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Abstract 

Artificially engineered structures, namely metamaterials and their two-dimensional (2D) counterpart – 

metasurfaces, have been proven as promising platforms to realize unusual light-matter interactions. Such 

structures have enabled the efficient manipulation of electromagnetic waves in unprecedented ways that 

cannot be obtained using conventional materials and thus have triggered exciting applications such as 

hyperlensing, canalization of light, negative refraction, hyperbolic dispersion, cloaking, or the enhancement 

of the spontaneous emission rate of dipole emitters, amongst many others. Moreover, the discovery of 

graphene and other 2D materials, and their electrical tunability, have enabled the use of surface plasmon 

polaritons at terahertz and infrared frequencies in numerous nanophotonic applications. 

In this thesis, I propose novel nano-optical plasmonic tweezers based on hyperbolic and nonreciprocal 

metasurfaces to efficiently trap and manipulate nanoparticles in the near field with superior performance 

compared to the state of the art. To this purpose, I develop a rigorous theoretical framework able to compute 

optical forces on dipolar Rayleigh nanoparticles located near the metasurfaces. The theoretical model is 

based on Lorentz force within the dipole approximation combined with the scattered dyadic Green’s 

function of the system. Analytical expressions show that the force strength is directly proportional to the 

fourth power of wavenumber of the supported surface plasmons. This tells that the strength can be 

dramatically enhanced by the proper choice of metasurfaces that support ultra-confined surface plasmons 

with larger wavenumber. One potential candidate to achieve such response is the use of hyperbolic 

metasurface that supports surface plasmons with wavenumbers up to ~200 times larger than the ones 

supported in free space. My theoretical and numerical results using full wave simulations show that the use 

of hyperbolic metasurfaces enables unusual enhancement of the force strength (up to 3 orders of magnitude) 

in comparison to the one obtained above conventional isotropic media. Importantly, such response enables 

stable lateral trapping and efficient manipulation of nanoparticles using low-power laser beam thus reducing 

the photodamage threat. However, these general optical tweezers are static in the sense that their response 

cannot be dynamically controlled. 
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In this context, drift-biased nonreciprocal graphene has emerged as a promising platform to electrically tune 

and manipulate the dispersion characteristic of the supported modes. I propose the use of this platform as a 

planar plasmonic hyperlens that provides ultra-subwavelength imaging with remarkable resolution over a 

broadband frequency range that cannot be obtained by other artificially engineered structure. In addition, 

drift-biased graphene can also readily be applied in the context of optical tweezers to provide novel 

responses: (i) particles can be manipulated unidirectionally independent to the direction of the incoming 

light, overcoming beam alignment challenges occurring in conventional optical tweezers; and (ii) the 

location of optical traps can efficiently be manipulated over a few microns range thanks to the electrically 

tunable response. In summary, I envisage that the proposed nano-optical hyperbolic and nonreciprocal 

plasmonic tweezers may open unprecedented venues for routing, trapping, and assembling nanoparticles 

and can effectively address some of the shortcomings of current techniques. 
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Chapter 1:  Introduction 

1.1 METAMATERIALS AND METASURFACES 

Metamaterials are artificially designed electromagnetic materials designed on subwavelength scale to 

achieve extreme light-matter interactions that cannot be obtained using naturally available conventional 

media. They are constructed by a repeating pattern of metals or dielectrics at scales much smaller than the 

operating wavelength. The macroscopic constitutive parameters of the metamaterials are not directly 

determined by the electrical properties of the base materials (metal or dielectrics), rather they depend on 

the orientation, shape, density, and composition of the newly designed structures. Within the 

electromagnetics and nanophotonic research community, metamaterials have gathered significant attention 

over the past few decades, and the unusual light-matter interactions provided by them have triggered 

numerous applications, including negative refraction of light [1-4], focusing and superlensing [5-8], ultra-

subwavelength imaging [9,10], optical cloaking [11-14], hyperbolic dispersion characteristics [15-17], 

micro-electromechanical systems [18-20], optical tweezers [21-24], surface enhanced Raman scattering 

[25,26], Cherenkov radiation [27,28], amongst many others. Figure 1.1 shows examples of two important 

electromagnetic effects using metamaterials: (a) hyperlensing with sub-diffractive resolution using split 

ring resonators [29], and (b) Cherenkov radiation using periodically organized metal-dielectric layers 

 

Figure 1.1: Nanophotonic applications of hyperbolic metamaterials. (a) Hyperlens with sub-diffractive resolutions 

[29], and (b) Cherenkov radiation in the presence of electron beam flowing nearby [27].  
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overcoming the velocity threshold of moving charges [27]. Despite offering promising electromagnetic 

features, the three-dimension size, bulk volumetric loss, fabrication challenges and difficulties to access 

energy always restrict the uses of metamaterials in modern nanophotonic devices. 

In a parallel development, recent years have witnessed the emergence of metasurfaces [30-32] –a two-

dimensional equivalent of bulk metamaterials– that enable planar photonics technologies [33,34]. 

Specifically, metasurfaces are constructed in a similar fashion as metamaterials, but in a single or few layers 

along planar dimension the with subwavelength thickness. The ultrathin thickness in the wave propagation 

confirms significantly reduced ohmic loss of the devices and provides an easy access to the stored energy. 

Moreover, the reduced dimensionality enables an easy integration with on-chip nanophotonic devices. Over 

the years, metasurfaces have provided a plethora of nanophotonic applications with outstanding 

performance, including canalization of electromagnetic waves [35,36], planar hyperlensing [37,38], planar 

nanoantennas and transceivers [39], ultra-sensitive sensors [40], invisibility cloaks [41,42] amongst many 

others. 

One of the unique features of metasurfaces is their ability to couple evanescent waves in the form of 

surface plasmon polaritons – an electromagnetic surface wave that propagates through a dielectric-metal 

interface with evanescent wavefront in the vertical direction. The use of metasurfaces permits to obtain 

extremely confined surface plasmons with large wavenumber, up to hundreds of times with respect to the 

one available in free space [43-47]. The feature of such surface waves can be tuned by modifying the size, 

arrangement and periodicity of the unit cells that compose the metasurface. Importantly, exotic light-matter 

interactions can be obtained with a properly designed structure that provides highly anisotropic response, 

including in-plane hyperbolic-like dispersion [48,49] in analogy to bulk hyperbolic mode in metamaterials 

[17,50]. Hyperbolic metasurfaces exhibit fascinating electromagnetic properties, such as extreme 

confinement of surface wave with very large wavenumber and local density of states over a broad frequency 

band [38,51,52]. The origin of the in-plane hyperbolic dispersion can be realized as follows: when a 

metasurface exhibits metallic (i.e., inductive, L) and dielectric (i.e., capacitive, C) responses along the 
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Figure 1.2: Realistic hyperbolic metasurfaces. (a) Visible frequency hyperbolic metasurface constructed by 

nanostructured silver allows negative refraction of light [48]. (b) Infrared and (c) terahertz hyperbolic metasurface 

constructed by hexagonal boron-nitride [49] and graphene strips [52], respectively, and their supported modes.  
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optical axes as a function of electric field polarization, the LC resonance introduces a hyperbolic dispersion 

in the momentum space. Hyperbolic metasurfaces can easily be constructed in practice with subwavelength 

periodically organized structures made of gold [53], silver [48], hexagonal boron nitride [49], graphene 

[51,52,54], and other two-dimensional materials [35,36]. Figure 1.2 shows few examples of realistic 

hyperbolic metasurfaces constructed by periodically organized (a) single crystalline silver, (b) hexagonal 

boron nitride and (c) graphene strips. The frequency range within which such structures support hyperbolic 

surface plasmons is primarily determined by the electrical properties of the composing cells. For instance, 

the use of gold and silver permits to design broadband hyperbolic metasurfaces ranging from visible to 

near-infrared frequencies [48], whereas hexagonal boron nitride [49] and graphene [51,52] covers infrared, 

and far-infrared to terahertz, respectively. 

Given these unusual electromagnetic properties and reduced dimensionality, it is not a surprise that 

hyperbolic metasurfaces is one of the most discussed and emerging topics in the field of plasmonics and 

nanophotonics. The ability of this platform to strongly interact with light simultaneously allowing dynamic 

processing of extremely confined surface waves, and easy integration with on-chip devices enables the 

design of optical tweezers using low power laser beam with superior performance, as will be investigated 

in this thesis. 

1.2 NONRECIPROCAL PLASMONICS 

The electromagnetic responses of conventional photonic devices are constrained by Lorentz reciprocity 

law that is based on the invariance of Maxwell’s equation under time-reversal symmetry [55]. It entails that 

signal transmission between two points in space must remain identical for both propagation directions when 

the source and receiver positions are interchanged [56]. This mechanism forbids one-way propagation of 

electromagnetic waves in linear plasmonic and photonic platforms. 

The last decade has witnessed enormous interests in breaking reciprocity to meet the ever-growing 

demands of all-photonic highly integrated systems [57-64]. One of the standard approaches to obtain 
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nonreciprocal responses relies on magneto-optical effects. Unfortunately, bulky, lossy, and expensive 

magnets required to achieve such responses are not compatible with integrated circuits, that lessen their 

interest in practice. Alternative solutions based on nonlinear effects [65,66], optomechanical interactions 

[67,68] and spatiotemporal modulations [69-71] have opened interesting opportunities. Among these 

approaches, nonlinear effects can be employed to break nonreciprocity for certain power levels of the 

incoming signals that is applied to a single port at the time. Nonreciprocal responses provided by the opto-

mechanical resonators are somehow complex to implement, narrowband, and relatively weak [72,73]. The 

other approach, spatiotemporal modulation, requires hundreds of gating pads to impart very high 

modulation frequencies able to impart linear or angular momentum to the devices, thus demanding very 

complicated fabrication process and feeding networks. All these challenges make the above approaches 

challenging to implement in practice. 

Recently, a novel mechanism has been put forward to realize nonreciprocal plasmonic structures by 

applying a drift-bias to efficiently shape the characteristics of the surface plasmon polaritons (SPPs) 

supported by them [61-64,74-76]. Such drift-biased materials host drifting electrons that causes the SPPs 

to feel different media towards and in the opposite of drifting direction. This mechanism strongly influences 

and interacts with the travelling plasmons, forcing them to exhibit a non-symmetrical propagation through 

the structure. 

Large part of the ability of the drift-bias approach in breaking reciprocity depends on the velocity of 

drifting electrons that interacts with the supported plasmons. For instance, strong nonreciprocal responses 

are extremely difficult to obtain in semiconductors and metals due to their weak-electron mobility [62]. In 

this context, graphene has recently opened new opportunities. This 2D material possesses ultrahigh electron 

mobility and the drifting electrons can acquire large velocities up to v�  ≈  0.95v�, very close to the Fermi 

velocity (v�  =  10�m/s) of electrons there [77,78]. Remarkably, these values are several orders of 

magnitude lager than those obtained in typical metals [62], and many times larger than in semi-conductors 

with high electron mobility [79]. Combining graphene plasmonics with drift-bias schemes has recently 
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opened simple yet extremely efficient ways to collimate, steer and shape SPPs over a broad frequency band 

[61,63,64]. I stress that the nonreciprocal properties of the surface plasmons supported by drift-biased 

graphene have been verified experimentally in the recent years [80,81]. Figure 1.3 shows the feature of the 

supported surface modes: plasmons flowing against the drifting electrons possess larger wavenumber than 

the one following along the drift. This mechanism will be further discussed in Chapter 3 of this thesis with 

a proposed application of drift-biased graphene acting as a planar plasmonic hyperlens. 

1.3 NANO-OPTICAL TWEEZERS  

The manipulation and trapping of particles was first reported in the seminal work of Prof. Ashkin in 

1970 [82]. This pioneering effort confirmed that light can exert actual forces on matter thanks to a 

momentum exchange during scattering processes. In the micrometer-sized range, conventional optical 

tweezers formed at the diffraction-limited focus of a laser beam have been proven as a powerful tool to 

manipulate a wide variety of objects [83], including cells and other biological components. Such tweezers 

have also been combined with confocal Raman spectroscopy [84-88] for label-free chemical analysis of 

single particles [89,90] and even single living cells [91,92]. At the sub nanometer scale, light-matter 

mechanical coupling has led to the cooling of atoms, ions, and molecules [93-95], giving rise to modern 

ultracold atom technology [96]. However, optical forces acting at the nanoscale, i.e. on particles between 

 

Figure 1.3: Drift-biased nonreciprocal graphene. (a) Schematic of the configuration, and (b) properties of the 

surface plasmons flowing along and against the drift [81]. 
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~1 and 100 nm, have been elusive in practical configurations due to the challenges present at this range 

[97,98]: scaling-down the techniques for manipulating microparticles, based on electric dipole interaction 

energy [99,100], leads to thermal fluctuations large enough to allow the particles to escape from the trap 

whereas scaling-up the efficient laser cooling of atoms requires scattering processes with very narrow 

spectral lines and without significant radiative losses, features that common nanostructures do not possess 

[96]. The development of optical tweezers operating at the nanoscale would open extraordinary 

opportunities in many fields of bioengineering and nanotechnology, including the accurate positioning of 

individual objects (such as quantum dots, nanowires, nanotubes, and two-dimensional materials) and 

exciting applications in bioengineering, biochemistry, and biophysics.  

In this context, recent years have witnessed the emergence of nano-optical plasmonic tweezers aiming 

to trap and manipulate nanometer-sized particles and objects [97,98]. These devices enhance optical forces 

thanks to the excitation of SPPs with evanescent fields that can be concentrated beyond the diffraction limit. 

A wide variety of nano-optical tweezers have been put forward, including metallic structures with 

micrometer-size patterning [101,102], optical antennas that exploit the field enhancement between their 

 

 
Figure 1.4: Examples of trapping and manipulation of particles using plasmonic nanostructures. (a) Schematic of 

an experimental microparticle trapping set-up [98]: a pattern of micrometer-sized gold disks is illuminated under 

the Kretschmann configuration through a glass prism. (b) Schematic of an experimental nano-tweezer system 

combined with surface enhanced Raman spectroscopy developed at Center for Biophotonics Science & 

Technology at the University of California Davis [108] and (c) images of the system trapping biomolecules. 
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arms [103-105], and nanostructured substrates [106], just to name a few. Figure 1.4 illustrates two 

configurations relevant to this application. Specifically, Figure 1.4(a) shows the first experiment of SPP-

based trapping [98,102,107]: a patterned metallic surface was illuminated using the Kretschmann 

configuration by a transverse magnetic (TM or p)-polarized beam, thus exciting evanescent optical waves 

able to manipulate and trap dielectric and metallic particles located in the near-field. Figure 1.4(b) highlights 

the integration of an optical tweezer with a confocal Raman spectroscopy setup, a system recently 

developed in Center for Biophotonics Science & Technology at the University of California Davis [108]. 

This integrated tweezer uses a 785 nm laser coupled to a silicon nitride waveguide to generate near-field 

evanescent waves capable of (i) trapping nanoparticles on the surface of the structure; and (ii) exciting 

surface-enhanced Raman spectroscopy signals to characterize such particles. Despite recent and significant 

progress in this field, the exponential growth of nanotechnology and bioengineering is continuously 

imposing challenging demands to modern nano-optical tweezers in terms of much larger optical forces and 

trapping potentials, lower laser intensities, deeply subwavelength resolution, and enhancement of the 

associated surface-enhanced Raman spectroscopy processes employed to characterize biological 

nanoparticles. 

1.4 SCOPE OF THIS THESIS  

The overarching objective of this thesis is to investigate the light-matter interactions provided by 

hyperbolic and nonreciprocal metasurfaces, and exploit their unusual near-field functionalities to design 

novel nanophotonic devices, with emphasis on nano-optical tweezers. Each Chapter investigates different 

physical scenarios within this common subject, and connect them with the previous analysis and results. 

In Chapter 2, I overview the dispersion relation of anisotropic metasurfaces, the feature of surface 

plasmons supported by them and the scattered dyadic Green’s function of the system. Then, I summarize 

the electromagnetic modelling and characterization of practical reciprocal anisotropic and hyperbolic 

metasurfaces constructed by periodically organized subwavelength metal or graphene strips covering 

visible, infrared and terahertz frequencies. In Chapter 3, I transition from reciprocal structures to design 
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and model nonreciprocal metasurfaces based on drift-biased graphene. I investigate the properties of surface 

plasmons supported by these structures and propose planar plasmonic hyperlenses capable of ultra-

subwavelength imaging. In Chapter 4, I develop a rigorous theoretical framework to calculate optical forces 

on a dipolar nanoparticle located near reciprocal anisotropic metasurfaces under illumination with a laser 

beam. I then extended my theory to the case when the metasurface reciprocity is broken in the presence of 

an external in-plane momentum bias, such as drift-biased graphene. These models are based on the scattered 

dyadic Green’s function of the system that I solve analytically by combining the complex integration 

techniques and residue theorem. This allows to develop analytical expressions of the optical forces that 

unveil the physical meaning and origin of such forces. In the following Chapters, I employ my theoretical 

model to compute the force response in several structures. Specifically, Chapter 5 and 6 investigate the 

response of giant lateral optical forces and stable optical trapping of nanoparticles located near reciprocal 

hyperbolic metasurfaces when illuminated by a plane wave and focused Gaussian beam, respectively. In 

Chapter 7, I investigate the force response near drift-biased nonreciprocal graphene in the presence of plane 

wave. Chapter 8 shows that when a nanoparticle located near a nonreciprocal surface is illuminated by a 

Gaussian beam, the trap position can be precisely manipulated in nanoscale by tuning the applied bias. This 

is the first nonreciprocal optical tweezer that does not rely on the magneto-optic effect. Finally, Chapter 9 

briefly overviews and details preliminary experimental efforts to experimentally measure such optical 

forces near reciprocal anisotropic media. In summary, this thesis investigates the exotic light-matter 

interactions and the near field-effects provided by hyperbolic and nonreciprocal metasurfaces, and their 

capability to trap and manipulate nanoparticles. 
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Chapter 2:  Surface plasmons in Anisotropic Metasurfaces 

Surface plasmon polaritons are electromagnetic waves that propagate along a dielectric-metal interface with 

an evanescent wavefront in the vertical direction [1]. In the case of conventional or isotropic metallic 

structures, these electromagnetic waves propagate symmetrically with identical wavenumber in any radial 

directions within the plane [2,3]. The wavevector and Poynting power carried out by such waves are aligned 

in the same direction. However, one can go beyond this paradigm by the use of anisotropic metasurfaces 

that open possibilities to manipulate the response of surface plasmons and allow to study novel physical 

mechanisms as well as exotic electromagnetic phenomena. For instance, the use of anisotropic metasurfaces 

significantly enhances the available density of states [4,5], boosts the spontaneous emission rate of nearby 

sources [6,7], and increases the efficiency of light-matter interactions. It is important to mention that the 

power and wavevector of plasmons in anisotropic metasurfaces are not aligned as in the case of isotropic 

ones. Anisotropic metasurfaces can be implemented in practice by using nanostructured ultrathin silver [8], 

gold [9], graphene [10], hexagonal boron-nitride [11], and other two-dimensional materials [12,13]. 

