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Abstract 

 

The direction and magnitude of soil organic carbon (SOC) changes in response to climate change 

depend on the spatial and vertical distributions of SOC. We estimated spatially-resolved SOC 

stocks to bedrock, distinguishing active-layer and permafrost-layer stocks, based on geospatial 

analysis of 472 soil profiles and spatially referenced environmental variables for Alaska. Total 

Alaska state-wide SOC stock was estimated to be 77 Pg, with 61% in the active-layer, 27% in 

permafrost, and 12% in non-permafrost soils. Prediction accuracy was highest for the active-

layer as demonstrated by highest ratio of performance to deviation (1.5). Large spatial variability 

was predicted, with whole-profile, active-layer, and permafrost-layer stocks ranging from 1-296 

kg C m-2, 2-166 kg m-2, and 0-232 kg m-2 respectively. Temperature and soil wetness were found 

to be primary controllers of whole-profile, active-layer, and permafrost-layer SOC stocks. 

Secondary controllers, in order of importance, were found to be: land cover type, topographic 

attributes, and bedrock geology. The observed importance of soil wetness rather than 

precipitation on SOC stocks implies that the poor representation of high-latitude soil wetness in 

Earth System Models may lead to large uncertainty in predicted SOC stocks under future climate 

change scenarios. Under strict caveats described in the text and assuming temperature changes 

from the A1B Intergovernmental Panel on Climate Change emissions scenario, our geospatial 

model indicates that the equilibrium average 2100 Alaska active-layer depth could deepen by 11 

cm, resulting in a thawing of 13 Pg C currently in permafrost. The equilibrium SOC loss 

associated with this warming would be highest under continuous permafrost (31%), followed by 

discontinuous (28%), isolated (24.3%), and sporadic (23.6%) permafrost areas. Our high 

resolution mapping of soil carbon stock reveals the potential vulnerability of high-latitude soil 

carbon and can be used as a basis for future studies of anthropogenic and climatic perturbations.  
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Introduction 

Soil organic carbon (SOC) can be a source or sink of atmospheric CO2, with the current 

balance depending on climate, disturbance, soil characteristics, and vegetation. Reliable 

estimates of regional SOC stocks and their spatial and temporal variability are essential to better 

understand controls of SOC stocks and their vulnerability to changing climate. Of particular 

concern are high-latitude SOC stocks, which are preserved, in large part, because of low 

temperatures. High-latitude regions are expected to experience much higher temperature 

increases than temperate or tropical regions over the next century (IPCC, 2007) and therefore are 

a potentially vulnerable component of the global carbon cycle (Schuur et al., 2008; McGuire et 

al., 2009). Although uncertain, the total amount of frozen carbon in permafrost soils is estimated 

to be double (Schuur et al., 2009; Tarnocai et al., 2009) that currently in the atmosphere.  

Several global SOC stock estimates exist for a variety of depth intervals (Post et al., 

1982; Batjes, 1996; Jobbagy & Jackson, 2000). However, these global estimates substantially 

underestimate permafrost affected SOC (Ping et al., 2008a; Tarnocai et al., 2009), mainly 

because of the paucity of high-latitude observations. Further, most of these studies limited the 

soil profile observations to the upper 1 m of soil profile even though high-latitude soils are 

reported to contain considerable deep SOC due to cryoturbation (Bockheim, 2007). Recent 

studies have also suggested the need for more accurate assessment of spatial heterogeneity of 

SOC stocks of permafrost-affected soils (Tarnocai et al., 2009; Johnson et al., 2011). To our 

knowledge, no regional high-latitude estimates exist of fine-resolution spatial variability of SOC 

stocks in the whole-profile (O to C horizons), active-layer, and permafrost-layer.  
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Previous estimates of SOC stocks in permafrost-affected soils have been made by 

stratifying the study area (e.g., by land cover type), averaging point observations of SOC stocks 

within each stratum, and multiplying by the aerial extent of that stratum (Ping et al., 2008a; 

Tarnocai et al., 2009; Johnson et al., 2011). Outside of permafrost areas, this approach has been 

reported to be associated with high estimation errors because it does not represent soil and 

environmental variable heterogeneity within each strata (Thompson & Kolka, 2005; Meersmans 

et al., 2008; Sanchez et al., 2009).  To address these concerns, McBratney et al. (2003) proposed 

a framework to predict the spatial distribution of SOC using spatially referenced "scorpan" 

factors (soil properties, climate, organisms, relief, parent material, age, and spatial coordinate). 

