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Abstract 

In this paper we study the Inverse Sturm-Liouville problem on a finite interval 

with a symmetric potential function with two interior discontinuities. In the introductory 

chapter we survey previous results on the existence and uniqueness of solutions to inverse 

Sturm-Liouville problems and discuss earlier numerical methods. In chapter 1 we present 

a uniqueness proof for the inverse Sturm-Liouville problem on a finite interval with a sym­

metric potential having two interior jump discontinuities. In chapter 2 we show that any 

absolutely continuous function can be expanded in terms of the eigenfunctions of a Sturm­

Liouville problem with two discontinuities. In chapter 3 we consider two Sturm-Liouville 

problems with different symmetric potentials with two discontinuities satisfying symmetric 

boundary conditions and symmetric jump conditions. We find that if only a finite number 

of eigenvalues differ then a simple expression for the difference of the potentials can be es­

tablished. In addition, the locations of the discontinuities are uniquely determined. Finally, 

in chapter 4 we derive an algorithm for solving the discontinuous inverse Sturm-Liouville 

problem numerically and present the results of numerical experiments. 
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Chapter 0 

Introduction 

0.1 Inverse Problems 

The problem considered in my thesis lies in a very active area of research known 

as inverse problems. This branch of science has recently experienced an increased amount 

of attention; a new journal, Inverse Problems, begun in February of 1985, celebrates a 

distinguished list of contributing authors including Barcilon, Grunbaum, Santosa, Symes 

and Talenti. And numerous conferences have been held throughout the world [3], [5], [13], 

[21], [23], [59], [65], [80]. All inverse problems are associated with a forward problem which, 

ordinarily, is considerably easier to solve. To illustrate the concept of forward and inverse 

problems we consider a simple system studied by Euler and Bernoulli. Given the density, 

length and tension of a plucked string, determine the tones produced. The opposite or 

inverse problem is to determine the density of the string from its tones, its length and 

its tension. For an elementary presentation, see Durran [25]. Inverse problems appear in a 

wide variety of scientific areas [14] , [53] , [74]. Other examples include image reconstruction 

problems in X-ray tomography [30], [29], [75], the determination of the shape of flaws or 

cavities in metal castings [12], the modelling of groundwater [24], [44], potential flow studies 

[45], [46], heat conduction problems [66], the determination of material properties of a beam 

from its vibrational modes [11], [8], [9], [28], [60], [61], [62], multiplicative problems in 

molecular spectroscopy [20], [68], [78], the recovery of a cross-sectional area of the vocal 

tract from measured data [76], the determination of the density inside the earth from 

seismographic data [16], [15], [17], [19], [39], [37], [38], [64], problems in optics [7], [6], 

scattering problems in physics [1], [22], [13], [47], and mathematical inverse problems [52], 
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[58], [69], [71], [72], [81]. 

A large class of mathematical inverse problems known as inverse eigenvalue prob­

lems are described by the equation 

i = 0,1,2, ... 

where L is an operator and the fi are eigenfunctions corresponding to the eigenvalues Ai. 

The forward problem is to determine the Ai and fi for a given operator L. The inverse 

problem is to determine L given the eigenvalues Ai and some additional information about 

the Ii (e.g. boundary conditions). Examples of operators to be reconstructed include 

matrices acting on vectors and differential operators acting on functions. Recent articles by 

Barcilon [10] and McLaughlin [63] survey methods and properties of methods for recovering 

coefficients in differential equations from spectral data. 

0.2 Inverse Sturm-Liouville Problems 

This thesis examines the Sturm-Liouville equation. 

-y" + q(x) y = AY 

on the bounded interval [0,11-]. In the inverse Sturm-Liouville problem we measure the 

frequencies of a vibrating system and try to infer some physical properties of the system. 

For a complete historical development of works on the existence and uniqueness of solutions 

to the continuous and discrete inverse Sturm-Liouville problems up to 1972, see Hald [32]. 

There are five well-known versions of the continuous inverse Sturm-Liouville problem on 

a finite interval. The first four presented below do not directly pertain to the work in 

this thesis. Gelfand and Levitan [27], Marcenko [57], Krein [48] and Zikov [92] study an 

inverse Sturm-Liouville problem in which the potential, q( x) and the boundary conditions 

are uniquely determined by the spectral function. Marcenko [57], Levitan [55], Gasymov and 

Levitan [26] and Zikov [92] examine a second case in which the potential and the boundary 

conditions are uniquely determined by two spectra. They show that this second version can 

be reduced to the previous one. Borg [18], Levinson [54] and Hochstadt [42] investigate a 

third variation in which the potential is uniquely determined by the boundary conditions 

and two reduced spectra. In a fourth version Borg [18], Levinson [54] and Hochstadt [42] 

show that ifthe boundary conditions and one reduced spectrum are given, then the potential 
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is uniquely determined provided its is an even function with respect to the midpoint of the 

interval. This thesis uses the work from a fifth version by Hald [35], "The Inverse Sturm­

Liouville Problem with Symmetric Potentials". 

In the first theorem of [35] Hald considers two Sturm-Liouville problems with 

different potentials and different boundary conditions. If the potentials are even functions 

around the middle of the interval and the sum of the absolute value of the differences of the 

eigenvalues of the two problems is finite, then the potentials differ by a continuous function. 

Theorem ( Hald 1978 ) Consider the eigenvalue problems 

-u" + q(x) u = A u 

hu(O) - u'(O) = 0 hu(1l') + u'(1l') = 0 (0.1) 

-u"+q(x) u = 5. u 

hu(O) - u'(O) = 0 (0.2) 

where q and ij are integrable on [0, 1l'] and satisfy the symmetry conditions q( x) = q( 1l' - x) 

and ij( x) = ij( 1l' - x) almost everywhere in the interval 0 :s; x :s; 1l'. Let A j and 5. j be the 

eigenvalues of (0.1) and (0.2). Let Uj and Vj be the solutions of 

u" + (A - ij)u = 0 

u(O) = 1 

v(1l') = 1 

with A = A j. Define the functions Y by 

u'(O) = h 

v'(1l') = -h 

_ Vj - kj'ilj 
Yj = 2· W'(Aj) 

(0.3) 

(0.4) 

(0.5) 

(0.6) 

Here kj/W'(Aj) = 1/ fo'll" u; dx where kj = (-l)j and Uj(x) are the eigenfunctions of (0.1) 

normalized such that Uj(O) = 1. If 2::j IAj - 5.jl < 00 then 

- 1", 
h - h = - L..Yj(O) 

2 . 
J 

q - ij = L(f}jUj)' a.e.. 
J 

(0.7) 

(0.8) 
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If two eigenvalue problems have the same eigenvalues then Vj = kj'uj, all Yj vanish identi­

cally, and the right-hand side of equations (0.7) and (0.8) are zero. In this manner Hald 

proves a uniqueness result for the potential and the boundary conditions in a corollary to 

the ,theorem above. 

Corollary ( Hald 1978 ) Consider the eigenvalue problem (0.1) where q is integrable in 

[0,11-]. If q( x) = q( 7r - x) almost everywhere in 0 < x < 7r then q( x) and h are uniquely 

determined by the spectrum. 

Furthermore Hald shows that the potential is uniquely determined almost everywhere by 

the reduced spectrum. The lowest eigenvalue plays a special role in the inverse eigenvalue 

problem; omitting any other eigenvalue from the spectrum fails to give the uniqueness 

results presented above. Hald;s work is an extension of ideas presented by Hochstadt [41]. 

This thesis further extends the theorem by Hald to discontinuous inverse Sturm-Liouville 

problems with symmetric potentials. Formulae (0.7) and (0.8) are valid in the discontinuous 

problem, however we must derive additional formulae to take into account the jumps in the 

eigenfunctions and their derivatives. For details see chapter 3. The corollary by Hald can 

be extended to the discontinuous case by the same argument as the one given above. The 

,other corollaries and the existence proof cannot be extended in a straightforward manner 

to the discontinuous problem. 

The significance of Hald's theorem is not fully realized in considering only the 

corollaries; it is indispensibl(~ for constructing an algorithm for numerically solving the 

inverse Sturm-Liouville problem with symmetric potentials; In the problem described in 

Theorem 1 ( See Chapter 1. ), Hochstadt assumes that h = h and only a finite number of the 

eigenvalues Aj and 'Aj are different. ( i.e. Aj = ,\j for j > n . ) Let Ao denote the index set 

for the first n eigenvalues. In this case equation (0.7) is trivially satisfied and the summation 

in equation (0.8) is only over those j for which Aj f:. 'Aj. Attempts by Hald and the author 

to numerically determine the potential function using Hochstadt's assumptions fail; the 

reconstructed potential is unsymmetric and in some cases diverges. Hald's realization that 

hand h must differ is crucial for the success of the algorithm. In addition Hald realizes 

that W'(Aj) should not be evaluated from the definition. The derivative of the Wronskian 

may be calculated more simply by applying the Hadamard Factorization Theorem to each 

.. 



of the factors in the ratio W(A)/W(A) and differentiating. Then 

W'(Aj) = TIi#j(Aj -~;) W(Aj) - ~(Xj) . 
TIi#j(Aj - Ai) Aj - Aj 

5 

(0.9) 

Let Zj be the eigenfunction of (0.2) corresponding to Xj. Hald notes that the last quotient 

in ( 0.9 ) is equal to -hwj{7r) - wj(7r) where Wj satisfies the differential equation 

W'J + (Xj - ij)Wj = -Uj 

Wj(O) = wj(O) = 0 

Now we are ready to present Hald's recipe for solving the inverse Sturm-Liouville problem 

with symmetric potentials. 

Algorithm (Hald 1978 ) 

Step 1°: For each j in Ao determine a k in Ao such that 

Step 2°: For each j in Ao solve the system 

U' J 0 1 0 0 
-, q - Aj 0 0 0 u· 

J 

W· J 0 0 0 1 

wI. 
J 

-1 0 q - Xk 0 

U, 
J 1 

-, h u· J 

W· J 0 

wI. 0 
J x=o 

Step 3°: For each j in Ao compute 

U· J 

U'· 
J 

Wj 

w'· J 

h = h + L(Uj(7r) - (-l)j)/w'(Aj) 
Ao 
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Step 4°: Solve the system 

Yj 0 1· 0 0 

-, 
Yj if - Aj 0 0 0 

U· J 0 0 0 1 

u'· J 
0 0 - I: C' -') A q + Ao You; + YiU. - j 0 

Yj 2(uj(1I") - (-l)j)/w'(Aj) 
-, 
Yj -2(uj(1I") + (-l)j h)/W'(Aj) 

U· J 1 

u'· h 
J x=o 

Step 5: Set 

q = if + L (yjUj + Yjuj) . 
Ao 

In chapter 4 we extend HaId's results for the continuous problem to the discontinu­

ous case. The major modification we must make is to solve the systems given in Steps 2 and 

5 on the three disjoint intervals 0 < x < d, d < x < (11"...,- d) and (11" - d) < x < 11" taking 

into account the jumps in the eigenfunctiol).s and in the derivatives of the eigenfunctions at 

the symmetrically located discontinuities x = d and x = 11" - d. 

Finally we briefly mention that at least one other technique has been developed to 

solve the inverse Sturm-Liouville problem numerically. The Gelfand-Levitan technique has 

been studied by Hald [36] among others. We have chosen to describe the algorithm given 

above [35] in detail since it requires lONn operations whereas the Gelfand-Levitan technique 

requires N3/3 operations. Here we assume that the potential is wanted at N points in the 

interval [0,11"] and n is the number of perturbed eigenvalues. Thus if only a few eigenvalues 

are perturbed and the potential is wanted at many points, then the algorithm of Hald [35] 

is the most economical of the two. 

0.3 Discontinuous Inverse Sturm-Liouville Problems 

Many techniques developed for studying inverse problems assume the absence of 

jump discontinuities in the material properties ofthe medium. This assumption is frequently 

ill-founded as is shown by comparing the works of Krueger [49], [50] and Weston [84]. And 
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as such several researchers have recently begun an investigation of the discontinuous inverse 

Sturm-Liouville problem. Several different approaches have been used for this purpose; the 

formulation of the problem depends on the physical system considered by the investigator. 

Kru~ger [49], [50] and Weston [84] present a general model for wave propagation as described 

below. 

uxx - Utt + A(x)ux + B(x)ut + C(x)u = ° , -00 < x < 00 , -00 < t < 00 , (0.10) 

where ° = Xo < Xl < ... < Xn = I , with the hypotheses 

(i) Support A, B, C ~ [0,1J, 

(ii) A, B, C are piecewise continuous on [0, I] with discontinuities at Xi, 

(iii) A' and B' are continuous on the subintervals (Xi, Xi+l), 

(iv) u(x, t) is everywhere continuous and piecewise C2, 

(v) There exist nonzero constants Ci such that CiUx(Xi+, t) = Ux(Xi-, t) 

for i = 0,1, ... , n. They assume that the coefficients A, B, C, the locations and the number 

of discontinuities, i.e. the points Xi and the integer n, are unknown on (0,1). The inverse 

problem is to determine information about these coefficients from information regarding U 

in the regions X < ° and X > 1. To explain further, a plane wave ui(x - t) propagating in 

the +x direction gives rise to a reflected wave uT propagating in the -x direction for x < ° 
and a transmitted wave u t propagating in the +x direction for x > I so that 

u(X, t) ui(X - t) + uT(x + t) 

ut(x - t) 

x<O 

x > I 

(0.11) 

(0.12) 

ui(s) = ut(s) = ° for s ~ 0, and these functions are continuous and piecewise C2. With the 

additional hypotheses 

(vi) u"(O-) # 0, 

(vii) If S is the set of all quantities (Xi - Xj), where ° ~ j < i ~ n then no 

element of S can be expressed as a linear combination ( with positive, integral 

coefficients) of other elements of S, 

(viii) A finite upper bound for Xn is known, 

knowledge of the scattering data ui(s),ut(s),ur(-s) for -41 < s < ° is sufficient to deter­

mine the coefficient B(x) and the combination of coefficients C - tA' - ~A2 on (0, I) as well 

as the points Xi and the integer n. Even if the hypotheses (vi) - (viii) are not satisfied the 

inverse problem may still be solvable but certain data may have to be obtained by means 
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other than observing scattered waves. Krueger [51] and Weston [84] choose appropriate 

functions for the coefficients A(x), B(x), C(x) and change variables to obtain a special case 

of problem (0.10) - (0.12) to describe one-dimensional electromagnatic wave propagation 

in nonmagnetic, nonabsorbing media. Similarly Krueger [51], Pao, Santosa and Symes [67] 

study a specific case of (0.10) - (0.12) to simulate wave propagation in elastic media, and 

Symes [79] examines yet another particular case of (0.10) - (0.12) with different boundary 

conditions to model acoustic waves. 

Bolt [16], [15], [17], [19]' Hald [39], [37], [38], [33] and Willis' [88], [90] , [89], [91] 

investigate earthquake waves in the Earth's mantle. The inverse problem for the earth 

amounts to determining the material properties of the Earth from seismological data. At 

first Hald [33] considers the simpler inverse Sturm-Liouville problem for a cylinder. This 

model problem has several properties in common with the inverse problem for a sphere. 

However the theory involves smoothness assumptions which are not normally made in the 

case of the Earth, and the model lacks features corresponding to gravity and the rotation 

and ellipticity of the earth. Later he considers a simple, spherically symmetric, non-rotating 

model of the earth ( See Alterman, Jarosh and Pekeris [2]. ). In [37] and [38] Hald presents 

the continuous inverse Sturm-Liouville problem from a geophysical perspective with the 

assumption that the Earth's mantle consists of homogeneous material. The homogeneity 

assumption implies that the Sturm-Liouville equation is smooth with respect to the radial 

parameter. A more refined model of the earth would recognize the distinct, concentric layers 

of the mantle. With this seismological model in mind Hald examines discontinuous inverse 

eigenvalue problems. 

A uniqueness result by Hald for the discontinuous inverse Sturm-Liouville problem 

shows that if the eigenvalues and one of the boundary conditions are fixed and the potential 

q is given over half of the interval, then the potential and the other boundary condition 

are uniquely determined even if the differential equation has an interior discontinuity. This 

result is a generalization of a theorem due to Hochstadt and Liebermann [43] who assume 

that a = 1, b = 0 and h = h. We note that the last restriction is actually unnecessary ( See 

Hald [37]. ). 

Theorem (Hald 1984 ) Consider the eigenvalue problem: 

- u" + q(x) u-= ). u (0.13) 
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on the interval 0 < x < 7r and with the boundary conditions: 

u'(O) - h u(O) = u'(7r) + H u(7r) = 0 (0.14) 

and with jump conditions: 

u(d+) = au(d-) , u'(d+) = a-lu(d-) + b u(d-) (0.15) 

where qis an integrable function, 0 < d < t7r , a> 0 , and la - 11 + Ibl > o. Let Ao, AI,··· 

be the eigenvalues. Consider the eigenvalue problem with a, b, d, h, H, A and q replaced 

by ii, b, d, h, iI, ), and ij. If Aj.= ),j for j ~ 0, H = iI and q = if almost everywhere in 

(t7r,7r), then a = a, b = b, d = d, h = hand q = if almost everywhere. 