In this Chapter, I detail the electromagnetic modeling and characterization of anisotropic metasurfaces 

and investigate the light-matter interactions provided by them. To this purpose, first I develop a rigorous 

formalism to compute the effective electrical parameters (i.e., surface conductivity) to model 

nanostructured anisotropic metasurfaces. Then, I derive the dispersion relation and scattered dyadic Green’s 

function of the system to investigate the response of surface plasmons and the metasurface topologies. 

Finally, I provide a brief overview of the photonic spin Hall effect [14-16] that enables directional excitation 

of surface plasmons taking advantage of the spin-angular momentum of nearby point sources. This 

formalism will be used in the following Chapters to investigate novel mechanisms provided by anisotropic 

metasurfaces such as canalization of surface plasmons and hyperbolic dispersion, and to exploit near-field 

effects to enhance the lateral optical forces on nanoparticles thus paving the way to develop next generation 

nano-optical plasmonic tweezers.  
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2.1 ELECTROMAGNETIC MODELING AND CHARACTERIZATION 

In this section, I describe the electromagnetic modeling and characterization of ultrathin and 

subwavelength realistic anisotropic metasurfaces constructed by periodically organized metallic layers. 

First, I detail an analytical formalism to convert the electrical permittivity of an ultrathin and uniform layer 

with negligible out-of-plane electric field polarization [17,18] into a surface conductivity tensor. Then, I 

employ the effective medium theory to compute the effective conductivity tensor of the structure when it 

is nanopatterned in a periodic fashion. I also perform full wave numerical simulation in COMSOL 

Multiphysics [19] to validate the theory. Note that this theory is general and can be readily employed to 

compute effective conductivity of any nanostructured surfaces with subwavelength periodicity and width, 

including gold, silver, graphene, and other materials. 

2.1.1 HOMOGENIZATION OF METASURFACE 

Let me consider a free-standing pristine metal layer of subwavelength thickness H. Assuming an ����� 

time dependence*, the complex relative permittivity of this layer can be expressed as [20] 

ε� =  ε�,� + iε�,� = �� !− #$�% + i #&�% + ε'(, (2.1) 

where ‘i’ is the complex imaginary unit; subscripts ‘r’ and ‘i’ denote the real and imaginary parts of a 

complex number, respectively; ε' is the permittivity of free space; σ = σ� + iσ� is the complex 

conductivity; and ω = 2πf is the radial frequency with f being the operation frequency. Separating out the 

real and imaginary parts from both sides of Eq. (2.1), the in-plane conductivity of the layer yields  

σ = ωHε'ε�,� + iωHε'.1 − ε�,�/. (2.2) 

 

*A time-harmonic phasor convention of �����  is used in this thesis. 
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As an example, Figure 2.1(a) shows the relative permittivity of silver [21] versus a wavelength range 

covering from the visible towards the infrared. Results show that at wavelengths larger than the plasmon 

resonance ~340 nm, the material possesses a permittivity with a negative real part that correspond to a 

plasmonic response [1]. Here, the imaginary part corresponds to the ohmic losses associated with silver. 

Figure 2.1(b) shows the in-plane complex conductivity of a free-standing electrically thin layer of silver 

with H = 10 nm. In this case, the real part corresponds to the ohmic loss, and the imaginary part determines 

the metallic (i.e., Im2σ3 > 0) or dielectric (i.e., Im2σ3 < 0) response of the layer. I performed full wave 

simulation in COMSOL Multiphysics to compute the conductivity (will be detailed in Section 2.4) and 

results are in excellent agreement with the one computed using Eq. (2.2). It is important to mention that if 

the silver layer is extremely thin (i.e., H~ < 5 nm), quantum effects may modify the electrical permittivity. 

Throughout this thesis, the silver layer thickness is always considered much larger than this limit to avoid 

such quantum effects thus confirming that the electrical permittivity remains same as in the case of bulk 

silver. 

 

Figure 2.1: (a) Real and imaginary parts of silver relative permittivity as a function of wavelength λ'. (b) Real and 

imaginary parts of the in-plane conductivity of a H=10 nm thin single crystalline pristine silver in free space versus λ'. Solid lines and markers correspond to results computed using Eq. (2.2) and COMSOL Multiphysics, 

respectively. 
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2.1.2 EFFECTIVE MEDIUM THEORY 

Let me consider a periodic set of metallic strips with thickness H, width W and periodicity L made of 

silver [see inset in Figure 2.2(a)]. The strips are oriented along the y8-axis of the coordinate system as shown 

in the figure. When the operation wavelength is much larger than the strip periodicity L, the entire structure 

can be homogenized using the effective medium theory as σ9:;; = (σ==:;;, 0; 0, σ??:;;) with values [22,23] 

σ==:;; = σWL  and σ??:;; = C1σ + iωC:;;E��
 (2.3) 

where σ==:;; and σ??:;; denote the conductivity along and across the strips, respectively; C:;; =
(2ε:;;ε'L/π) lnGcsc (πG/2L)J is a measure of the capacitive coupling among adjacent strips [13] with G =
L − W; ε:;; = (ε� + εK)/2 with ε� and εK being the relative permittivity of the media above and below the 

metasurface; ‘csc’ is the trigonometric cosecant function; and ‘ln’ is the logarithmic function with base e. 

 

Figure 2.2: (a) Real and (b) imaginary parts of the diagonal components of the effective conductivity tensor of a 

silver-based anisotropic metasurface standing in free-space versus wavelength, λ'. Solid lines and markers 

correspond to the results computed using effective medium theory in Eq. (2.3) and numerically in COMSOL 

Multiphysics, respectively. The geometrical parameters of the structure (see inset) are W = 60 nm, L = 180 nm 

and H = 10 nm. 
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Figure 2.2 shows the diagonal components of σ9:;; versus the operation wavelength of an anisotropic 

metasurface constituted by periodically organized subwavelength silver strips along y8-axis of a reference 

coordinate system. The real and imaginary parts are shown in Figure 2.2(a) and Figure 2.2(b), respectively. 

Note that non-diagonal components are strictly zero in this example. Results show that within the frequency 

band from visible to infrared, the structure provides metallic (i.e., ImNσ==:;;O > 0), and dielectric (i.e., 

ImNσ??:;;O < 0) responses along x8 and y8 directions, respectively. Such response corresponds to a hyperbolic 

topology that will be discussed in Section 2.3 [23]. As the wavelength shifts toward the blue visible 

spectrum, a resonance condition (topological transition) with large dissipative loss appears. Further shift 

toward the near ultraviolet spectrum reaches the elliptic topology of the structure (i.e., ImNσ==:;;O > 0 & 

ImNσ??:;;O > 0). The transition between the hyperbolic and elliptic topologies implemented by this structure 

is determined by WσQ + (L − W)σ = 0 which is a pole of σ??:;; [23]. Full wave numerical simulations are 

performed using COMSOL Multiphysics to compute the effective in-plane conductivity of the anisotropic 

metasurface (will be discussed in Section 2.4) and results are in good agreement with the ones computed 

using effective medium theory [see Figure 2.2]. 

2.2 ANISOTROPIC SURFACE PLASMONS IN METASURFACES 

Anisotropic metasurfaces support surface waves that propagate with different characteristics along the 

surface. They exhibit exciting ways to manipulate electromagnetic waves with reduced resistive losses, and 

are relatively simple to fabricate. Surface plasmons on these structures can be excited using light sources 

located in the near field, such as aperture probe [24], irradiating dipolar particles [25], and fluorescent 

molecules [26], among many others [1]. The electromagnetic properties of such ultra-confined surface 

modes can be tailored by engineering the components of the metasurface conductivity tensor. In this section, 

I develop the dispersion relation of the metasurfaces and analyze different surface plasmon topologies 

supported by them. Next, I derive the dyadic Green’s function formalism of an electric point dipole located 
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above anisotropic metasurfaces. This formalism will be applied to develop the theoretical framework to 

compute the optical forces induced on Rayleigh particles in Chapter 4. 

2.2.1 DISPERSION RELATION 

Let me consider an electrically thin, homogeneous, linear, and anisotropic metasurface, as shown in 

Figure 2.3, that can be characterized electromagnetically using a fully populated in-plane conductivity 

tensor [7] 

σ9 = Rσ== σ=?σ?= σ??S, (2.4) 

where, the tensor components are complex numbers. In general, a passive metasurface must satisfy that 

ReGσ==J V 0, ReNσ??O V 0, and ReNσ== + σ??O V Wσ=? + σ?=∗ W, where ‘*’ denotes the complex conjugate. 

For uniaxial and reciprocal metasurfaces, the conductivity tensor is diagonal with nondiagonal components 

σ=? = σ?= = 0 in our reference coordinate system (see Figure 2.3). However, nondiagonal components 

may appear due to (i) a nonsymmetrical shape with respect to the reference coordinate system [27]; (ii) 

 

Figure 2.3: Surface plasmons polaritons above a free standing plasmonic metasurface (MTS) defined by an in-

plane conductivity tensor σ9 [1]. 
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magneto-optical effects in the presence of magnetic field [28], and (iii) nonlocal effects caused by the finite 

Fermi velocity of electrons in the materials that compose the metasurfaces. 

Let me consider an anisotropic metasurface supported by a dielectric substrate of electrical permittivity 

εK as is shown in Figure 2.4. An electric point emitted having a dipole moment pZ is located above the 

configuration at a position  r̅' = (x', y', z') in a medium of electrical permittivity ε�. Without loss of 

generality, I assume that the x8 and y8 axes of the coordinate system are tied to the diagonal directions of the 

conductivity tensor and that there is no magneto-optical effect in the surface. The polarization unit-vectors 

of the incident and reflected electric field of ‘p’ and ‘s’ (transverse electric, TE)-polarized waves can be 

defined as [29] 

e8�� =  − �̂_ ` k?−k=0 b =  − �̂c kZ � d e8e� , e8e� =  ^fc^_^c gk=k?^_h^fc
i =  �̂ kZ � d e8�� , (2.5a) 

 

Figure 2.4: Reflected fields from an anisotropic metasurface, defined by in-plane conductivity tensor σ9, with cross-

polarized reflection. The metasurface is standing on a substrate with electrical permittivity εK. An electric point 

source with dipole moment pZ is located in a medium of electrical permittivity ε� above the metasurface and 

radiates TM and transverse electric (TE or s)-polarized electromagnetic waves. 
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e8�� =  − �̂_ ` k?−k=0 b =  − �̂c kZ� d e8e� , e8e� =  ^fc^_^c g−k=−k?^_h^fc
i =  �̂c kZ� d e8��, (2.5b) 

where, ‘d’ is the cross product, k� is the wavenumber above the metasurface, kjK = k=K + k?K, kk� =
lk�K − kjK, and the superscripts ‘i’ and ‘r’ denote incident and reflected waves, respectively. The electric 

fields of ‘s’ and ‘p’ waves impinging on the metasurface are then given by 

En�� = e8�� E�',�e�n̂$∙�Z and Ene� = e8e� Ee',�e�n̂$∙�Z, (2.6) 

where E�',� and Ee',� are the amplitudes of the incident wave electric fields, r̅ = xx8 + yy8 + zz8 is the position 

vector, ‘i’ is the imaginary unit, and ‘∙’ denotes a dot product. In the case of waves with circular or elliptical 

polarization, they are decomposed into their ‘s’ and ‘p’ components, which are then processed following 

the formulation detailed below and finally added to retrieve the total field.  

The goal is to compute the dispersion relation of the metasurfaces which is the key to investigate their 

electromagnetic response. The total electric field in the media above (medium-1, z > 0) and below 

(medium-2, z < 0) the metasurface can be expressed as 

En� = En�'e�n̂c∙�Ze���j, (2.7a) 

EnK = EnK'e�n̂h∙�Ze���j. (2.7b) 

respectively, where kZK is the wavevector in medium 2. I stress that passivity enforces that ImGkk�J =
Im Rlk�K − kjKS and ImGkkKJ = Im RlkKK − kjKS should be positive and negative, respectively, thus leading 
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to surface waves having evanescent profile along the z8-axis. Now, I apply the Maxwell’s equations to the 

transverse components of the electric field, magnetic field and wavevector as  

Medium-1: Medium-2:  

kZ j ∙ (Hnj d z8) = −ωε�Ek�, kZ j ∙ (Hnj d z8) = −ωεKEkK, (2.8a) 

Hk�kZj − kk�Hnj = −ωε�(z8 d Enj), HkKkZj − kkKHnj = −ωεK(z8 d Enj), (2.8b) 

kZ j ∙ (z8 d Enj) = −ωμ'Hk�, kZ j ∙ (z8 d Enj) = −ωμ'HkK, (2.8c) 

Ek�kZj − kk�Enj = −ωμ'(Hnj d z8), EkKkZj − kkKEnj = −ωμ'(Hnj d z8), (2.8d) 

where subscript ‘t’ denotes the lateral or tangential components, t = 2x, y3 to the interface. From Eq. (2.8), 

the lateral electric field Enj and magnetic field Hnj can be computed as 

Medium-1:  

Hnj = ��c^fc !I̿ − n̂_n̂_^ch ( ∙ (z8 d Enj) =  Y9� ∙ (z8 d Enj), (2.9a) 

Enj = �t ^fc !I̿ − n̂_n̂_^ch ( ∙ (Hnj d z8) =  Zv� ∙ (Hnj d z8), (2.9b) 

Medium-2:  
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Hnj = ��c^fh !I̿ − n̂_n̂_^hh ( ∙ (z8 d Enj) =  Y9K ∙ (z8 d Enj), (2.9c) 

Enj = �t ^fh !I̿ − n̂_n̂_^hh ( ∙ (Hnj d z8) =  ZvK ∙ (Hnj d z8), (2.9d) 

where I ̿is the identity matrix,  kZ j = x8k= + y8k? is the transverse wavevector, Zv� = �t ^fc !I̿ − n̂_n̂_^ch ( and ZvK =
�t ^fh !I̿ − n̂_n̂_^hh ( are the dyadic characteristic impedances of media 1 and 2, respectively. The longitudinal 

field components are computed by applying the Gauss’ laws, kZ� ∙ En� = 0  and kZK ∙ EnK = 0. Applying the 

boundary conditions at z = 0 yield as 

Enj ∙ .Zv� ∙ ZvK ∙ σ9 + Zv� + ZvK/ = 0. (2.10) 

Eq. (2.10) describes the state of the system, and finally the dispersion relation yields 

WZv� ∙ ZvK ∙ σ9 + Zv� + ZvKW = 0, (2.11) 

and the polarization vectors of the supported modes are the eigenvectors of Zv� ∙ ZvK ∙ σ9 + Zv� + ZvK. Note that 

Eq. (2.11) is general and can be employed to compute the simpler dispersion relation of a free-standing 

metasurface [see Figure 2.3] by using ε� =  εK =  ε', k� = kK = k' and kk = kk� = kkK = lk'K − kjK. 

These identities lead to the dispersion relation of a free-standing metasurface 

k'kkw4 + η'K.σ==σ?? − σ=?σ?=/z − 2η'k'K.σ== + σ??/ + 2η'.k=Kσ== + k?Kσ?? +
k=k?σ=?σ?=/ = 0. 

(2.12) 
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Here, k' = ωlμ'ε' is the free-space wavenumber with μ' and ϵ' being the electrical permeability and 

permittivity, respectively; ImGkkJ > 0 and ImGkkJ < 0 for z > 0 and z < 0 to impose a decaying or 

evanescent surface modes in the normal direction to the metasurfaces; and η' = lμ'/ε' is the free space 

impedance. In the case of isotropic surfaces (i.e., σ== = σ?? = σ), Eq. (2.12) can be greatly simplified that 

provides the dispersion relation or wavenumber of the supported transverse magnetic modes as k| =
k'}1 − ! K~ #(K

 [7,13]. 

2.2.2 GREEN’S FUNCTION FORMALISM 

Here, I develop the scattered dyadic Green’s function of an electric point emitter located above an 

anisotropic metasurface. This formalism enables to compute the excited fields on the metasurface in the 

physical space by simply multiplying the Green’s function with the dipole moment [1]. 

Following the procedure detailed in Refs. [1,23,29], the scattered dyadic Green’s function of an emitter 

located above such an anisotropic metasurface [see Figure 2.4] is obtained as 

Gnn�(r̅, r̅') =  i8πK � GR���
�� Mnn �� + Re�Mnn e� + R�eMnn �e 

                                                 +ReeMnn eeJe�N^�(=�= )�^�(?�? )�^fc(k�k )Odk=dk?, 

(2.13) 

where R9 = �R�� Re�R�e Ree� is the anisotropic reflection coefficient tensor of the metasurface. In addition, the 

M-matrices are defined as Mnn �� = �̂fc e8�� ⊗ e8�� , Mnn e� =  �̂fc e8e� ⊗ e8�� , Mnn �e =  �̂fc e8�� ⊗ e8e�  and 

Mnn ee =  �̂fc e8e� ⊗ e8e�  with ⊗ being the vector dyadic product of the polarization unit vectors as is given in 

Eq. (2.5). The M-matrices read 
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Mnn �� = �^fc^_h � k?K −k=k? 0−k=k? k=K 00 0 0�, Mnn �e = �^ ^_h ⎣⎢⎢
⎢⎡−k=k? −k?K − ^�^_h^fck=K k=k? ^�^_h^fc0 0 0 ⎦⎥⎥

⎥⎤, 

(2.14) 

Mnn e� = �^ ^_h ⎣⎢
⎢⎡ k=k? −k=K 0k?K −k=k? 0− ^�^_h^fc ^�^_h^fc 0⎦⎥

⎥⎤, Mnn ee = ^fc^ h^_h ⎣⎢⎢
⎢⎢⎡ −k=K −k=k? − ^�^_h^fc−k=k? −k?K − ^�^_h^fc  

^�^_h^fc
^�^_h^fc ^_�^fch ⎦⎥⎥

⎥⎥⎤. 