Several subsequent studies have demonstrated that this approach results in more accurate 

representation of spatial variability of soil properties and reduction of prediction errors 

(Thompson & Kolka, 2005; Rasmussen, 2006; Meersmans et al., 2008). 

Spatially-distributed observations of permafrost SOC stocks are important for 

development and testing of Earth System Model (ESMs). Several recent modeling studies have 

integrated improved representation of high-latitude SOC dynamics (e.g., Lawrence et al., 2008; 

Schaeffer et al., 2011; Koven et al., 2011), but substantial differences remain between these 

ESM estimates and the coarse-resolution observationally-based SOC estimates mentioned above. 

These differences occur because of uncertainties associated with spatially extrapolating limited 

observations and several limitations with the ESM modeling approaches, including lack of 

vertical resolution of SOC stocks, differing environmental controls of existing SOC stocks, 

unrealistic spatial representation to infer soil variability, and lack of pedogenic processes typical 

of high-latitude environments such as cryogenic aggregation, podzolization, and cryoturbation. 

Despite these limitations, ESMs are often used to predict carbon-climate feedbacks, although 
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they predict very large ranges in permafrost SOC losses under future warming scenarios (25 - 85 

Pg C) depending upon the processes included in the models (Koven et al., 2011).  

 
Here, we used spatially referenced environmental variables (topographic attributes, land 

cover types, climate, and bedrock geology), and observed SOC pedon description data in a 

geographically weighted regression (GWR) approach to predict the spatial variability of SOC 

stocks and prediction accuracy throughout Alaska. Our approach allowed us to separately 

estimate active and permafrost-layer SOC stocks at 60 m spatial resolution, and to analyze the 

spatial variability under continuous, discontinuous, sporadic, and isolated permafrost regions. 

We also present predicted environmental controls on SOC stocks, and used them to estimate 

expected changes in equilibrium 2100 SOC stocks associated with the moderate A1B 

Intergovernmental Panel on Climate Change (IPCC) emissions scenario (IPCC, 2007). 

Materials and methods 
 

SOC profile observations 

We used 422 geo-referenced SOC profile data from the National Soil Survey Characterization 

database (NSSL, 2010). This soil survey database includes measured representative soil profiles 

from Alaska and covered all soil types at the soil suborder level (18 suborders). We included an 

additional 50 soil profile observations from the Arctic regions of North America (Ping et al., 

2008a). Though the SOC profile samples were unevenly distributed throughout the study area 

(Fig. S1), the samples covered all 27 major land resource areas (MLRA) of Alaska. The MLRA 

is a geographical unit that contains similar patterns of climate, soils, water resources, and land 

uses (SCS, 1981). Since our objective was to estimate the SOC stock across Alaska, we included 
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all the pedon description data in our study. Unfortunately, the majority of the pedon description 

data did not include bulk density observations. Therefore the bulk density of each soil horizon 

was estimated using soil texture, depth, and organic matter content using pedotransfer functions 

developed by Calhoun et al. (2001) and Adams (1973).  The SOC stock for each profile was 

estimated by summing the SOC stock from the surface to the C horizon:  

       
1

  D  
n

T j b j
j

C C 


                                                                                     

 

where CT = SOC stock (kg m-2) of the whole soil profile,  j = soil horizon number (1, 2, 3, ..., n), 

Cj is the SOC concentration (kg kg-1),  is the soil bulk density corrected for rock fragments 

(kg m-3), and Dj is the thickness of each horizon (m). 

In the soil dataset, the presence of a permafrost layer was indicated by horizon "f" (i.e., frozen 

layer). We used the average depth of the "f" horizon to determine the boundary between 

permanently frozen and active layers (Table S1).  

