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The Case for Efficient File Access Pattern Modeling

Thomas M. Kroeger and Darrell D. E. Longyz

Jack Baskin School of Engineering
University of California, Santa Cruz

Abstract
Most modern I/O systems treat each file access indepen-
dently. However, events in a computer system are driven by
programs. Thus, accesses to files occur in consistent pat-
terns and are by no means independent. The result is that
modern I/O systems ignore useful information.

Using traces of file system activity we show that file ac-
cesses are strongly correlated with preceding accesses. In
fact, a simple last-successor model (one that predicts each
file access will be followed by the same file that followed
the last time it was accessed) successfully predicted the
next file 72% of the time. We examine the ability of two pre-
viously proposed models for file access prediction in com-
parison to this baseline model and see a stark contrast in
accuracy and high overheads in state space. We then en-
hance one of these models to address the issues of model
space requirements. This new model is able to improve
an additional 10% on the accuracy of the last-successor
model, while working within a state space that is within a
constant factor (relative to the number of files) of the last-
successor model. While this work was motivated by the use
of file relationships for I/O prefetching, information regard-
ing the likelihood of file access patterns has several other
uses such as disk layout and file clustering for disconnected
operation.

1 Introduction
Many I/O systems benefit extensively from sequential
prefetching. For example, disk controllers frequently do
read-ahead, prefetching of the next disk block. File sys-
tems often prefetch the next sequential block in a file. In
both of these cases, prefetching can be done because there
is a concept of the next sequential data element intrinsic in
the abstraction. However, there is no intrinsic concept of
the next file in a sequence. This limits the ability of file
systems to prefetch data across files.

File accesses follow previous patterns with a high prob-
ability [3, 5, 7]. Using traces of file system activity, we
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demonstrate the extent of these relationships, by observing
that a simplelast-successorprediction model (which pre-
dicts that an access to fileA will be followed by the same
file that followed the last access toA) is able to correctly
predict 72% of access events.

We then examine two models previously presented for
learning file relationships by tracking access patterns. Af-
ter each event both of these models provide a list of pre-
dicted files to be accessed next and a probability associated
with each file. If the next file accessed was one of those
predicted, then that model’s score is increased by the prob-
ability with which that file was predicted. These scores are
then normalized over the number of total events in each
trace, providing a measure we calladditive accuracy, that
ranges from zero to one.

The first model [3] examined is based on a graph, that
keeps frequency counts for all files accessed within a win-
dow following an access to each file. The second model
[5] was adapted from the text compression techniquefinite
multi-order context modeling(FMOC), to track file access
patterns. It uses a tree to keep frequency counts of access
patterns, tracking a finite number of multiple-order patterns
(order in this case means the length of the pattern tracked).
The primary difference between these two models is that
the graph-basedmodel considers subsequent accesses as
an unordered set (a window) to allow for interleaving of
accesses patterns from different sources, while theFMOC
tracks the order in which subsequent accesses occur. The
graph-basedmodel sees extremely pooradditive accuracy,
0.400 on average as compared to thelast-successor’s accu-
racy of 0.720. The success of thelast-successorindicates
that there would be little interleaving of different patterns in
the traces used, and helps to explain the poor performance
of thegraph-basedmodel. TheFMOC at 0.818 sees a sig-
nificant improvement over thelast-successor(reducing the
difference betweenlast-successorand an ideal predictor
by greater than one third), but at the cost of significantly
greater overhead.

We then present an improvedFMOCmodel called aPar-
titioned Context Model[6] (PCM). This model addresses
the key limitation of model state space. We show that this
efficient model sees a marginal improvement in accuracy
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while working within a state space that is within a constant
factor of thelast-successormodel (typically 8 to 16 nodes
per file instead of one node per file). ThePCM model sees
anadditive accuracyof 0.820.