It is useful to derive the reflection coefficient tensor of the metasurfaces in terms of ‘s’ and ‘p’ waves 

so it can be integrated in the scattered dyadic Green’s function of Eq. (2.13). To this purpose, I first consider 

k? = 0 for the case where xz is the plane of incidence that leads to kZ j = x8k=. Then, to evaluate the wave 

propagation towards other directions and analyze the complete responses, the xy-plane is rotated 

counterclockwise considering a rotation dyadic R9��j = �̂_ �k= −k?k? k= �. This leads to the rotated conductivity 

tensor of the metasurface as [23,30] 

σ9� =  R9��j� σ9R9��j =
�̂
_h �σ==k=K + σ??k?K + k=k?(σ=? + σ?=) σ=?k=K − σ?=k?K − k=k?(σ== − σ??)σ?=k=K − σ=?k?K − k=k?(σ== − σ??) σ??k=K + σ==k?K − k=k?(σ=? + σ?=)�, 

(2.15) 

where R9��j�  is the transpose of R9��j. 
This rotated conductivity tensor is employed to compute the reflected electric field from the 

metasurface. Now, I apply the boundary conditions at z = 0 
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z8 d .Enjj� − Enj� − Enj�/ = 0, (2.16a) 

z8 d .Hnj� + Hnj� − Hnjj�/ = σ9′ ∙ Enjj�. (2.16b) 

where the superscript ‘tr’ denotes the transmitted waves. Solving Eq. (2.16), the tangential reflected electric 

field vector is computed as 

Enj� = − �9c∙�9h∙#9���9c��9h�9c∙�9h∙#9���9c��9h ∙ Enj� = R9K� ∙ Enj�, (2.17) 

where R9K� = −.Zv� ∙ ZvK ∙ σ9� + Zv� + ZvK/�� ∙ .Zv� ∙ ZvK ∙ σ9� + Zv� − ZvK/ computes only the transverse 

components of the reflected electric field. The z8-component of the reflected electric field can easily be 

computed from the Gauss’ laws as Ek� = − ^�^fc E=�. 

The reflected electric field can now be decomposed into s and p-polarized waves to analyze the cross-

polarized reflection from the metasurface. 

s-polarized reflected fields: The z8-component of the electric field vector of s-polarized reflected wave 

is Ek,�� = − ^�^fc E=,�� = − ^�^fc RK�=? E?,�� = RK�,�k? E?,��  where, RK�,�k? = − ^�^fc RK�=? . This parameter permits to 

compute the total reflected s-polarized electric field vector from the metasurface following the identity, 

En�� = R9K�,� ∙ En��  where 

R9K�,� = �RK�== RK�=? 0RK�=? RK�?? 00 RK�,�k? 0�. (2.18) 
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Now, the s-polarized reflected electric field is 

En�� = y8RK�??E?,�� + x8RK�?= ^fc^ E=,e� = R��En�� + R�eEne� , (2.19) 

where R�� = RK�?? and R�e = ^fc^c RK�?= . 

p-polarized reflected fields: The z8-component of the p-polarized reflected electric field vector is Ek,e� =
− ^�^fc E=,e� = − ^�^fc RK�== E=,e� = − ^�^fc RK�== ^fc^c Ee',� = −RK�== ^�^c Ee',� = −RK�== Ek,e� = RK�,ekk Ek,e�  where RK�,ekk =
−RK�== . This component allows to compute the reflected p-polarized electric field vector from the identity, 

Ene� = R9K�,e ∙ Ene�  where 

R9K�,e = �RK�== RK�=? 0RK�=? RK�?? 00 0 RK�,ekk �. (2.20) 

Now, the p-polarized reflected electric field is 

Ene� = x8.RK�== E=,e� + RK�=? E?,�� / + z8.RK�,�k? E?,�� + RK�,ekk Ek,e� / = Re�En�� + ReeEne� , (2.21) 

where Re� = − ^c^fc RK�=?  and Ree = −RK�== . 

Finally, the reflection coefficient tensor of the anisotropic metasurface related to incident s and p-

polarized waves yields 

R9 = � RK�?? ^fc^c RK�?=
− ^c^fc RK�=? −RK�== �. (2.22) 
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It is important to stress that surface wave poles are located on the integration axis of Eq. (2.13), and 

Sommerfeld integration techniques are applied by deforming the integration path through the complex 

plane. 

Figure 2.5: Ek field component of surface plasmons excited by a linearly polarized (z-oriented) electric point dipole 

located above (i) isotropic, (b) elliptic, (c) hyperbolic and (d) extremely anisotropic metasurfaces. The inset above 

the field shows the isofrequency contours of each topology. 
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2.2.3 METASURFACE TOPOLOGIES 

Anisotropic metasurfaces with different topologies can be realized by analyzing their conductivity 

tensor components. Figure 2.5 illustrates the field distribution of surface plasmons propagating along 

different classes of metasurfaces. Specifically, Figure 2.5(a) shows the isotropic topology when σ== = σ?? 

and plasmons propagate along all directions symmetrically on the surface possessing identical properties. 

Anisotropic responses appear when ImGσ==J � ImNσ??O, and the structure topology depends on the signs 

of ImGσ==J and ImNσ??O that determine the shape of the isofrequency contour. For instance, the metasurface 

can have (i) an elliptic topology: support quasi-TM surface plasmons when ImGσ==J > 0, ImNσ??O >
0, ImGσ==J � ImNσ??O [see Figure 2.5(b)]; (ii) an hyperbolic topology: when the relative signs of ImGσ==J 
and ImNσ??O are opposite [see Figure 2.5(c)]; and (iii) extremely anisotropic or canalization-like: when 

ImGσ==J ≫ ImNσ??O [see Figure 2.5(d)] or ImGσ==J ≪ ImNσ??O. Eq. (2.12) shows that the quasi-TE surface 

modes exhibit a dispersion relation similar to the free-space having plasmon wavenumber nearly same as 

the free-space wavenumber. This leads to negligible wave confinement and responses that are of little 

practical interest. Throughout this work, more emphasize will be put on the unusual features of quasi-TM 

plasmons supported by metasurface.  

 

Figure 2.6: Surface plasmon propagating along the x8-axis at a metasurface, defined by optical conductivity tensor σ9, exhibiting evanescent wavefront along the z8-axis. The inset shows the rotation of the electric and magnetic fields, 

in the zx-plane, possessing y-directed transverse spin [15]. 
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2.3 PHOTONIC SPIN HALL EFFECT 

In this section, I briefly analyze the photonic spin Hall effect that enables directional excitation of SPPs 

on plasmonic metasurfaces in the presence of an electric point dipole possessing out-of-plane polarization 

spin. These directional SPPs play a key role to realize recoil optical forces on dipolar nanoparticles located 

near plasmonic metasurfaces as will be discussed in the following Chapters. 

Electrons and photons possess charge as well as spin [1,31]. The spin-orbit interaction of light that 

appears due to the splitting of opposite spin electrons or photons perpendicular to the incident plane of 

electromagnetic waves is referred as photonic spin Hall effect [32]. In this phenomenon, the spin or 

polarization of electromagnetic waves determine the electric field intensity distribution and propagation 

direction of light [33]. 

Merging the concept of photonics spin Hall effect with the electromagnetic responses provided by 

anisotropic metasurfaces has demonstrated unusual abilities of manipulating electromagnetic waves 

[16,34,35]. One of the most striking phenomena is the tunable and unidirectional excitation of surface 

plasmons, where the direction of plasmon propagation is controlled by the polarization of the incoming 

light [34,35]. Such remarkable spin-controlled unidirectional coupling between incoming light and 

transversely propagating evanescent surface waves is enabled thanks to the spin-properties of evanescent 

modes in Maxwell’s equations [33], and has evoked enormous interest recently [36-41]. 

Figure 2.6 shows surface plasmons propagating along the x8-axis with transverse wavenumber k= > k� 

that enforces an evanescent wavefront in the z8-direction since kk� becomes imaginary. Following the 

relation  kZ ∙ En = 0, the transverse electric field component of the plasmon is Ek = − !^fc^� ( E= =
−i !|^fc|^� ( E=. This relation confirms that the electric field of a linearly polarized (z-polarized) wave rotates 

in the zx-plane thus generating spin angular momentum along the orthogonal y8-axis [33]. Such transverse 

spin angular momentum can be computed as [33] 



38 
 

SAMZZZZZZ = ¢:Nn̂Od£¤Nn̂O.¢:Nn̂O/h = (=8dk8)^�^fc.¢:Nn̂O/h . (2.23) 

Eq. (2.23) shows that the transverse spin angular momentum of light is orthogonal to the plasmon 

wavevector. More importantly, the direction of this transverse spin angular momentum depends on the 

plasmon propagation direction, and plasmons with k= > 0 and k= < 0 carry transverse spins along  y8 and 

−y8 half spaces, respectively. 

 

Figure 2.7: Electromagnetic responses of anisotropic metasurfaces and associated photonic spin Hall 

effect. The metasurfaces are excited by a z-oriented dipole (red arrow) that is located at z' =40 nm. 

The first row corresponds to an isotropic metasurface with σ =  0.05 + i50 μS and the second row to a 

hyperbolic metasurface with σ== = 0.05 + i50 μS and σ?? = 0.05 − i50 μS. (a) Isofrequency contour. 

(b) y-component of the magnetic field of the plasmons excited by a z-oriented dipole. (c) and (d) 

columns are similar to (b) but considering that the dipole is circularly polarized with respect to the y-

axis with given rotation handedness (blue arrows), respectively. The dipole polarization is shown in the 

insets with a magenta arrow. All plots have identical dimensions and field scale. 
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Recent years have witnessed growing interests to selectively excite surface plasmons whose spin 

angular momentum matches with one of the fields radiated by an electric point dipole located nearby the 

metasurfaces [42,43]. In this case, the plasmon propagation direction depends on the polarization 

handedness of the dipole. Figure 2.7 shows such responses for the case of isotropic and hyperbolic 

metasurfaces. Results show that a linearly polarized dipole excites surface plasmons symmetrically on both 

structures. However, a circularly polarized dipole rotating in the xz-plane excites directional plasmons 

propagating along the positive or negative x-half spaces. Here, the propagation direction is determined by 

the interplay between the polarization spin of the dipole and polarization state of the plasmons in the 

positive and negative x-half spaces of both metasurfaces. Unlike the isotropic one, the directional SPPs 

supported by the hyperbolic metasurfaces are significantly more confined and possess large spatial 

wavenumber. In Chapters 5 and 6, the unusual features of the directional hyperbolic surface plasmons 

enabled by the photonic spin Hall effect will be exploited to obtain giant lateral optical forces on dipoles 

located in the near field of the structure. 

2.4 NUMERICAL SIMULATIONS IN COMSOL MULTIPHYSICS 

Full wave simulation in COMSOL Multiphysics is performed to compute the conductivity of ultrathin 

uniform and nanostructured silver based metasurfaces [see the inset in Figure 2.2(a)]. The frequency 

dependent electrical permittivity of silver is available in ref-[21]. Scattering boundary conditions are 

applied to the outer boundaries of the entire geometry. A fine tetrahedral mesh with maximum element size 

λ'/70 is applied to the metasurface. To compute the conductivity tensor, first I consider a normally incident 

plane wave to the metasurface with electric field polarized along the x8-direction. The simulation permits to 

numerically calculate the surface current density J=. Now the x8x8 component of the conductivity tensor can 

be easily retrieved from the identity: σ== = J=/E=, where E= is composed of the incident and reflected field. 

In order to compute the y8y8 component of the conductivity tensor σ??, I consider a normally incident plane 

wave to the metasurface with electric field polarized along the y8-direction and apply the identity σ?? =
J?/E?, where E? is the superposition of the incident and the reflected field. I recall that the simulation results 
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for nanostructured silver based anisotropic metasurface are provided in Figure 2.2. In the case of uniform 

silver layer, similar procedure is applied to compute the surface conductivity σ== = σ?? = σ and the results 

are shown in Figure 2.1(b). 
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Chapter 3:  Drift-biased Nonreciprocal Graphene 

Plasmonics 

Drift-biased graphene has recently emerged as a promising platform for broadband nonreciprocal 

plasmonics [1-5]. The resulting nonreciprocal response is remarkably robust since this two-dimensional 

material simultaneously provides an ultrahigh electron mobility that enables drift-velocities very close to 

the Fermi velocity [6,7] and a strong plasmonic response in the terahertz and infrared frequency bands [8,9]. 

Merging drift-biased graphene with the rich functionalities and strong light–matter interactions provided 

by patterned metasurfaces has opened new routes to manipulate the states supported by the device, allowing 

new degrees of freedom to tailor its dispersion diagram (two dimensional isofrequency contour) and to 

excite and steer broadband SPPs immune to backscattering [1]. 

In this Chapter, I explore the possibilities enabled by drift-biased graphene to tailor the isofrequency 

contour of the supported modes, and apply it to construct broadband and unidirectional plasmonic 

hyperlens. First, I briefly review the electromagnetic modeling of drift-biased graphene conductivity using 

a nonlocal approach. This model relies on the Doppler shift that the surface waves experience due to the 

drifting electrons, and negative Landau damping that might lead to plasmon amplification. Using a 

dedicated Green’s function formalism [see Chapter 2], I investigate the properties of surface plasmons 

excited on the structure in the presence of a nearby dipolar source. Then, I propose a new approach to tailor 

the isofrequency contour of the modes supported by graphene: applying two drift-biases on the graphene 

sheet that are orthogonal to each other. This simple technique tailors the modal dispersion of the supported 

plasmons to a great extent in an unprecedented manner, thus permitting to dynamically steer and canalize 

one-way plasmons towards desired directions within the plane. This technique avoids the need of 

nanopatterning the two-dimensional layer [1] or its ground plane and permits to obtain nonreciprocal, 

broadband, dynamic, and flat modal dispersions that canalize surface plasmons toward desired directions 

in the plane. Finally, I investigate the capabilities of this platform to resolve the presence of two sources 



45 
 

located in the near field in terms of subwavelength resolution and operation frequency. I also determine the 

velocity that drifting electrons must acquire to achieve an optimum resolution. I exploit the orthogonality 

between the voltage sources and drifting electrons to generate effectively superluminal currents traveling 

diagonally along the surface and explore the potential response of such a platform using the semi-classical 

formalism. Here, superluminal refers to the fact that the speed of light in graphene is compared to the Fermi 

velocity, and electrons drift at a speed faster than the Fermi velocity. Even though the feasibility of a 

superluminal drift regime in graphene is not yet determined, results suggest that it would significantly 

enhance the platform performance. I then take advantage of spin–orbit interactions to construct broadband 

and unidirectional planar hyperlenses for near-field sources with specific field polarization distribution. 

3.1 NONLOCAL CONDUCTIVITY MODEL OF DRIFT-BIASED GRAPHENE 

Let me consider a graphene sheet, standing on a substrate of relative electrical permittivity εK, is biased 

with a longitudinal voltage V�Q that induces drifting electrons with velocity vZ� = v�e8Q along the sheet, 

where e8Q is the unit-vector that defines the current direction within the plane. The schematic of this 

 

Figure 3.1: A graphene sheet, standing on a substrate of electrical permittivity εK, is electrical biased with dc 

voltage V�Q thus inducing drifting electrons. (a) Schematic of the configuration. (b) Three-dimensional view of 

the isofrequency contour of the structure as a function of drift velocity vZ�  =  y8v� assuming εK  =  3.8. Operation 

frequency is 21 THz and graphene’s chemical potential and relaxation time are set to 0.1eV and 0.5 ps, 

respectively.  
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configuration is depicted in Figure 3.1(a). As described in [1-3], drifting electrons introduce a Doppler shift 

in the wavevectors thus enabling different responses for SPPs propagating along and against the drift. In 

the presence of drift-bias, graphene’s conductivity becomes nonlocal, and it can be expressed as [1-3] 

σ�.ω, v�=, v�?, k=, k?/ = ���n̂©∙ªn« σ¬.ω − kZ| ∙ vZ�/, (3.1) 

where ω = 2πf is the oscillation frequency,  kZ| = x8k= + y8k? is the in-plane wavenumber of the surface 

modes, vZ� = x8v�= + y8v�?, and σ¬ is graphene’s conductivity computed using a nonlocal approach [10,11]. 

Eq. (3.1) accounts for a drift-induced Doppler shift in the momentum space proportional to the velocity of 

the drifting electrons (~k=v�= + k?v�?) as well as a negative Landau damping expressed through the factor 

���^�ª«��^�ª«� that might lead to plasmon amplification [3]. Incorporating Eq. (3.1) in the nonlocal and 

anisotropic Green’s function framework (see Chapter 2) permits to calculate the modal dispersion of drift-

biased graphene as well as its electromagnetic response to point sources.  

For the sake of simplicity, I assume that the dc-bias is applied along y8-axis of the reference coordinate 

system that leads to vZ� = y8v�. The graphene sheet is supported by hexagonal boron nitride (i.e., εK ≈ 3.8) 

[1]. Figure 3.1(b) shows the isofrequency contour of the structure as a function of the drift velocity v� in 

three-dimensional fashion. In the absence of drifting electrons, the purely circular shape of the isofrequency 

contour (IFC) confirms that graphene exhibits an isotropic and reciprocal response [9]. The applied drift 

bias breaks the symmetry of the supported eigenstates and leads to effectively anisotropic and nonreciprocal 

metasurfaces. These structures support SPPs with larger wavenumbers propagating in the opposite of drift 

(negative y half space) than those propagating towards the electrons drifting direction. The asymmetry 

further increases with the amount of v�. In the orthogonal directions to the drift, these metasurfaces display 

nearly symmetric behavior and SPPs propagating in the positive and negative x half spaces possess equal 

wavenumber. Note that nonlocality due to the finite velocity of electrons in graphene is a key ingredient in 
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this response. Without considering nonlocal effects, the isofrequency contour may show an open shape in 

one axis, that would completely forbit wave propagation in that direction. 