 

Environmental datasets  

A digital elevation model (DEM) of 60 m spatial resolution was obtained from the USGS 

database (Multi-Resolution Land Characteristics Consortium, 2010). From the DEM we 

calculated 13 terrain attributes that are useful to predict the SOC stock across environmental 

conditions (using the spatial Analyst function of ArcGIS version 10, Environmental Systems 

Research Institute, Inc., Redlands, CA, USA). These indices include elevation, slope, aspect, 

curvature (plan, profile, and total), upslope contributing area, flow length, soil wetness index, 

sediment transport index, stream power index, terrain characterization index, and slope aspect 

b
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index. From the 13 topographic attributes, 4 attributes were selected for the model calibration in 

the best subset regression approach (Kutner et al., 2004 ). The included topographic attributes 

were elevation (meters), specific catchment area (As, m
2 m-1), soil wetness index (SWI), and 

sediment transport index (STI). Specific catchment area is the upslope area per unit width of 

contour (Wilson & Gallant, 2000). The SWI indicates the spatial distribution and extent of zones 

of soil water saturation and is calculated as the ratio of specific catchment area to slope gradient 

(, degrees) (Wilson & Gallant, 2000): 

                                                                                                                        

The sediment transport index (STI) resembles the slope-length factor of the Universal Soil Loss 

Equation and characterizes erosional and depositional areas and potential erosion risk (Wilson & 

Gallant, 2000) :  

      
0.6 1.3

sin

22.13 0.0896
sA

STI
         

                                                                                    

Land cover data of 60-m spatial resolution was extracted for Alaska from the NLCD database 

(Multi-Resolution Land Characteristics Consortium, 2010). We reclassified the NLCD land 

cover types into 9 major categories (Table S2). The largest land area was under the scrub 

category (43%), followed by forest (25%), barren (8.5%), herbaceous (7%), and wetlands (7%). 

The remaining surface area (9.5%) was under open water, perennial ice, barren land, and moss 

vegetation. Indicator variables for the presence or absence of 7 land cover types (except open 

water and perennial ice) were created and used in the model selection process. 

 

tan
sA

SWI


 
  
 
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The climate data, such as the long-term (1961-1990) mean annual air temperature and mean 

annual precipitation, were obtained from the PRISM database of spatial climate analysis service 

of the Oregon State University (Daly et al., 2001). The bedrock geology data was obtained from 

a USGS database (Beikman, 1980). Across Alaska there were 180 types of bedrock. The largest 

land area was under quaternary deposits (8%), followed by Cretaceous rocks (7.3%), Lower 

paleozoic rocks (6.6%), Lower cretaceous rocks (6.2%), ice (4.3%), and Pleistocene deposits 

(4.2%). The remaining surface area was under the remaining 174 bedrock types.  

 

Spatial modeling and accuracy of prediction  

We used a GWR approach (Fotheringham et al., 2002; Mishra et al., 2010; Zhang et al., 2011) 

and geospatial analysis to predict Alaska SOC stocks. First, the best subset regression was used 

to identify the environmental variables using a Mallow's Cp criteria (Kutner et al., 2004).  The 

model was tested for multicollinearity of selected independent variables, unequal error variance, 

normality, and randomness of the residuals. In this analysis, all the data points contributed to the 

estimates of model parameters equally using a least square solution. SAS statistical software 

(SAS, 2004) was used for model selection. The selected independent variables were then used in 

a GWR approach to derive the spatially varying model parameters at a 1000 m regular interval 

throughout the study area. In GWR, the weight function was chosen as an adaptive spatial kernel 

type so that the spatial extent for included samples varied based on sample density. The 

bandwidth was chosen based on Akaike Information Criterion minimization (Fotheringham et 

al., 2002). The GWR procedure can be represented as: 

                           (4)                      
^ ^ ^ ^ ^

0 1 21 2( , ) ( , ) ( , ) ( , )i ki i i i i i i i i i ikSOC u v u v X u v X u v X         
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where   is the predicted SOC stock at location i;  are the coordinates for location i; k 

is the number of environmental variables,  -  are regression coefficients; and Xi1 to Xik are 

environmental variables at location i (Table S3 and S4). 

 

We evaluated the prediction accuracy of the resulting SOC stock maps by using a K-fold 

validation approach (Mishra et al., 2010; Martin et al., 2011). In this approach, the entire dataset 

was randomly divided into calibration (n=412) and validation (n=60) datasets five times. 

Mapping of SOC using calibration datasets and their validation were conducted for each split and 

the average validation indices are reported here. From the predicted SOC maps, SOC stock 

values were extracted for the validation points. The obtained values of observed and predicted C 

pool were interpreted by calculating different validation indices, such as the mean estimation 

error (MEE) and root mean square error (RMSE):  

                                                                                        

                                                                                 

where  is the measured SOC stock,  is the estimated SOC stock, and n is the 

number of validated observations. These values should approach zero for an optimal prediction. 