In the course of the proof RaId shows several interesting results; Volterra integral equations 

are derived, upper bounds for the eigenfunctions and higher order terms of the eigenfunc­

tions are found, properties of the Wronskian are explored ( Formulae for the Wronskian, w, 

the leading order term, wo, the roots of Wo, and a lower bound for ware determined. ), the 

jump constants a and d are shown to be uniquely determined provided la - 11 + Ibl > 0 , 

and integral equations for b - band h - h are used to show that q - ij = 0 a.e. on [0, ~]. 

Willis [90] extends RaId's uniqueness theorem to inverse Sturm-Liouville problems 

with two discontinuities. 

Theorem (Willis 1985 ) Consider the eigenvalue problem: 

-U"+q(X)U=AU (0.16) 

on the interval 0 < x < 7r and with the boundary conditions: 

u'(O) - h u(O) = u'(7r) + H u(7r) = 0 (0.17) 

and with jump conditions: 

(0.18) 

(0.19) 

where q is an integrable function, 0 < dl < d2 < t7r , al,a2 > 0 , lal - 11 + Ibll > 0, and 

la2 - 11 + Ib21 > o. Let AO, AI,·· . be the eigenvalues. Consider the eigenvalue problem with 

at, bb dl , a2, b2, d2, h, H, A and q replaced by ab bl , db a2, b2, d2, h, iI, ), and ij. Let 
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al = (al - all )/(al + all) and a2 = (a2 - a2"l )/(a2 + a2"l). If a = lall + la21 + la1a21 < 1, 

a = lall + la21 + lala21 < 1, Aj = Xj for j :2: 0, H = if and q = ij almost everywhere in 

(t1l",1I") then al = ab bl = bl , dl = db a2 = a2, b2 = b2, d2 = d2, h = hand q = ij almost 

everywhere. 

Willis [90] follows the techniques of Rald [39] so that the structure of the equa­

tions she derives are similar, however many more terms are involved. In the case of two 

discontinuities the uniqueness proof for the constants at, dl , a2 and d2 forces us to impose 

the restrictions lal - 11 + Ib11 > 0 and la2 - 11 + Ib21 > 0, as in the single discontinuity 

case, and additionally a = lad + la21 + la1a21 < 1. Willis' uniqueness prooffor the ai and 

di depends on the position of dl and d2 • 30 different possible cases must be considered with 

each ~ase requiring a different proof .. Similarly, to show that q - ij == 0 a.e. on [0, f], 16 

different cases must beconside~ed in manipulating the integral equations for b 1 - bl ,b2 - b2 

and h - h. It appears that a uniqueness proof for problems with even more discontinuities 

may be constructe<;l by using arguments from RaId [39] and Willis [90], We anticipate that 

the equations appearing in the proof will have structure similar to those in the one and two 

discontinuity cases, but will involve many more terms in the region d 3 < x < 11" where d3 

is the third discontinuity. The hypotheseslai - 11 + Ibil > 0 and a < 1 where a is a 

sum of the absolute values of the ai's and products of the ai's will be required. Even more 

possible positions of the discontinuities 0 < di < f will lead to even more possible cases to 

be considered in the uniqueness proof. 

Andersson [4] studies the inverse Sturm-Liouville system 

p>O (0.20) 

with suitable boundary conditions e.g. 

u'(O) = u'(l) = 0 (0.21) 

RaId and Willis assume that p is stepwise twice continuously differentiable and has at most 

one or two jump discontinuities. Andersson's aim is to treat the inverse eigenvalue problem 

(0.13) under more general conditions on p than earlier. The regularity conditions imposed 

on p are that lnp should be of bounded variation or that (lnp)' f. Y(O, 1) for some r with 

1 ~ r ~ 00 . The spectral data to be considered are the eigenvalues (A2k)~o of (0.13) and 

(0.14) and (A2k+l)~o of (0.13) together with the boundary conditions 

u'(O) = u(l) = 0 . (0.22) 
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Chapter 1 

A Uniqueness Proof 

A uniqueness proof for the inverse Sturm-Liouville problem on a bounded interval 

with a symmetric potential having two interior jump discontinuities is presented in this 

chapter. We derive several lemmas in order to complete this proof; the asymptotic form 

of the eigenvalues and eigenfunctions are determined, upper bounds for the eigenfunctions 

and their derivatives are established and a uniqueness proof for the jump constant a and 

discontinuity d is given. These results will be of consequence in later chapters where we 

build an algorithm to reconstruct the potential function. An alternate uniqueness proof 

will be given in chapter 3. Some of the lemmas from chapter 1 will also be needed in this 

second uniqueness proof. The techniques we use follow those of Rald [39] and Willis [88], 

[90]. 

1.1 Main Res nlt 

Theorem 1: Consider the eigenvalue problem: 

- u" + q(x) u = A u (1.1 ) 

on the interval 0 ::; x ::; 11" with the boundary conditions: 

h u(O) - u'(O) = h u(1I") + u'(1I") = 0 (1.2) 

and symmetric discontinuities at x = d and x = (11" - d) satisfying the symmetric jump 

conditions: 

u(d+) = au(d-) , u'(d+) = a-1u'(d-) + b u(d-) (1.3) 



12 

u((1I" - d)-) = a u((1I" - d)+) , u'«1I" - d)-) = a-1 u'«1I" - d)+) - b u«1I" - d)+) (1.4) 

where la -11 + Ibl > 0 and 0 :S d < 11"/2. Consider also the eigenvalue problem with u, q, A, 

h, a, band d replaced by it, q, )., h, ii, band d. Assume q(x) and q(x) are integrable and 

satisfy the symmetry conditions q( x) = q( 11" - x) and q( x) = q( 11" - x) almost everywhere 

on [0,11"]. Let {A j} and {"Xj } be the eigenvalues of the first and second eigenvalue problems. 

If Aj = "Xj for j 2: 0 , then a = ii , b = b , d = d , h = hand q = q almost everywhere on 

[0,11"]. 

Remarks: RaId [39] and Willis [88], [90] proved a uniqueness result for the inverse Sturm­

Liouville problem with one and two discontinuities; if the eigenvalues and one of the bound­

ary conditions are fixed and the potential q ~s given in one half of the interval, then the 

potential and the other boundary condition are uniquely determined if the differential equa­

tion has one or two interior discontinuities. Their results is generalize a theorem due to 

Rochstadt and Liebermann [43] who assume that a = 1, b = 0 and h = h. (Actually, 

this last restriction is unnecessary, see RaId [37] . ) Note that 0 :S d < ~ so that d f: ~. 

RaId [39] has shown that if d = ~., uniqueness cannot be guaranteed by all the eigenvalues 

and jump condition h at x = o. 

Beginning of the Proof: Let u be the solution of equations (1.1), (1.3) - (1.4) satisfying 

the initial conditions u(O) = 1 and u'(O) = 0 . We do not define u at the discontinuities 

x = d and x = (11" - d). It is well known that the solution of a Sturm-Liouville problem 

satisfies a Volterra integral equation of the second kind [83], [39], [88], [90]. In this section 

we use this equation to estimate the solution and its derivative and show that u is an entire 

function in A of order t. Then we consider the Wronskian w(A) = -u'(1I") - h u(1I"). Its 

roots are real and simple and by using the estimates of u and u' we can give crude upper 

and lower bounds for the eigenvalues of the differential equation. 

To show that the equations for u can be written as a Volterra integral equation, 

we follow the convention of RaId [39] and Willis [88]' [90] and write the eigenfunctions as 

follows. 

(O:S x < d) (1.5) 



(d < x < 7r - d) 

where: 

and 

gl ( X ) = cos kx + ~ sin kx 

g2( x) = a [ cos kd + ~ sin kd] cos k( x - d) 

+ a-I [-sinkd+ ~coskd] sink(x - d) 

+ ~ [ cos kd + ~ sin kd] sin k( x - d) 

g3(X) = a-I [acosk(7r - 2d)coskd- a-I sink(7r - 2d)sinkd 

+ ~ sink(7r - 2d) coskd + ~ { a-I sin k(7r - 2d) cos kd 

+ a cos k( 7r - 2d) sin kd + ~ sin k( 7r - 2d) sin kd } ] cos k( x - 7r + d) 

+ a [ -a sink(7r - 2d) cos kd - a-I cos k(7r - 2d) sinkd 
b h 

+ k cos k(7r - 2d) coskd + k { a-I cos k(7r - 2d) cos kd 

b 
- a sin k( 7r - 2d) sin kd + k cos k( 7r - 2d) sin kd } ] sin k( x - 7r + d) 

+ ~ [ a cos k(7r - 2d) coskd - a-I sink(7r - 2d) sinkd 

+ ~ sin k( 7r - 2d) cos kd + ~{ a-I sin k( 7r - 2d) cos kd 

+ a cos k( 7r - 2d) sin kd + ~ sin k( 7r - 2d) sin kd } ] sin k( x - 7r + d) 

Gll (x, t) = G22(x, t) 
sink(x - t) 

= k 
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(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 



~ { a sin k(d - t) cosk(x - d) 

+ a-l cosk(d - t)sink(x - d) 

+ ~sink(d - t)sink(x - d) } 

. ~ { a- l [ a cos k(1r - 2d) sink(d - t) 

+ a-l sink(1r - 2d)cosk(d - t) 

+ ~ sink(1r - 2d) sink(d - t) ] cos k(x - 1r + d) 

+ a [ -asink(1r - 2d) sink(d - t) 

+ a-l cosk(1r - 2d) cosk(d - t) 

+ ~cosk(1r-2d)sink(d-t)] sink(x-1r+d) 

+ ~ [ a cosk(1r - 2d) sink(d - t) 

+ a-l sink(1r - 2d) cosk(d - t) 

+ ~ sin k( 1r - 2d) sin k( d - t) ] sin k( x ~ 1r + d) } 

G32 (X, t) = ~ { a-l sink(1r - d - t) cosk(x - 1r + d) 

+ a cos k(1r - d - t) sink(x - 1r + d) 

+ ~sink(1r - d - t) sink(x - 1r + d) } 
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(1.12) 

(1.13) 

(1.14) 

These formulae were derived by Hald [39] and Willis [88], [90]. We may write u(x) more 

concisely as 

u(x) = g(x) + fox G(x, t)q(t)u(t) dt (1.15) 

on the three disjoint intervals [0, d) , (d, 1r - d) and (1r - d, 1r] . As in earlier uniqueness 

proofs of Hald [39] and Willis [88], [90], the leading order terms of g(x) play an important 

part in the proof. We denote this term by cp( x) and let 

CPl ( x) = cos kx (1.16) 

(0 ::; x < d) 

A 
CP2(X) = 2[coskx + acosk(x - 2d)] (1.17) 

.. 



'.,; 

A2 
-[coskx + acosk(x - 2d) 
4 

(d < x < 7r - d) 

-a cos k(x - 27r + 2d) - a 2 cos k(x - 27r + 4d)] 
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(1.18) 

where A = (a + a-l) and a = (a - a-l)/(a + a-l) , so that lal < 1 . <P = <pI, <P2, <P3 on 

[O,d), (d,7r - d) and (7r - d,7r] respectively. We note that g(x) satisfies (1.1), (1.3) - (1.4) 

when q = o. 
To determine specific bounds for Ul, U2 and U3 we use the following lemmas of 

RaId [39] and Willis [88], [90]. 

Lemma 1.1: (RaId 1984 ) Consider the integral equation: 

u(x) -lx K(x, t)q(t)u(t) dt = f(x) (1.19) 

where f and K are continuous and q is integrable. This equation has a unique solution u 

which is continuous and satisfies: 

lu(x)1 :S M(x)eL(x)p(x) (1.20) 

where 

M(x) = max If(t)1 , 
a9~x 

L(x) = a~rtx IK(x, t)1 and p(x) = l
x 

Iq(t)1 dt . 

Remarks: Lemma 1.1 shows how specific bounds for the eigenfunctions, their derivatives 

and leading order terms can be obtained from a:Volterra Integral equation. We must find 

bounds for the maximum norms of the inhomogeneous term f(t) and the kernel K(x, t) and 

the Ll norm of the potential. For a proof of Lemma 1.1 see RaId [39] . 

Lemma 1.2: ( RaId 1984, Willis 1985 ) Let u t, U2, and U3 be the solutions of equations 

. (1.5), (1.6) and (1.7) respectively. And let vi>. = fj + ir, c = max(lbl, Ihl, 1011" Iq(t)ldt) 

and A = a + a-l. Then Ut, U2 and U3 are entire functions of A of order ~ and 

(O:S x < d) (1.21) 

(d < x < 7r - d) (1.22) 
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(1.23) 

Remarks: The first two bounds (1.21) and (1.22) have been established by RaId [39] using 

Lemma 1.1, the trigonometric inequalities 

, !SinkX I I I Icoskxl,lsinkxl, ~ :S e TX (1.24) 

and the definition of c. The third bound (1.23) was established by Willis [90] in the inverse 

Sturm-Liouville problem on [0, 7r] with two discontinuities 0 < d l < d2 < 7r /2 and jump 

constants aI, bl , a2 and b2. Willis follows the techniques of RaId. By exploiting the 

symmetry of our problem we can derive simpler expressions than those of Willis. In the 

symmetric problem we replace the second discontinuity d2 by (7r - d) and note that the 

jump constants in the eigenfunction are related; al = a;-l so that Al == al + all equals 

A2 = a2 + a;-l. We set A = al + all = a2 + a;-l. 

Lemma 1.3: (RaId 1984, Willis 1985 ) Let UI, U2 and U3 be the solutions of the in­

tegral equations (1.5), (1.6) - (1.7). Let k = VI. = cr + iT, A = a + a-I and c = 

max(lbl, Ihl, Io1r Iqldt). If Ikl 2: 3c, then 

IUI(X)I :S 2e lTIx (1.25) 

(1.26) 

(O:S x < d) 

(1.27) 

(1.28) 

(1.29) 

(d < x < 7r - d) 

(1.30) 

(1.31) 

• 

I~ 



• 11 
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(1.32) 

(1I"-d<x:::;1I") 

Remarks: Lemma 1.3 is proved by using the Volterra integral equations for the eigenfunc­

tions, the estimates from Lemma 1.2 and the results from Lemma 1.1. This approa-ch-has 

been used by Liouville [56] , Hobson [40], Borg [18], Hald [39] and Willis [88], [90]. We 

can obtain slightly better bounds than Willis for IU31, IU3 - 'P31 and lu~ - 'P~I by using the 

symmetry in our problem. In deriving the bounds (1.24) - (1.31) Willis uses the estimates 

fad I q( t) I :::; fa1r I q( t) I :::; c (1.33) 

and 

f1r I q( t) I:::; r I q( t) I :::; c . l 1r-d 10 (1.34) 

In the symmetric problem 0 < d < 11"/2 < 11" - d < 11" so that 

l
d1 l1r 1 l1r 1 I q( t) I = I q( t) I :::; - I q( t) I :::; - c 

o d2 2 0 2 
(1.35) 

This factor of ~ gives us the improved upper bounds 

(1.36) 

(1.37) 

(1.38) 

The next lemma determines a lower bound for the Wronskian w. We will prove 

the existence of the eigenvalues using the Cauchy integral technique. Appropriate contours 

will be defined for this purpose. Let .vx = k and let Rn be the rectangle in the k-plane 

with vertices at ±(n - ~) + iO and ±(n - ~) + i(n - ~). And let r n be the contour in 

the A-plane that corresponding to the points of Rn for which 1m k > 0 . 

Lemma 1.4: (Willis 1985) Let u be the solution of (1.1), (1.3) - (1.4) satisfying u(O) = 1 

and u'(O) = h , and let w( A) = -u'( 11") - h u( 11") . Then w is an entire function of A of order 
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t . Its roots Ao < Al < ... are real and simple. Let a = 2 JaJ + Ja2 J and k = VI. = 0"+ iT . 

If a < 1 and n > max{(l + a)/(l- a), (840c)/(1- a)} where c = max(JbJ, JhJ, J; JqJdt) , 

then 

(1.39) 

for all ppints A on the countour r nand JA - nJ < t 

Remarks: For a proof of Lemma 1.4 see Willis [88]. Willis' approach follows a presentation 

in Titchmarsch [83], page 13 and Hald [39]. By using the symmetry in our problem and the 

bounds (1.36), (1.37) and (1.38) we can obtain the slightly improved bound 

, (1.40) 

1.2 Integral Representation of the Eigenfunctions 

In this section we examine the eigenfunctions of a Sturm-Liouville problem with 

two 'symmetrically placed discontinuities. In the lemma below the eigenfunctions are rewrit­

ten as the sum of the first order terms c.p and an integral of the product of a kernel and a 

cosine function. 

Lemma 1.5: (Hald 1984, Willis 1985 ) Let u be the solution (1.1) - (1.4) where u(O) = 1 

and u'(O) = h. Let A = k 2 and c.p be the first order term defined by equations (1.16) - (1.18). 