3.2 ELECTROMAGNETIC RESPONSE OF NONRECIPROCAL SURFACE PLASMONS 

Let me consider a linearly polarized dipole (i.e.,  pZ = z8) located at a distance z' from the graphene 

sheet. Figure 3.2(a) shows the isofrequency contours of unbiased and drift-biased graphene metasurface 

with v� = 0.6v�. Figure 3.2(b)-(d) depict the z-component of the plasmon electric field excited on these 

surfaces. Specifically, Figure 3.2(b) shows that plasmons are excited symmetrically on the unbiased sheet 

thus confirming the reciprocal responses. Figure 3.2(c)-(d) show the excited surface plasmons for different 

 

Figure 3.2: A linearly polarized electric point dipole (magenta arrow) polarized along ẑ is located, in free space, 

above an electrical biased graphene sheet. (a) Isofrequency contour of the metasurface without (black line) and 

with (blue line) drift velocity, v�  =  0.6v�. Normalized z-component of the electric field of the excited surface 

plasmons on graphene when (b) there is no drift, and (c) v�  =  0.6v� keeping the dipole position z'  =  30 nm 

above the sheet. (d) Excited surface plasmons when the dipole is moved to z'  =  60 nm keeping v�  =  0.6v�. 

Remaining parameters are as in Figure 3.1. 
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position of the dipole keeping the electron drift velocity vZ� = y80.6v� fixed. Specifically, when the dipole 

is very close to the metasurface [see panel-(c)], the evanescent fields radiated by the dipole are efficiently 

coupled to the structure and excite surface plasmons with all possible supported modes. It is obvious that 

the plasmons flowing against the drifting electrons are more confined than the ones propagating in the 

opposite direction. As the distance between the metasurface and the dipole increases [see panel-(d)], larger 

wavenumbers radiated by the dipole are quickly filtered out by free space and do not effectively couple to 

surface modes in the negative ® half space. Instead, radiated fields with smaller wavenumbers are coupled 

to the sheet and plasmons favorably propagate toward the electron drifting direction.  

In the following, I consider the case when a dipole is very close to the surface, aiming to take advantage 

of the strong near-field coupling between the dipole and the metasurfaces, and I propose the use of this 

platform as a planar plasmonic hyperlens with ultra-subwavelength resolution over a broadband frequency. 

 

Figure 3.3: Proposed planar hyperlensing platform based on drift-biased graphene. (a) Schematic. A graphene 

sheet embedded in hBN is electrically biased with two longitudinal dc voltages, V�Q=  and V�Q? , that generate 

orthogonal drifting electrons moving along the x8 and y8 axes with velocities v�= and v�?, respectively. (b) Influence 

of the drifting electron velocity on the isofrequency contour of the structure. (black) No bias; (blue)  vZ� =0.65v�x8 + 0.0y8; (red) vZ� = 0.65v�x8 + 0.65v�y8. (c) Excitation of surface waves (normalized magnitude of the 

Poynting vector SZ in dB) by two z8-oriented dipoles separated by a distance d =  λ'/100 (λ' is the wavelength) 

along the y8 axis and located at 15nm over the surface. Operation frequency is 15 THz, and graphene’s chemical 

potential and relaxation time are set to 0.1eV and 0.5 ps. 
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3.3 BROADBAND AND UNIDIRECTIONAL PLASMONIC HYPERLENSING 

Let me consider a drift-biased graphene metasurface with two orthogonal longitudinal dc-biases [see 

Figure 3.3(a)]. Here, the additional dc-bias provides an extra degree of freedom to manipulate the 

isofrequency contours of the metasurfaces in unprecedented ways. Note that Eq. (3.1) can be readily applied 

to model this device assuming that the orthogonal drift currents on graphene layer do not interact with each 

other.  

Figure 3.3(b) shows the isofrequency contours of the supported modes for several biasing conditions. I 

recall that in the absence of any drift-bias, graphene exhibits an isotropic response associated to surface 

plasmons (black line). Applying a longitudinal bias along the x8-axis induces drifting electrons on graphene 

that breaks the symmetry of the eigenstates and leads to an effectively anisotropic and nonreciprocal modal 

response. In case of drifting electrons with velocity v�= = 0.65v� (blue line), plasmons propagating along 

the drift (positive k= half space) travel significantly faster than other modes, exhibiting a moderate field 

confinement and low-loss. On the contrary, plasmons propagating against the drift (negative k= half space) 

are extremely confined and lossy. The resulting isofrequency contour acquires a closed elliptical shape that 

is symmetric with respect to the direction orthogonal to the drift-axis (i.e., y8) and whose center has been 

shifted in the momentum space toward the direction opposite to the drift. Applying an additional drift bias 

of similar magnitude on the y8 direction [red line in Figure 3.3(b)] permits to further manipulate the 

supported states by (i) decreasing the field confinement and loss of certain states; and (ii) and flattening the 

IFC along the directions of the applied bias. This response arises due to the interplay between nonlocality 

and nonreciprocity: the effective drift bias generates a strong nonreciprocal response whereas nonlocality 

imposes that SPPs must be supported at all directions within the plane. The ultra-confined states that appear 

in directions opposite to the effective drift elongates and significantly flattens the isofrequency contour of 

the device, thus enabling the use of drift-biased graphene to canalize SPPs. It is important to remark the 

key role played by nonlocality to determine the platform dispersion as well as the direction of energy flow: 

if this phenomenon is not considered, the IFC would exhibit an open shape in the momentum space that 
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would prevent the propagation of SPPs in directions opposite to the drifting electrons. The strong influence 

of nonlocality in drift-biased graphene plasmonics is in full agreement with recent works that have 

discussed how nonlocal effects prevent the presence of truly unidirectional plasmons at homogeneous 

magnetic interfaces [12-14] by closing the IFC. To illustrate the application of the proposed platform in 

hyperlensing, Figure 3.3(c) shows the excitation of surface waves by two ¯-oriented dipoles separated by a 

 

Figure 3.4: Properties of the surface plasmons supported by a graphene layer biased with a drift velocity v�= =0.65v� along the x8 axis versus the velocity of drifting electrons flowing along the orthogonal direction y8, v�?. (a) 

Isofrequency contour. (b-d) Normalized magnitude of the Poynting vector SZ (in dB) excited by a z8-oriented dipole 

located at 15 nm above the surface. Results are computed on the metasurface for (b) v�? = 0; (c) v�? = 0.35v�; and 

(d) v�? = 0.65v�. Each panel contains an inset illustrating the metasurface isofrequency contour and the direction 

of energy flow (red arrow). Other parameters are as in Figure 3.3. 
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distance d=200 nm (~λ'/100 where λ' is the free space wavelength) along the y8 axis and located 15 nm 

over the graphene surface. Results shows that plasmons are excited only along directions close to those 

defined by the applied bias and they travel without any apparent diffraction, demonstrating strong capability 

for subwavelength imaging. Remarkably, the platform provides a strong nonreciprocal response and 

prevents any wave propagation in the surface but collimated plasmonic beams. In the following, I 

investigate the performance of this platform in terms of applied drift bias, resolution, operation frequency, 

and polarization. 

Figure 3.4 studies the properties of surface plasmons supported by a graphene layer that is biased with 

a drift velocity v�= = 0.65v� along the x8-axis versus the velocity of drifting electrons traveling toward the 

orthogonal direction, v�?. Specifically, Figure 3.4(a) shows the evolution of the isofrequency contour in the 

momentum-space versus v�?. Results show the capability of this platform to manipulate the isofrequency 

contour in a dynamic manner by adjusting the voltages applied to the orthogonal DC sources.  For 

sufficiently larger values of the drift velocity (v�? > 0.6v�), the isofrequency contour acquires the quasi-

flat response typical of media operating in the canalization regime [15,16]. Figure 3.4(b)-(d) show the 

normalized magnitude of the Poynting vector excited by a z-oriented dipole located at 15nm above the 

graphene layer when it is biased with different drift velocities. In the different panels, the insets show the 

 

Figure 3.5: Broadband response of the proposed planar hyperlensing platform. The structure is biased with a drift 

velocity vZ� = 0.65v�x8 + 0.65v�y8 (a) Isofrequency contour at different frequencies. (b-c) Normalized magnitude 

of the Poynting vector SZ (in dB) excited by a z8-oriented dipole located at 15nm above the surface. Results are 

computed on the metasurface at (b) 18 THz and (c) 25 THz. Other parameters are as in Figure 3.3. 
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isofrequency contours of the surface and the direction of energy flow (red arrows). Results clearly illustrate 

how the quality of the canalization (inversely proportional to the plasmon beamwidth) and propagation 

distance of the excited surface plasmons significantly increase with the velocity of the drifting electrons 

flowing along the ®8 direction, in full agreement with the qualitative analysis of the isofrequency contour. 

One of the most remarkable properties of the proposed hyperlensing platform is the broadband 

response, covering from the terahertz/far-infrared band to the mid-infrared. Figure 3.5(a) shows the 

isofrequency contours of the supported modes from 5 to 25 THz, a frequency region in which intraband 

contributions dominate the electromagnetic response of graphene. Results show that flat isofrequency 

contours, associated to strong canalization responses, can be obtained over a very broad frequency region 

(roughly from 11 to 25 THz). Figure 3.5(b)-(c) further confirm this response, showing the magnitude of 

Poynting vector on the drift-biased graphene layer when it is excited by a ¯-oriented emitter oscillating at 

18 and 25 THz, respectively. It should be noted that strong canalization responses are not found at 

frequencies lower than 10 THz, which I attribute to the lower confinement and larger loss of SPPs supported 

in this band. However, it might be possible to achieve canalization in these frequencies by increasing the 

 

Figure 3.6: Performance the proposed planar hyperlensing platform. Results show the normalized magnitude of the 

Poynting vector SZ (in dB) excited by two z8-oriented dipoles separated by a sub-wavelength distance d along the y8 

axis computed at a distance x'=50 nm (gray observation line in Fig. 3.3c) versus (a) separation distance d, keeping vZ� = 0.65v�x8 + 0.65v�y8 and f=15THz; (b) drift velocity vZ� = v�=x8 + v�?y8, keeping v�= = v�?, d=λ'/200(~100 nm) 

and f=15 THz; and (c) frequency, keeping vZ� = 0.65v�x8 + 0.65v�y8 and d=100 nm. Other parameters are as in 

Figure 3.3. 
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graphene quality (using relaxation times > 0.75 ps) [17] or reducing the chemical potential, which in turn 

would adjust the overall frequency region in which plasmon canalization is supported. 

Figure 3.6 investigates and determines the capability of drift-biased graphene to resolve the presence 

of emitters separated by ultra-subwavelength distances. Specifically, I consider the scenario shown in 

Figure 3.3(c) and study the power of the surface plasmons excited by two emitters at a fixed distance from 

them [x'=50nm, observation line in Figure 3.3(c)] versus the (a) separation distance d between the sources; 

(b) applied drift-velocity; and (c) operation frequency. The performance of the platform is remarkable: it 

offers resolution larger than ~λ'/500 and enables ultra-subwavelength imaging; requires realistic drift-

velocities (v�= = v�? = 0.65v� and |vZ�| ≈ 0.92v�) that have already been experimentally demonstrated in 

hexagonal boron nitride encapsulated graphene [6,7]; and can easily resolve the presence of emitters 

separated by 100nm that oscillate from 12 to 25 THz [see Figure 3.6(c)]. Such response can be enhanced 

further by increasing the applied orthogonal bias voltages [see Figure 3.6(b)] up to a point in which the 

platform may become superluminal in the sense that the effective drifting electrons move faster than the 

electron Fermi velocity (i.e., |vZ�| > v�). In this scenario, electrons move orthogonally along the x8 and y8 

 

Figure 3.7: Performance of the hyperlensing platform in a superluminal case. Graphene is biased with an effective 

drift current vZ� = 0.8v�x8 + 0.8v�y8 (|vZ�| ≈ 1.13v�). (a) Excitation of surface waves (magnitude of the Poynting 

vector SZ in dB) by two z8-oriented dipoles separated by a distance d =  λ'/200 along the y8 axis and located at 

15nm over the surface. (b)-(c) Response of the platform computed at a distance x'=50 nm (gray observation line 

panel a) versus (b) separation distance d, keeping f=15 THz; and (c) frequency, keeping separation distance as 

d=50nm. Other parameters are as in Figure 3.3. 
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axes with a velocity slower than °± and generate an electromagnetic response similar to the one created by 

an effectively superluminal motion of electrons drifting diagonally along the metasurface. Although an 

effectively superluminal regime has not yet been experimentally realized in graphene, I consider this regime 

as a futuristic possibility and explore its potential performance. Figure 3.7 shows the hyperlensing response 

of the platform when it is biased with an effective current vZ� = 0.8v�x8 + 0.8v�y8 (|vZ�| ≈ 1.13v�). Results 

confirm the presence of extremely canalized surface plasmons as well as a subwavelength resolution 

>λ'/1800 over a large bandwidth. It should be noted that these properties can be further tuned by applying 

a gate-bias, allowing a dynamic control of the hyperlens performance. 

The intrinsic nonreciprocal response of drift-biased graphene can be exploited in this platform to put 

forward unidirectional hyperlenses. To this purpose, one can exploit spin-orbit interactions [18-21] and 

match the field polarization spin of dipolar sources or a field distribution image with the transverse spin of 

a subset of the modes supported by drift-bias graphene, thus enabling plasmon canalization toward a unique 

direction within the plane. This possibility is explored in Figure 3.8, which shows the excitation of surface 

waves by two closely located, circularly-polarized emitters. Results show that sources with an out-of-plane 

dipole moment spin rotating along the x8-axis (pZ = x8 + iz8) excite surface plasmons canalized along the x8-

 

Figure 3.8: Unidirectional hyperlensing exploiting the photonic spin Hall effect. Normalized magnitude of the 

Poynting vector SZ (in dB) excited by two circularly polarized dipoles separated by a distance d = λ'/100 and 

located at 15nm over the surface. Results are computed on the metasurface at 15THz when the emitters have a 

dipole moment with an out-of-plane polarization spin defined by (a) pZ = x8 + iz8, rotating along the x8-axis; and (b) pZ = y8 + iz8, along the y8-axis. Other parameters are as in Figure 3.3. 
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axis, whereas sources with a spin rotating along the y8-axis (pZ = y8 + iz8) excite plasmons canalized toward 

the orthogonal direction, y8. It should be stressed that the spin-locking does not deteriorate the overall 

performance of the hyperlensing platform, which maintains its response in terms of resolution and 

bandwidth. 

3.4 CHAPTER CONCLUSIONS 

In summary, I have put forward a platform to achieve broadband and unidirectional plasmon 

hyperlensing based on a graphene layer longitudinally biased with two orthogonal dc-voltages. This 

approach exploits the interplay between nonreciprocity and nonlocality to flatten the isofrequency contour 

of the supported modes and enable canalization of surface plasmons toward the direction defined by the 

applied biases. The proposed platform merges nonreciprocal and canalization responses over a simple 

structure, avoiding the presence of magnetic bias or the need of nanostructured surfaces, and exhibits a 

remarkable response in terms of resolution (up to ~λ'/1000) and broadband response (roughly from 10 to 

25 THz, keeping a resolution larger than λ'/500 in the entire range) while requiring realistic drift-bias. 

Besides, unidirectional canalization can be achieved using emitters or field images with an out-ot-plane 

polarization spin that rotates against the desired direction of propagation. The platform response is tunable 

with a gate bias which might lead to a dynamic control and steering of canalized plasmons. In terms of 

practical implementation, it should be stressed that recent experiments have demonstrated graphene 

embedded in hexagonal boron nitride supporting drift-currents with velocities very close to the Fermi 

velocity (v� ≈ 0.95v�) at room temperature [6,7], a response enabled by the reduced carrier scattering with 

surface optical phonons in hexagonal boron nitride. I envision that the unidirectional hyperlensing may 

trigger exciting applications in sub-diffractive imaging, sensing, as well as in the excitation, routing, and 

processing of plasmons over a broad frequency range. 
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Chapter 4:  Theory of Optical Forces at Nanoscale 

Light carries energy and momentum, and can exert actual forces on objects. The fundamental principle of 

these forces relies on the momentum conservation law that found significant importance in classical 

electrodynamics [1]. When light is scattered or absorbed by an object, the change of momentum via 

absorption or scattering is transferred to a mechanical motion of that object. The presence of these optical 

forces was first reported in the pioneering seminal work of Prof. Ashkin in 1970 [2] that led to the 2018 

Nobel Prize in Physics “for groundbreaking inventions in the field of laser physics” [3].  

The goal of this Chapter is to calculate optical forces induced on a spherical Rayleigh particle (radius 

² < λ'/20 where λ' is the wavelength [1,4]) upon illumination of plane waves, and unveil and describe 

the underlying mechanisms that sustain such forces. First, I review the classical electrodynamics to derive 

the general expression of optical forces exerted on an arbitrary object following the momentum 

conservation law [1]. The net forces can be accurately computed using the Maxwell’s stress tensor. In the 

small object or Rayleigh limit, Lorentz force model within dipole approximation can be directly applied to 

rigorously model such forces. Then, I derive a comprehensive theoretical framework to compute the 

resulting forces when the particle is located near reciprocal plasmonic metasurfaces. Later, I extend my 

analysis to model the forces when the surface is nonreciprocal in the presence of an external in-plane 

momentum bias. My theory is based on a semi-classical Green’s function formalism that models and 

understands the electromagnetic interaction between the surface and an electric point dipole located above 

it, and neglects other potential sources of forces such as thermal or quantum fluctuations [5-7]. The 

proposed theory is general in the sense that it can be readily applied to any type of structures, including 

bulk or two-dimensional materials, provided by that the adequate Green’s function of the system is 

available. Finally, I detail the full-wave simulation procedure to compute such optical forces using 

Maxwell’s stress tensor method in COMSOL Multiphysics [8]. 



60 
 

Throughout my theoretical development, I also derive analytical approximated expressions for lateral 

optical forces. To this purpose, I analytical solve scattered dyadic Green’s function of the system based 

complex integration technique [9] combined with Residue theorem [10]. These analytical solution reveals 

that the dispersion relation of a plasmonic system suffices to determine lateral forces, shedding light into 

the underlying mechanisms that control these forces and facilitating the easy and accurate design of 

plasmonic platforms capable of manipulating nanoparticles. 

4.1 FORMALISM OF OPTICAL FORCES 

In this section, I review the Maxwell’s stress tensor and dipole approximation models to compute 

optical forces on a quasi-stationary object (i.e., Doppler shift effects are negligible) assuming 

monochromatic light at optical frequency ω. 