We also calculated the ratio of performance to deviation (RPD; defined as the ratio between the 

^

iSOC ( , )i iu v

^

0
^

k

^

1

1
( ( ) ( ))

n

s i s i
i

MEE C x C x
n 

 

^
2

1

1
( ( ) ( ))

n

s i s i
i

RMSE C x C x
n 

 

( )s iC x
^

( )s iC x



10 
 

standard deviation and the RMSE), which indicates the overall prediction ability of the selected 

approach.   

 

Environmental controls on SOC stocks were examined by converting temperature, 

precipitation, and elevation data into zones and then calculating the SOC stocks of active-layer, 

permafrost-layer, and whole-profile layers in each zone. Similar calculations were performed for 

land cover type impacts on SOC stocks. The impact of future warming on SOC stocks was 

evaluated using anticipated temperature changes under the moderate emission scenario (A1B) of 

IPCC (citation). The downscaled future temperature change projections for Alaska were obtained 

from the Scenarios Network for Alaska Planning (SNAP, 2011). This dataset provides a five 

model composite values (IPCC predictions: selected on the basis of smallest systematic errors) at 

a 2 km grid across Alaska. 

 

Results and discussion 

Spatial and vertical distribution of soil organic carbon stocks 
 

In this section we discuss the predicted distribution of SOC stocks; estimates of the 

controls on SOC stocks are discussed in the following section. Predicted whole-profile SOC 

stocks had high spatial variability (coefficient of variability, CV = 49%), ranging from 1 to 296 

kg m-2 with an average across Alaska of 53.6 kg m-2 (Fig. 1a). The Northern and Western regions 

of Alaska had the highest predicted levels of whole-profile SOC (>75 kg m-2) (Fig. 1a).  The 

Eastern and Southern regions had the lowest whole-profile SOC stocks (< 50 kg m-2). The 

average prediction error for whole-profile SOC stock was 26.3 kg m-2 and the observed ratio of 
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performance to deviation (RPD) was 1.4, indicating our approach has a moderate predictive 

ability for whole-profile SOC stocks (Gomez et al., 2008). The predicted average Alaska active-

layer SOC stock was 35.4 kg m-2, ranging from 2 to 166 kg m-2 (Fig. 1b). Active-layer SOC 

stocks also had high spatial variability (CV=59%). The average error of prediction for active-

layer SOC stock was 17.8 kg m-2 and the RPD was 1.5. Predicted permafrost SOC stock ranged 

from 0 to 232 kg m-2 with a spatial average of 21.3 kg m-2 and the highest spatial variability 

(CV=108%) (Fig. 1c). The observed average error of prediction was 36.6 kg m-2 and the RPD 

was 0.93 (Table 1). Our results suggest, on average across the state, a larger proportion of soil 

organic carbon is stored in the active-layer than in the permafrost layer. Whole-profile SOC 

stocks across Alaska, excluding underneath water and glaciers, were estimated to be 77 Pg, of 

which 47 Pg are in the active layer, 21 Pg are in the permafrost layer, and 9 Pg are in perennially 

unfrozen areas. Of the 21 Pg permafrost SOC stock, 14, 5, 1, and 1 Pg are under continuous, 

discontinuous, sporadic, and isolated permafrost areas, respectively (Table 2).  

  Our estimates of Alaska whole-profile SOC stocks are higher than previously published 

studies (Post et al., 1982; Ping et al., 2008a; Tarnocai et al., 2009; Johnson et al., 2011). Several 

factors contributed to the differences with these previous studies: we included more 

observations, our estimates were not limited to a relatively shallow depth interval, and we used a 

geospatial prediction approach that is more accurate than the spatial extrapolation methods of 

previous studies (McBratney et al., 2003; Thompson & Kolka, 2005; Meersmans et al., 2008; 