Then u may be alternatively expressed as 

u(x,k) = c.p(X,k2) + fox K(x,t)coskt dt (1.41) 

Where K(x, t) is a bounded function such that K(x, t) = 0 if t < 0 or t > x. 

Remarks: Povzner and Levitan were the first to realize the significance ofrewriting u in the 

form (1.34). RaId [39] used the same form for the discontinuous problem. His prooffor one 

discontinuity was extended to the two discontinuities by Willis [88], [90]. The restriction 

o S; db d2 S; f is not used in the proof by Willis [88], [90] so that her arguments also cover 

our formulation. 
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1.3 Uniqueness of Position and Sizes of Discontinuities 

In this section we show that if two different eigenvalue problems of the form (1.1) 

- (1.4) have the same eigenvalues, then the discontinuities in the problems and the jump 

constants for the eigenfunctions are identical. No relationship between the jump constants 

for the derivatives of the eigenfunctions is given. 

Lemma 1.6: The jump constant a and the discontinuity d in the eigenvalue problem 

(1.1) - (1.4) are uniquely determined by the eigenvalues provided la - 11 + Ibl > 0, a = 
21al + la21 < 1 and 0 < d < ~ . 

Remarks: The condition la -11 + Ibl > 0 guarantees that either u or u' is discontinuous at d 

and 7r - d. Without this restriction u and u' would be continuous and d could be anywhere. 

Proof: Lemma 1.4 established that the Wronskian w(,x) is an entire function of'x of order 

~ with simple roots. Let wand w be the Wronskians for two different eigenvalue problems 

with identical eigenvalues. We apply Hadamard's theorem [82] to find that w = Cw for all 

,x, where C i= o. We will show that wand ware equal, i.e. C = 1. Let Wo be the leading 

term in the Wronskian w. By using the definition of i.p3 and the equations (1.31) and (1.32) 

we see that 

wo(,x) = ~kA2[sin k7r + 2a sin k(7r - 2d) + a 2 sin k( 7r - 4d)] .. (1.42) 

We rewrite Wo - Cwo as C(w - wo) - (w - wo) to find 

Wo - Cwo C (w - wo) - (w - wo) 

~k [(A2 - CA?)sink7r + 2aA2sink(7r - 2d) 

- 2(iC jp sin k( 7r - 2d) + a 2 A 2 sin k( 7r - 4d) 

- (i2CA:2 sink(7r - 4d)] . (1.43) 

Let c = max(c, c) ,where c = max(lbl, Ihl, J01l' Iq(t)ldt) and c = max(lbl, Ihl, J; Iq(t)ldt). 

We multiply equation (1.43) by T-2 sin k7r and integrate with respect to k from 3c to T. 

Note that w - Wo = -u~(7r) - hU3(7r) + i.p~(7r) , and use the bounds from Lemma 1.3 to 

derive the bound 

1 C(w - wo) - (w - wo) 1 ::; max(l, C) . 11
8
:: ( cA2 + cA:2 ) (1.44) 
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for k > 3c. Thus the integration yields 

l(A2 
- C .. P) [l + O(T-1

) ] + O(T-1
) = O(T-1

) (1.45) 

The proof requires that d € (0, ~). We let T tend to infinity to find that A 2 = CA2. "-

To show that a = a, two distinct cases must be considered. In the first case d = d, 
and in the second d :f. d. The proof in the first case is straightforward. The second proof is 

by contradiction. 

CASE 1: There are two subcases to be considered when d = d; slightly different proofs are 

needed when 11" = 3d and 11" :f. 3d. 

First let d = d and (11" - 2d) :f. (-11" + 4d) ,i.e. 1I":f. 3d. We multiply equation 

(1.43) by T-2 sink(1I" - 2d) , integrate with respect to k from 3c to T and consider the 

limit as T goes to infinity. Then 2aA2 = 2&CA2 . Since A2 = CA2 , we find that a = &. 

And from the definition of a and & , it follows that a = a . 
N ext let d = d and (11" - 2d) = (-11" + 4d) , i.e. 11" = 3d. We multiply equation 

(1.43) by T-2 sink(1I" -2d) , integrate with respect to k from 3c to T and consider the 

limit as T goes to infinity. Then (2a - a 2)A2 = (2& - (2)CA2 or 2a - a 2 = 2& - &2. 

We use the quadratic formula to find that a = -& + 2 or a = &. Since we assume that 

a = 21al + la21 < 1 and a = 21&1 + 1&21 < 1, the first equation cannot be true. Hence a . 

equals & and a = a. 

CASE 2: Consider the second case d :f. d. We show that if the assumption d :f. d leads to an 

eigenvalue problem with no discontinuties. 8 subcases must be considered. The technique 

of multiplying by a sine function times T-2, integrating with respect to k and letting T 

tend to infinity is used repeatedly to obtain equations for a and a and relationships between 

a and a. In addition to the above solving of a quadratic equation may be required. One 

of the roots of the quadratic can be eliminated by the assumption a < 1 or a < 1 . We 

rewrite equation (1.43) as 

Wo - Cwo C (w - wo) - (w - wo) 

lkA2[ 2asink(1I" - 2d) - 2&sink(1I" - 2d) 

_a2 sin k( -11" + 4d) + &2 sin k( -11" + 4d) 1 (1.46) 

and consider the following subcases 

SUBCASE 1 



,~ 

,., 

... 

SUBCASE 2 d:pd 

SUBCASE 3 d- ~ - 5 

SUBCASE 4 d - 211' 
- 5 

SUBCASE 5 d:pd 

SUBCASE 6 d:pd 

SUBCASE 7 d:pd 

SUBCASE 8 d:pd 

d:p ~ 
d - 211' 

- 5 

d- ~ - 5 

d- 11' -'3 

d- ~ - 3 

d- ~ - 3 

d- ~ - 3 

7r - 2d :p -7r + 4d d :p 2d 

d:p ~ 

d:p ~ 

d- - ~ 
- 6 

d - ~ - 6 
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Multiply equation (1.46) by T-2 times a sine function, integrate and let T tend to infin­

ity. The chart below summarizes out results. We emphasize that the order in which the 

multiplications take place is crucial. However, the order given in the chart below may not 

necessarily be the unique sequence which leads to the desired answer. 

SUBCASE MULTIPLY (1.63) BY CONCLUDE 

1 T-2 sin k( 7r - 2d) a=O 

T-2 sin k( 7r - 2d) &=0 

2 T-2 sin k( 7r - 2d) &=0 

T-2 sin k( 7r - 2d) a=O 

3 T-2 sin k( 7r - 2d) 2a + &2 = 0 

T-2 sin k( 7r - 2d) 2& - a 2 = 0 

4 T-2 sin k( 7r - 2d) 2& + a 2 = 0 

T-2 sin k( 7r - 2d) 2a - &2 = 0 

5 T-2 sin k( 7r - 2d) 2a - a 2 = 0 

T-2 sin k( 7r - 2d) &=0 

6 T-2 sin k( 7r - 2d) 2& - &2 = 0 

T-2 sin k( 7r - 2d) a=O 

7 T-2 sin k( 7r - 2(1) &=0 

T-2 sin k( 7r - 2d) 2a - a 2 = 0 

8 T-2 sin k( 7r - 2d) a=O 

T-2 sin k( 7r - 2d) 2& - &2 = 0 

We see that in all of the above cases a = & = 0 and a = ii so that A2 = CA:.2 implies 

C = 1 , and we conclude that Wo = Wo . 



N ext we further study the Wronskian 

Willis [88], [90] uses the integral equations for u 3 and trigonometric identities to find 

kA 
2 

{ sin k1l" + 2a sin k( 11" - 2d) + a 2 sin k( 11" - 4d) } 
4 

1 111r + - { A 2 
[ - 2h + - q( s) ds] - 2Ab} cos k1l" 

420 

1 ld + - { -2Ab - A2a q(s) ds } cos k(1I" - 2d) 
4 0 

1 111r-d 

+ -{ _A2a 2 [ -2h - - q(s) ds 
4 2 0 . 

1j1r + _. q(s) ds] - 2Aab} cosk(-1I" + 4d) 
2 1r-d 

+ fo1r V1(t) coskt dt + E 
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(1.47) 

(1.48) 

The term fo1r Vi (t) cos kt dt consists of a sum of integrals of the form ft~2 cos kt q( s( t)) dt, 

where -11":::; tl :::; t2 :::; 11" , and E consists of all terms of w which are O(k-l). We have 

simplified the formula given in [88], [90] by using the symmetry properties of the jump and 

boundary constants and the potential function. In particular 

[d q ds = r q ds . 
10 11r-d (1.49) 

Let k = (7 + iT . We use the inequalities (1.24) and the bounds from Lemmas 1.2 and 1.3 to 

find that IE(P)I:::; Ikl-ICelrl1r . If k is real, then E is real, and furthermore E is even in k. 

U sing the Paley-Wiener Theorem we rewrite E as E( P) = f; V2( t) cos kt dt , where V2 

is a square integrable function. By combining the· arguments above, the Wronskian can be 

expressed as 

Wo + Co cos k1l" + C1 cos k(1I" - 2d) 

+ C 2 cos k( -11" + 4d) + 1a
1r 

V(t) cos kt dt (1.50) 

And since Wo = Wo and C = 1 , 

w - w = (Co - Co) cos k1l" + C1 cos k(1I" - 2d) - C1 cos k(1I" - 2d) 

+ C 2 cos k( -11" + 4d) - C2 cos k( -11" + 4d) + fo1r (V - V) cos kt dt 

(1.51) 



}! 
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To complete the proof we will multiply equation (1.51) by a term of the form T -1 cos kf3 

and integrate by parts with respect to k from 3c to T to show that b = o. An analogous 

argument is used to show that b = o. Four cases must be considered for each of the proofs. 

We present case 1 in detail to show the reader the method. 

CASE 1: d f:. ~, d f:. 2d Multiply the equation above by T-1 cos k(rr - 2d) , integrate 

with respect to k from 3c to T and arrive at 

C1 [~+ O(T-1
) ] + T- 1 1a

1r 

(V - V) J: cos kt cos kf3 dk dt = 0 , (1.52) 

where we have used Fubini's Theorem to interchange the order of integration. We let T 

tend to infinity and find C1 = 0 . Since a = 0 we have C1 = -tAb = 0 . Therefore b = o. 

case 

1 
2 

3 
4 

case 

1 
2 

3 
4 

assume 

d f:. ~, d f:. 2d 
d f:. ~, d = 2d 

d = i, d f:. ~ 
d -~ d--~ - 3' - 6 

assume 

d f:. ~, d f:. 2d 
d f:. i, d = 2d 
d-~d-J.~ _ - 3' T 6 

d = i, d = ~ 

TO SHOW b= 0 

multiply by 
T-1 cosk(rr.- d) 
T-1 cos k(rr - d) 

T-1 cos k( rr - d) 
T-1 cos k(rr - d) 

TO SHOW b = 0 

multiply by 
T-1 cos k(rr - d) 
T-1 cos k(rr - d) 
T-1 cos k(rr - d) 
T-1 cos k( rr - d) 

conclude 

C 1 = 0 
C 1 - 62 = 0 

C 1 + C 2 = 0 
C 1 + C 2 - 62 = 0 

conclude 

61 = 0 

-C2 + 61 = 0 

G't + 62 = 0 

-C2 + 61 + 62 = 0 

a = ii = 0 implies C 2 = 62 = 0 so that all the above cases reduce to C 1 = - tAb = 0 and 

61 = - tAb = o. Consequently a = a = 1 and b = b = 0 which contradicts the hypothesis 

of our lemma. Hence d = d. 

In the following corollary we show that the conclusion in Lemma 1.6 is valid even 

if a finite number of eigenvalues are not known. 

Corollary 1.6.1: The constants a and d in the eigenvalue problem (1.1) - (1.4) are 

uniquely determined by the eigenvalues {Aj} ,. j> n ,provided la - 11 + Ibl > 0 , 

a = 21al + la2
1 < 1 and 0 < d < ~ . 
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Remarks: Hald [39] proved the corresponding result for the inverse eigenvalue problem 

with one discontinuity. His work can also be extended to th~ inverse eigenvalue problem 

considered by Willis [88], [90] with two discontinuities and a potential that is known over half 

of the interval. We discuss the discontinuous problem with symmetric potentials. HaId's 

proof begins by considering the expression w - Cwo 

w - Cw = c II [ 1 + J _ J ] - 1 w 
( 

n X'-A' ) 

j=O A - Aj 
(1.53) 

Techniques such as bounding the Wronskian, rewriting products as exponentials, noting 

that Ilog(1 + x)1 ~ 21xl for alllxl ~ t, multiplying by appropriate sine and cosine functions, 

integrating and taking limits show that when only a finite number of eigenvalues differ, the 

RHS of equation (1.53) is zero, and the rest of the proof follows from the proof of Lemma 

1.6. The proof for the discontinuous problem differs only in the specific bounds derived for 

the Wronskian. 

Corollary 1.6.1 will be useful for constructing a modified Sturm-Liouville expan­

sion. (See Corollary 2.1. ) This expansion will be used to establish an algorithm to 

reconstruct the potential function in an inverse Sturm-Liouville problem with symmetric 

potentials and symmetric discontinuities. 

1.4 Completion of Proof 

In the next lemma we consider two eigenvalue problems whose eigenvalues are 

equal. We derive integral equations for the difference between the two potentials. By using 

these equations we complete the proof of our main theorem and show that the two potentials 

must be equal. 

Lemma 1. 7: Let u = u( x, A) be the solution of equation (1.1) that satisfies the con­

dition u = 1, u' = h at x = ° and the jump conditions (1.3) and (1.4). Let u be defined 

similarly with a, b, d, hand q replaced by ii, b, d, hand ij. Let a = 21al+la21 < 1 and a = 
21&1 + 1&21 < 1 . Set Ud- = u(d-), Ud- = u(d-), U(1r-d)- = u((1l" - d)-) and U(1r-d)- = 
u((1l" - d)-). If Aj = Xj for j 2: 0, then a = a , d = d and 

b-b a2 
- a-211r 

- (q - ij)(t) dt 
2a d 

(1.54) 
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h-h 1 ld 1 1¥-- - (q - q)(t) dt - - (q - q)(t) dt 
2 0 2a2 d 

(1.55) 

o fd(q_ q)(t) [uu(t) - ~] dt 
Jo 2 

+ 1¥-(q - q)(t) [ uu(t) - 2~2 (1.56) 

Remarks: If q = q almost everywhere on [0, ~], then it follows from equations (1.54) 

and (1.55) that b = band h = h. The equations above are consistent with those for 

the continuous problem. If we set a = 1 and b = 0 our equations reduce to those of 

Hochstadt and Liebermann [43] and Hald [37]. Our equations differ slightly from those of 

Willis since she assumes that in the 2 discontinuity case 0 < d1 < d2 < ~ and q = q a.e. 

on (~,7!'). We assume that the discontinuities db d2 satisfy 0 < d1 < ~ and d2 = 7!' - d1 . 

Symmetry assumptions simplify many of the expressions to reduce our problem to the single 

discontinuity case considered by Hald [39]. However we do not assume q = q a.e. on ( ~,7!') 

as is done in Hald [39]. 

Proof: Our proof uses the techniques and arguments given in Hald [39] and Willis [88], 

[90]. Integral equations (1.54) - (1.56) will be derived by following the argument given 

in Willis [88], Lemma 7. Since the eigenvalues of the two Sturm-Liouville problems are 

identical a = ii and d = d. ( See Lemma 1.6 ). And furthermore 

(uu' - uu')' + (q - q)uu = 0 

at the eigenvalues. Denote d by dl and 7!' - d by d2 • We integrate the equation above by 

parts. 

From the symmetry of our problem we have that 

a-I u(d2-) 

a-I u(d2-) 

(1.57) 
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and 

fo~ (q - q)(t) uu(t) dt Jr;.'Ir(q- q)(t) uu(t) dt 
2 

so that equation (1.57) reduces to 

(h - h) + a(b - b)u(dl - )u(dl -) + fo~ (q - q)(t)uu(t)dt = 0 (1.58) 

at the eigenvalues. We note that the equation above is identical to that found by Hald [39]. 