This work is motivated by the use of the above models to
improve I/O system caching decisions. However, models
that accurately estimate the access relationships between
files have significant value for many other applications.
Placing related information in close proximity on disk has
been shown to improve I/O performance dramatically [2].
Additionally, the grouping of files that are likely to be ac-
cessed within close temporal proximity is a problem faced
by systems that try to hoard files for disconnected opera-
tion as well as lay out data for tertiary storage systems (e.g.
a tape robot putting related files on the same tape).

The rest of this paper is organized as follows:x2 presents
the last-successor, graph-basedand FMOC models, x3
presents the trace data used and the results of our tests with
these three models,x4 introducesPartitioned Context Mod-
elingand presents the results from its predictions. We then
discuss related work inx5, future work inx6 and conclude
in x7.

2 File access prediction
We present three models for predicting file accesses. The
first, is a simplelast-successormodel that serves as a base-
line. This model predicts that an access to fileA will be
followed by the same file that followed the last access toA.
This model requires only one node per unique file within
the traces so we can say that its state space isO(n), wheren
is the number of unique files. The second model was orig-
inally proposed by Griffioen and Appleton [3] and uses a
probability graph that keeps counts of accesses within each
node and uses weighted edges to indicate previous access
proximity. The last [5] is derived from the text compression
field and uses a tree with access counts in each node.

2.1 Graph based modeling
Griffioen and Appleton first proposed modeling file ac-
cess patterns with a probability graph that keeps frequency
counts of accesses that follow within a window of a speci-
fied length. This model maintains a graph where each node
represents a distinct file. When file A is accessed the count
in its node is increased. Then for a window of subsequent
accesses (e.g. file B C and D) an edge with a count of 1
is made connecting file A’s node to the nodes represent-
ing these files. If an edge connecting the files already ex-
ists then the count for this edge is incremented. The un-
ordered nature of the window of accesses is intended to
allow the interleaving of access streams from different ac-
tivities. This model keeps one node for each file, but for
each of these nodes must also track the count on each edge,

so we can say that the state space for this model isO(n2).
Figure 1 shows a sample probability graph.
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Figure 1: An example probability graph

2.2 Context modeling
Finite Multi-Order Context models originate from the text
compression algorithm PPM [1]. A context model is one
that uses preceding events to model the next event. For
example, in the string “object” the character “t” is said
to occur within the context “objec”. The length of a
context is termed itsorder. In the example string, “jec”
would be considered a third order context for “t”. Tech-
niques that predict using multiple contexts of varying or-
ders (e.g.“ec”, “ jec”, “ bjec” ) are termedMulti-Order
Context Models[1]. To prevent the model from quickly
growing beyond available resources, most implementations
of a multi-order context model limit the highest order mod-
eled to some finite numberm, hence the termFinite Multi-
Order Context Model. In the examples here we have used
letters of the alphabet to illustrate how this modeling works
in text compression. For modeling file access patterns, each
of these letters is replaced with the name of a unique file.

A context model uses atrie, a data structure based on a
tree, to efficiently store sequences of symbols. Each node
in this trie contains a symbol (e.g. a letter from the alpha-
bet, or the name of a specific file). By listing the symbols
contained on the path from the root to any individual node,
each node represents an observed pattern. The children of
every node, represent all the symbols that have been seen
to follow the pattern represented by the parent.

To model access probabilities we add to each node a
count of the number of times that pattern has been seen.
Since the children of a node represent all the symbols that
have previously followed that node’s sequence, then the
sum of their counts should equal the count of that node.
The one exception to this case is when the node repre-
sents an event that has just occurred and the model has
not had a chance to see what event will follow. In this
case, the frequency count is equal to the sum of its chil-
dren’s counts plus one. Therefore, we can use the formula
countchild=(countparent � 1) to estimate the likelihood of
a child’s symbol occurring as the next event.