Sanchez et al., 2009). For comparison, Post et al. (1982) used 48 samples and reported an 

average SOC value of 21.8 kg m-2 for the Arctic tundra region (our estimate was 3 times as large 

for the same region). The samples used in that study were primarily from shallow depth, only 30 

samples were from a depth of 100 cm, and none of the samples were from below 100 cm. Ping et 
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al. (2008a) used 117 1-meter deep samples from northern Alaska (north of 60N) and reported 

average SOC stocks to be 34.8 kg m-2, 21.7 kg m-2, and 13.1 kg m-2 for 1 m depth, active, and 

permafrost layers, respectively (compared to our estimates which were 1.8, 1.5, and 2.3 times as 

large, respectively, for the same region). Though Ping et al. (2008a) were the first to report SOC 

stocks in different depth intervals from arctic soils, they did not provide information about whole 

soil profile SOC stocks (down to bedrock). Tarnocai et al. (2009) used 131 observations from 

Alaskan soils and reported 18 Pg of SOC stock to 3 m depth. However, this study did not 

differentiate the SOC stocks into active and permafrost layers and assigned no SOC to the non-

permafrost affected soils of Alaska (322,629 km2) where we predicted a range of 0-20 kg m-2 

SOC. Finally, Johnson et al. (2011) stratified the state of Alaska into ecoregions and reported 

average SOC stocks to 1 m depth of 53.3 kg m-2, 8.6 kg m-2, 21 kg m-2, and 24 kg m-2 for arctic 

tundra, intermontane boreal, Alaska range transition, and coastal rainforests, respectively (our 

estimates were 1.3, 5.8, 1.5, and 1.6 times as large for the same ecoregions). Although these 

studies grouped regions differently and covered different areas of Alaska, our SOC stock 

estimates were between 1.3 and 5.8 times as large when comparable groupings were considered.  

For comparison with whole-profile and permafrost-layer SOC stocks, we attribute 

differences between our results and these previous studies to the relatively deeper profiles we 

considered. Of the 472 SOC profiles we examined, 339 were non-permafrost affected profiles; of 

these, 180 (53%) were deeper than 1 m. Of the remaining 133 permafrost-affected profiles, 76 

(57%) and 8 (6%) were deeper than 1 and 3 m (up to 4.5 m), respectively. Because including 

these deeper profiles in our estimate led to substantially higher predicted whole-profile and 

permafrost-layer SOC stocks, we believe that these previous studies underestimated these 

portions of Alaskan SOC stocks. For active-layer SOC stocks, we attribute our ~1.5 times larger 
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predictions to our geospatial non-stationary prediction approach, which considers the impact of 

the spatial heterogeneity of SOC controllers in contrast with these previous studies.  

Controls on soil organic carbon stocks 
 

We found that whole-profile, active-layer, and permafrost SOC stocks decreased with 

increased elevation (Fig. 2), and most SOC stocks (70%) were located in areas with elevation 

below 400 m. Low elevation areas throughout Alaska are associated with lower slope gradients 

and higher soil wetness, both of which were predictors of higher SOC stocks. This result is 

consistent with observations made by Ping et al. (2008a) who reported higher total SOC stocks 

in low elevation areas of Alaska north of 60 oN.  

Annual-average temperature was strongly related to active-layer and permafrost-layer  

SOC stocks: As the 30-year annual-average air temperature increased from -18 to 0oC, active-

layer SOC stock increased and permafrost-layer  SOC stock decreased. Between 0 and 4oC, the 

increase in predicted permafrost-layer SOC stock was due to inclusion of sporadic (14% of 

Alaska surface area) and isolated (85% of Alaska surface area) permafrost areas located in this 

temperature range.  Both the active-layer and permafrost-layer SOC stocks decreased in the 4 to 

6oC range. Whole-profile SOC stocks decreased with increased annual-average temperature (Fig. 

S2). Our predicted control of temperature on the spatial distribution of whole-profile SOC stocks 

across Alaska is similar to the findings of other studies that reported negative relationships of air 

temperature to SOC stocks (Ping et al., 2008a; Johnson et al., 2011). The common explanation 

for this negative dependence is cryoturbation, i.e., subduction of surface SOC into the soil matrix 

due to seasonal freeze and thaw, and protection of this SOC from mineralization and 

decomposition due to freezing temperatures (Michaelson et al., 1996; Ping et al., 2008b).  
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Predicted whole-profile SOC stock decreased with increased precipitation up to 800 mm 

per year and then remained constant (Fig. S3). However, no trend was observed for active-layer 

and permafrost SOC stocks with precipitation. Our findings are consistent with observations 

reported by Guo et al. (2006) in the conterminous US, who also reported no consistent 

relationships with increasing precipitation. Since the dominant proximal hydrological control on 

SOC decomposition in upland systems is soil moisture and not directly precipitation, we used 

topographic wetness index as a soil moisture proxy in our spatial extrapolation approach. 