Define the function «P to be the LHS of the resulting expression. Note that «p( A) = 0 at any 

of the eigenvalues of the Sturm-Liouville equations. We will show that «P == o. u and u are 

entire functions with respect to A so that «P is entire. Now consider the function W = «P / w 

where w is the Wronskian of the two eigenvalue problems. ( Recall from Lemma 1.6 that 

the eigenvalues determines the Wronskian. ) Let r n be the contour described in Lemma 

1.4. Then 

Iwl > A2(1- a). ~eITI1r 
24 VIAl 

for n sufficiently large. Let c = max(c, c) ,where c = max(lbl, Ihl, f; Iq(t)ldt) and c = 
max(lbl, Ihl, fo'lr Iq(t)ldt). Use the estimates from Lemma 3 and Hald [39] to find that «P is 

bounded by 

where A = (a + a-I). Since «P and w are entire functions with respect to A and the zeros 

of ware simple and are also the zeros of «P, W is an entire function of A and the estimates 

from «P and w give the bound 

W 432 c 
I I:S A (1 - a) M 

on the curve r n for n sufficiently large. From the maximum principle follows that wis 

bounded. As n -7 00, W -7 0 so that W == o. 
We follow the work of Hald [39] and express «P as 

«pp) = h - h + a (b - b) <pied) + fo~ (q - q)(t) <p2(t) dt + E 

where <P = <PI or <P2 is defined by equations (1.16) - (1.17) and E is 

... 
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+ fo~ (q - q)(t) { (u(t) - 'P(t)) u(t) + (u(t) - 'P(t)) u(t) } dt . 

(1.59) 

U sing the bounds from Lemma 3 we find that 

_ 620 c2 A4 

E ::; Ikl 

N ext note that <P may be written 

<p(>,) = A + B cos 2kd + I + E 0 

where 

A h _ h + a(b - b) ~ fd(q _ q)(t) dt + (a
2 + a-

2
) f~ (q _ q)(t) dt 

2 + 2 Jo 4 Jd 

B 
a(b - b) (a 2 + a-2 ) f~ 

2 + 4 J
d 

(q - q)( t) dt 

and the term I is of the form 

I = 1a~ Vet) cos 2kt dt . 

The bounds from Lemma 3 and Hald [39] show that E is bounded by 

To derive the equations for b - band h - h, Hald mulitplies by T-l cos 2kd, integrates with 

respect to k from 3c to T, considers the limit as t ~ 00, and finds that B = o. Next Hald 

shows that the integral I equals zero as k ~ 00 by using the Riemann Lebesgue Lemma, 

and E ~ 0 as k increases since it is O( !-). Finally we find that A = 0, and this concludes 

our proof of Lemma 1.7. 

The next lemma considers the integral equations for the product of two eigen­

functions of two different eigenproblems. These equations will be substituted into equation 

(1.56) of Lemma 1.7 to complete our proof. 
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Lemma 1.8: (RaId 1984) Let u, U, Ud- and Ud- be defined as in Lemma 1.7 and assume 

that d = d and a = ii. Let k =.../X. Then there exists a bounded function K( x, t) such that 

for all k 

1 1 11x 
-u U - - = - cos 2kx + - ]( ( x, t) cos 2kt dt 

2 2 2 0 
(1.60) 

when 0 :s; x < d , and 

_ 1 1( 2 -2) -UU - - - - a - a ud- Ud-
2a2 2 

1 
- [ A cos 2kx + B cos 2k( x - d) + C cos 2k( x - 2d) ] 
2 

11x 

+ - K(x,t)cos2kt dt 
2 0 

(1.61) 

whend<x< ¥-. Here4A = (a+a-1)-2 , 2B=a2 -a-2 and4C=(a-a-1 )2. 

Remark: Equations (1.60) and (1.61) are derived in RaId [39]. 

To complete the proof of the main theorem, let Q = q - if. . By combining equation 

(1.56) with Lemma 1.8 we find that 

o = fod Q(x) {cos2kx + fox K(x,t)cos2kt dt} dx 

+ L'f Q(x) { A cos 2kx + B cos2k(x - d) 

+ C cos 2k(x - 2d) + fox K( x, t) cos 2kt dt } dx (1.62) 

for all k. For the integral equation given above, Rald [39] has shown that Q == 0 almost 

everywhere on [0, ¥-]. Since the potential is symmetric, Q == 0 almost everywhere on the 

whole interval [0, rr]. We return to the equations given in Lemma 1.7 to find that b - b = 
h - h = O. And this completes the proof of our main result, Theorem 1. 



29 

Chapter 2 

Eigenfunction Expansions 

In this chapter we show that any absolutely continuous function can be expanded 

in terms of the 'eigenfunctions of a Sturm-Liouville problem with two discontinuities. Next 

the orthogonality property of the eigenfunctions is proved and a relationship between the 

derivative of the Wronskian and the L2-norm of the eigenfunctions is established. In the 

first of two corollaries a variation of the eigenfunction expansion is presented. This result 

is used to construct an algorithm for the discontinuous inverse Sturm-Liouville problem 

with symmetric potentials and symmetric discontinuities. ( See Chapters 3 and 4. ) In the 

second corollary we give the Sturm-Liouville expansion in a form which may be of more use 

to the general reader. This expression is analogous to the standard Fourier Series expansion. 

Finally we derive a relationship between the Wronskians of two distinct eigenvalue problems 

when only a finite number of their eigenvalues differ. 

2.1 Main Theorem 

Theorem 2: Consider the eigenvalue problem 

- u" + q( x) u = oX u (2.1) 

on the interval 0 < x < 7r satisfying the symmetric boundary conditions: 

h u(O) - u'(O) = h u(7r) + u'(7r) = 0 (2.2) 
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with two symmetric discontinuities at x = dl = d and x = d2 = 7r - d , 0 < d l < ~ satisfying 

the jump conditions: 

(2.3) 

(2.4) 

Here q is integrable on 0 :::; x :::; 7r, a > 0 and la - 11 + Ibl > o. Let A = a + a-I and 

0= (a - a-I)/(a+ a-I). Assume a = 2101 + 10 21 < 1. Let {Aj} be the eigenvalues of (2.1) 

and let Uj and Vj be the solutions.of equation (2.1) satisfying the boundary conditions 

u(O) = 1, u'(O) = h (2.5) 

and 

V(7r) = 1, V'(7r) = -h . (2.6) 

Let f be a sectionally CI function on [O,7rJ with sections (O,d), (d,7r - d) and (7r - d,7r). 

Then 

(2.7) 

Remarks: "The idea of expanding an arbitrary function in terms of the solutions of a 

second-order differential equation goes back to the time of Sturm and Liouville, more than 

a hundred years ago. The first satisfactory proofs were constructed by various authors early 

in the twentieth century. Later, a general theory of the 'singular' cases was given by Weyl 

[85J, [87], [86J , who based it on the theory of integral equations. An alternative met·hod, 

proceeding via the general theory of linear operators in Hilbert space, is to be found in the 

treatise by Stone [77J on this subject. " ( from Titchmarsch [83J ) Poincare suggested yet 

another method, the Cauchy integral technique, which involves contour integration and the 

calculus of residues. However other scientists, including Knesner, Birkhoff and Tamarkin, 

are responsible for implementing this technique. The motivation for our work comes from 

Hochstadt and Hald [35J, who studied the inverse Sturm-Liouville problem with continuous· 

symmetric potentials. 

Beginning of Proof: The outline and techniques we use follow from Titchmarsch [83J; 

our proof is merely a discontinuous variation of that given in Titchmarsch's treatise on 
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eigenfunction expansions. We begin by examining the solutions to the Sturm-Liouville 

equation and their asymptotic expansions. Rere u satisfies the Volterra integral equations 

(1.5) - (1.16) presented in RaId [39] and Willis [88], [90]. Note that RaId and Willis assume 

that 0 < d1 < d2 < ~. We assume instead that 0 < d < 7r /2. The equation for v is found 

by replacing x by 7r - x and replacing by suitable and jump and boundary conditions. We 

set A = k2 where k = ()" + ir. From the Volterra integral equations (1.5) - (1.16) follows 

that for each x, u(x, A) is an entire function of A of order ~. In addition, we obtain the 

asymptotic expansions for u and v from these equations. 

V(X,A) 

u(x, A) 

v(x, A) 

U(X,A) 

V(X,A) 

1 
_A2 [cosk(7r - x) - 0: cos k(7r + X - 2d) + 0: cos k(7r - X - 2d) 
4 

- 0:2 cos k(7r + X - 4d)] + O{lkl-leITI(1I"-x)} 

(O<x<d) 

1 
-A [cosh + o:cosk(x - 2d)] + O{lkl-leITlx} 
2 

1 
-A [cosk(7r - x) + o:cosk(7r - X - 2d)] + O{lkl-leITI(1I"-x)} 
2 

(d< x < 7r-d) 

1 
_A2 [cosh + 0: cosk(x - 2d) - 0: cosk(x - 27r + 2d) 
4 

- 0:2 cos k(x - 27r + 4d)] + O{lkl-leITlx} 

The functions u and v may be abbreviated as follows 

u(x, A) 

V(X,A) 

Uo + O{lkl-1eHx} 

Vo + O{lkl-1eIT1 (1I"-x)} . 
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where Uo is the .leading order term of u and Vo is the leading order term of v. We now 

introduce the Wronskian 

W(A) = -h U(7r,A)- U'(7r,A) (2.8) 

and note that A is an eigenvalue of (2.1) iff W(A) = o. The asymptotic expansion for W is 

obtained by differentiating the Volterra integral equations for u. We specialize the results 

of Willis [88], [90] to obtain 

W(A) = ~kA2 [ sink7r + 2a sin k(7r - 2d) - a 2 sink( -7r + 4d) ] 

+ O{e lTj1r} (2.9) 

Next, consider the fU1l,ction 

q,( A) = v J; uf dy + u J: v f dy 
x, W(A) (2.10) 

Here u and v are solutions of (2.1) with boundary conditions (2.5) and (2.6) and have the 

asymptotic expansion~ given above. We integrate q, along a large contour r in the A-plane. 

Let k = V>. and consider the contour in the k-plane consisting of the lines 

(n+~)+it 

(n + ~) - 2t + i (n + ~) 
-( n + ~) + i [ (n + ~) - t ] 

2 2 

where 0 ~ t ~ (n + ~). Let r be the corresponding contour on the A-plane. First we note 

that 

~ ( q,(x, A) dA -+ f Vj J; ujf dy ,+ Uj J: vjf dy 
27rZ ir j=O W (Aj) 

(2.11) 

on (0, d), (d, 7r - d), (7r - d, 7r) as n -+ 00 from the residue theorem. We will show that 

~ { (X vo(x, A) uo(y, A) fey) dy dA 
2n ir io woe A) 

+ ~ ( r uo(x, A) vo(y, A) fey) dy d)" 
2n irix Wo(A) 

-+ f(x) (2.12) 
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on (0, d), (d,1I" - d), (11" - d, 11") as n -+ 00. Here wo(oX) denotes the leading order term of the 

Wronskian w. 

wo(oX) = ~kA2 [sink1l"+2asink(1I"-2d)+ a 2sink(1I"-4d)] 
4 

And Vo and Uo denote the leading order terms of v and u. 

(2.13) 

We will prove the first expression in (2.12). From the definition of <I> we have that 

~ [ <I>(x, oX) doX = 
2n lr 

1 [[X v(x, oX) u(y, oX) f(y) dy doX 
211"i lr 10 w(oX) 

1 [ J1r u(x, oX) v(y, oX) f(y) dy doX 
+ 211"i lr X w(oX) 

on (0, d), (d, 11" - d), (11" - d, 11"). Write u, v and w as the sum of the leading order term and 

the lower order terms, i.e. u = Uo + UL, v = Vo + VL and w = Wo + WL. Here the 

subindex ° is used to denote the leading order term and the subindex L is used to denote 

the lower order term. We consider the quotient 

U·V 
W 

where E is defined by 

We will show that 

Uo· Vo 
W 

Uo· Vo 

Wo 

Uo· Vo 
Wo 

Uo· Vo 

Wo 

+ Uo· VL 
W 

UL· v 
+ 

W 

Uo . Vo ( W - wo) 

W·Wo 

Uo· Vo 
Wo 

Uo· VL + UL· v 
+ 

W 

+ 
UO·VL + UL·V 

W 

Uo· Vo· WL 
+ 

Uo· VL + UL·V 

W·WO W 

+E 

Uo . Vo . WL + Uo· VL + UL· v E=- ----
W·Wo W 

(2.14) 
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and 

2~i Ir l1r E f(y) dy d)" ---t 0 (2.15) 

as n ---t 00. The proof consists of three distinct cases; the first case is when 0 < x < d, 

the second when d < x < 7r - d and the third when 7r - d < x < 7r. Since our problem is 

symmetric the proof for the first interval 0 < x < d gives us the proof for the third interval 

7r - d < x < 7r. Only the first two cases must therefore be considered. We present only the 

first case in detail since the proof for the second case is the same except for the constants 

in the bounds. 

Consider the integral (2.14) when 0 < x < d. We analyze the integral on two 

separate intervals (O,x - 8) and (x - 8,x) where x + 8 < d and x - 8 > o. We use the 

bounds from: Lemma 1.3 and the bound for the Wronskian from Lemma 1.4 to find that on 

(O,x - 8) 

432984e 

Ikl 2 
el-rIYel-rl( 1r-x) 

el-rI1r(l- &)2 

for large n. Here we assume that e/lkl < 1/3. Note that f is piecewise C 1 so that If(x)l, 

1f'(x)1 ::; M for some constant M on (0, d), (d,7r - d) and (7r - d,7r). Therefore 

1

_ 1_ { (X-{j E f(y) dy d)..1 < _1_ (432984 eM . (el-rl(x-{j) - l)el-rI(1r-x) IdAI 
27ri Jr Jo - 27ri Jr Ikl 2 el-rI1r(l - &)2 

for large n, and the integral converges to 0 as n ---t 00. On (x - 8, x) the integral is bounded 

by 

~ { {X 432984 eM Idyl IdAI . 
27r JrJx-{j IkI2(1- a)2 

This expression can be made arbitrarily small by choosing 8 to be small enough. The proof 

for the second integral (2.15) is constructed by analyzing the integral on the two intervals 

(x,x + 8) and (x + 8,7r) and by following the the same techniques as above. 

Again the proof of the second relation in (2.12) consists of three distinct cases; 

the first case is when 0 < x < d, the second when d < x < 7r - d and the third when 

7r - d < x < 7r. Since our problem is symmetric the proof for the first interval 0 < x < d 

gives us the proof for the third interval 7r - d < x < 7r. Only the first two cases must 

therefore be considered. We only present the details of the first case since techniques used 

in the proof of both cases are the same. 

.. 
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Consider the integral 

~ { {X vo(x, A) uo(y, A) fey) dy dA 
2n Jr Jo woe A) 

When ° < y < d, the term 

vo(x, A) uo(y, A) 
WO(A) 
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(2.16) 

[ cos k( 7r - x) - a cos k( 7r + X - 2d) + a cos k( 7r - X - 2d) - a 2 cos k( 7r - 4d + x) 1 

cosky 
X --~--------~~--~--~--~~--~ 

k . [ sin k7r + 2a sin k( 7r - 2d) + a 2 sin k( 7r - 4d) 1 

Note that 17r + x - 2dl, 17r - x - 2dl, 17r - 4d + xl < (7r - x) and 17r - 2dl, 17r - 4dl < 7r. 

We analyze the integral (2.16) on two separate intervals (0, x - 0) and (x - 0, x) where 

x + 0 < d and x - 0 > 0. f is sectionally continuous on [0, 7r 1 where the sections are intervals 

(O,d), (d,7r-d) and (7r-d,7r). There exists a constant M such that If(x)l, If'(x)1 ~ M on 

each of these intervals. Let k = a + iT. Integrate by parts to find 

{x-Ii 1 {x-Ii sin ky 
J
o 

cosky fey) dy = k sinky fey) I~-Ii - J
o 

-k- f'(y) dy , 

and use the trigonometric inequalities (1.24) to find that the expression above is bounded 

by 

~ e-T(x-li) [ 1 + (x - 0) 1 . 

Since vo is bounded above by 

and the Wronskian is bounded below by 

I
w (A)I > A2(1 - a) elTlrr 

o - 241kl 

( See Lemma 1.4 ), on (0, x - 0) the integral (2.16) is bounded by 

3 M . [1 + (x - 0) 1 (1 + a) {_1_ e-Tli IdAI . 
7r(1- a) Jr Ik2 1 
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For fixed 8 and fixed x this integral tends to 0 as n --+ 00. For details see Titchmarsch [83]. 

Next consider the integral (2.16) on the second interval (x - 8, x). 

fX vo(x,>.) uo(Y,>') fey) dy 
}x-5 wo(>') 

Since f is CIon (x - 8, x), we may replace f(y) by f( x). Then 

f(x). vo(~~~) fX uo(Y,>') dy = f(x). vo(~~~) fX cos ky dy 
Wo }x-5 Wo }x-5 

vo(x, >.) 1 . = f(x)· wo(>') k [sm kx - sin k(x - 8) ] 

Rewrite Vo as 

Vo = cos k( 7r - x) + L f3i cos k'rJi 

where L: If3il = a < 1 and l'rJil < 7r - x. Then 

vo. fX Uo dy 
}x-5 

1 [sin kx. cos k(7r - x) + '" Pi sin kiji] 4A2k LJ 

where L: IPil is bounded and liiil < 7r. Here we use the trigonometric identity 

- 1 - -
sine· cose = 2" [sin(e + e) + sinCe - e)] . 