Figure 2 extends an example from Bell [1] to illustrate
how this trie would develop when given the sequence of
eventsCACBCAABCA. In this diagram the circled nodeA
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represents the patternCA, which has occurred three times.
This pattern has been followed once by another access to
the fileA and once by an access to the fileC. The third time
is the last event to be seen and we haven’t yet seen what
will follow. We can use this information to predict bothA
andC each with a likelihood of 0.5. The state space for this
model is proportional to the number of nodes in this tree,
which is bounded byO(nm), wherem is the highest order
tracked andn is number of unique files. This large state
space results because this model treats the following events
as an ordered (instead of unordered) sequence. Inx3 we
see that for the traces we examine, tracking this ordering is
important to the accuracy of a model.

A (1)

B (1)

C (1)B (1)

C (1)B (1)

A (4)

ROOT

B (2)

C (2)

A (2)

A (3)

A (1) C (1)

B (1)

C (1)

C (4)

Figure 2: Example trie for the sequenceCACBCAABCA.

3 Experimental results
To study inter-file access patterns of a computer system, we
used trace data collected with the DFSTrace system. This
system was used by the Coda project [13] to trace all sys-
tem calls on 33 machines over a period ranging from Febru-
ary of 1991 to March of 1993. For this work we selected
the workload of four specific machines for the month of
January 1993. These machines were selected to represent a
diverse set of workload characteristics. The machinebar-
ber was a server with the highest rate of system calls per
second. The machinedvorakhad the highest percentage
of write activity, iveshad the largest number of users, and
mozartwas selected as a typical desktop work station. Ta-
ble 1 provides some summary statistics of these trace sets.
The column markedrate indicates the rate of system calls.
The column markedcomp missrepresents the compulsory
misses or, the fraction of accesses where the file accessed
has not been previously accessed (number of unique files
divided by the number of events). Such events are not pre-
dictable by any online model. So, one minus this fraction
can be used to represent a bound on theadditive accuracy
measure of our models.

Table 1: Trace data summary information (Length is in
hours, rate is in calls per second).

Machine Length Rate # Records Comp M bound
ives 591 4.18 8886861 0.0179 0.982
barber 554 16.42 32764738 0.0210 0.979
dvorak 760 5.19 14203240 0.0287 0.971
mozart 511 2.93 5390288 0.0436 0.956

In order to measure and compare the accuracy of these
models we define the measureadditive accuracyas fol-

lows: after each file access if the file accessed was among
those predicted by the model, then the model’s accuracy
for that event is the likelihood with which this file was pre-
dicted. To measure a model’s accuracy with respect to a
specific sequence of accesses (e.g. a trace of file activity),
we consider each successful prediction independently and
sum these values. This number is then normalized over the
total number of events in the sequence, to produce anaddi-
tive accuracymeasure. This measure is a number between
0 and 1 which represents how well a model was able to
predict the next event.

In the case of thelast-successormodel only one file was
predicted after each access, so each correct prediction in-
creased the score by one. Thus theadditive accuracyfor
a last successormodel is also the fraction of times that the
model was able to correctly predict the next event. Figure 3
shows the results of our tests for thelast-successormodel, a
graph basedmodel for windows of size two (Graph 2) and
four (Graph 4), and aFMOCmodel for the second (FMOC
2) and fourth (FMOC4) order.

Theadditive accuracyscores for thegraph-basedmodel
are significantly lower than those of theFMOCmodel. We
note that thegraph-basedmodel’s performance decreases
as window size is increased, while for theFMOC model
the accuracy increases as model order is increased. Addi-
tionally, when comparing the results across the four differ-
ent workloads we see that there is little difference. One
might expect that the workload with the highest call rate
or greatest number of users might have greater interleaving
and benefit more from the unordered window that the graph
models use. This is not the case,barber with the highest
workload is slightly greater for all models.Iveswith the
greatest number of users is not distinctly different than any
of the other traces. Based on these observations and the
success of thelast-successormodel it is apparent that there
is little interleaving between various predictive sequences.
Therefore, the need for the access window that thegraph-
basedmodel uses does not exist in these traces.