Predicted whole-profile and active-layer SOC stocks were strongly related to this index (Fig. 

S4). We believe that the observed importance of soil wetness rather than precipitation on SOC 

stocks implies that the poor representation of high-latitude soil wetness in Earth System Models 

(Lawrence & Slater, 2005; Schaefer et al., 2011) may lead to large uncertainty in predicted SOC 

stocks under future climate change scenarios.  

Among different land cover types, herbaceous vegetation had the highest Alaska-average 

whole-profile, active-layer, and permafrost SOC stocks (Fig. 3). After herbaceous vegetation, 

scrub and wetlands had the highest whole-profile SOC stocks. Barren land had the lowest 

predicted whole-profile, permafrost-layer, and active-layer SOC stocks in Alaska. These low 

stocks are likely due to low vegetation cover (<15%), and therefore low productivity, and high-

elevation and high-slope positions, and therefore high erosional losses.  

 

Impact of possible temperature changes on equilibrium Alaska carbon stocks 

 

Using the relationships we derived from the 472 pedons and controlling environmental 

variables described above, we estimated the equilibrium impact of anticipated temperature 
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changes on SOC stocks and active layer thickness for the IPCC A1B 2100 climate. We note 

several important assumptions to this equilibrium SOC stock estimate: (1) current SOC stocks 

are related to the 30-year average climate and current vegetation and soil distributions used to 

develop the spatial extrapolation of individual pedons to all of Alaska as described above; (2) the 

estimated changes in SOC stocks reflect a new equilibrium state consistent with the new 

atmospheric temperature (i.e., SOC stocks have enough time to re-equilibrate with the new 

imposed climate, a process that can take many centuries); and (3) that interaction terms (e.g., 

between temperature, precipitation, vegetation distribution, and gross and net primary 

production) are neglected. Since none of these assumptions are likely to be fully realized, we 

consider the resulting estimates to be relatively uncertain. We note, however, that other methods 

used to predict changes in high-latitude SOC stocks under a changing climate, such as land-

surface models integrated in global circulation models (Lawrence & Slater, 2010; Schaefer et al., 

2011; Riley et al., 2011; Koven et al., 2011), come with their own equally restrictive, and 

occasionally acknowledged, assumptions. With these caveats in mind, and assuming an A1B 

IPCC temperature scenario at 2100, we estimated that the equilibrium Alaska-average active-

layer thickness could deepen by 11 cm, thawing ~13 Pg of permafrost SOC with an associated 

27% loss of permafrost area throughout Alaska. The corresponding whole-profile permafrost 

SOC loss was estimated to be 31, 28, 24, and 24% from continuous, discontinuous, isolated, and 

sporadic permafrost areas, respectively. The impact of warming was highest in the northeastern 

part of Alaska (dominated by continuous permafrost) and lowest in the southwestern part 

(dominated by sporadic permafrost). The 30-year annual-average temperature in these areas 

ranged from -10 to -4oC and -4 to 0oC, respectively.  
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Modeling studies of permafrost loss and active layer thickness increases either for Alaska 

or for the Northern Hemisphere under the same emissions scenario (A1B) varied widely. For 

Northern Hemisphere permafrost area, Saito et al. (2007), Lawrence & Slater (2010), Lawrence 

et al. (2008), and Schaefer et al. (2011) predicted 40-57%, 73-88%, 80-85%, and 20-39% 

reductions, respectively. For Alaska, Marchenko et al. (2008) and Schaefer et al. (2011) 

predicted 7% and 22-61% permafrost area reduction, respectively. The projected range of 

increases in active-layer depth from these studies is also broad, ranging from 50-300 cm. The 

large differences between these previous model projections are likely due to differences in model 

process representation, whether they included specific mechanisms (e.g., fire), climate forcing 

(e.g., snow and precipitation inputs, air temperatures), and the strength of land-atmosphere 

feedbacks. Direct comparisons with our results are complicated because these studies analyzed a 

larger region and attempted to include other factors that can impact permafrost SOC stocks, e.g., 

changes in hydrology, fire, growing season length, and others. Unfortunately, none of these 

numerical modeling studies reported results for simulations that can be directly compared to our 

estimates, which attempted to account for only the effects of changing temperature. 