Next we rewrite 1jwo as 

1 

Wo 

1 
4A2 

1 
4A2 

1 
4A2 

[ k Si~ k7r + 1 1] 
Wo k sin k7r 

[ 1 
k sin k7r 

-2asin k(7r - 2d) - a 2 sin k(7r - 4d) 1 
+ . k Wo sm 7r 

1 + EL] 
sin k7r 

where IELI is bounded by 
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and iJ = max{(7I" - 2d), (71" - 4d)}. We combine our results from above to find that 

Vo jX f( x) . ~ sin k7l" + L.. ~i sin kiji + EL 
f(x)· Wo x-6 Uo dy k2 sin k7l" 

1f(x) + ' 
2 k2 EL 

where IELI is derived from multiplying the terms associated with ELand the term 

f(x). vo(x,'x) 1:6 uo(y,,x) dy 

And IELI and IELI are bounded by 

IELI ~ If(x)1 0: eT (t1- 1r) [ !. + L I~'I eT (t1i- 1r ) ] 

Ik2
1 2 • 

Here we use the lower bound for the Wronskian from Lemma 1.4 again. Note that 

and 

as n -+ 00 since a < iJi , iJ < 71" for fixed x and fixed {j. And 

_1 f f(x) d,X = !'f(x) . 
271"i Jr 2k2 2 

Therefore on (x - {j,x) integral (2.16) converges to ~f(x). 

To justify the substitution of f(y) by f(x) note that f is CIon (O,d) so that 

f(y) - f( x) is also Cl, and it may be written 

f(y) - f(x) = g(y) - h(y) 

where g(y) and h(y) are positive monotone functions that tend to zero as y -+ x. (See 

Royden [73], page 100. ) By the second mean-value theorem 

1:6 cos ky g(y) dy = g( x - {j) 1~6 cos ky dy 

O (
g(x - {j) TX) 

Ikl e . 
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This term contributes 

J 0 Ig(x; 0) IldAI = O{g(x - o)} 

to integral (2.16), and it tends to zero as 0 -+ o. A similar argument can be used for the 

term involving h. We remark that the convergence we have proven is pointwise. 

N ext consider the integral 

1 f j1r uo(x, A) vo(y, A) fey) dy dA 
271"i lr x WO(A) 

When 0 < y < d, the term 

UO(x, A) vo(y, A) 
WO(A) 

(2.17) 

[ cos k( 71" - y) - a cos k( 71" + y - 2d) + a cos k( 71" - Y - 2d) - a 2 cos k( 71" - 4d + y) 1 

coskx 
X ~~~------~~--~~~~~~--~7 

k· [sin k7l" + 2a sink(7I" - 2d) + a 2 sink(7I" - 4d) 1 

Note that 171" + y - 2dl, 171" - y - 2dl, 171" - 4d + yl < (71" - y) and 171" - 2dl, 171" - 4dl < 71". 

When d < y < 71" - d, the term 

UO(x, A) vo(y, A) 
WO(A) 

cos kx + a cos k( x - 2d) cos k( 71" - y) + a cos k( 71" - Y - 2d) 
k x sink7l" + 2a sin k(7I" - 2d) + a 2 sink(7I" - 4d) 

.Note that Ix - 2dl < x, 171" - Y - 2dl < (71" - y) and 171" - 2dl, 171" - 4dl < 71". 

When 71" - d < y < 71", the term 

UO(x, A) vo(y, A) 
WO(A) 

[coskx + a cos k(x - 2d) - a cos k(x - 271" + 2d) - a 2 cosk(x - 271" + 4d) 1 

cosk(7I" - y) 
X ~~~----~~~~~~~~77----~ 

k [ sin k7l" + 2a sin k( 71" - 2d) + a 2 sin k( 71" - 4d) 1 
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We note that Ix - 2dl, Ix - 211" + 2dl, Ix - 211" + 4dl < lxi, 111" - y - 2dl < (11" - y) and 111" - 2dl, 

111"- 4dl < 11". To show that integral (2.18) converges to tf(x) as n --+ 00, we examine the 

integral on two separate intervals (x,x+b') and (x+b', 11") and use techniques similar to those 

used in the analysis of integral (2.16). The sum of integrals (2.16) and (2.18) approaches 

f(x) as n --+ 00 . 

2.2 Three Lemmas and Two Corollaries 

.In this first lemma we show that the eigenfunctions of problem (2.1) - (2.4) are 

orthogonal. 

Lemma 2.1 ( Orthogonality): Consider the eigenvalue problem: 

-U"+q(X)U=AU (2.18) 

on the interval 0 ~ x ~ 11" with the boundary conditions: 

h u(O) - u'(O) = h u(1I") + u'(1I") = 0 (2.19) 

and discontinuities at x = d1 and x = d2 satisfying the jump conditions: 

(2.20) 

(2.21) 

Let Uj and Vj be the eigenfunctions of (2.17) - (2.20) corresponding to eigenvalues Ai and 

Aj respectively. Then 

i -f j . 

Remark: This lemma may be reduced to the single discontinuity case and may be extended 

to multiple discontinuity cases in the obvious manner. 

Proof: Let L denote the operator 
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We will show 

(2.22) 

Consider the difference 

- r(U.U'~ - u"u·) 10 t J t J 

_ (1r(u!u. _ u.u l )' 10 t J t J 

Then 

The last integral term equals zero. Substituting the boundary and jump conditions shows 

that the first three terms vanish, and we are led to the identity (2.22). In the Sturm­

Liouville problem (2.18) - (2.21), L Ui = Ai Ui and L Uj = Aj Uj so we may write equation 

(2.22) as 

(2.23) 

So that 

if: j . (2.24) 

Using Theorem 2 and Lemma 2.1 we determine a relation between the derivative 

of the Wronskian and the L2 - norm of the eigenfunctions. 

Lemma 2.2: Consider the eigenvalue problem (2.1) - (2.4) given in Theorem 2 with a 

symmetric potential q( x). Let k j = (-l)j. Then 

Proof: Using Theorem 2 we set f = Ui. Then 

U· t 

00 

L 
j=O 

Vj J; UjUi dy + Uj J; VjUi dy 
w'(Aj) 

(2.25) 
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From the symmetry of our problem we have Vj = (-1)juj, and the eigenfunctions are 

orthogonal. By Lemma 2.1, the expression above equals 

Ui 

Hence kj/w'(>'.j) = 1/IIUjll~. 
In the proof of Theorem 2 note that the expansion (2.7) for I is determined by 

the leading order terms of the eigenfunctions Uj and Vj. As a consequence, we have the 

following corollary. 

Corollary 2.1: Let I, Uj and Vj be defined as in Theorem 2. And let Uj and Vj be the the 

solutions of (2.1) with a, b, q, hand {Aj} replaced by ii, b, ij, hand {.xj}. If Aj = .xj for 

j> n, then f has an expansion 

(2.26) 

Proof: Corollary 1.6.1 establishes that the conclusion in Lemma 1.6 is valid even if a 

finite number of eigenvalues is not known. Therefore a = ii and d = d. The potential ij 

does not appear in the asymptotic expansion for u. The jump constant b and the boundary 

constant h do appear in the leading order terms. Hence the proof of this corollary follows 

immediately from that of Theorem 2. 

The expansions for I we have presented thus far are not in a form convenient for 

the general reader. In the corollary below we present an eigenfunction expansion analogous 

to the Fourier Series expansion. 

Corollary 2.2: Let Uj be an eigenfunction of (2.1) - (2.6), and let I and f' be sectionally 

continuous on [0,1r] with sections (0, d), (d,1r - d), (1r - d, 1r). Then 

f(x) = ~ ( f, II:~I' ) . ~~;~~ (2.27) 

on (O,dl ), (dl,'d2 ), (d2 ,1r). 



Proof: From the definition of Uj and Vj follows that Uj = kjvj. Then 

f(x) 
~kjUj J; ujf dy + Uj J; kjujf dy 
L.J W'(Aj) j=O 

~ Uj(x) 
L.J (j, Uj) . -II _11 2 
j=O UJ 2 

=L: f,~ 00 ( ) 

, j=O IIUjl12 

where we have used kj/W'(Aj) = l/llujll~ = 1 from Lemma 2.2. 
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In this final lemma we study the ratio of Wronskians" for two different eigenvalue 

problems. We will use Lemma 2.3 in Chapter 4 to construct the Hochstadt-Hald algorithm. 

Lemma 2.3: Consider the eigenvalue problem (2.1) - (2.4) given in Theorem 2. Let W 

denote the Wronskian. Consider a second eigenvalue problem where a, b, q, h, wand {Aj} 

are replaced by a, b, ij, ii, wand {).j}. If Aj = ).j for j > n, then . 

W'(A -) 
J -+1 

W'(Aj) 

as j -'-+ 00. 

Proof: From Lemma 2.2 we have that 

kj/W'(Aj) = l/llujll~ = 1 

and 

kj/W'(Aj) = l/lIujll~ = 1 

so that 



= lI<pj + Uj - <pj1l2 _ II<pjIl2 + II<pjIl2 
lI<pj + Uj - <pj112 II<pj112 II<pj112 

= lI<pjll2 + E 
lI<pj112 

where E is equal to the first two terms of the equation above. And 

E = II<pj + Uj - <pj112 _ II<pj112 
lI<pj + Uj - <pj1l2 lI<pjll2 

< 211<pjll·ll<pjIl2 '1luj - <pjll + lI<pj112 '11Uj - <pj112 
II<pjIl2 'IIUj112 

+ 211<pj1l2 ·11<pjll 'IIUj - <pjll + II<pj112 '11Uj - <pj112 
lI<pjll2 'IIUjIl2 
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Where we have used the Cauchy-Schwarz inequality. Here the norm II ·11 is the L2 - norm. 

We use the bounds from Lemma 1.3 

1I<p11, 1I<p11 

2 C < 28A 1I"fkT 

to obtain a bound for lEI. 

lEI < ( 75152A8c 23912A8c2 ) 11" 

- Ikl + Ikl2 . II<pjI12. IIUjl12 

We will show that II<pjIl2, IIujll2 > constant> 0 for all";;::; > M. Then E -+ 0 as Ijl-+ 00. 

We will now determine M. 

d sin 2kd 
= 2" + 4k 
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Choose k so that 

d sin 2kd {d 
2" + 4k > Y 4" 

and 

that is Ikl > lid and Ikl > 1127rcA 21Vd. Since k = .;>:; and I';>:; - jl < ~ by Lemma 1.4 

we conclude 

as j ~ 00. By Lemma 1.6 we have that a = a and d = d so that 'Pj = <pj. Therefore 

as j ~ 00. 
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,Chapter 3 

The Difference of Two Potentials 

In this chapter we consider two Sturm-Liouville problems with different symmetric 

potentials with symmetric discontinuities satisfying different symmetric boundary and jump 

conditions. The main result is that if only a finite number of eigenvalues differ then a simple 

expression for the difference of the potentials can be established. 

Theorem 3: Consider the following eigenvalue problems with symmetric discontinuities 

at x = dl and x = d2 = 11" - dl 

-u"+q(x)u=).u 

h u(O) - u'(O) = 0 

u( dl + ) = a u( dl - ) 

u(d2-) = a u(d2+) 

h u(11") + u'(11") = 0 

u'(dl +) = a-lu'(dl -) + b u(dl -) 

u'( d2-) = a-lu'( d2+ ) - b u( d2+ ) 

and symmetric discontinuities at x = dl and x = d2 = 11" - dl 

- u" + q( x) u = >. u 

h u(O) -u'(O) = 0 h u(11") + u'(11") = 0 

u( dl + ) = a u( dl - ) 

u(d2 -) = a u(d2+) 

u'(dl +) = a-lu'(dl -) + b u(dl -) 

u'(d2-) = a-1 u'(d2+) - b u(d2+) 

(3.1) 

(3.2) 

Here q and q are integrable on [0, 11" 1 and satisfy the symmetry conditions q( x) = q( 11" - x) 
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and q( x) = q( 7r - x) almost everywhere on the interval 0 ~ x ~ 7r. The jump constants 

satisfy la - 11 + Ibl > o. Finally, Aj and 5. j are the eigenvalues of (3.1) and (3.2). Let Uj 

and vjbe the solutions of 

-u" +q(x) u = A U 

u(d1+) = ii, u(d1-) u'(d1+) = ii,-lu'(d1-) + b u(d1-) 

u(O) = 1 

v(7r) = 1 

with A = A j . Define the functions y by 

u'(O) = h 

v'(7r) = -h 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Here kj/w'(Aj) = 1/ J; uj dx where kj = (-l)j and Uj(x) are the eigenfunctions of (3.1) 

normalized such that uj{O) = 1. If Aj = 5. j for j > n ,then 

h- h = (3.7) 

b-b (3.8) 

n 

q-q E (Yj Uj)' a.e. (3.9) 
j=O 

Remarks: In [35] Rald remarks that a work by Rochstadt [42] inspired him to examine the 

possibility of constructing an algorithm to solve the continuous symmetric inverse Sturm 

Liouville problem numerically. In the continuous problem RaId assumes that an infinite 

number of eigenvalues could differ so long as the sum Ej IAj - 5. j l converges. This always 

holds for perturbation of finitely many eigenvalues. RaId's result is significant in that it 

allows him to determine an algorithm to reconstruct the potential function. Under cer­

tain assumptions he can prove that the algorithm has a solution and that this solution 

is unique. Rere we extend Rald's characterization results to the discontinuous symmetric 

inverse Sturm-Liouville problem where a finite number of eigenvalues differ. The techniques 
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ofRald [35] and Hochstadt [42] are used to derive expressions for the difference between the 

boundary constants and the difference between the potential functions. Since we consider 

the discontinuous problem, we also obtain a formula for the difference between the jump 

constants. This is our main contribution. These formulae are used in chapter 4 to construct 

an algorithm to determine the potential function. The proof below uses the Sturm-Liouville 

expansion derived in chapter 3. 

Beginning of Proof: W(l begin by noting that a = ii and d = d since {Aj} are identical 

for j > n. ( See Corollary 1.6.1. ) For the remainder of this chapter a and d will be use'd in 

the place of ii and d. Let u(x, A) and vex, A) be the solutions of equation (3.1), (3.4) - (3.5), 

where h is replaced by h.We let U and v be defined as above in equations (3.3) - (3.5). If f 
and l' are sectionally continuous on [0,11"] with sections (O,d), (d,1I" - d) and (11" - d) then 

by Corollary 2.2 f has an expansion 

(3.10) 

for 0 ~ x ~ 11", x -=f:. dt, d2 • 

We note that Uj and Vj represent the same eigenfunction whereas Uj and Vj 

are not necessarily eigenfunctions. q is symmetric so that Vj = kjuj where kj = (-l)j. 

When q = ij and h = h then (3.10) reduces to the Sturm-Liouville expansion and con­

sequently kj/W'(Aj) = 1/ Jo1r u; dx. ( See Corollary 2.2 and Lemma 2.2. ) Let f be the 

eigenfunction Uo of (3.1), and substitute into equation (3.10), Then 

1 n lX 
Uo = Uo + - L iJi UjUO dt , 

2 j=o a 
(3.11) 

where we have used that iJi = 0 for j > n. Formally differentiate equation (3.11). Let 

Ii = Yj Jef UjUO dt. Then fj(O) = 0 and fiCO) = Yj(O). Note that Uj and Uo are 

eigenfunctions of (3.1) and Yj is a solution of (3.3) with A = Aj. We will differentiate fj 

twice and use integration by parts to show that 

The expressions for Ii, fi and fi' are 

Ii = Yj foX UjUO 

(3.12) 
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Substitute into the LHS of equation (3.12) to find 

1'/ + (Ao - q)fJ 

2 (YjUj)' Uo + (Ao - Aj) Yj fox UjUO + [UjU~ - ujuo ] Yj . (3.13) 

Consider the integral term 

I = (Ao - Aj) fox UjUO 

which equals 

for 0 < x < d, 

for d < x < 7r - d, and 

for 7r - d < x < 7r. In all three cases we use the boundary and jump conditions to show 

that I equals [ 1.ljUO - u&Uj lex). Since 

Uo - ito 
1 n 

-:EfJ 
2 . 0 

J= 
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it follows that 

n 

U~ - U~ (ij - ,Xo)(Uo - uo) + L (YjUj)'uo 
j=O 

To derive equation (3.7) let x = 0 in the first equation. To derive (3.9) use the second 

equation, the relations u~ = (q-,Xo) Uo and u~ = (ij-,Xo) Uo and note that the eigenfunction 

Uo is positive in the whole interval. Finally we will use equations (3.11) and (3.13) to 

determine formula (3.8) for b - b. To simplify the notation we will write (+) for (d 1 +) 

and (-) for (d1-). Let x = d- in formula (3.11) then 

1 n ld 
uo( -) = uo( -) + - L tJJ( -) UjUO 

2 j=o 0 ... 

We differentiate (3.11). 