4.1.1 MAXWELL’S STRESS TENSOR 

The conservation law of linear momentum is a direct consequence of the combination of Maxwell’s 

equations and Lorentz force law. Together, they form the foundation of classical electromagnetics. On one 

hand, the Maxwell’s equations in free space are expressed as [1] 

∇ d En = −μ' ��j Hn, (4.1a) 

∇ d Hn = ε' ��j En + J,̅ (4.1b) 

∇ ∙ En = �� ρ, (4.1c) 

∇ ∙ Hn = 0, (4.1d) 
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where En and Hn are the electric and magnetic fields of an electromagnetic wave, respectively; ε' and μ' are 

the permittivity and permeability of free space, respectively; and J ̅and ρ are the electric current density (per 

unit area) and charge density (per unit volume). Lorentz force law reads as [1,11] 

FZ = ¶ (ρEn + μ'J̅ d Hn)dV· , (4.2) 

where the electric charges are enclosed in a volume V. The Lorentz force law satisfies the charge 

conservation law [1] 

∇ ∙ J̅ + ��j ρ = 0, (4.3) 

that is deduced from Maxwell’s equations. 

Let me perform a vector cross product of Eq. (4.1a) and (4.1b) with ε'En and μ'Hn, respectively. The 

superposition of these two terms yields to [1] 

ε'(∇ d En) d En + μ'(∇ d Hn) d Hn = μ'J̅ d Hn + μ'ε' ��j  (En d Hn). (4.4) 

The two quantities in the left-hand side of Eq. (4.4) can be explicitly written as [1] 

ε'(∇ d En) d En = ∇ ∙ Rε'En ⊗ En − � K |En|KIS̿ − ρEn, (4.5a) 

μ'(∇ d Hn) d Hn = ∇ ∙ R−μ'Hn ⊗  Hn − t K |Hn|KIS̿, (4.5b) 

where En ⊗ En  and Hn ⊗ Hn are the vector dyadic products; |En| and |Hn| are the electric and magnetic field 

amplitudes, respectively; and I ̿is a diagonal unit tensor. These identities allow to reformulate Eq. (4.4) as 
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∇ ∙ Rε'En ⊗ En − μ'Hn ⊗ Hn − �K (ε'|En|K + μ'|Hn|K)IS̿ = μ'J̅ d Hn + μ'ε' ��j  (En d Hn) + ρEn. (4.6) 

The element in the left-hand side of Eq. (4.6) is the electromagnetic momentum density defined as the 

Maxwell’s stress tensor in free space [1,11] 

T9 = ∇ ∙ Rε'En ⊗ En − μ'Hn ⊗ Hn − �K (ε'|En|K + μ'|Hn|K)IS̿. (4.7) 

In case that the current and charge sources are embedded in an arbitrary medium, the Maxwell’s stress 

tensor can be calculated following the similar procedure [Eqs. (4.1)-(4.7)] considering the electric 

permittivity and permeability of that medium. 

Let me consider that all the sources (i.e., ρ and J)̅ are fully enclosed in the domain V. The volume 

integral of Eq. (4.6) leads to 

¶ ∇ ∙ T9dV· = μ'ε' ¶ ��j  (En d Hn)dV· + ¶ ��j  (ρEn + μ'J̅ d Hn)dV· . (4.8) 

This integral in Eq. (4.8) can be transformed into surface integral following the divergence theorem [1] as  

¶ ∇ ∙ T9dV· = ¶ T9 ∙ n8 dS¹ , (4.9) 

where S represents the surface of the domain V, dS is infinitesimal surface element, and n8 is the outward 

normal unit vector to it. Therefore, Eq. (4.8) can be reformulated as 

¶ T9 ∙ n8 dS¹ = μ'ε' ¶ ��j  (En d Hn)dV· + ¶ ��j  (ρEn + μ'J̅ d Hn)dV· . (4.10) 

Here, the first term in the right-hand side of Eq. (4.10) represents the electromagnetic momentum of the 

field within the volume V. Note that the time-averaged quantity (i.e., average over one oscillation period) 
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of this field momentum is strictly zero [1]. Therefore, the remaining component corresponds to the time-

averaged mechanical force exerted on the object [see Eq. (4.2)].  

Finally, the time-averaged optical forces read as 

〈FZ〉 = �K ReN¶ T9 ∙ n8 dS¹ O. (4.11) 

Note that Eq. (4.11) can be applied to calculate optical forces on any arbitrary object enclosed by a 

surface S. The force entirely depends on the electromagnetic momentum density or Maxwell’s stress tensor 

that is evaluated from the total electric and magnetic fields on the surface. 

4.1.2 DIPOLE APPROXIMATION 

An alternative approach to compute optical forces on a small particle with relative permittivity εe, 

within the Rayleigh limit, is the dipole approximation [1,11-13]. Here, the particle can be modelled as an 

electric point dipole with two oppositely charged atoms separated by a small distance d ≪ λ'. The optical 

forces exerted on the particle when it is located in free space can be computed as [1,11] 

FZ = (pZ ∙ ∇)En + μ' ��j pZ d Hn, (4.12) 

where pZ = α' ∙ En is the dipole moment; α' = ½�
���¾�¿ ÀÁÂÃ 

 is the dynamic electrical polarizability of the particle 

with α� = 4πε'²Ä �Å�� �Å�K�  [1]; k' is free space wavenumber; and En and Hn are the electric and magnetic fields 

at the dipole position, respectively. Note that eq. (4.12) is completely general and can be applied to any 

dipolar spherical Rayleigh objects including metallic and dielectric particles whose response is not 

dominated by higher order multipoles. Eq. (4.12) shows that the forces are composed of two elements: the 

first one (pZ ∙ ∇)En appears from the inhomogeneous electric field, and the remaining one is the familiar 

Lorentz force. The later component can be reformulated as 
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μ' ��j pZ d Hn = pZ d (∇ d En) + μ' ��j (pZ d Hn). (4.13) 

Therefore, Eq. (4.12) yields to 

FZ = (pZ ∙ ∇)En + pZ d (∇ d En) + μ' ��j (pZ d Hn) = pZ ∙ ∇En + μ' ��j (pZ d Hn). (4.14) 

In Eq. (4.14), the time-averaged quantity of 
��j (pZ d Hn) = ��j (α9 ∙ En d Hn) is strictly zero. 

Finally, the time-averaged optical forces acting on the particle read as [1,11-16] 

〈FZ〉 = �K Re2pZ∗ ∙ ∇En3. (4.15) 

In the following, I employ Eq. (4.15) to develop a theoretical framework to compute optical forces on a 

Rayleigh particle located near plasmonic surfaces. 

 

Figure 4.1: Schematic of the configuration. Lateral optical forces induced on an electrically polarizable Rayleigh 

particle (gold sphere) located in free space at a distance z' over an anisotropic metasurface characterized by a 

conductivity tensor σ9. The metasurface is supported by a substrate of relative permittivity εK and is illuminated by 

a plane wave. The scattered light excites directional surface plasmons — with wavevector kZ�ee and Poynting 

vector SZ�ee— and exert a lateral optical force Fj on the particle. Inset shows the directions of dipole polarization 

spin η, excited surface plasmons and the induced nonconservative lateral recoil force FZ ÆQ. 
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4.2 THEORETICAL FRAMEWORK: FORCES ABOVE RECIPROCAL SURFACES 

Let me consider a non-magnetic, electrically polarizable, and dipolar Rayleigh particle of radius ² 

located above a reciprocal metasurface characterized by a conductivity tensor σ9 (see Figure 4.1), and is 

illuminated by light. The particle is suspended in free space, and the metasurface is supported by a substrate 

with relative permittivity εK. During the scattering process, the total electric field at the dipole position is 

computed as En = En' + En�. Here, En' = En� + En� corresponds to the electric field of the standing wave formed 

above the metasurface due to the superposition of the incident electric field (En�) and the one reflected (En�) 

from the surface, and En� is the field scatted by the particle that couples to the metasurface in the form of 

surface plasmons. 

The total optical forces [see Eq. (4.15)] can be decomposed into conservative (i.e., FZ Q) and 

nonconservative recoil (i.e., FZ ÆQ) components. On one hand, nonconservative refers to the fact that part of 

the incoming energy is dissipated, absorbed, or scattered to originate mechanical motion on the object. On 

the other hand, conservative forces exhibit centrosymmetric behavior with examples including the radiation 

pressure or gradient forces. These components read as 

FZ Q = �K Re2pZ∗ ∙ ∇En'3, (4.16a) 

FZ ÆQ = �K Re2pZ∗ ∙ ∇En�3. (4.16b) 

The field scattered by the particle can be computed from the scattered dyadic Green’s function G9� of the 

system at the particle position as [1,12,13] 

En� = ωKμ'G9� ∙ pZ. (4.17) 

In reciprocal systems, G9Ç is a purely diagonal tensor at the particle position [1,12,13,17], and Eq. (4.17) 

simplifies to 
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En� = ωKμ' �G==� p=G??� p?Gkk� pk �. (4.18) 

It is important to stress that in the case when the incident light is a plane wave, the conservative force 

component FZ Q [see Eq. (4.16a)] leads to well-known radiation pressure pointing toward the direction of the 

wavefront (will be discussed in Chapter 5); whereas in the case of a structured light or focused laser beam 

such as Gaussian beams, this component leads to the gradient force that acts toward the maximum electric 

field intensity (will be discussed in Chapter 6), as in common optical tweezers [2,11,18]. On the other hand, 

the nonconservative recoil force [Eq. (4.16b)] depends on the properties of the surface plasmons excited on 

the metasurface during the scattering process. The plasmon properties are related to the fields scattered by 

the dipole that are expressed through the dyadic Green’s function as shown in Eq. (4.18). 

4.2.1 EFFECTIVE DIPOLE MOMENT 

To compute the total optical forces, one needs to compute the electric dipole moment acquired by the 

particle [see Eq. (4.15)]. This dipole moment is computed from the local electric field at the particle position 

as [12,13,17] 

pZ = α'2En' + En�3, (4.19) 

Substituting the expression of scattered EnÇ in Eq. (4.19) yields the dipole moment components to 

Èp=p?pkÉ = α' �E=' + ωKμ'G==� p=E?' + ωKμ'G??� p?Ek' + ωKμ'Gkk� pk
�. (4.20) 

The solution of Eq. (4.20) leads to the compact form expressions of the dipole moment components as 
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p= = ½ ��½ �ht Ê��Ë E=' = α==E=', (4.21a) 

p? = ½ ��½ �ht Ê��Ë E?' = α??E?', (4.21b) 

pk = ½ ��½ �ht ÊffË Ek' = αkkEk'. (4.21c) 

Following the identity  pZ = α9 ∙ En' [1,12,13], the effective polarizability tensor of the particle Ìv reads  

α9 =
⎣⎢⎢
⎢⎡ ½ ��½ �ht Ê��Ë 0 00 ½ ��½ �ht Ê��Ë 00 0 ½ ��½ �ht ÊffË ⎦⎥⎥

⎥⎤
. (4.22) 

I recall that in the absence of the metasurface platform, the dipole polarizability is purely scalar and transfers 

to the dynamic polarizability α' of free-standing particle as detailed in section 4.1. 

4.2.2 NONCONSERVATIVE RECOIL OPTICAL FORCE 

The nonconservative recoil optical force [Eq. (4.16b)] components are 

F=ÆQ = �K Re ÍpZ∗ ∙ ��= En�Î, (4.23a) 

F?ÆQ = �K Re ÍpZ∗ ∙ ��? En�Î, (4.23b) 

FkÆQ = �K Re ÍpZ∗ ∙ ��k En�Î, (4.23c) 

Let me first simplify the lateral components of the nonconservative forces. This requires computing the 

x and y-derivatives of the scattered fields [Eq. (4.17)] at the dipole position. Even though G9� is a purely 
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diagonal tensor at the dipole position, the spatial derivatives of the off-diagonal components might not be 

zero. Therefore, it is important to consider the fully populated Green’s function and calculate the associated 

derivatives as 

��= En� = ωKμ' ⎣⎢⎢
⎢⎡p= ��= G==� + p? ��= G=?� + pk ��= G=k�
p= ��= G?=� + p? ��= G??� + pk ��= G?k�
p= ��= Gk=� + p? ��= Gk?� + pk ��= Gkk� ⎦⎥⎥

⎥⎤
, (4.24a) 

��? En� = ωKμ'
⎣⎢⎢
⎢⎡p= ��? G==� + p? ��? G=?� + pk ��? G=k�
p= ��? G?=� + p? ��? G??� + pk ��? G?k�
p= ��? Gk=� + p? ��? Gk?� + pk ��? Gkk� ⎦⎥⎥

⎥⎤
. (4.24b) 

In the case of a reciprocal system, exactly at the dipole position, it can be shown that 
��= G==� = ��= G=?� =

��= G?=� = ��= G??� = ��= G?k� = ��= Gk?� = ��= Gkk� = ��? G==� = ��? G=?� = ��? G=k� = ��? G?=� = ��? G??� = ��? Gk=� =
��? Gkk� = 0 [12,13,17]. These identities hold independently to the metasurface topologies for any reciprocal 

system, and allow to simplify Eq. (4.24) to 

��= En� = ωKμ' �pk ��= G=k�0p= ��= Gk=� �, (4.25a) 

��? En� = ωKμ' ⎣⎢⎢
⎡ 0pk ��? G?k�
p? ��? Gk?� ⎦⎥⎥

⎤
, (4.25b) 

which permits to express the nonconservative lateral recoil forces as 
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F=ÆQ = �ht K Re Íp=∗pk ��= G=k� + pk∗p= ��= Gk=� Î, (4.26a) 

F?ÆQ = �ht K Re Íp?∗ pk ��? G?k� + pk∗p? ��? Gk?� Î. (4.26b) 

Moreover, exactly at the dipole position, it can be shown that 
��= G=k� = − ��= Gk=�  and 

��? G?k� = − ��? Gk?�  

[12,13,17]. This allows to reformulate the lateral recoil forces as 

F=ÆQ = �ht K Re Í(p=∗pk − pk∗p=) ��= G=k� Î, (4.27a) 

F?ÆQ = �ht K Re Í.p?∗ pk − pk∗p?/ ��? G?k� Î. (4.27b) 

Applying the identities p=∗pk − pk∗p= = 2iIm2p=∗pk3 and p?∗ pk − pk∗p? = 2iImwp?∗ pkz to Eq. (4.27) where 

‘Im’ is the imaginary part of a complex number, I obtain 

F=ÆQ = − ^ h� ImGp=∗pkJIm R ��= G=k� S, (4.28a) 

F?ÆQ = − ^ h� ImNp?∗ pkOIm R ��? G?k� S. (4.28b) 

Now, the total power radiated by the dipole – which is a measure of the dipole amplitude – in free space 

reads as [1,12] 

P�Ð� = Q ^ ��KÑ� |pZ|K = Q ^ ��KÑ� !|p=|K + Wp?WK + |pk|K(. (4.29) 

The amount of power radiated by the xz and yz-components of the dipole yield [12] 
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P�Ð�=k = Q ^ ��KÑ� (|p=|K + |pk|K), (4.30a) 

P�Ð�?k = Q ^ ��KÑ� !Wp?WK + |pk|K(. (4.30b) 

This power allows to reformulate the lateral recoil forces as 

F=ÆQ = − �KÑQ ^ h P�Ð�=k £¤Ge�∗ efJ|e�|h�|ef|h Im R ��= G=k� S, (4.31a) 

F?ÆQ = − �KÑQ ^ h P�Ð�?k £¤Ne�∗ efOWe�Wh�|ef|h Im R ��? G?k� S. (4.31b) 

Moreover, the particle polarization spin or helicity around the lateral axis (i.e., x and y) can be defined 

as [12,13] 

η? = −2 £¤Ge�∗ efJ|e�|h�|ef|h = ÒeÓÔ� Òh�WeÓÕ� Wh
ÒeÓÔ� Òh�WeÓÕ� Wh, (4.32a) 

η= = −2 £¤Ne�∗ efOWe�Wh�|ef|h = ÒeÓÔ� Òh�WeÓÕ� Wh
ÒeÓÔ� Òh�WeÓÕ� Wh. (4.32b) 

These quantities are equal to zero in case of linearly polarized dipoles, and to ±1 for circularly polarized 

rotating dipoles (with respect to the lateral axis) in opposite directions [12]. 

Finally, the nonconservative lateral recoil forces are 

F=ÆQ = �ÑQ ^ h P�Ð�=k η?Im R ��= G=k� S, (4.33a) 

F?� = �ÑQ ^ h P�Ð�?k η=Im R ��? G?k� S. (4.33b) 
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Eq. (4.33) shows that the origin of the nonconservative lateral recoil forces above reciprocal surfaces is the 

dipole polarization spin or helicity (see inset in Figure 4.1). For instance, a quasi-circularly polarized dipole 

excites directionally propagating surface plasmons on the metasurface thanks to the photonic spin-Hall 

effect [19-22]. To compensate for the momentum surge, the particle experiences lateral recoil forces acting 

in the opposite of plasmon propagation direction. The strength of such forces depends on the imaginary 

part of the off-diagonal components of the Green’s function which is directly proportional to the fourth 

power of the plasmon wavenumber supported by the metasurface as will be discussed soon. Intuitively, this 

implies that with an adequately designed plasmonic structure that supports surface modes with very large 

wavenumber, the strength of the lateral recoil forces can be significantly enhanced (will be discussed further 

in Chapter 5 and 6). Note that the lateral recoil forces completely vanish for linearly polarized particles 

(i.e., η= → 0, η? → 0). This is because the lack of spin in the scattered field by the dipole cannot excited 

direction surface plasmons, rather plasmons are symmetrically excited within the surface and the 

momentum imbalance completely vanishes. 

Now, it is instructive to simplify the vertical component of the nonconservative forces following Eq. 

(4.23c). Here, the z-derivatives of the off-diagonal Green’s function tensor components are strictly zero at 

the dipole position, i.e., 
��k G=?� = ��k G=k� = ��k G?=� = ��k G?k� = ��k Gk=� = ��k Gk?� = 0 [12]. These identities 

allow to reformulate the vertical recoil force component as 

Fk� = �ht K ∑ |pÆ|KRe Í ��k GÆÆ� ÎÆÙ=,?,k . (4.34) 

Taking into account the power radiated by the dipole [see (Eq. 4.29)], Eq. (4.34) can be simplified to 

Fk� = �ÑQ ^ h ∑ P�Ð�Æ Re Í ��k GÆÆ� ÎÆÙ=,?,k . (4.35) 

Note that the expressions of the lateral and vertical nonconservative recoil forces, shown in Eqs. (4.31) 

and (4.35), are general and hold for any linear and reciprocal metasurfaces. These formalisms can also be 
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readily applied to compute optical forces on nanoparticles located above bulk materials [12,17]. In that 

case, one needs to accurately model the scattered dyadic Green’s function of the system considering the 

electric permittivity tensor of the material as done in ref-[12,17]. In Chapter 5 and 6, I will employ these 

formalisms to investigate giant lateral optical forces and stable optical trapping of nanoparticles located 

near anisotropic and hyperbolic metasurfaces. 