Additionally, as of this writing we are in the process of
running the same tests on a set of traces taken recently
at Berkeley [12]. These traces represent three workloads,
research, instructional and web server, with activity rates
ranging from 23 to 107 calls per second. Preliminary re-
sults from these traces confirm the results seen with the
Coda traces, with no distinct difference between the vari-
ous workloads.

In addition to accuracy our tests also examined the model
space used by each of these models. Inx2 we presented the
bounds on the state space of these models. Figure 4 shows
the actual number of nodes required for each model, nor-
malized over the total number of records in each trace. For
the graph-basedmodel we count one node for each edge
and one for each file. TheFMOC model space is simply
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Figure 3:Additive Accuracyscores

the number of nodes in the trie, and for the last-successor
we count one node for each unique file accessed. This fig-
ure shows that both models scale poorly in comparison to
the last-successor. Additionally, theFMOCwith its bound
ofO(nm) requires significantly more space than thegraph-
basedmodel.

Based on the results shown here, we are able to make
two conclusions for the traces studies. First, significant in-
formation is lost by disregarding the order in which events
occur. Second, thelast-successormodel shows that file ref-
erence patterns can be accurately modeled with a constant
amount of information for each file. Inx4 we present a
modifiedFMOC that addresses several issues of scale and
is able to track higher order sequences in the state space
that is within a constant factor of thelast successormodel
with respect to the number of files.
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number of unique files)

4 Partitioned context modeling
We addressed the issue of model state space by modifying
the FMOC model presented inx2. This technique,Parti-
tioned Context Modeling[6], partitions the trie based on
first order nodes and then limits the size of each partition.
We tested this model on our trace data and saw that not
only was it able to work efficiently in a state space that was
within a constant factor of thelast-successormodel, but
also that the prediction accuracy was improved because of
its ability to adapt faster to changes in the access patterns.

Each first order node in the trie of aFMOC model rep-
resents an access pattern of length one, consisting of one

access to the file represented by that node. Since removing
any first order node would result in the loss of all the in-
formation associated with patterns that begin with the file
represented by that node, we pursued an approach to limit
the model size by not purging any first order nodes but in-
stead limiting their descendants.

This approach divides the trie into partitions, where each
partition consists of a first order node and all of its descen-
dants. The number of nodes in each partition is limited to
a static number that is a parameter of the model. The effect
of these changes is to reduce the model space requirements
fromO(nm) toO(n). Figure 5 shows the trie from Figure 2
with these static partitions.

A (1)

Partition C

B (1)

C (1)B (1)

C (1)B (1)

A (4)

ROOT

B (2)

C (2)

A (2)

A (3)

A (1) C (1)

B (1)

C (1)

C (4)

Partition BPartition A

Figure 5: Example partitioned trie for the access sequence
CACBCAABCA.

When a new node is needed in a partition that is full,
all node counts in the partition are divided by two (inte-
ger division), any nodes with a count of zero are cleared to
make space for new nodes. If no space becomes available,
the access is ignored. Another benefit of restricting space
in this manner is that when new access patterns occur, ex-
isting node counts see this exponential decay, causing the
model to adapt faster to new access patterns.

4.1 Partitioned context model results
To test the accuracy and adaption of thePartitioned Con-
text Model, we ran it through the trace data for a model
order ranging from one to four and a partition size rang-
ing from four to 1024. We saw that a PCM required sig-
nificantly less space than and was marginally more accu-
rate thanFMOC, averaging anadditive accuracyof 0.820.
Since thePCM maintains less state, this can only be at-
tributed to the model’s increased adaptability.

