes.

At the neural level, we found that processes associated with
belief updating and expectancy violation were anatomically sep-
arable, which have been frequently confounded in past studies.
Indeed, to our knowledge, there exist only two studies that ex-
plicitly decoupled these two (O’Reilly et al., 2013; Schwartenbeck
et al., 2016). Despite differences in task design, these studies also
found anatomical dissociation between belief updating and ex-
pectancy violation, and in particular, representation of belief up-
dating in lateral frontoparietal regions. This also accords well
with Gläscher et al. (2010), who used a Markov decision task to
capture state prediction error (SPE) that updated beliefs on state–
action–state transition probabilities. Even though SPE was for-
mally equivalent to expectancy violation in their task, our results
make it unlikely that their results reflected expectancy violation
alone.

However, these studies differ in the precise localization of
belief updating within frontoparietal regions, as well as recruit-
ment of other regions. They also mapped expectancy violation
onto different regions. These differences may stem from the dif-
ferences in the details of the tasks; O’Reilly et al. (2013) used
saccadic planning task, which did not include reward but visuo-
motor learning, while Schwartenbeck et al. (2016) used a task in
which one of two cues predicted valence of monetary outcomes.
Therefore, their mapping results may reflect visuomotor or
reward-related processes to a certain extent. Given that few stud-
ies separated updating and expectancy violation, more studies are
necessary to assess their mapping under various tasks.

One important characteristic of our task was the presence of
“mere” expectancy violation, which might be important for sen-
sory encoding but may have no consequences on subsequent
behavior or valuation. Our localization of expectancy violation in
the AI is consistent with previous reports that the AI responds to
abrupt or rare stimuli (Singer et al., 2009; Menon and Uddin,
2010) and is involved in reorienting to surprising events (Sokolov,
1963; Corbetta et al., 2008). Our results raise the possibility that
the AI is primarily involved in detecting and rapidly broadcasting
expectancy violation through distinctly large bipolar neurons
called Von Economo neurons (Allman et al., 2010; Evrard et al.,
2012), which may be irrelevant for ongoing tasks but still impor-
tant for agents’ survival.

We also dissociated neural correlates of value updating from
expectancy violation; value updating was correlated with activa-
tion in the MPFC and the cingulate cortex, not the AI (Fig. 3).
These regions have been long associated with value-related pro-
cessing, such as valuation of choices or RL (Bartra et al., 2013).
Our value updating is conceptually close to model-based reward
prediction error (RPE), which has been associated with these
regions (Behrens et al., 2008; Daw et al., 2011). Our results pro-
vide evidence that value-related computation in these regions is
not driven solely by expectancy violation. Interestingly, we did
not find value-updating representation in the striatum, even at a
liberal threshold, which has also been associated with model-
based RPE (Behrens et al., 2008; Gläscher et al., 2010; Daw et al.,
2011). This could be because we did not provide reward feedback
to prevent learning over trials; while the MPFC and the cingulate
may be involved in reduction of value uncertainty regardless of
feedback, the striatum might primarily respond to reward feed-
back. Alternatively, the striatum could be more involved in learn-
ing over time, possibly through corticostriatal loops (Balleine et
al., 2007), than one-shot updating.

Although we found that belief and value updating were ana-
tomically distinct, their computational processes should not be
independent under a Bayesian framework. However, in the ex-
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treme, association between belief updating and activations in
premotor/FEF and the IPS could be an epiphenomenal reflection
of more general cognitive processes, such as working memory
(Mohr et al., 2006; Reinhart et al., 2012). Contrary to this possi-
bility, we found using DCM that processes in premotor/FEF and
the IPS contribute to processes in the MPFC via connections
modulated by the reducibility of value uncertainty (Fig. 4). We
speculate that such modulation might be biologically efficient;
when value uncertainty is irreducible and the valuation system
can safely ignore incoming signals, energies to maintain synaptic
transmission from belief-updating regions can be temporarily
saved. Additionally, we did not find evidence for modulation in
connections from expectancy-violation regions (AI) to value-
updating regions. Even though interpretation of negative results
requires caution, this suggests that reducibility-based modula-
tion is not a general phenomenon across the cortex, and further
emphasizes the difference between functional roles of the AI and
the lateral frontoparietal regions.

Even though this study is not sufficient to describe a detailed
and holistic picture of information flow across regions, one pos-
sibility is that the modulation is caused by previously reported
representations of risk and ambiguity (Hsu et al., 2005; Huettel et
al., 2006; Bach et al., 2011). In addition to affecting value-based
choices directly, these representations might also influence how
valuation is updated by incoming signals. Thus, representations
of risk and ambiguity might have wider implications for neural
mechanism of decision making under uncertainty than previously
thought. Their causal role could be more directly investigated by
such methodologies as transcranial magnetic stimulation or
neurofeedback.

It is worth noting that DCM does not quantify or assume
monosynaptic connections. Although previous studies have
found anatomical connections from premotor/FEF and the IPS
to the cingulate motor area, connections to the more anterior
portion of the MPFC, where our value-updating ROIs are lo-
cated, have not been reported (Tomassini et al., 2007; Beckmann
et al., 2009; Mars et al., 2011; Eradath et al., 2015; Neubert et al.,
2015). We speculate that connections from premotor/FEF and
the IPS to the MPFC could be mediated by anterior–posterior
connections within cingulate cortex (Margulies et al., 2007) or by
corticostriatal connections (Balleine et al., 2007; Di Martino et
al., 2008).