4.2.3 CONSERVATIVE OPTICAL FORCE 

The conservative optical force exerted on the particle depends on the electric field gradient of the 

standing wave formed above the metasurface as shown in Eq. (4.16a). These components read  

F=Q = �K  Re ÍpZ∗ ∙ ��= En'Î, (4.36a) 

F?Q = �K  Re ÍpZ∗ ∙ ��? En'Î, (4.36b) 

FkQ = �K  Re ÍpZ∗ ∙ ��k En'Î. (4.36c) 

Let me first simplify the lateral components. To this purpose, I perform the Ú and ®-derivatives of the 

electric field of the standing wave as follows: 

��= En' = ik=En', and 
��? En' = ik?En'. (4.37) 

Now, the dot products inside the real parts of the expressions in Eq. (4.36a-b) yield to 

pZ∗ ∙ ��= En' = ik= ∑ pZÆ∗ EÆ'ÆÙ=,?,k = ik= ∑ αÆÆ∗ |EÆ'|KÆÙ=,?,k , (4.38a) 
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pZ∗ ∙ ��? En' = ik? ∑ pZÆ∗ EÆ'ÆÙ=,?,k = ik? ∑ αÆÆ∗ |EÆ'|KÆÙ=,?,k . (4.38b) 

The real parts of these quantities are expressed as 

Re ÍpZ∗ ∙ ��= En'Î = k= ∑ Im2αÆÆ3|EÆ'|KÆÙ=,?,k , (4.39a) 

Re ÍpZ∗ ∙ ��? En'Î = k? ∑ Im2αÆÆ3|EÆ'|KÆÙ=,?,k , (4.39b) 

These identities reformulate the lateral conservative force components as 

F=Q = �K  k= ∑ Im2αÆÆ3|EÆ'|KÆÙ=,?,k , (4.40a) 

F?Q = �K  k? ∑ Im2αÆÆ3|EÆ'|KÆÙ=,?,k . (4.40b) 

Eq. (4.40) confirms that the conservative lateral forces are completely determined by the properties of the 

standing wave formed above the surface. 

Now, the vertical conservative force component is calculated using the ¯-derivative of the electric field 

of the standing wave as 

��k En' = −ikkEn� + ikkEn� = ikkNEn� − En�O. (4.41) 

Note that this derivative is not similar to the ones with respect to the lateral direction [see Eq. (4.37)]. This 

is because the incident and reflected electric fields propagate in opposite directions, and the kk is negative 

and positive in the former and later cases, respectively (see Figure 4.1). Finally, the conservative vertical 

force reads as 



74 
 

FkQ = �K Rewikk ∑ pÆ∗ ∙ wEnÆ� − EnÆ� zÆÙ=,?,k z. (4.42) 

I stress that this force can be negative or positive depending on the interplay between the incident and the 

reflected fields. Therefore, the conservative vertical force may attract or repel the particle toward or away 

from the metasurface as will be discussed in Chapter 6. 

4.2.4 ANALYTICAL MODEL OF NONCONSERVATIVE LATERAL FORCES 

The lateral components of the nonconservative optical forces depend on the imaginary parts of the 

spatial derivatives of the Green’s functions off-diagonal components, i.e., Im R ��= G=k� S and Im R ��= G=k� S at 

the particle position [see Eq. (4.33)]. To develop an analytical formalism of these forces, it is required to 

get an analytical or compact form expressions of the associated derivatives as will be discussed now. 

Let me begin the analytical treatment by transforming the scattered dyadic Green’s function (see 

Chapter 2) into polar coordinates (k|� , kÛ� ) using the identities k= = k|� cos kÛ�  and k? = k|� sin kÛ� , thus 

yielding 

G9� = ¶ N9.kÛ� /dkÛ�KÑ' , (4.43a) 

N9.kÛ� / = ¶ Þ9Ë .^©� ,^ß� /à!^©� ,^ß� (á!^©� ,^ß� ( e�K^f� k dk|��' , (4.43b) 

where kZ � =  k|� ρ8 + kÛ� ϕã + kk� z8 is the wavevector in polar coordinates; X9� .k|� , kÛ� / is a tensor that includes 

the reflection and cross-coupling of propagative and evanescent waves; D.k|� , kÛ� / represents the dispersion 

relation of the system and determines the response of the supported surface plasmons; and M.k|� , kÛ� / is 

associated to the medium surrounding the structure. In reciprocal systems, Eq. (4.43) exhibits a symmetrical 

behavior in both physical and momentum spaces. Eq. (4.43) and associated spatial derivatives are usually 
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solved through numerical techniques involving integration in the complex plane that are time-consuming 

and conceal the mechanisms governing recoil optical forces 

To derive analytical solutions of the Green’s function, I first consider the integral along k|�  shown in 

Eq. (4.43b) using the imaginary axis integration technique [23]. There, the real-axis integration path is 

deformed into the complex plane using an elliptical path to avoid the branch cut or surface wave poles and 

adequately capture their response. Figure 4.2 shows this integration strategy in the complex plane for a 

fixed kÛ� . Here, integration paths C1 and C2 capture the pole response along the real axis of k|� , C3 and C4 

computes the integration along the imaginary axis of k|� , C5 and C6 are used to enclose the integration 

contour. First, I stress that the Jordan’s lemma is satisfied [24] and therefore the integral around paths C5 

and C6 when k|� → ∞ are strictly zero. Second, it can be shown [23] that the integrals around paths C1 and 

C2 are identical but with opposite sign, thus cancelling each other. Third, the dynamic part of the Green’s 

function tensor is solely determined by the surface modes supported by the platform [23] that appear in the 

 

Figure 4.2: Integration path in the complex plane for lossless and lossy platforms using the integration along the 

imaginary axis technique. Poles are represented with a red X. 
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form of poles in Figure 4.2 (red X). Assuming a lossless platform, the pole response is a real quantity that 

can be obtained analytically through the residue theorem [24]. These poles will control the response of 

lateral recoil forces in the platform. And forth, the integral around the path C3 and C4 leads to a non-zero 

purely imaginary quantity associated to the quasi-static response of the Green’s function. Even though this 

integral is not analytical along the imaginary axis of k|� , it is well-behaved and can be quickly integrated 

using numerical routines [25]. It should also be noted the integration contour has been deformed to avoid 

the brunch-cut from −k' to +k'. 

Let me consider that k| is the wavenumber of the surface mode supported by the metasurface for a 

specific azimuthal direction kÛ� . This wavenumber can easily be calculated by solving the dispersion 

relation of the system (see Chapter 2). The residues of the associated derivatives in Eq. (4.33) at k| can be 

computed as 

N ««�Ê�fË .kÛ� / = − ~ #��^©h.^ h�^©h/À/h CK}^ h�^©h�~ #��^ E
ÄK�&Ñ^ hçè~ #��^ h�Ä~ #��^©h�^ }^ h�^©h.è�~ h#��h /é e�Kk }^©h�^ h, (4.44a) 

N ««�Ê�fË .kÛ� / = − ~ #��^©h.^ h�^©h/À/h CK}^ h�^©h�~ #��^ E
ÄK�&Ñ^ hçè~ #��^ h�Ä~ #��^©h�^ }^ h�^©h.è�~ h#��h /é e�Kk }^©h�^ h. (4.44b) 

Here, η' is the free space impedance, and ε� is the average relative permittivity of the media above and 

below the metasurface. Even though Eq. (4.44) is analytical, these expressions are lengthy and difficult to 

work with. To further simplify them and gain physical insight into the problem, I consider that the platform 

operates in the non-retarded regime assuming that k| ≫ k' [1,12,13]. This permits to directly link the 

conductivity along x and y directions with the wavenumber of the modes supported therein as σ== ≈ iωε' K̂� 

and σ?? ≈ iωε' K̂� [1], where k= and k? are the wavenumber of the supported surface plasmons along x and 

y-directions of the reference coordinate system. As a result, Eq. (4.44) is greatly simplified to 
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N ««�Ê�fË .kÛ� / = −i �ê�&Ñh^ h k=èe�Kk }^�h�^ h, (4.45a) 

N ««�Ê�fË .kÛ� / = −i �ê�&Ñh^ h k?èe�Kk }^�h�^ h, (4.45b) 

Next, the spatial derivatives of the Green’s functions required in Eq. (4.33) to calculate lateral recoil forces 

can be computed at the particle position by performing the following integrals along kë� : 

Im Í ��= G=k� Î = ¶ �ê�&Ñ^ h k=èe�Kk }^�h�^ hdkÛ�KÑ' , (4.46a) 

Im Í ��? G?k� Î = ¶ �ê�&Ñ^ h k?èe�Kk }^�h�^ hdkÛ�KÑ' . (4.46b) 

These equations can be readily applied to compute lateral recoil forces above any anisotropic metasurfaces.  

Now, for the sake of simplicity, I assume that the metasurface is isotropic in nature (i.e., σ== = σ??) 

and supports surface plasmons with identical wavenumber within any directions kÛ�  of the metasurface. 

This allows to solve the integration in Eq. (4.46) by simply multiplying the integrand with a factor of 2π 

[1]. This leads to 

Im Í ��= G=k� Î = �ê�&^ h Èk=èe�Kk }^�h�^ hÉ, (4.47a) 

Im Í ��? G?k� Î = �ê�&^ h Èk?èe�Kk }.^�Õ/h�^ hÉ. (4.47b) 

Finally, the analytical expression of nonconservative lateral forces are  
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F=ÆQ ≈ ÄÑì&í«�f ~�èQ �& !^�^ (è e�Kk }^�h�^ h, (4.48a) 

F?ÆQ ≈ ÄÑì&í«�f ~�èQ �& È!^�^ (è e�Kk }^�h�^ hÉ. (4.48b) 

Eq. (4.48) confirms that the strength of nonconservative lateral optical forces is directly proportional to the 

fourth power of the wavenumber of the surface plasmons supported by the metasurface, whereas the 

direction is solely determined the dipole helicity as mentioned before. 

Note that ref-[12] also develops a similar analytical expressions of the nonconservative recoil forces, 

but considering isotropic plasmonic metasurfaces. This approach relies on the image dipole theory and the 

quasi-static approximation that holds very well when the dipole is located in the surface near field. 

 

Figure 4.3: Manipulating lateral recoil optical forces using nonreciprocal plasmonic states. (a) Schematic of the 

configuration. Lateral optical forces (magenta) are exerted on a Rayleigh particle (orange) located over a drift-

biased graphene transferred over hexagonal boron nitride upon illumination with a plane wave (cyan). (b) IFC of 

the states supported by graphene at λ' = 14 μm for two velocities of drifting electrons. k?� and k?� denote the 

supported states along and against the applied drift. Graphene’s Fermi velocity is v� = 10� m/s, and graphene’s 

chemical potential and relaxation time are set to μQ = 0.1eV and τ = 0.3 ps, respectively. 
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However, my approach based on the residue theorem is general and Eq. (4.48) holds very well away from 

the near field as will be shown in Chapter 7. 

4.3 THEORETICAL FRAMEWORK: FORCES ABOVE NONRECIPROCAL SURFACES 

In this section, I extend the theoretical framework developed in section 4.2 to the case when an external 

in-plane momentum bias is applied to the metasurface (see Figure 4.3a). This bias breaks the symmetry of 

the surface mode thus resulting in a nonreciprocal response as shown in Figure 4.3(b). It can be obtained in 

practice by applying a parallel magnetic bias [36,37] or drift-current bias [38-44]. The applied bias breaks 

the amplitude symmetry of the surface modes along the bias axis; whereas the polarization symmetry is 

broken in the orthogonal lateral axis (see Chapter 3). Note that the broken symmetry modifies the Green’s 

function in such a way that its components and associated spatial derivatives might not be strictly zero at 

the dipole position as found in the reciprocal case. This is confirmed in Figures 4.4-4.7 that show the spatial 

distribution of the scattered dyadic Green’s function in the case of nonreciprocal metasurfaces and compare 

the response with the reciprocal one. 

Throughout this derivation, I consider that the external bias is applied along ®8-axis of the reference 

coordinate system aiming to simplify the mathematical analysis. In the case when the bias is applied along 

any other direction within the plane, the resulting response can be captured by applying an adequate 

coordinate rotation. 

Let me begin with the scattered electric field En� = ωKμ'G9� ∙ pZ [1]. Exactly at the dipole position, the 

Green’s function is not diagonal anymore due to the broken system symmetry that introduces non-zero off-

diagonal terms (i.e., G?k�  and Gk?� ). Therefore, the scattered field at the dipole position modifies to 

En� = ωKμ' � G==� p=G??� p? + G?k� pkGk?� p? + Gkk� pk�. (4.49) 
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The appearance of these off-diagonal components (see Figures 4.4-4.7) modifies the dipole moment 

acquired by the particle and the optical forces as will be discussed below. 

  

 

Figure 4.4: Real parts of the scattered dyadic Green’s function tensor components of a reciprocal (red) and 

nonreciprocal (blue) graphene based metasurface. Responses are computed in the orthogonal lateral direction of 

the applied bias considering the dipole is located at  r̅ = 2x, 0,30 nm3 above the surface. Other parameters are as in 

Figure 4.3. 
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Figure 4.5: Imaginary parts of the scattered dyadic Green’s function tensor components of a reciprocal (red) and 

nonreciprocal (blue) graphene based metasurface. Responses are computed in the orthogonal lateral direction of 

the applied bias considering the dipole is located at  r̅ = 2x, 0,30 nm3 above the surface. Other parameters are as in 

Figure 4.3. 
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Figure 4.6: Real parts of the scattered dyadic Green’s function tensor components of a reciprocal (red) and 

nonreciprocal (blue) graphene based metasurface. Responses are computed along the direction of the applied bias 

considering the dipole is located at  r̅ = 20, y, 30 nm3 above the surface. Other parameters are as in Figure 4.3. 
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Figure 4.7: Imaginary parts of the scattered dyadic Green’s function tensor components of a reciprocal (red) and 

nonreciprocal (blue) graphene based metasurface. Responses are computed along the direction of the applied bias 

considering the dipole is located at  r̅ = 20, y, 30 nm3 above the surface. Other parameters are as in Figure 4.3. 

d d
v =0 v =0.8v

F

-100 0 100
-1

0

1
10

9

-100 0 100
-1

0

1
10

9

-100 0 100
-1

0

1
10

9

-100 0 100
-1

0

1
10

9

-100 0 100
-4

-2

0

2

4
10

8

-100 0 100
-2

0

2

4
10

-7

-100 0 100
-1

0

1
10

-7

-100 0 100
-1

0

1
10

-7

-100 0 100
-2

0

2

4
10

-7



84 
 

4.3.1 EFFECTIVE DIPOLE MOMENT 

The effective dipole moment acquired by the particle is computed as  pZ = α'(En' + En�) [see Eq. (4.19)]. 

Substituting the expression En�(r̅', r̅') as expressed in Eq. (4.49) to the dipole moment expression yields to 

the following set of equations: 

(1 − ωKμ'α'G==� )p= = α'E=', (4.50a) 

.1 − ωKμ'α'G??� /p? − ωKμ'α'G?k� pk = α'E?', (4.50b) 

−ωKμ'α'Gk?� p? + (1 − ωKμ'α'Gkk� )pk = α'Ek'. (4.50c) 

Now, the effective dipole moment components acquired by the particle are computed by solving the set of 

equations in Eq. (4.50) that leads to 

p= = ï� ½ ���ht ½ Ê��Ë (�Z ,�Z ), (4.51a) 

p? = ï� ½ .���ht ½ ÊffË /�ïf �ht ½ hÊ�fË.���ht ½ Ê��Ë /(���ht ½ ÊffË )���t h½ hÊ�fË Êf�Ë , (4.51b) 

pk = ï� �ht ½ hÊf�Ë �ïf ½ .���ht ½ Ê��Ë /.���ht ½ Ê��Ë /(���ht ½ ÊffË )���t h½ hÊ�fË Êf�Ë . (4.51c) 

Following the identity pZ = α9 ∙ En', the nonzero elements of the effective dipole polarizability tensor α9 of the 

particle can be expressed 

α== = ½ ���ht ½ Ê��Ë , (4.52a) 
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α?? = ½ .���ht ½ ÊffË /.���ht ½ Ê��Ë /(���ht ½ ÊffË )���t h½ hÊ�fË Êf�Ë , (4.52b) 

αkk = ½ .���ht ½ Ê��Ë /.���ht ½ Ê��Ë /(���ht ½ ÊffË )���t h½ hÊ�fË Êf�Ë , (4.52c) 

α?k = �ht ½ hÊ�fË.���ht ½ Ê��Ë /(���ht ½ ÊffË )���t h½ hÊ�fË Êf�Ë , (4.52d) 

αk? = �ht ½ hÊf�Ë.���ht ½ Ê��Ë /(���ht ½ ÊffË )���t h½ hÊ�fË Êf�Ë . (4.52e) 

Note that the nondiagonal components α?k and αk? completely vanish in the absence of the applied bias 

[see Eq. (4.22)]. 

In summary, the following table compares the zero and non-zero elements of the effective dipole 

polarizability tensors for reciprocal and nonreciprocal systems: 

Reciprocal Nonreciprocal 

α9 = �α== 0 00 α?? 00 0 αkk� α9 = �α== 0 00 α?? α?k0 αk? αkk� 

Table 4.1: Zero and non-zero elements of the effective dipole polarizability tensor for reciprocal and nonreciprocal 

structures. Nonreciprocity is obtained by applying an in-plane momentum bias along the y8-axis of the platform. 

4.3.2 NONCONSERVATIVE RECOIL FORCE 

The nonconservative recoil force components exerted on the particle can be computed from Eq. (4.23). 

Let me first derive the lateral components. To this purpose, it is required to compute the x and y-derivatives 

of the scattered dyadic Green’s function components at the particle position as shown in Eq. (4.24). In the 

presence of an external bias applied along y8-axis (see Figure 4.3a), the following derivatives are strictly 
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zero at the particle position: 
��= G==� = ��= G??� = ��= G?k� = ��= Gk?� = ��= Gkk� = ��? G=?� = ��? G=k� = ��? G?=� =

��? Gk=� = 0. Note that some derivatives were strictly zero in the reciprocal system at the dipole position, i.e., 

��= G=?� , 
��= G?=� , 

��? G==� , 
��? G??� , 

��? Gkk� , are not zero anymore in the nonreciprocal system. 