Nevertheless, our predicted loss of permafrost area is at the lower end of the range of these 

studies, and our predicted increase in average active-layer thickness is lower than these previous 

estimates. 

 

Limitations of predicted SOC stocks 

Our prediction accuracy of current SOC stocks was constrained by the limited number of 

available SOC profile observations, their uneven distribution across Alaska, and variations in the 

time of observation (most of the samples were taken between 1975 and 1990). Likewise, we 
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were not able to apply all relevant soil forming factors (environmental variables) since spatially-

resolved observations of, for example, fire frequency, fire intensity, and time of soil formation do 

not exist for much of Alaska. Future work should address the role these other factors have on 

high-latitude SOC stocks.  

Conclusions 
 

Our geospatial analysis using SOC profile observations and potential environmental and 

ecosystem controllers led to higher predicted Alaska SOC stocks than previously reported. We 

attribute the increase to our inclusion of deeper SOC profile observations, spatially 

heterogeneous environmental parameters, and non-stationary spatial modeling approach. 

Temperature and soil wetness were primary controllers on whole-profile, active-layer, and 

permafrost-layer SOC stocks. Secondary controllers, in order of importance, were: land cover 

type, topographic attributes, and bedrock geology. The large spatial heterogeneity of these 

factors across Alaska led to very large predicted spatial variability in SOC stocks. We also 

estimated, with important caveats, potential equilibrium SOC losses associated with a moderate 

temperature change scenario (A1B). Our estimates of potential permafrost area loss and active-

layer thickening were at the lower end of, and below, respectively, previously reported values 

from earth system modeling analyses. Because of the caveats discussed above regarding the use 

of current observations to infer future conditions, analyses with mechanistic land-surface models 

are the only practical approach to accurately estimating future SOC stocks. However, since no 

current ESM accurately reproduces high-latitude SOC stocks, spatially-distributed datasets based 

on observations, such as that reported here, are an important step toward improving and testing 

these models.  
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Supporting Information Legends 
 
Figure S1. Distribution of soil organic carbon profile observations across Alaska. 
Figure S2. Average SOC stocks in each temperature zone. Error bar is the standard deviation. 

Figure S3. Average SOC stocks in each precipitation zone. Error bar is the standard deviation. 

Figure S4. Average SOC stocks in each soil wetness zone. Error bar is the standard deviation. 

 
Table S1. Descriptive statistics of observed soil organic carbon (SOC) stocks (total dataset, 
n=472; permafrost profiles, n=133) 
 
Table S2. Reclassification of USGS land-cover types for this study. 

Table S3. Geographically weighted regression model summary for log transformed whole profile 
SOC stocks.  

Table S4. Geographically weighted regression model summary for log transformed active layer 
SOC stocks.  
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Table 1. Prediction accuracy of soil organic carbon stocks of different depth intervals.  

Soil organic carbon 
Stocks (kg m-2) 

Validation errors 
MEE RMSE RPD 

Whole Profile  -5.7 26.3 1.4 
Active layer  3.2 17.8 1.5 
Permafrost  11.2 37.6 0.9 

MEE is Mean estimation error; RMSE is root mean square error; RPD is ratio of performance to 
deviation.  
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Table 2. Soil organic carbon stocks in different depth intervals and permafrost zones across Alaska (NA = 
not applicable).  

Permafrost 
Category 

Whole Profile 
(Pg) 

Active Layer 
(Pg) 

Permafrost Layer 
(Pg) 

Continuous 32  18 14 
Discontinuous 22 17 5 

Sporadic 7 6 1 
Isolated 7 6 1 

Unfrozen areas 9 NA NA 
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Figure Legends 
 
Figure 1. Predicted soil organic carbon stocks in (a) whole-profile, (b) active-layer, and (c) 
permafrost layers in Alaska. 

Figure 2. Average whole-profile, active-layer, and permafrost SOC stocks in each elevation zone 
of Alaska. Error bar is the standard deviation and n is the number of observations.  

Figure 3. Predicted average whole-profile, active-layer, and permafrost SOC stocks under 
different land covers in Alaska. Error bar is the standard deviation and n is the number of 
observations .  
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