1 n lX 
u~(x) = u~(x) + 2" L [vj(x) Jo UjUO + Vj(x) uix)uo(x) 1 

j=o 0 

(3.14) 

Let x = d- and let x = d+ then 

1 n d 
u~( -) = u~( -) + - L [ vj( -) f UjUO + Vj( -) Uj( - )uo( -)] , (3.15) 

2 j=o Jo 

and 

1 n fd 
u~( +) = u~( +) + 2" L [ vj( +) Jo UjUO +Vj( +) Uj( + )uo( +) 1 . 

j=o 0 

(3.16) 

Next substitute in the jump conditions for U into equation (3.16) above then 
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Multiply equation (3.15) by a-l use the equation to cancel terms in the expression above 

then 

b uo( -) 

Finally divide by uo( -). 

b 

This completes the proof. 

b uo( -) + b ~ t yj( _) [d UjUO 
2 j=O 10 

1 . n 

+ 2" L: (a3 
- a-l ) Yj( - ) Uj( -) UO( - ) 

j=O 

b UO( -) + ~ t (a3 - a-l ) yj{ - ) Uj( -) uci( - ) 
2 . 0 

J= 

The formulae derived in Theorem 3 enable us to present a more elegant uniqueness 

proof for discontinuous symmetric inverse Sturm-Liouville problems. The symmetries of the 

eigenfunctions and potential functions are fully exploited to give a concise and clear proof. 

Corollary 3.1: ( A Second Uniqueness Proof) Consider the eigenvalue problem (3.1) 

where q is integrable on 0 ~ x < 1[". If q( x) = q( 1[" - x) almost everywhere in 0 < x < 1[" and 

la - 11 + Ibl > 0 then q(x), a, band h are uniquely determined by the spectrum. 

Proof: Assume that we have two Sturm-Liouville problems with the same eigenvalues 

Aj = }..j. By Corollary 1.6.1 a equals a. From equations (3.3) and (3.4) follows that U j is 

an eigenfunction, and since the potential if. is symmetric we conclude that Vj = kjuj. This 

shows that all Yj vanish identically and the right hand sides of equations (3.7), (3.8) and 

(3.9) are zero. 
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Chapter 4 

The Hochstadt-Hald Algorithm 

In this chapter we derive and implement an algorithm for solving the discontin­

uous symmetric inverse Sturm-Liouville problem numerically. The idea of constructing an 

algorithm was originated by Hochstadt [42]. It was then refined and successfully imple­

mented by Hald [35] in the continuous inverse Sturm-Liouville problem with a symmetric 

potential. We extend HaId's ideas to the discontinuous inverse Sturm-Liouville problems 

with a symmetric potential. The results of numerical experiments using the new algorithm 

are given and errors in the examples are discussed. 

4.1 The Algorithm 

The Hochstadt-Hald algorithm is based on the eigenvalue problems (3.1) and (3.2). 

The problem is to determine q and h of equation (3.1) when a, b, h, q(x), {Aj} and {~j} 

are given and Aj = ~j for j > n. Here Aj are the eigenvalues of equation (3.1) and ~j 

are the eigenvalues of equation (3.2). Note that only a finite number of eigenvalues differ. 

We use equation (3.9) to determine the relationship between q and the three terms q, Vj 

and Uj. The denominator W'(Aj) can be computed using our knowledge of the eigenvalues Aj, 

however a more computationally suitable method has been suggested by Hald. His ideas 

are presented below. To determine Vj we solve the system (3.3) - (3.5). At x = d and 

x = 7r - d adjust u, u', wand w' using the jump conditions given in (3.2) and (3.3). We 

can now determine the boundary constant h using equation (3.7). 

_ 1 n 

h = h + - L Vj(O) 
2 . 0 

J= 

( 4.1) 



To determine the potential q( x) solve the system below for U i 

n 

ui' + [Ai - q(x) - 'L)YjUj)'] Ui = 0 
j=O 

ui(O) = h 

with discontinuities at x = d1 and x = d2 = 1r - d1 satisfying the jump conditions 

u(d1+) = a u'(d1 -) 

u(d2 -) = a u(d2+) 
, - -1 , - --

u(d2 -)=a u(d2+)-bu(d2+) 
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( 4.2) 

( 4.3) 

for i = 0, 1, ... n. Here we use equations (3.7), (3.8) and (3.9) to determine h, band q. 

The technique we have outlined yields the solution of the inverse Sturm-Liouville problem 

with symmetric potentials and symmetric discontinuities. In order to understand the con­

struction of the algorithm, a brief discussion of the history of the problem must be given. 

Hochstadt [42] examined the continuous inverse Sturm-Liouville problem with two spectra. 

He constructed an algorithm' based on a representation theorem in which h = Ii. Thus 

Hochstadt uses h in equation (4.3) instead of h. Numerical investigations by Hald and later 

by the author show that a straightforward implementation of Hochstadt's algorithm to the 

continuous inverse Sturm-Liouville problem with symmetric potentials yields poor results; 

non-symmetric potentials and eigenfunctions which do not satisfy the right-hand boundary 

condition are found. And if the eigenvalues are sufficiently perturbed then the solution of 

(4.2) may go to infinity during the calculation. In [35] Hald modifies Hochstadt's algorithm 

by realizing that h cannot be equal to Ii and setting h to be equal to Ii + } 2:.']=0 Yj(O). 

His changes are critical for the success of the algorithm. In the symmetric inverse Sturm­

Liouville problem with jump discontinuities we follow the Hochstadt-Hald algorithm and 

set h equal to Ii + } 2:.']=0 Yj(O). In addition the constant b must be determined. Set 

b = b + h a3 - a-I) 2:.']=0 Yj( d- )Uj( d-) by Theorem 3. That b is not equal to b at the 

jumps is an analog of Hald's observation th!1t h cannot equal Ii at the boundaries. Thus 

our algorithm is a natural extension of the Hochstadt-Hald algorithm. 

In order to give a precise and efficient algorithm to solve the Sturm-Liouville 

problem we note that vix) = Uj(1r - x) for all x so that Vj does not have to be calculated. 

In addition we must find a suitable method for calculating w'(>'j). From the Hadamard 

factorization theorem we have that 

( 4.4) 
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Here we assume that the eigenvalues ).j are nonzero. We will show that the ratio C I G 
equals one. Rewrite equation (4.4) as 

and differentiate. Then 

( 4.5) 

We now use that Aj = ).j for all j > n and consider the limit as j ----+ 00. W(Aj) = 0 and the 

term 

as j ----+ 00 so ~hat 

as j ----+ 00. From Lemma 2.3 we have that 

as J ----+ 00. Therefore elG = 1. Now return to equation (4.5) to find that if Aj is not an 

eigenvalue of equation (3.2) then 

( 4.6) 

Here we assume that Aj is not an eigenvalue of (3.2). Let Zj be the eigenfunction of 

(3.2) corresponding to ).j, and let Wj be the function Wj = (Uj - zj)/(Aj - )'j). Since 

w( A) = -hue IT) - ul
( IT) the last term in (4.6) is equal to - hWj( IT) - wj( IT) where Wj satisfies 

the differential equation 

1/ ('\ -) -Wj + /lj - q Wj = -Uj 

with boundary conditions 

Wj(O) = wj(O) = 0 



and jump conditions 

w( dl + ) = a w( dl - ) 

w(d2 -) = a w(d2+) 

w'(dl +) = a-Iw'(dl -) + b W(dl~) 

w'( d2 - ) = a-Iw'( d2+) - b w( d2+) 
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See also Chapter 3. If ).j-+ Ak with k =fi j then we replace ).j and Zj in the above arguments 

by ).k and Zk· 

An algorithm for solving the discontinuous, symmetric inverse Sturm-Liouville 

problem with symmetric potentials is given below. 

Step 1°: For j = 0,1, ... , n determine a k where 0 ::; k ::; n such that 

Step 2°: For each j = 0,1, ... , n solve the system given below on the intervals 

o < x < d l , d l < X < d2 and d2 < x < 7r 

U· J 0 1 0 0 U· J 

-I ij - Aj 0 0 0 -I u· u· J J 

W· J 0 0 0 1 W· J 

w'· J 
-1 0 ij - ).k 0 w'· J 

with the initial conditions 

u· J 1 
-I h u· 

J 

W· J 0 

w'· 0 
J x=o 

and the jump conditions 

u· J a 0 0 0 u· J 

-I b a-I 0 0 -I u· u· J J 

w· J 0 0 a 0 w· J 

w'· 0 0 b a-I wI. 
J x=d1+ J x=d1 -

and 



," 

U' J 
a-I 0 0 0 U' J 

-, b a 0 0 -, u· u· 
J J 

w' J 0 0 a-I 0 w' J 

w'· 
J x=d2+ 0 0 b a w'· 

J X=d2-

Step 3°: For each j = 0, 1, ... ,n compute 

n 

h = h + L(Uj(1I") - (-l)j)/w'(Aj) 
j=O 

Step 5° A: Solve the system given below on the intervals 0 < x < d l - , 

d l + < X < d2 - and d2+ < x < 11" 

fh 0 1 0 0 
-, 
Yj ij - Aj 0 0 0 

U· J 0 

u'· 
J 

0 

with the initial conditions 

fJi 
-, 
Yj 
U· 

J 

u'· 
J X=O 

and the jump conditions 

Yj 
-, 
Yj 

U· J 

ul 

J x=d1+ 

and 

0 0 

0 - 2:n C' + - ') A q + j=O YiUi Yiui - j 

2(Uj(1I") - (-l)j)/w'(Aj) 

-2(uj(1I") + (-l)j h)/W'(Aj) 

1 

h 

a 0 0 0 Yj 

b a-I 0 0 -, 
Yj 

0 0 a 0 U· J 

0 0 b a-I ul 

1 

0 

J x=d1-

iJi 
-, 
Yj 

U· J 

u'· 
J 
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Yj a-I 0 0 0 Yj 
-, 
Yj b a 0 0 -, 

Yj 

u' J 0 0 a-I 0 U' J 

u', 0 0 b a u', 
J x=d2 + J x=d2 -

Step 5° B: At x = d l calculate 

b = b + ~ (a3 - a-I) t Yj(d- )uj{d-) 
j=O 

Step 6: Set 

n 

q = q + L (yjUj + Yjuj) . 
j=O 

N ate that Step 5° B takes place during Step 5° A since b must, be calculated at 

x = dl before the jumps in Uj and uj are determined. In addition we remark that Step 6 

takes placed~ring Step 5 ; q is evaluated as we solve for Yj, Yj, Uj and uj. Finally note 

that Yj is ~omputed in Step 5° A ,even though it can be expressed in terms of the Uj from 

Step 2° to avoid storing U j and uj for all j = 0,1, ... n. 
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4.2 Example 1: Matthieu's Equation 

Using the Hochstadt-Hald algorithm we have tried to reconstruct the potential of 

the Matthieu equation with discontinuities from its first fifteen eigenvalues. Begin with the 

Sturm-Liouville system with potential q == 0: 

SYSTEM 1: 

-u" = AU, 

with boundary conditions: 

U'(O) = u'(1I") = 0 

and symmetric jump conditions: 

where d2 = 11" - d1 . We determine the eigenvalues for system 1 from formulae (1.7) and 

(1.10). Since q == 0, U3(1I") = g3(1I"). The IMSL subroutine ZBRENT is then used to 

determine the zeros of u~( 11") where A is considered to be the variable. The eigenvalues are 

the points Ai where u~( 11", Ai) = o. Determining the eigenvalues of Matthieu's equation: 

SYSTEM 2: 

-U" + (2 cos 2x ) U = AU, 

with the boundary conditions: 

U'(O) = u'(1I") = 0 

and symmetric jump conditions: 
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requires a different technique since if. = 2 cos 2x so that the integral terms in formulae (1.7) 

and (1.10) do.not vanish. We solve the system 
J • , ~ 

[ U-]' [ 0 l][U-] u; if. - Aj 0 u; 

with the initial conditions 

[ :; Lo [~ ] 
and the jump conditions 

and 

using the classical fourth order Runge-Kutta method. The IMSL subroutine ZBRENT is 

used to find the points Ai such that u~( 7r, Ai) = o. The Ai are the eigenvalues. To determine 

the fifteenth eigenvalue to eleven decimal places, we use a grid~ize of at most 7r /10000 

where 7r is the length of the interval. Tables 1, 2 and 3 illustrate how the accuracy of the 

eigenvalues is determined. As the gridsize is halved we gain one to two decimal places of 

accuracy. In the continuous problem this rate of convergence is expected. This experiment 

shows that the method is also a fourth order method in the discontinuous problem. The 

expression for the calculated eigenvalues using the classical fourth order method is 

A j calculated = A j exact + C j . h 4 + 
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where h is the gridsize. We have determined Cj for system 2 when a = 1.5, b = 0.5 

and d = 7r /20. Table 3 shows our calculations for the eleventh eigenvalue with varying 

meshsizes. Cll varies between 21.99 and 22.85 for meshsizes 7r /320 to 7r /20480. Table 4 

shows our calculations for various eigenvalues for meshsize 7r /640. From our experiments we 

find that Cj is proportional to )..~ where 2 < p < 3 and p ~ 2.5. We note that other higher 

order methods may be used to find the eigenvalues [31]. The Prince-Dormand Runge­

Kutta order 7-8 method [70] was used by the author. Extra work is required in feeding 

the coefficients into the routine, and it is not clear whether there is a significant savings 

in computation time. In the fourth order Runge-Kutta method a very small step size is 

needed to achieve high accuracy, whereas in the Prince-Dormand routine a large number of 

sums and products must be computed for each step. 

Eigenvalue data for systems 1 and 2 obtained using the methods described are 

given in tables 5 and 6. To test the accuracy of the eigenvalues we graph the eigenfunctions 
. . 

of the corresponding differential equation. The fifth eigenfunction for system 1 is displayed 

in figure 1. In figure 2 we present the fifth eigenfunction for system 2. 
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TABLE 1 : EIGENVALUES OF SYSTEM 2 

. CLASSICAL R-K ORDER 4 

( a = 1.5 , b = 0.5 , d = ir /20 ) 

grid=1r/20 grid=1r/40 grid=1r/80 
-0.4306981276051 -0.4307275152390 -1.4307294013086 
2~1620272873399 2.1618894642776 2.1618804810992 
5.2036771147733 5.2024435207584 5.2023626935021 
l(i.498869429917 10.488873232651 10.488197487002 
18.160254395653 18.112534683690 18.109136174826 
27.980549911953 27.823872752543 27.811890417745 
39.8403157502~8 39.446098258952 _ 39.412995401478 
53.565002739420 52.759540612320 52.683044154636 
68.875951670387 67.502030929479 67.347870466487 

, 85.437445968856 ' 83.473336816661 83.193728062165 
,102.99929230914 100.73379139013 100.26410072243 
121.41037323180 ' i19.70858008250 118.95911602247 

'·140.30542254682 ' 140.99570123950 139.84086479332 
158.S4829470501 165.050423,00555 163.32253012725 
176.03108004145 192.06764387893 189.56098997198 

grid=1r/160 grid=1r/320 grid=1r/640 
-0.4307295199687 -0.4307295273972 -0.4307295278617 
2.1618799137973 2.1618798782492 2.1618798760260 
5.2023575821418 5.2023572617439 5.2023572417043 
10.488154421860 10.488151717153 10.488151547903 
18.108916823793 18.108903003728 18.108902138236 
27.811104094706 27.811054347561 27.811051228887 
39.410779027054 39.410638106747 39.410629261370 
52.677802211172 52.677467012048 52.677 445941997 
67.337028572576 67.336330886805 67.336286962173 
83.173492820124 83.172181724313 83.172099039754 
100.22901598900 100.22672587499 100.22658118178 
118.90108682012 118.89726808220 118.89702631875 
139.74762542877 139.74143338192 139.74104047572 
163.17591181294 163.16607420631 163.16544838565 
189.33523405173 189.31991102384 189.31893347385 
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TABLE 1 ( CONTINUED) 

elg grid=7r /1280 grid=7r /2560 . grid=7r /5120 
0 -0.4307295278907 -0.4307295278925 -0.4307295278926 
1 2.1618798758870 2.1618798758783 2.1618798758778 
2 5.2023572404516 5.2023572403733 5.2023572403684 
3 10.488151537321 10.488151536660 10.488151536619 
4 18.108902084116 18.108902080733 18.108902080522 
5 27.811051033821 27.811051021627 27.811051020865 
6 39.410628707940 39.410628673342 39.410628671179 
7 52.677444623236 52.67744452.784 52.677444535630 
8 67.336284211871 67.336284039899 67.336284029149 
9 83.172093860323 83.1720935364269 83.172093516180 
10 100.22657211390 100.22657154677 100.22657151132 
11 118.89701115982 118.89701021163 118.89701015235 
12 139.74101582595 139.74101428388 139.7410139.748 
·13 163.16540909852 163.16540664036 163.16540648668 
14 189.31887206261 189.31886821948 189.31886797921 

eig grid=7r /10240 grid=7r /20480 grid=7r /40960 
0 -0.4307295278926 -0.4307295278926 -0.4307295278926 
1 2.1618798758777 2.1618798758777 2.1618798758777 
2 5.2023572403681 5.2023572403681 5.2023572403681 
3 10.488151536616 10.488151536616 10.488151536616 
4 18.108902080508 18.108902080508 18.108902080508 
5 27.811051020818 27.811051020815 27.811051020815 
6 39.410628671044 39.410628671036 39.410628671035 
7 52.677 444535308 .52.677444535288 52.677444535286 
8 67.336284028478 67.336284028436 67.336284028433 
9 83.172093514914 83.172093514835 83.1720,93514830 
10 100.22657150910 100.22657150896 100.22657150895 
11 118.89701014865 118.89701014842 118.89701014840 
12 139.74101418146 139.74101418108 139.74101418106 
13 163.16540647707 163.16540647647 163.16540647644 
14 189.31886796419 189.31886796325 189.31886796319 
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TABLE 1 ( CONTINUED) 

elg grid=7r /81920 
0 -0.4307295278926 
1 2.1618798758777 
2 5.2023572403681 
3 10.488151536616 
4 18.108902080508 
5 27.811051020815 
6 39.410628671035 
7 52.677444535286 
8 67.336284028433 
9 83.172093514830 