Following the similar procedure described above, see Eqs. (4.25)-(4.28), and taking into account the 

nonzero derivatives, the nonconservative lateral recoil forces can be simplified to 

F=ÆQ = ^ h� RRewp=∗p?z Re Í ��= G=?� ÎS − ^ h� Im2p=∗pk3 Im Í ��= G=k� Î, (4.53a) 

F?ÆQ = ^ hK� ∑ |pÆ|KRe Í ��? GÆÆ� ÎÆÙ=,?,k − ^ h� ImNp?∗ pkOIm Í ��? G?k� Î. (4.53b) 

Let me decompose Eq. (4.53) as F=ÆQ = F=Æ��e + F=� and F?ÆQ = F?Æ��Ð + F?�. Here, superscripts ‘a’ and ‘p’ 

refer to amplitude and polarization, respectively, and ‘nr’ and ‘s’ refer to nonreciprocity and spin, 

respectively. Here, F=Æ��e and F?Æ��Ð are the lateral recoil forces that appear due to the broken symmetry in 

polarization and amplitude of the surface modes supported by the nonreciprocal structure, respectively; and 

F=� and F?� are recoil components that appears due to the dipole polarization spin and they are similar to the 

ones as found above reciprocal systems (see Eq. 4.28). All of these force components can be explicitly 

expressed as 

F=Æ��e = ^ h� RRewp=∗p?z Re Í ��= G=?� ÎS, (4.54a) 

F=� = − ^ h� Im2p=∗pk3 Im Í ��= G=k� Î, (4.54b) 

F?Æ��Ð = ^ hK� ∑ |pÆ|KRe Í ��? GÆÆ� ÎÆÙ=,?,k , (4.54c) 
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F?� = − ^ h� ImNp?∗ pkOIm Í ��? G?k� Î. (4.54d) 

Finally, taking into account the power radiated by the dipole as expressed in Eqs. (4.29)-(4.30), and the 

polarization spin of the dipole as in Eq. (4.32), the lateral components can be simplified to 

F=Æ��e = �ÑQ ^ h P�Ð�=? χ=?Re Í ��= G=?� Î, (4.55a) 

F=� = �ÑQ ^ h P�Ð�=k η?Im Í ��= G=k� Î, (4.55b) 

F?Æ��Ð = �ÑQ ^ h ∑ P�Ð�Æ Re Í ��? GÆÆ� ÎÆÙ=,?,k , (4.55c) 

F?� = �ÑQ ^ h P�Ð�?k η=Im Í ��? G?k� Î. (4.55d) 

Here, P�Ð�=? = Q ^ ��KÑ� !|p=|K + Wp?WK( and P�Ð�Æ = Q ^ ��KÑ� (|pÆ|K) are the amount of power radiated by the xy 

and n-components of the dipole in free space; and χ=? = 2 ¢:we�∗ e�z|e�|h�We�Wh is the dipole’s in-plane polarization 

factor [45]. I recall that the excitation of surface plasmons with different wavenumber (polarization) profiles 

within the plane gives rise to F?Æ��Ð (F=Æ��e) that is always directed along (orthogonal) to the bias axis. In 

case that the external bias is applied vertically to the surface, such as magneto-optical structures shown in 

ref-[45], F?Æ��Ð completely vanishes due to the lack of broken symmetry in the plasmon amplitude. F=Æ��e 

still appears there since the vertical bias breaks the polarization symmetry. This force is zero when the 

particle acquires a dipole moment oriented along or orthogonal to the applied vertical bias (i.e., χ=? = 0), 

and is maximum when the dipole is linearly polarized at an angle 45' with respect to the bias axis – a state 

that favors the polarization conversion process of the scattered fields. In Chapter 7 and 8, I will employ Eq. 
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(55) to investigate lateral optical forces and nanoscale manipulation of optical traps induced on 

nanoparticles located above nonreciprocal surfaces with in-plane momentum bias. 

Now, I derive the vertical component of the nonconservative forces using Eq. (4.23c). Due to the broken 

symmetry of the system in the presence of applied bias along y8-direction, the z-derivative of the scattered 

dyadic Green’s function at the dipole position is not a diagonal tensor anymore, as found in the reciprocal 

case (see section 4.2). The only derivatives that are strictly zero are 
��k G=?� = ��k G?=� = 0. In addition, the 

following identities hold exactly at the particle position: 
��k G=k� = − ��k Gk=�  and 

��k G?k� = − ��k Gk?� . These 

allow to simplify the nonconservative vertical force components (i.e., FkÆQ = FkÆ� + Fk�) as 

Fk� = �ÑQ ^ h ∑ P�Ð�Æ Re Í ��k GÆÆ� ÎÆÙ=,?,k , (4.56a) 

FkÆ� = �ÑQ ^ h P�Ð�=k η?Im Í ��k G=k� Î + �ÑQ ^ h P�Ð�?k η=Im Í ��k G?k� Î. (4.56b) 

Here, FkÆ� is the vertical force component that appears due to the broken symmetry of the nonreciprocal 

system, and Fk� is the common recoil component found above reciprocal structures [see Eq. (4.35)]. Here, 

FkÆ� possesses an interesting feature: Eq. (4.56b) shows that it depends on the polarization spin or helicity 

of the dipole. This component can be negative or positive thus acting toward or away from the metasurface 

as a function of the dipole rotation handedness which may open up new possibilities to levitate non-

magnetic nanoparticles away from the structure, where the standard levitation techniques rely on the use of 

extremely anisotropic structures [46] or magnetic particles near a plasmonic surface [47]. 

4.3.3 CONSERVATIVE OPTICAL FORCE 

Eq. (4.16) can be directly applied to compute the conservative optical forces exerted on the particle. 

The lateral components of these forces read as 
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F=Q = �K ReNik=wα?k∗ Ek'∗E?' + αk?∗ E?'∗Ek' + ∑ αÆÆ∗ |EÆ'|KÆÙ=,?,k zO, (4.57a) 

F?Q = �K ReNik?wα?k∗ Ek'∗E?' + αk?∗ E?'∗Ek' + ∑ αÆÆ∗ |EÆ'|KÆÙ=,?,k zO. (4.57b) 

Note that the off-diagonal dipole polarizability components [see Eq. 4.52(d-e)] fulfills the following 

identity: α?k = −αk?. Applying Ek'∗E?' − E?'∗Ek' = 2ImNEk'∗E?'O, Eq. (4.57) can be reformulated as 

F=Q = �K k=N2Imwα?kzImwEk'∗E?'z + ∑ Im2αÆÆ3|EÆ'|KÆÙ=,?,k O, (4.58a) 

F?Q = �K k?N2Imwα?kzImwEk'∗E?'z + ∑ Im2αÆÆ3|EÆ'|KÆÙ=,?,k O. (4.58b) 

Finally, the vertical component of conservative forces can be computed using Eq. (4.42). There, it is 

required to plug in the modified dipole moment [see Eq. (4.51)] in the presence of the applied bias. 

4.3.4 ANALYTICAL MODEL OF LATERAL RECOIL FORCE DUE TO BROKEN SYMMETRY IN 

AMPLITUDE 

To compute the analytical formalism of nonconservative lateral force (i.e., F?Æ��Ð) due the broken 

symmetry in amplitude, it is needed to analytically solve the y-derivatives of the Green’s function diagonal 

components [see Eq. (4.55c)]. To this purpose, I employ the similar approach as detailed in section 4.2.4. 

The integral along k|�  of the Green’s function spatial derivatives at the particle position can be 

analytically computed as 

N ««�Ê��Ë .kÛ� / = i ~ ^©h ��Æ ^ß� Gò���ó��Já��  e�Kk }^©h�^ h, (4.59a) 

N ««�Ê��Ë .kÛ� / = −i ~ ^©h ��Æ ^ß� Nò���ó��Oá�� e�Kk }^©h�^ h, (4.59b) 
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N ««�ÊffË .kÛ� / = − ~ ^©À ��Æ ^ßGòff�óff�ôffJáff e�Kk }^©h�^ h. (4.59c) 

The associated terms in Eq. (4.59) are given by 

A== = 2σ== cos.2kÛ� / w4k'è − .2k'K − k|K/.2k|K − iη'σ??k'k|/z, (4.60a) 

B== = k|Kw−.3σ== + σ??/.2k'K − k|K/ − i2η'σ==σ??k'k| + k|K.σ== −
              σ??/ cos.4kÛ� /z, 

(4.60b) 

D== = 64ε�πk'Kwη'.σ== + σ??/.4k'K − 3k|K/ + 3η'k|K.σ?? − σ==/ cos.2kÛ� / +
             i2k'k|.4 + η'Kσ==σ??/z, 

(4.60c) 

A?? = 2σ?? cos.2kÛ� / w4k'è − .2k'K − k|K/.2k|K − iη'σ==k'k|/z, (4.60d) 

B?? = k|Kw.σ== + 3σ??/.2k'K − k|K/ + i2η'σ==σ??k'k| + k|K.σ== −
                σ??/ cos.4kÛ� /z, 

(4.60e) 

D?? = 64ε�πk'Kwη'.σ== + σ??/.4k'K − 3k|K/ + 3η'k|K.σ?? − σ==/ cos.2kÛ� / +
             i2k'k|.4 + η'Kσ==σ??/z, 

(4.60f) 
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Akk = η'σ==σ??k' cosè kÛ� , (4.60g) 

Bkk = σ??.i2k| + η'σ==k' sinK kÛ� / sinK kÛ� , (4.60h) 

Ckk = 2σ==.ik| + η'σ??k' sinK kÛ� / cosK kÛ� , (4.60i) 

Dkk = 16ε�πk'K ç2η'.σ== + σ??/ + ^ .è�~ h#��#��/�^© + 2η'.σ== − σ??/ cos.2kÛ� /é. (4.60j) 

Assuming that the platform operates in the nonretarded regime (i.e., k| ≫ k') [1,12], Eq. (4.59) greatly 

simplifies to 

N ««�Ê��Ë .kÛ� / ≈ −i ^©Á ��ÆÀ ^ß� Q��� ^ß�  .Q��h ^ß� ���Æ ^ß� /�öKÑ�&^ h !Ä Q�� ^ß� �Ä ��Æ ^ß� �K√K( e�Kk }^©h�^ h, (4.61a) 

N ««�Ê��Ë .kÛ� / ≈ −i ^©Á ��Æø ^ß� Q��h ^ß� .��Æ ^ß� �Q�� ^ß� /ö�Ñ�&^ h !Ä Q�� ^ß� �Ä ��Æ ^ß� �K√K( e�Kk }^©h�^ h, (4.61b) 

N ««�ÊffË .kÛ� / ≈ −i ^©Á ��ÆÀ ^ß� Q��h ^ß� .��Æ ^ß� �Q�� ^ß� /ö�Ñ�&^ h !Ä Q�� ^ß� �Ä ��Æ ^ß� �K√K( e�Kk }^©h�^ h. (4.61c) 

Now the spatial derivatives of the Green’s function associated with Fùúû�ü [see Eq. (4.55c)] can be computed 

at the particle position by performing the following integrals along kë� : 

Re Í ��? G==� Î = ¶ ^©Á ��ÆÀ ^ß� Q��� ^ß�  .Q��h ^ß� ���Æ ^ß� /�öK�&^ h !Ä Q�� ^ß� �Ä ��Æ ^ß� �K√K( e�Kk }^©h�^ hdkÛ�KÑ' , (4.62a) 
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Re Í ��? G??� Î = ¶ ^©Á ��Æø ^ß� Q��h ^ß� .��Æ ^ß� �Q�� ^ß� /ö��&^ h !Ä Q�� ^ß� �Ä ��Æ ^ß� �K√K( e�Kk }^©h�^ hdkÛ�KÑ' , (4.62b) 

Re Í ��? Gkk� Î = ¶ ^©Á ��ÆÀ ^ß� Q��h ^ß� .��Æ ^ß� �Q�� ^ß� /ö��&^ h !Ä Q�� ^ß� �Ä ��Æ ^ß� �K√K( e�Kk }^©h�^ hdkÛ�KÑ' . (4.62c) 

where again the relationship between k| and kÛ�  is implicit and given by the dispersion relation of the 

platform. Note that these expressions are strictly zero in case of reciprocal devices, due to the polar 

symmetry of the platform response. 

It should be stressed that Eq. (4.62) captures the fundamental physics of the problem: lateral recoil 

forces only depend on the dispersion relation of the modes supported by the platform. Additionally, as 

shown in Figure 4.8 for a specific example, the integrands of these functions exhibit a smooth behavior 

versus kÛ�  and thus can easily be integrated using numerical routines [25]. Interestingly, a close look into 

Eqs. (4.61)-(4.62) reveals that Re Í ��? G==� Î is strictly zero along/against the bias direction, whereas the terms 

Re Í ��? G??� Î and Re Í ��? Gkk� Î are minimum/maximum along/against such direction. The former response is 

expected because in Re Í ��? G==� Î the bias is applied in the direction orthogonal to the xx-tensor component 

 

Figure 4.8: Residue of 
��? G==�  (left panel), 

��? G??�  (middle panel), and 
��? Gkk�  (right panel) at k| versus kÛ�  in the case 

of drift-biased nonreciprocal graphene. Results are computed using Eq. (4.61) keeping vZ� = 0.5v�. Other 

parameters are as in Figure 4.3. 
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of the Green’s function and therefore yields an exact zero along the y-direction. The latter response appears 

because the momentum of the supported modes along/against the bias is minimum/maximum (see Chapter 

3). Additionally, Eq. (4.62) reveals a dependence ∝ k|� with the supported states and therefore it is expected 

that those with larger momentum will dominate the overall response of the platform. These arguments 

permit to simplify (Eq. 4.55c) and obtain and approximate analytical expression. To this purpose, I consider 

first that the power scattered by the particle in the direction orthogonal to the bias is not dominant, i.e., 

P�Ð�= þ P�Ð�?  and P�Ð�= þ P�Ð�k . This condition is relatively general and appears in many scenarios (see Figure 

4.9). One exception occurs when a plane wave quasi-vertically illuminates the platform with a polarization 

aligned in the direction orthogonal to the bias (x-axis in this case). Assuming the common situations, Eq. 

(4.55c) can be approximated as 

F?Æ��Ð ≈ �ÑQ ^ h RP�Ð�? Re Í ��? G??� Î + P�Ð�k Re Í ��? Gkk� ÎS, (4.63) 

where I have assumed that P�Ð�? Re Í ��? G??� Î ≫ P�Ð�= Re Í ��? G==� Î and P�Ð�k Re Í ��? Gkk� Î ≫ P�Ð�= Re Í ��? G==� Î. To 

calculate the real part of the spatial derivatives of the Green’s function tensor, I evaluate Eqs. (4.62b-c) 

 

Figure 4.9: Amount of power radiated by the x, y and z-components of a polarized nanoparticle, P�Ð�=  (left panel), P�Ð�?  (middle panel) and P�Ð�k  (right panel), normalized with respect to the power scattered by the same particle 

when illuminated in free space (P�Ð�' ). Results are computed as a function of incident angles θ� and ϕ� of a 

transverse magnetic polarized incoming light. Other parameters are as in Figure 4.3. 
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along and against the bias direction. This approximation assumes a delta function at these directions and is 

justified due to the ∝ k|� dependence on the momentum of the supported states. Since the momentum of the 

states along and against the bias are maximum in their respective semi-plane of the momentum space, they 

are expected to dominate the response of the platform. Following this strategy, the spatial derivatives of the 

Green’s function required in Eq. (4.63) can be computed analytically as 

Re Í ��? G??� Î ≈ ����&^ h È.k?�/èe�Kk }.^�Õ/h�^ h − .k?�/èe�Kk }.^�Ô/h�^ hÉ, (4.64a) 

Re Í ��? Gkk� Î ≈ ����&^ h È.k?�/èe�Kk }.^�Õ/h�^ h − .k?�/èe�Kk }.^�Ô/h�^ hÉ, (4.64b) 

where, k?� and k?� are the plasmon wavenumber against and along the drifting electrons, respectively, as 

shown in Figure 4.3(b). Substituting the compact form expression of these derivatives into Eq. (4.63), the 

nonreciprocity-induced recoil force acting along the external bias direction yields 

F?Æ��Ð ≈ �Ñì&í«�fê�&Q È!^�Õ^ (è e�Kk }.^�Õ/h�^ h − !^�Ô^ (è e�Kk }.^�Ô/h�^ hÉ. (4.65) 

Eq. (4.65) confirms that F?Æ��Ð originates to compensate for the momentum imbalance of the asymmetric 

surface plasmons excited on the metasurface during the scattering process. In the reciprocal system, this 

force components completely vanishes (i.e., F?Æ��Ð) since k?� = k?�. The accuracy of this expression will be 

discussed further in Chapters 7 and 8. 

4.3.5 ANALYTICAL MODEL OF LATERAL RECOIL FORCE DUE TO BROKEN SYMMETRY IN 

POLARIZATION 

To compute the analytical formalism of nonconservative lateral recoil force (i.e., F?Æ��e) due the broken 

symmetry in polarization, it is required to analytically solve the x-derivatives of the Green’s function off-
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diagonal diagonal component [see Eq. (4.55a)], i.e., Re Í ��= G=?� Î. To this purpose, I again follow the analysis 

detailed in section 4.2.4. 

First, the integral along k|�  of this derivative at the particle position can be analytically computed as 

N ««�Ê��Ë .kÛ� / = i ~ ^©h Q�� ^ß� ��Æ.K^ß� /Nò���ó���ô��Oá�� e�Kk }^©h�^ h, (4.66) 

where 

A=? = 2k'Äσ??.2k' + iη'k|σ==/, (4.67a) 

B=? =  −k'k|Kσ??.4k' + iη'k|σ==/, (4.67b) 

C=? = k|èwσ== + σ?? + .σ== − σ??/ cos.2kÛ� /z, (4.67c) 

D=? = 32πε�k'KNη'.σ== + σ??/.4k'K − 3k|K/ + k|wi8k' − 3η'k|.σ== −
             σ??/ cos.2kÛ� /zO. (4.67d) 

Operating the platform within the nonretarded regime k| ≫ k', Eq. (4.66) simplifies to 

N ««�Ê��Ë .kÛ� / ≈ −i ^©� Q�� ^ß� ��Æ.K^ß� /ÄKÑ�&^ h e�Kk }^©h�^ h. (4.68) 

where again the k| − kÛ�  relation is determined by the dispersion relation of the system. Then, the spatial 

derivative of the Green’s functions required in Eq. (4.55a) to calculate lateral recoil forces can be computed 

at the particle position by performing the following integral along kÛ� : 
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Re Í ��= G=?� Î = ¶ ^©� Q�� ^ß� ��Æ.K^ß� /ÄK�&^ h e�Kk }^©h�^ hdkÛ�KÑ' . (4.69) 

Again, the integrand of this function exhibits a smooth behavior versus kÛ�   (see Figure 4.10) and can be 

integrated using standard numerical techniques [25]. Importantly, Eq. (4.69) reveals a dependence ∝ k|è 

with the momentum of the supported states, two orders of magnitude smaller than the one found in Eq. 