To examine how the model’s partition size affectedaddi-
tive accuracy, we graphed prediction accuracy over varia-
tions in partition size. Figure 6 shows a typical graph of the
effects of partition size on the prediction accuracy. From
this graph we can see that a small amount of state space,
eight to 12 nodes per file, will provide enough information
to represent nearly all of the predictive information about
access patterns beginning with that file. Additionally, as the
partition size increases the model becomes less adaptive to
changes and we see a marginal decline in the performance.
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Figures 7 and 8 compare the prediction accuracy results
for the PCM, last-successorand second and fourth order
FMOC. PCM2/8 and 4/32 represents a second order model
with a partition size of eight and a fourth order model with
a partition size of 32. These figures show that thePCM
is able to provide prediction accuracy equal to that of a
FMOC, while working in a state space of the same order
aslast-successor. In practice a typical partition would take
approximately 348 bytes, with 12 bytes per node (eight for
a unique ID, two for a count and two for child and sib-
ling pointers). Although this is significantly greater than
the eight bytes per file required for alast-successormodel,
thePCMmodel reduces by one third the amount of inaccu-
racy of thelast-successormodel. With a space cost of 384
bytes per file it is quite reasonable to envision ani-node
like structure for each file that indicates its relationships to
other files.
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4.2 Analysis of PCM
To better understand why this partition model is so effec-
tive, we consider the worst case for context models. This
case is one in which the access frequencies of all the chil-
dren of a selected file (A) are evenly distributed. In such
a case all events following an access toA would be inde-
pendent of each other, however this work is based on the
inter-dependence between files. By statically limiting the
number of data points used in the partition for fileA, we
are requiring that the majority of the distribution’s proba-
bility mass is able to be kept within this many data points.
If this is not the case then an access to fileA is not strongly
correlated with accesses to any other files, and it has little
predictive information to offer.

5 Related work
The use of compression modeling techniques to track ac-
cess patterns and prefetch data was first examined by Vit-
ter, Krishnan and Curewitz [14]. They proved that for a
Markov source such techniques converge to an optimal on-
line algorithm, and go on to test this work for memory
access patterns in an object-oriented database and a CAD
System. Chenet al. [4] examine the use ofFMOC type
models for use in branch prediction. Griffioen and Apple-
ton [3] were the first to propose thisgraph-basedmodel
that has seen use across several other applications [11, 10].
Lei and Duchamp [8] have pursued modifying a UNIX file
system to monitor a process’s use of fork and exec to build
a tree that represents the processes execution and access
patterns. Kuenninget al.[7] have developed the concept of
a semantic distance, and used this to determine groupings
of files that should be kept on local disks for mobile com-
puters. Madhyasthaet al. [9] used hidden Markov models
and neural networks to classify I/O access patterns within
a file.

6 Future work
This work has started several discussions into better met-
rics for the accuracy of each model. We intend to rigor-
ously formalize the problem space, and apply several other
measures. Some of the measures that have been discussed
are: an entropy based measureG =

P
� log(pi) where

pi is the probability with which the occurred event was
predicted; a squared loss functionL =

P
(1 � pi)

2 and
a zero-one measure where only the item with the highest
probability is predicted. Additionally, a threshold based
measure, that models prefetching based on aprobability
thresholdhas also been discussed. As mentioned inx3 we
have begun using additional traces taken recently by the
Now project at UC Berkeley.

The partitioned model presented here is one successful
method for efficiently restricting finite multi-order context
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models. Other variations of this model still require further
exploration. We intend to explore many extensions of this
model, for example, including recency and frequency in
the likelihood estimates, and removing the order limitation
on the partitions. This work has chosen to examine these
predictive models separate from an application, we intend
to use these models for cache prefetching within the Coda
filesystem.

7 Conclusions
For the traces examined, there is a strong degree of cor-
relation between file accesses. While there is no intrinsic
concept of the next sequential file there do exist probabilis-
tic relationships between files. This information is of great
value not only for file system prefetching, but also for disk
layout and related file grouping in general.

We have demonstrated that while a simplelast succes-
sor model can do quite well to predict file relationships, a
more intelligent model that adapts to changing access pat-
terns can do even better within the same order of space con-
straints. Finally, we have shown that tracking ordering and
linear model space are critical components of any effec-
tive file access pattern model. We believe that models like
thepartitioned context modelthat maintain a fixed amount
of predictive information and adapt as patterns change can
provide significant improvements for I/O system perfor-
mance.
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