10 100.22657150895 
11 118.89701014840 
12 139.74101418105 
13 163.16540647643 
14 189.31886796319 



TABLE 2 : RELATIVE ERRORS IN EIGENVALUES 

OF SYSTEM 2 

( a = 1.5 , b = 0.5 , d = 7r /20 ) 

elg grid = 7r /20 grid = 7r /40 grid = 7r /80 .. 
0 -0.000072900244 -0.000004672662 -0.000000293883 
1 0.000068186704 0.000004435214 0.000000279951 
2 0.000253706992 0.000016584865 0.000001048204 

3 0.001021904886 0.000068810603 0.000004381171 
4 0.002835749783 0.000200597649 0.000012927030 

5 0.006094659674 0.000461030103 0.000030182136 
6 0.010902822253 0.000900000561 0.000060053100 
7 0.016848922949 0.001558467343 0.000106300133 
8 0.022865349108 0.002461479772 0.000172068272 
9 0.027236929579 0.003621927609 0.000260117864 
10 0.027664528063 0.005060732634 0.000374443752 
11 0.021138993153 0.006825822896 0.000522350175 
12 0.004038959994 0.008978660029 0.000714540487 
13 -0.026458499168 0.011552795227 0.000962971589 
14 -0.070187340885 0.014519291951 0.001278911138 

elg grid=7r /160 grid=7r /320 grid=7r /640 
0 -0.000000018396 -0.000000001150 -0.000000000072 
1 0.000000017540 0.000000001097 0.000000000069 
2 0.000000065696 0.000000004109 0.000000000257 
3 0.000000275096 0.000000017213 0.000000001076 
4 0.000000814146 0.000000050982 0.000000003188 
5 0.000001908374 0.000000119620 0.000000007482 
6 0.000003815113 0.000000239420 0.000000014979 
7 0.000006789925 0.000000426687 0.000000026704 
8 0.000011057102 0.000000695886 0.000000043568 
9 0.000016824216 0.000001060566 0.000000066428 
10 0.000024389541 0.000001540171 0.000000096510 
11 0.000034287420 0.000002169388 0.000000136003 
12 0.000047310718 0.000002999841 0.000000188167 
13 0.000064384582 0.000004092350 0.000000256851 
14 0.000086447213 0.000005509544 0.000000346033 

63 



64 

TABLE 2 ( CONTINUED) 

elg grid=7r /1280 grid=7r /2560 grid=7r /5120 
0 -0.000000000004 0.000000000000 0.000000000000 
1 0.000000000004 0.000006000000 0.000000000000 
2 0.000000000016 0.000000000001 0.000000000000 
3 0.000000000067 0.000000000004 0.000000000000 
4 0.000000000199 0.000000000012 0.000000000001 
5' 0.000000000468 0.000000000029 0.000000000002 
6 0.000000000936 0.000000000059 0.000000000004 
7 0.000000001670 0.000000000104 0.000000000007 ' 
8 0.000000002724 0.000000000170 0.000000000011 
9 0.000000004154 0.000000000260 0.000000000016 

10 0.000000006036 0.000000000377 0.000000000024 . 
11 0.000000008507 0.000000000532 0.000000000033 
12 0.000000011771 0.000000000736 0.000000000046 
13 0.000000016070 0.000000001005 0.000000000063 ' 
14 0.000000021654 0.000000001354 0.000000000085 

elg grid=7r /10240 grid=7r /20480 grid=7r / 40960 
0 0.000000000000 0.000000000000 0.000000000000 
1 0.000000000000 0.000000000000 0.000000000000 
2 0.000000000000 0.000000000000 0.000000000000 
3 0.000000000000 0.000000000000 0.000000000000 
4 0.000000000000 0.000000000000 0.000000000000 
5 0.000000000000 0.000000000000 0.000000000000 
6 0.000000000000 0.000000000000 0.000000000000 
7 0.000000000000 0.000000000000 0.000000000000 
8 0.000000000001 0.000000000000 0.000000000000 
9 0.000000000001 0.000000000000 0.000000000000 

10 0.000000000001 0.000000000000 0.000000000000 
11 0.000000000002 0.000000000000 0.000000000000 
12 0.000000000003 0.000000000000 0.000000000000 
13 0.000000000004 0.000000000000 0.000000000000 
14 0.000000000005 0.000000000000 0.000000000000 



TABLE 3 : Cn OF SYSTEM 2 

( a = 1.5 , b = 0.5 , d = 7r /20 ) 

grid size constant 
7r /20 3.382238904480 

7r /40 17.47410661376 
7r /160 21.39546316800 
7r/320 22.47060357120 
7r/640 22.74768191488 

7r /1280 22.81751707648 
7r/2560 22.83580424192 
7r/5120 22.84922601472 

7r /10240 22.67742732288 
7r/20480 21.99023255552 

TABLE 4 : CONSTANT Cj OF SYSTEM 2 

( a = 1.5 , b = 0.5 , d = 7r /20 , grid = 7r /640 ) 

elg constant 
0 -0.01205862400 
1 0.01150287872 
2 0.04308598784 
3 0.18049138688 
4 0.53458501632 
5 1.25430661120 
6 2.51050065920 
7 4.47413747712 
8 7.29689358336 
9 11.12084054016 
10 16.14986346496 
11 22.74768191488 
12 31.45561276416 
13 42.91139993600 
14 57.77175609344 
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TABLE 5 : EIGENVALUES OF SYSTEM 1 

eigenvalue a=1.5, b=0.5, d=7r /20 a=1.5, b=0.5, d=7r /5 
0 0.19580682310081 0.25453518163183 
1 1.5331849949472 1.8966688083167 
2 4.9048225382094 4.7043829746856 
3 10.446349508605 8.1565250534583 
4 18.114377373458 14.594351841884 
5 27.810687688601 25.542353551058 
6 39.378433068084 39.235588639987 
7 52.592723485642 51.254197254521 
8 67.186365762428 61.607223406172 
9 82.965139598281 77.279468280663 
10 100.000000000000 100.54482961176 
11 118.70156388250 126.55437680324 
12 139.61053224029 147.80341478801 
13 163.10531200978 165.05804583091 
14 189.31737666681 189.96170701152 

TABLE 6: EIGENVALUES OF SYSTEM 2 

eigenvalue a=1.5, b=0.5, d=7r /20 a=1.5, b=0.5, d=7r /5 
0 -0.4307295278926 -0.5463115991602 
1 2.1618798758777 2.4261144985530 
2 5.2023572403681 5.5130953402817 
3 10.488151536616 8.709182622613 
4 18.108902080508 14.478817137700 
5 27.811051020815 25.154929353908 
6 39.410628671035 39.087497504161 
7 52.677444535286 51.677732641333 
8 67.336284028433 62.019486164317 
9 83.172093514830 77.107025223585 
10 100.22657150895 100.12334482531 
11 118.89701014840 126.38349426037 
12 139.74101418105 148.21141027459 
13 163.16540647643 165.46099066982 
14 189.31886796319 189.78248770538 
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FIGURE 1: FIFTH EIGENFUNCTION FOR SYSTEM 1 
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FIGURE 2: FIFTH EIGENFUNCTION FOR SYSTEM 2 
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To illustrate the dependence of the eigenvalues on the jump constants a and b, we 

select the second eigenvalue from system 2 and show how it varies as a and b range from 

0.1 to 2.1 and -1.0 to 1.0 respectively. ( See figure 3. ) It is clear from the graph that 

for a given value of Ai there is an associated level set of pairs {(a, b)}, i.e. the value of A 2 

does not uniquely determine ( a, b). In addition we note that the eigenvalue increases with 

an increase in either or both a and b. 

We have tried to reconstruct the potential function q = 2 cos 2x ( figure 4 ) 

using the data from tables 5 and 6 and the Hochstadt-Hald Algorithm. The results are 

given on the next several pages in figures 5 - 7 and 12 - 14. The value of b we calculate 

for the Matthieu system using the zeroth through the fourteenth eigenvalues is given in 

tables 5 and 7. In addition the +-l-error, L 2-error and Loo-error is also given along with 

graphs to show the change in b and the error with the number of eigenvalues used in the 

reconstruction. ( See tables 8 and 10 and figures 8 - 11 and 15 - 18. ) 
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FIGURE 4 2 COS 2X 
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FIGURE 5 FIVE EIGENVALUES, a 1.5, b 0.5, d pi/5 
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FIGURE 6 TEN EIGENVALUES, a = 1.5, b = 0.5, d pi/5 
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FIGURE 7 FIFTEEN EIGENVALUES, a 1.5, b 0.5, d = pi/5 
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FIGURE 8 NEW VALUE OF b ( a 1.5 , b 0.5 , d pi/5 ) 
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FIGURE 11 
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TABLE 7 : RECONSTRUCTION OF : Q = 2 COS 2X 

( a = 1.5 , b = 0.5 , d = 7r /5 , grid = 7r /10000 ) 

eigenvalue new b 
0 1.148217718713521 
1 1.054319356185690 
2 1.266420407635518 
3 1.229750494977116 
4 1.245866928565473 
5 1.258908029382008 
6 1.251501892241937 
7 1.281778867173037 
8 1.261721409028434 
9 1.271127050503889 

10 1.274724254989807 
11 1.269138274868165 
12 1.285815580635267 
13 1.272696825343071 
14 1.278732751555410 

TABLE 8 : RECONSTRUCTION OF : Q = 2 COS 2X 

( a = 1.5 , b = 0.5 , d = 7r /5 , grid = 7r /10000 ) 

elg Ll error L2 error L= error 
0 4.2412249084 3.1999062911 2.9630268875 
1 2.4891398366 1.8090956878 2.4695365235 
2 1.9347812003 1.2585929849 1.5128579849 
3 1.9292193811 1.5708523916 2.4320546089 
4 2.0663421053 1.5963579680 2.5562631898 
5 2.414806*438 1.9474294406 3.3303886153 
6 2.4111971300 2.0922577725 3.5588045112 
7 2.5737685278 2.1753883996 4.0036474012 
8 2.5185152781 2.3927573743 4.5634338555 
9 2.6397378124 2.4132399886 4.7770698411 
10 2.7898023155 2.6621228419 5.6196240319 
11 2.7541517856 2.7762631510 5.8696647082 
12 2.8982030253 2.8498528424 6.3254219521 
13 2.8252136117 3.0159666159 6.8492081226 
14 2.9292647401 3.0326486338 7.0794535669 
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FIGURE 12 FIVE EIGENVALUES, a 1.5, b = 0.5, d pi/20 
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FIGURE 13 TEN EIGENVALUES, a 1.5, b 0.5, d = pi/20 
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FIGURE 14 FIFTEEN EIGENVALUES, a 1.5, b 0.5, d pi/20 
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FIGURE 16 L1-ERROR IN"Q = 2 COS 2X ( a 1.5 , b 0.5 , d = pi/20 ) 
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TABLE 9 : RECONSTRUCTION OF : Q = 2 COS 2X 

( a = 1.5 ,b = 0.5 ,d = 7r/20 ,grid = 7r/10000 ) 

elg new b 
0 1.118571048747403 

1 0.7524805275676702 
2· 0.7339579460273298 
3 0.7355974229924883 
4 0.7352377473681646 
5 0.7352661758504616 
6 0.7379721177627896 
7 0.7449614016301399 
8 0.7553770197577960 
9 0.7639349390603760 
10 0.7646762538516538 
11 0.7589453110904047 
12 0.7530256920980140 
13 0.7502084130985343 
14 0.7501471938792797 

TABLE 10 : RECONSTRUCTION OF : Q = 2 COS 2X 

( a = 1.5 ,b = 0.5 ,d = 7r/20 ,grid = 7r/10000 ) 

elg Ll error L2 error Loo error 
0 3.4737003836 2.4886824712 3.0970768929 
1 1.8314569658 1.3694847299 1.9815521240 
2 0.7241262909 0.7641748136 1.3990083933 
3 0.5552553031 0.6968590175 1.3160430193 
4 0.5655100463 0.7039719143 1.3269224167 
5 0.5663492667 0.7035855987 1.3262004852 
6 0.6349092528 0.6780527495 1.2621757984 
7 0.7463757911 0.6459631670 1.0932894945 
8 0.8784633734 0.6745447187 1.1151049137 
9 0.9856518433 0.7943381214 1.4504045248 
10 1.0537147652 0.9183167991 1.9040108919 
11 1.0091627495 0.9850470136 2.2257614136 
12 0.8793629339 1.0076081324 2.3328120708 
13 0.7536904888 1.0106726120 2.3412837982 
14 0.7489268648 1.0105892396 2.3408544064 

87 
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As the number of eigenvalues used in the reconstruction increases to 4 or 5, the 

experimental results appear to converge toward the potential q = 2 cos 2x. However as we 

pass to 6 or more eigenvalues the experimental results begin to oscillate about q = 2 cos 2x. 

The cause for this behaviour is unclear, and several explanations have been suggested. First 

we note that the eigenvalues we use are generated assuming that b = 0.5. In the recon­

struction algorithm we determine a new value for b which neither equals 0.5 nor converges 

towards 0.5. Next we note that the oscillations we observe for six or more eigenvalues 
;; 

appear to be related to the GIbbs phenomenon which has been observed in other similar 

numerical experiments [34]. 

Two tall, thin spikes are observed in the reconstructed potential function. These 

spikes occur at the points where the eigenfunctions are discontinuous and become more pro­

nounced as the number of eigenvalues used in the reconstruction increases. This observation 

led us to search for an inherent error in our experiment. Ching-ju Lee at the University of 

California, Berkeley generated the first 100 eigenvalues for systems 1 and 2 to five or six 

digit accuracy and calculated the difference between the corresponding eigenvalues of the 

two systems. This difference did not converge to zero; it oscillated in a periodic manner 

about zero. The locations of the discontinuities and the jump constants were varied to see 

how the oscillatory patterns were changed. C. J. Lee's results are presented in tables 11 and 

12 and figures 19 and 20. These findings point to a fundamental error in our assumptions. 

The Hochstadt-Hald algorithm is based on the assumption that the eigenvalues {Aj} and 

{Xj} for problems (3.1) and (3.2) are equal for j > n. In example 1 the corresponding 

eigenvalues for systems 1 and 2 are not equal for j > n, and furthermore their difference 

does not converge to zero. 
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TABLE 11 

Comparison Between Spectra 

ql - 2.0 * cos( 2.0 * x ) 

q2 - 0.0 

First spectrum is obtained from RunQe-Kutta method of order four. 