Our findings suggest that the nature of uncertainty influences
the way the human brain processes environmental signals. To
understand neural mechanisms of uncertainty reduction more
comprehensively, future studies can expand this study’s ap-
proach in a number of directions. For instance, while our para-
digm delivered one signal at a time, real-world scenarios typically
involve many signals. In these cases, the knowledge about uncer-
tainty reducibility may also be crucial for adaptive allocation of
attentional resources (Gottlieb and Balan, 2010). Additionally,
more studies are necessary to clarify the encoding scheme of be-
lief updating. In particular, due to the relatively small urn sizes,
the current study is unable to distinguish between different op-
erationalizations of belief updating. Richer parameterization of
urn sizes would be useful, albeit at a cost of substantially increased
task complexity. Finally, the knowledge about the reducibility of
uncertainty in the real world is often far from complete and ac-
curate. It is an open question how agents estimate the reducibility
of uncertainty, particularly in nonstationary environments
(Yu and Dayan, 2005; Behrens et al., 2007; Payzan-LeNestour and
Bossaerts, 2011).

Notes
Supplemental material for this article is available at http://neuroecon.
berkeley.edu/public/papers/Kobayashi_Ambiguity_SOM.pdf. This ma-
terial has not been peer reviewed.

References
Allman JM, Tetreault NA, Hakeem AY, Manaye KF, Semendeferi K, Erwin

JM, Park S, Goubert V, Hof PR (2010) The von Economo neurons in
frontoinsular and anterior cingulate cortex in great apes and humans.
Brain Struct Funct 214:495–517. CrossRef Medline

Bach DR, Hulme O, Penny WD, Dolan RJ (2011) The known unknowns:
neural representation of second-order uncertainty, and ambiguity. J Neu-
rosci 31:4811– 4820. CrossRef Medline

Balleine BW, Delgado MR, Hikosaka O (2007) The role of the dorsal stria-
tum in reward and decision-making. J Neurosci 27:8161– 8165. CrossRef
Medline

Bartra O, McGuire JT, Kable JW (2013) The valuation system: a coordinate-
based meta-analysis of BOLD fMRI experiments examining neural corre-
lates of subjective value. Neuroimage 76:412– 427. CrossRef Medline

Becker SW, Brownson FO (1964) What price ambiguity? Or the role of am-
biguity in decision-making. J Pol Econ 72:62–73. CrossRef

Beckmann M, Johansen-Berg H, Rushworth MF (2009) Connectivity-based
parcellation of human cingulate cortex and its relation to functional spe-
cialization. J Neurosci 29:1175–1190. CrossRef Medline

Behrens TE, Woolrich MW, Walton ME, Rushworth MF (2007) Learning
the value of information in an uncertain world. Nat Neurosci 10:1214 –
1221. CrossRef Medline

Behrens TE, Hunt LT, Woolrich MW, Rushworth MF (2008) Associative
learning of social value. Nature 456:245–249. CrossRef Medline

Boorman ED, Rushworth MF, Behrens TE (2013) Ventromedial prefrontal
and anterior cingulate cortex adopt choice and default reference frames
during sequential multi-alternative choice. J Neurosci 33:2242–2253.
CrossRef Medline

Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433– 436.
CrossRef Medline

Brett M, Anton J-L, Valabregue R, Poline JB (2002) Region of interest anal-
ysis using an SPM toolbox. Neuroimage 16:2.

Camerer C, Weber M (1992) Recent developments in modeling preferences:
uncertainty and ambiguity. J Risk Uncertainty 5:325–370. CrossRef

Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the
human brain: from environment to theory of mind. Neuron 58:306 –324.
CrossRef Medline

Courchesne E, Hillyard SA, Galambos R (1975) Stimulus novelty, task rele-
vance and the visual evoked potential in man. Electroencephalogr Clin
Neurophysiol 39:131–143. CrossRef Medline

Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ (2011) Model-based
influences on humans’ choices and striatal prediction errors. Neuron
69:1204 –1215. CrossRef Medline

Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z,
Biswal B, Walters JR, Castellanos FX, Milham MP (2008) Functional
connectivity of human striatum: a resting state fMRI study. Cereb Cortex
18:2735–2747. CrossRef Medline

Ellsberg D (1961) Risk, ambiguity, and the Savage axioms. Q J Econ 75:643–
669. CrossRef

Eradath MK, Abe H, Matsumoto M, Matsumoto K, Tanaka K, Ichinohe N
(2015) Anatomical inputs to sulcal portions of areas 9m and 8Bm in the
macaque monkey. Front Neuroanat 9:30. CrossRef Medline

Ergin H, Gul F (2009) A theory of subjective compound lotteries. J Econ
Theory 144:899 –929. CrossRef

Ernst MO, Banks MS (2002) Humans integrate visual and haptic informa-
tion in a statistically optimal fashion. Nature 415:429 – 433. CrossRef
Medline

Evrard HC, Forro T, Logothetis NK (2012) Von Economo neurons in the
anterior insula of the macaque monkey. Neuron 74:482– 489. CrossRef
Medline

Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuro-
image 19:1273–1302. CrossRef Medline
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