Mesh sizes: hI ~ 0.998916583017e-03, h2 - 0.99944623125ge-03 

Minimum and maximum entered: -2.000000000000000 2.000000000000000 

a - 1.500000000000000 b - -.5000000000000000 d - 0.6283185307179587 

Interval - ( O. , 3.14159265) 

n First Spectrum Second Spectrum Difference 
---------------------- ---------------------- ----------------------

1 -.9295801923411719 -.2930773628517348 -.6365028294894371 
2 1.570792626286364 1.095027685899663 0.4757649403867010 
3 5.152098628598501 4.581179930442522 0.5709186981559790 
4 8.690132732812006 8.033294753852839 0.6568379789591670 
5 13.81396187721764 13.79502184136381 0.1894003585383008e-01 
6 24.05029412566355 24.45171515639147 -.4014210307279202 
7 38.20790052204555 38.43583519899387 -.2279346769483199 
8 51.49741662055895 51.13089713636646 0.3665194841924899 
9 61.93901039399759 61.48392213969305 0.4550882543045400 

10 76.35846775175746 76.47951353575121 -.1210457839937487 
11 99.02815676030265 99.45368324953430 -.4255264892316504 
12 125.5412009661729 125.7543598209524 -.2131588547795005 
13 148.0561518878900 147.6801072941558 0.3760445937341999 
14 165.3646379712037 164.9347380868170 0.4298998843866997 
15 189.0150431035434 189.1616463201021 -.1466032165586988 
16 224.0245978134954 224.4540410894718 -.4294432759764000 
17 262.8675558068356 263.0726993914605 -.2051435846249063 
18 294.6108220131425 294.2292634070325 0.3815586061100049 
19 318.8057485370657 318.3855891300604 0.4201594070053005 
20 351.6862750718177 351.8434728628709 -.1571977910531999 
21 399.0233862567019 399.4541658562524 -.4307795995505046 
22 450.1906440123594 450.3910326441212 -.2003886317618040 
23 491.1633650466546 490.7784027513201 0.3849622953344962 
24 522.2514796464600 521.8364527261802 0.4150269202798000 
25 564.3622329843479 564.5252061962439 -.1629732118960021 
26 624.0228312639235 624.4542235222155 -.4313922582919929 
27 687.5121059001909 687.7093723311625 -.1972664309715952 
28 737.7147851747341 737.3275347352466 0.3872504394875023 
29 775.6991881771625 775.2873222296883 0.4118659474741975 
30 827.0402964882059 827.2068998281312 -.1666033399253024 
31 899.0225313008136 899.4542548247964 -.4317235239827966 
32 974.8326534438125 975.0277181177265 -.1950646739139899 
33 1034.265551956898 1033.876662838531 0.3888891183670182 
34 1079.147920934686 1078.738194981792 0.4097259528940072 
35 1139.719478423813 1139.888573088138 -.1690946643250015 
36 1224.022350944389 1224.454273691740 -.4319227473510239 
37 1312.152638264284 1312.346068542294 -.1934302780099983 
38 1380.815907491204 1380.425788646233 0.3901188449709991 
39 1432.597251663583 1432.189069710338 0.4081819532449913 
40 1502.399324777447 1502.570234570177 -.1709097927300119 
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41 1599.022234091430 1599.454285934133 -.4320518427030038 
42 1699.472252802954 1699.664422398840 -.1921695958860141 
43 1777.365988072403 1776.974912983513 0.3910750888900054 
44 1836.046961517220 1835.639945731351 0.4070157858690209 
45 1915.079597794059 1915.251888652352 -.1722908582929961 
46 2024.022154070603 2024.454294326109 -.4321402555059990 

~ 47 2136.791610946276 2136.982778817676 -.1911678713999549 
48 2223.915875991327 2223.524036322947 0.3918396683800438 
49 2289.496926708361 2289.090822643513 0.4061040648480230 
50 2377.760160989985 2377.933537791239 -.1733768012539940 
51 2499.022096878266 2499.454300328292 -.4322034500260088 
52 2624.110784304287 2624.301137182475 -.1903528781879800 
53 2720.465623773602 2720.073158953562 0.3924648200400043 
54 2792.947071996134 2792.541700195834 0.4053718003000313 
55 2890.440930450016 2890.615183468712 -.1742530186959925 
56 3024.022054587838 3024.454304768627 -.4322501807890262 
57 3161.429820129303 3161.619497052819 -.1896769235160036 
58 3267.015266484811 3266.622281062965 0.3929854218459923 
59 3346.397349031841 3345.992578223865 0.4047708079759786 
60 3453.121851751859 3453.296826629148 -.1749748772889461 
61 3599.022022436409 3599.454308145824 -.4322857094149981 
62 3748.748750846701 3748.937858108824 -.1891072621230023 
63 3863.564828413811 3863.171402777634 0.3934256361769712 
64 3949.847725337779 3949.443456614822 0.4042687229569992 
65 4065.802888065633 4065.978467906713 -.1755798410799798 
66 4224.021997423511 4224.454310773841 -.4323133503299914 
67 4386.067599440880 4386.256220113166 -.1886206722859924 
68 4510.114326907561 4509.720524186562 0.3938027209990196 
69 4603.298178293211 4602.894335289014 0.4038430041970287 
70 4728.484013570600 4728.660107734417 -.1760941638169697 
71 4899.021977581816 4899.454312859064 -.4323352772479438 
72 5073.386382655464 5073.574582887232 -.1882002317680644 
73 5206.663774687417 5206.269645353627 0.3941293337900333 
74 5306.748691660705 5306.345214188477 0.4034774722280190 
75 5441.165209639076 5441.341746426381 -.1765367873049399 
76 5624.021961577948 5624.454314541267 -.4323529633189764 
77 5810.705112975082 5810.892946294057 -.1878333189749810 
78 5953.213181288043 5952.818766326111 0.3944149619319433 
79 6060.199253483649 6059.796093269552 0.4031602140970563 
80 6203.846462489591 6204.023384210768 -.1769217211769956 
81 6399.021948481355 6399.454315916540 -.4323674351850286 
82 6598.023799897171 6598.211310226697 -.1875103295260487 
83 6749.762553997519 6749.367887139736 0.3946668577830224 
84 6863.649854765242 6863.246972500973 0.4028822642690102 
85 7016.527761707851 7016.705021259049 -.1772595511979489 
86 7224.021937630330 7224.454317058974 -.4323794286440261 
87 7435.342450778325 7435.529674602969 -.1872238246439792 
88 7596.311898481312 7595.917007822003 0.3948906593089987 
89 7717.100488603278 7716.697851855869 0.4026367474090193 
90 7879.209099281269 7879.386657702205 -.1775584209359522 
91 8099.021928539090 8099.454318015119 -.4323894760290159 

• 92 8322.661071394566 8322.848039352001 -.1869679574349448 
93 8492.861219209553 8492.466128394052 0.3950908155009074 
94 8620.551149616918 8620.148731314777 0.4024183021410863 
95 8791.890468939592 8792.068293640532 -.1778247009399365 
96 9024.021920842862 9024.454318824274 -.4323979814118957 
97 9259.979666358875 9260.166404422426 -.1867380635510472 
98 9439.410519756633 9439.015248873848 0.3952708827850984 
99 9574.001833549787 9573.599610862342 0.4022226874451462 

100 9754.571865709534 9754.749929154544 -.1780634450099114 

Sum of the absolute difference - 32.62927924930268 
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TABLE 12 

Comparison Between Spectra 

Ql - 2.0 • cos( 2.0 • x ) 

Q2 - 0.0 

First spectrum is obtained from RunQe-Kutta method of order four. 

Mesh sizes: h1 - 0.998870584238e-03, h2 - 0.999485388940e-03 

Minimum and maximum entered: -2.000000000000000 

a ~ 1.500000000000000 

Interval - ( o. 

n First Spectrum 

1 -.3664927493121458 
2 2.878868135507526 
3 5.644599605366601 
4 8.633428583962558 
5 14.96019088878085 
6 26.10364738635285 
7 39.75399364045155 
8 51.17217577453723 
9 61.47837098487897 

10 78.05725216656841 
11 101.9614063979488 
12 127.2635202192312 
13 146.5090715077965 
14 164.0479301101010 
15 191.5732216728066 
16 228.4015633378583 
17 264.7118234998748 
18 291.1904775971442 
19 316.3628078240626 
20 355.5761813500234 
21 405.3727370455690 
22 452.1215571807402 
23 485.1838780153896 
24 518.5532976908120 
25 570.1256658147278 
26 632.8223682653530 
27 689.1723567894353 
28 728.4927097913052 
29 770.7570118020492 
30 835.2649135845120 
31 910.6837258566056 
32 975.7922763646422 
33 1021.146642338021 
34 1073.110961893654 
35 1151.021825142040 
36 1238.874159236950 
37 1311.861694719879 
38 1363.199890504854 
39 1425.745581735709 
40 1517.409781295251 

b - 1.100000000000000 

, ,3.14159265) 

Second Spectrum 

0.5211803082073549 
2.291593130998497 
4.701150151954369 
8.179229750212256 
15.18326355375406 
26.48508825342375 
39.77977390865279 
50.67084377710769 
61.17516541816868 
78.34151723235411 
102.3713526292191 
127.2721739711376 
146.0120125146837 
163.8000707778986 
191.8943967755407 
228.8053925860099 
264.7295232108106 
290.6861765812088 
316.1737298244533 
355.9291777120939 
405.7605626916414 
452.0196642289608 
484.6760652519915 
518.4267941176987 
570.5055627799724 
633.1872965113805 
689.0083662328735 
727.9883125232344 
770.6951504476018 
835.6666105178435 
911.0194676319943 
975.5668483571581 
1020.653623112021 
1073.11394i040381 
1151.440183587296 
1239.174547132744 
1311.577763214823 
1362.726581727984 
1425.811855989673 
1517.839701955707 

2.000000000000000 

d - 0.6412749150809320 

Difference 

-.8876730575195007 
0.5872750045090290 
0.9434494534122320 
0.4541988337503020 
-.2230726649732098 
-.3 A14408670709000 
-.2578026820124002e-01 
0.5013319974295403 
0.3032055667102904 
-.2842650657857000 
-.4099462312703004 
-.8653751906399165e-02 
0.4970589931127982 
0.2478593322023990 
-.3211751027340988 
-.4038292481516024 
0.4230028906420102e-01 
0.5043010159354040 
0.1890779996093030 
-.3529963620705061 
-.3878256460724003 
0.1018929517793978 
0.5078127633980998 
0.1265035731132969 
-.3798969652445976 
-.3649282460274890 
0.1639905565617994 
0.5043972680708038 
0.6186135444740160e-Ol 
-.4016969833315045 
-.3357417753886978 
0.2254280074841120 
0.4930192260000013 
-.2979146727000170e-02 
-.4183584452559899 
-.3003878957940174 
0.2839315050560174 
0.4733087768699988 
-.6627425396399644e-01 
-.4299206604559913 

93 
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41 1617.294599582759 1617.553516541543 -.2589169587839990 
42 1697.278036150593 1696.940325573085 0.3377105775080054 
43 1754.730315355047 1754.285104493508 0.4452108615390102 
44 1828.779761716994 1828.906289579326 -.1265278623320114 
45 1934.428200600786 1934.864638299859 -.4364376990729966 
46 2045.829815550342 2046.041285023185 -.2114694728429924 
47 2131.959642520906 2131.574274188752 0.3853683321540302 
48 2195.838248596014 2195.429342428202 0.4089061678120061 
49 2282.317218333629 2282.499780667620 -.1825623339909725 
50 2402.062814691575 2402.500755023106 -.4379403315310242 
51 2524.349636124392 2524.508014393329 -.1583782689369855 
52 2615.848400131014 2615.422534936419 0.425865194594962~ 

53 2686.644578558532 2686.219159110493 0.3648194480389861 
54 2786.444342224648 2186.611882936659 -.2335401120110062 
55 2920.285646633907 2920.720061778961 -.4344151450540039 
56 3052.711438302592 3052.811683730015 -.1002454274229763 
57 3148.911116127881 3148.452701976889 0.4584741509920036 
58 3221.281141365392 3226.914092808621 0.3136545567710414 
59 3341.229398625165 3341.508343111325 -.2189450915599900 
60 3489.054697504152 3489.480492853680 -.4257953495280162 
61 3630.164115834489 3630.802107240311 -.3799140582799510e-Ol 
62 3731.140342683384 3130.657621944722 0.4827207386620103 
63 3817.919427122823 3817.663003850388 0.2564232724349722 
64 3946.122764282403 3941.041288688360 -.3185244059570209 
65 4108.313372967858 4108.725333590867 -.4119606230090085 
66 4258.353536787093 4258.326400462326 0.2713632476707062e-Ol 
67 4362.553734924556 4362.055417356402 0.4983115681539933 
68 4458.698858934376 4458.504415302084 0.1944436322919501 
69 4602.951811864928 4603.310039489100 -.3522276241119737 
70 4777.989115025045 4178.382460363804 -.3921453381589139 
11 4935.329193203493 4935.235581226177 0.9360597671593496e-Ol 
12 5043.194340608494 5042.689234989021 0.5051056194730563 
73 5149.186145200128 5149.656853392532 0.1292918075960188 
14 5309.952076608204 5310.332212515082 -.3801359068779615 
75 5497.995541925559 5498.363503801441 -.3679558758819894 
76 5661.551426335824 5661.391730553499 0.1596957823250023 
17 5773.129901337820 5772.626889481530 0.5030118562899588 
78 5891.335101424118 5891.272402610021 0.627048140969463ge-01 
79 6067.708417486248 6068.110819933524 -.4024024472760175 
80 6268.225704748211 6268.563103268442 -.3373985202309768 
81 6436.898396429515 6436.674771260080 0.2236251694349676 
82 6552.452456298764 6551.960427438368 0.4920288603959762 
83 6683.486538212919 6683.490090633467 -.3552420548089685e-02 
84 6876.215977068736 6876.635181069625 -.4192040008889535 
85 7088.557571998944 7088.858491560434 -.3009195614899909 
86 7261.271964023482 7260.988268602267 0.2836954212150431 
87 7381.277707088055 7380.805488314128 0.4722187739270112 
88 7526.362680052825 7526.430508924682 -.6782887185704567e-Ol 
89 7735.450825590266 7735.881530298662 -.4307047083959781 
90 7958.851266329523 1959.109124558555 -.2584582290319304 
91 8134.601886118004 8134.263411021864 0.3384091561399600 
92 8259.743944825114 8259.300203918775 0.4437409063391442 
93 8420.063527847777 8420.192235534255 -.1287076864778101 
94 8645.376236269580 8645.813267239179 -.4370309695989363 
95 8818.950821159089 8879.160931822208 -.2101106631191669 
96 9056.848124483844 9056.461578615772 0.3865458680720621 
97 9188.010177833326 9187.603278856415 0.4068989769109521 
98 9364.665157859413 9364.850239954906 -.1850820954930441 
99 9605.942581560461 9606.380837068598 -.4382555081372175 

100 9848.686778514604 9848.842977507583 -.1561989929791707 

Sum of the absolute difference - 32.02124743018982 
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4.3 Example 2: A Discontinuous Potential 

In the previous section we tried to reconstruct the smooth potential q( x) = 2 cos 2x 

froro the zero potential. In this section we present an example to study how the Hochstadt­

Hald algorithm reconstructs a discontinuous, symmetric potential function. Consider the 

two systems given below. 

SYSTEM 3: Let u satisfy the equation: 

-u" = A u 

with symmetric boundary conditions: 

u'(O) = u'Crr) = 0 

and symmetric discontinuities db d2 satisfying symmetric jump conditions: 

SYSTEM 4: And let u satisfy: 

-u" + q u = AU, 

with symmetric boundary conditions: 

u'(O) = u'(1I") = 0 

and symmetric discontinuities d1 , d2 satisfying symmetric jump conditions: 

where 0 < d1 < f < d2 < 11", d2 = 11" - d1 , 0 < x < 11" and the potential to be reconstructed 

is described by 

q ~ { 

-2 for 0 ~ x < ~ 
+2 for !r. < x < 311" 4 4 

-2 for 311" < x < 11" 4 -
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We choose eigenfunctions u, it with discontinuities at x = :r and x = 3: and jump constants 

a = 1.5, b = 0.5. Note that the discontinuities in the eigenfunctions coincide with those of 

th~ desired potential q( x). We investigate this problem to determine whether this match 

in the discontinuities reduces the error. To implement the algorithm, first generate the 

eigenvalues {Ai}!~64 for systems 3 and 4 respectively. The eigenvalues are given in tables 

13 and 14. Then we implement the algorithm. The results are given in figures 21 - 23. 
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FIGURE 21: FIVE EIGENVALUES , a 1.5 , b 0.5 , d pi/4 
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FIGURE 22: TEN EIGENVALUES ,a = '1.5 , b 0.5 , d = pi/4 
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FIGURE 23: FIFTEEN EIGENVALUES, a 1.5 , b 0.5 , d = pi/4 

5.000 

3.200 

- I 

1. 400 

-0.400 

-2.200 
I 

-4.000 

-5.800 

-7.600 

-9.400 

-11.200 

-13.000 

0.000 0.314 0.628 0.942 1.256 1.570 1.885 2.199 2.513 2.827 3.141 

SPATIAL COORDINATE 

, -\ 



TABLE 13: EIGENVALUES OF SYSTEM 3 

CLASSICAL R-K ORDER 4 . . 

( a = 1.5 , b'= 0.5 ,d = 7r / 4 , grid =:=7r/10000) 

eigenvalue 
0 0.27690177330005 
1 1.8359318360150 
2 4.0000000000000 . 

3 7.8505228771748 
4 16.581825775556 
5 27.866692130150 . 
6 36.000000000000 

7· 45.839840166183 
8 64.586151611451' 
9 85.879132273410 
10 100.000000000000 
11 115.82877098730 
12 144.58697993561 
13 175.89040353128 . 
14 196.00000000000 

TABLE 14: EIGENVALUES OF SYSTEM 4 

CLASSICAL R-K ORDER 4 

(a = 1.5, b = 0.5, d = 7r/4 ,grid = 7r/10000) 

eigenvalue 
0 -0.99398080410923 
1 2.4245644136291 
2 5.2111878170492 
3 7.6931333247145 . 
4 15.761516981583 
5 28.077280870914 
6 36.838221374377 
7 45.715517405275 
8 63.804345284600 
9 85.997452926926 

10 100.79478326893 
11 115.74373722390 
12 143.81271282430 
13 175.97208353010 
14 196.78236955350 

100 
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