(4.62) for recoil forces arising from the broken symmetry of the system in amplitude. 

Finally, the lateral recoil force acting in the orthogonal direction of the external bias yields 

F=Æ��e ≈ ÄÑì&í«�� ������&Q ^ � ¶ k|è cos kÛ sin.2kÛ� / e�Kk }^©h�^ hdkÛ�KÑ' . (4.70) 

Note that Eq. (4.70) is completely general and holds for any directions of the incident light. The accuracy 

of this expression and its use in realistic platforms will be discussed in Chapter 7. 

 

 

 

Figure 4.10: Residue of 
��= G=?�  at k| versus kÛ�  in the case of drift-biased nonreciprocal graphene. Results are 

computed using Eq. (4.68) keeping v� = 0.5v�. Other parameters are as in Figure 4.3. 
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4.3.6 ANALYTICAL MODEL OF DIPOLE SPIN-INDUCED LATERAL RECOIL FORCE 

The dipole polarization spin-induced nonconservative lateral recoil forces share identical expressions 

for reciprocal and nonreciprocal as shown in Eqs. (4.33) and (4.55), respectively. The analytical model of 

these forces in the case of reciprocal system has been developed in section 4.2.4. In the presence of the in-

plane momentum bias, the broken symmetry of the nonreciprocal system slightly modifies these analytical 

formalisms as detailed below. 

My analytical model begins with Eq. (4.46) that can be readily applied to nonreciprocal systems with 

in-plane momentum bias. Eq. (4.46) can be easily integrated over kë�  thus yielding 

Im Í ��= G=k� Î ≈ ����&^ h È(k=�)èe�Kk }(^�Õ)h�^ h + (k=�)èe�Kk }.^�Ô/h�^ hÉ, (4.71a) 

Im Í ��? G?k� Î ≈ ����&^ h È.k?�/èe�Kk }.^�Õ/h�^ h + .k?�/èe�Kk }.^�Ô/h�^ hÉ, (4.71b) 

where k=� and k=� are the plasmon wavenumber in the negative and positive k=-half spaces, respectively, in 

the direction orthogonal to the external bias as shown in Figure 4.3(b). These identities allow to write the 

spin-induced lateral recoil force analytically in a general form as 

F=� ≈ ÄÑì&í«�f ~�êQ �& È!^�Ô^ (è e�Kk }.^�Ô/h�^ h + !^�Õ^ (è e�Kk }(^�Õ)h�^ hÉ, (4.72a) 

F?� ≈ ÄÑì&í«�f ~�êQ �& È!^�Ô^ (è e�Kk }.^�Ô/h�^ h + !^�Õ^ (è e�Kk }.^�Õ/h�^ hÉ. (4.72b) 

Note that Eq. (4.72) is general and holds for any directions of the incoming light. In the case of 

reciprocal surfaces, k=� = k=� and k?� = k?�, and Eq. (4.72) results in to the one as expressed in Eq. (4.48). 

The accuracy of these analytical models will be further discussed in Chapter 7 and 8. 
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4.4 NUMERICAL FRAMEWORK IN COMSOL MULTIPHYSICS 

The total optical forces exerted on a nanoparticle located near reciprocal structures can be computed 

numerically by full wave simulation using the electromagnetic wave frequency domain solver available in 

COMSOL Multiphysics 5.5 [8]. This commercial software uses Maxwell’s stress tensor method (see section 

4.1.1) to compute the total optical forces. Unfortunately, COMSOL Multiphysics does not allow to study 

light-matter interactions provided by nonreciprocal structures in the presence of external momentum bias, 

and the resulting optical forces cannot be evaluated. In the following, I detail the numerical procedure to 

compute optical forces above reciprocal surfaces. 

Let me consider a nanoparticle located above a homogeneous metasurface that is illuminated with light. 

The metasurface can be characterized as a two-dimensional sheet with the provided complex conductivity. 

Scattering boundary conditions (SBC) should be imposed to the boundaries surrounding the entire geometry 

to avoid the reflection of incident light impinging the boundaries. Perfectly matched layers should be used 

to prevent potential reflections of the excited surface modes from the boundaries with SBC. A fine 

 

Figure 4.11: Domain of simulation to compute optical forces on nanoparticles located above nanostructured metal 

based hyperbolic metasurface performed in COMSOL Multiphysics. 
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tetrahedral mesh should be applied to discretize the entire geometry, with a denser mesh around the particle 

surface and the metasurface to properly capture their electromagnetic interaction.  

The optical forces induced on the particle can be directly computed using the Maxwell’s stress tensor 

formulation [see Eq. (4.11)] considering a spherical surface that surrounds the particle at 1nm of distance.  

Figure 4.11 shows an example of the domain of the simulation considering a nanoparticle located above 

nanostructured metal based hyperbolic metasurface. Note that similar numerical models are common in the 

literature [12,13,17]. To develop symmetric mesh throughout the entire geometry and get rid of possible 

numerical noise affecting the induced forces, one should divide the entire geometry into four equal 

quadrants, impose tetrahedral mesh to the domains in an arbitrary quadrant, and then copy the mesh to the 

domains in the remaining quadrants. The particle surface, the stress tensor surface, and the metasurface 

should be finely meshed to capture the interactions among them. Finally, the integration of the Maxwell’s 

stress tensor should be performed along the stress tensor surface to compute the induced optical forces. 

In Chapter 5 and 6, I will follow the approaches described above to compute lateral force and optical 

trapping response on nanoparticles located near nanostructured silver under illumination with a plane wave 

and Gaussian laser beam. The electrical properties of silver can be modelled considering the frequency-

dependent complex permittivity from Ref – [48]. 
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Chapter 5:  Giant Lateral Optical Forces Above Hyperbolic 

Metasurfaces 

Light-induced forces have led to many exciting applications in nanotechnology and bioengineering by 

trapping, pushing, pulling, binding, and manipulating nanoparticles and biological samples [1-11]. 

Recently, the emergence of nano-optical plasmonic configurations has been exploited to boost the strength 

of optical forces at the nanoscale by exciting surface plasmon polaritons [12-15], which are confined 

electromagnetic waves traveling along dielectric-metal interfaces [16]. In fact, illuminating an electric, non-

magnetic, located above a metallic surface like gold or silver with light induces optical forces on the particle 

that compensate the momentum of the directional SPPs excited in the scattering process, leading to a strong 

dependence between the induced forces and the wavenumber of the plasmons supported by the surface [17]. 

Such response has been further enhanced taking advantage of the quantum spin-Hall effect of light [18-22], 

exploiting the spin of circularly polarized incoming waves to control the excitation of directional plasmons 

and, in turn, the direction of the induced forces [23,24]. Over the years, a wide variety of devices have been 

put forward to shape these forces and merge them with other techniques such as surface-enhanced Raman 

spectroscopy (SERS) [25-29] or photoluminescence [30,31], aiming to select and handle nanoparticles after 

their individual characterization. Despite recent advances in this field [17,23,32,33], the exponential growth 

of nanophotonics and bioengineering is continuously imposing challenging demands to enhance the 

strength and control the direction of the forces induced on nanoparticles using low-intensity laser beams. 

In a related context, hyperbolic metasurfaces [34-43] –which are ultrathin surfaces that exhibit metallic 

or dielectric responses as a function of the electric field polarization– have recently gathered considerable 

attention from the scientific community [37-39]. These structures significantly enhance the available local 

density of states, support the propagation of ultra-confined surface plasmons, and have empowered an 

ample set of near-field functionalities such as boosting the spontaneous emission rate of emitters located 

nearby [37], an unusual spin-control of light [40,41], or a wavelength-dependent routing of SPPs. 
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Hyperbolic metasurfaces can easily be realized using ultrathin nanostructured composites made of 

hexagonal boron nitride [36], silver [34], gold [42], graphene [40,43] and other two-dimensional materials 

[44,45]. Even though the bulk version of hyperbolic metasurfaces, hyperbolic metamaterials [46-48], have 

already been suggested to provide new knobs to augment optical forces [49-51], their relatively weak near-

field interactions with external dipoles [52] and challenging fabrication process have hindered the use of 

hyperbolic structures in practical applications. 

In this Chapter, I show that replacing standard plasmonic surfaces with hyperbolic or extremely 

anisotropic metasurfaces enhances the strength of the lateral optical forces induced on Rayleigh particles 

located nearby by several orders of magnitude. The enabling mechanisms are illustrated in Figure 4.1 in 

Chapter 4. Upon adequate plane wave illumination, the particle gets polarized [53] and behaves as an out-

of-plane circularly polarized electric dipole that excites directional SPPs on the surface thanks to the 

photonic spin-Hall effect [54,55] (see Figure 4.1 in Chapter 4). Due to the momentum conservation, a lateral 

 

Figure 5.1: Lateral optical forces induced on an electrically polarizable Rayleigh particle located in free space at 

a distance z' over an anisotropic metasurface characterized by a conductivity tensor (see schematic in Figure 4.1 

in Chapter 4). (a) Lateral optical forces induced on the particle versus its distance above isotropic (black line; with σ== = σ?? = i10 mS), �-near zero (red line; σ== = i10 mS, σ?? = −i0.1 mS), and hyperbolic (blue line; σ== =i10 mS, σ?? = −i10 mS) metasurfaces. Results are normalized with respect to the free-space scattering force FZ�. 
(b) Absolute magnitude of the normalized Poynting vector of the excited SPPs on the hyperbolic (left) and isotropic 

(right) metasurfaces. The particle is located at ¯'=1 μm, has a radius ² = 15 nm, relative permittivity εe = 3, and 

is illuminated by a TM plane wave at 8 THz coming from θ� = 35' and ϕ� = 0'. 
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recoil force that strongly depends on the wavevector of the excited modes [17,23] is induced on the particle. 

Since the SPPs supported by hyperbolic metasurfaces possess very high wavenumbers compared to 

isotropic surfaces, the induced recoil forces over these structures are dramatically enhanced. Figure 5.1(a) 

shows that such enhancement is maximum in the very near field of the metasurface and progressively 

lessens as the nanoparticle moves away from it. In the following, I apply the formalism developed in 

Chapter 4 to compute the lateral optical forces acting on polarizable Rayleigh particles over anisotropic 

metasurfaces and describe the physical mechanisms that enable them. Then, I numerically demonstrate the 

presence of giant lateral optical forces over realistic hyperbolic metasurfaces made of nanostructured silver 

and an array of graphene strips, enabling a unique platform to route and trap nanoparticles with low-

intensity laser beams. 

5.1 ENHANCEMENT OF LATERAL OPTICAL FORCES 

Let me consider a non-magnetic, electrically polarizable, and dielectric Rayleigh particle located at a 

distance z' over a reciprocal, linear, and anisotropic metasurface defined by the diagonal conductivity 

tensor σ9 =  σ==x8x8 + σ??y8y8 and is illuminated by a plane wave, as shown in Figure 4.1. The total lateral 

forces exerted on the particle can be computed from the radiation pressure and spin-induced recoil 

components as detailed in Chapter 4. These two components read as 

Fj' = �K kj RIm2α==3|E='|K + Imwα??zWE?'WK + Im2αkk3|Ek'|KS, (5.1) 

Fj� = �ÑQ ^ h P�Ð�jk η¤Im R ��j Gjk� (r̅', r̅')S, (5.2) 

Eq. (5.2) confirms that two mechanisms dominate the lateral recoil forces induced on the particle: (i) the 

helicity of the polarization induced on the particle; and (ii) the wavenumber of the supported plasmons, 

indirectly expressed in Eq. (5.2) through the imaginary part of the spatial derivative of the Green’s function 

out of plane cross-terms at the particle position. It should be noted that Eq. (5.2) is general and applies to 

any surface provided the adequate Green’s function. For instance, it can be applied to analyze isotropic 

plasmonic surfaces, as done in Ref. [17,23]. There, the helicity of the particle polarization was exploited to 



107 
 

convert the spin of incident circularly polarized light into lateral optical forces acting on the particles. In 

this Chapter, I replace such surfaces with hyperbolic metasurfaces aiming to significantly enhance the 

available density of states and, in turn, the strength of the induced lateral optical forces.  

 

 

Figure 5.2: Influence of the metasurface topology on the lateral optical forces induced on a Rayleigh particle 

located 40nm above the metasurface and illuminated by a RHCP plane wave. (a) Forces induced on the particle 

versus the metasurface conductivity along the y axis, σ??, for a fixed σ== = i10 mS. (b) Contributions to the lateral 

optical force: radiation pressure (FZj', magenta) and interaction force (FZj�, black). (c), (d) Isofrequency contours of 

the A, B, C, and D metasurface topologies shown in panel (a). (e) Lateral forces versus the conductivity 

components of a lossless anisotropic metasurface. Results are normalized with respect to the free-space scattering 

force F'. Other parameters are as in Figure 5.1. 
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Figure 5.2 illustrates the influence of the metasurface anisotropy on the lateral forces acting on a 

Rayleigh particle located nearby under circularly polarized plane wave illumination. According to Eq. (5.2), 

such anisotropy bounds the maximum force attainable over a metasurface. Specifically, Figure 5.2(a) shows 

the lateral force FZj induced on the particle placed over a lossless metasurface with σ== = i10 mS (i.e., 

metallic response, similar to Re[ε==]<0 in a bulk material) versus the conductivity along the y direction, 

σ??, thus analyzing all possible elliptical and hyperbolic topologies of the metasurfaces and going through 

its topological transition [35,37]. Figure 5.2(b) depicts a similar analysis but detailing the lateral radiation 

pressure (FZj') and recoil (FZj�) force that compose FZj. Results, normalized with respect to the free-space 

scattering force FZ�, confirm a very large enhancement of the induced forces due to the strongly dominant 

response of the recoil force over hyperbolic metasurfaces (i.e., when sign2ImGσ==J3  � signwImNσ??Oz). 

Note that these metasurfaces support surface modes with high wavenumbers (see Figure 5.2c) that are 

directionally excited by the scattering from the polarized particle thanks to the spin-Hall effect, providing 

a giant recoil force. Maximum enhancement is found near the topological transition of the metasurface 

(ImNσ??O ≈ 0), which is a topology known to maximize the density of states [37]. However, the induced 

optical forces decrease for elliptical metasurfaces (sign2ImGσ==J3 = signwImNσ??Oz) due to the reduced 

density of states they provide and the limited wavenumber of the supported surface modes (see Figure 5.2d). 

Figure 5.2(e) shows the complete response exploring the lateral forces that appear over an anisotropic 

metasurface whose conductivity tensor components are simultaneously varied. The second and fourth 

quadrants of the figure show the response of hyperbolic metasurfaces, confirming enhancements larger than 

6 orders of magnitude over the free space scattering force. Importantly, such enhancement is robust against 

moderate deviations in the metasurface anisotropy, thus alleviating potential fabrication challenges when 

realizing specific designs. The first quadrant of Figure 5.2(e) corresponds to elliptical metasurfaces that 

support transverse magnetic (TM) plasmons (ImNσ??O > 0 and ImGσ==J > 0) and provides significantly 

weaker optical forces than hyperbolic metasurfaces. In bulk media, similar plasmons are supported by 

materials whose real part of their relatively permittivity is negative [16]. It should be emphasized that as 
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the conductivity along one axis decreases, the induced forces increase due to the additional density of states 

provided by the structure and the larger wavenumbers of the supported SPPs. The limiting case appears 

again at the metasurface topological transition, where the induced optical forces reach their maximum 

value. Finally, the metasurfaces engineered in the third quadrant of Figure 5.2e support elliptical transverse 

electric (TE) surface modes weakly bounded to the surface and unable to induce significant optical forces 

on particles located nearby. 

The strength and direction of the resulting lateral forces depend on the direction of the incident plane 

wave. Figure 5.3 investigates this scenario for the case of hyperbolic (top row) and extremely anisotropic, 

�-near zero, (bottom row) metasurfaces. In the former case, the strength of the induced force is maximum 

 

Figure 5.3: Influence of the direction of a RHCP plane wave on the strength (left column) and direction (right 

column) of the lateral forces induced on a particle located 40 nm above lossless hyperbolic (σ== =i0.5 mS,  σ?? =  − i0.5 mS, top row) and extremely anisotropic (σ== = i0.5 mS,  σ?? =  − i0.01 mS, bottom row) 

metasurfaces. Other parameters are as in Figure 5.1. 
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when the direction of the incident wave is aligned with the hyperbolic branches of the surface that exhibit 

similar polarization [45] (ϕ� ≈ 45', 225' in this case), being significantly weaker along the orthogonal 

branches. In the latter, the force is maximum when the wave is aligned towards the canalization angle (ϕ� =
0', 180' in this case). In addition, it can be observed that the elevation of the plane wave (i.e., θ�) also 

affects the strength of the induced force, finding its maximum relatively far away from the normal direction. 

Figure 5.4 completes this study by illustrating the influence of the metasurface anisotropy on the direction 

of the lateral force induced on the particle. 

5.2 UNDERLYING MECHANISMS 

The lateral recoil force as expressed in Eq. (5.2) depends on three main mechanisms: (i) the helicity of 

the particle polarization ηj along the t axis (with t={x,y}); (ii) the density of states provided by the 

metasurface; and (iii) the power radiated by the dipole. 

 

 

Figure 5.4: Influence of the metasurface anisotropy on the direction of the lateral optical forces induced on a 

Rayleigh particle located 40nm over the metasurface and illuminated by a RHCP plane wave coming from ϕ� =0', θ� = 35' following the reference system shown in Fig. 1a of the main paper. Panel (b) depicts the isofrequency 

contours of the A, B, C and D metasurfaces shown in panel (a). Other parameters are as in Figure 5.1. 
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5.2.1 HELICITY OF PARTICLE POLARIZATION 

An important mechanism that originates recoil forces over reciprocal metasurfaces is the in-plane 

helicity of the polarization acquired by the particle. Specifically, the polarization spin around the x (y) axis 

induces optical forces towards the orthogonal axis within the plane, y (x), with a direction determined by 

the rotation handedness (see Eq. (5.2)). The maximum strength of the induced forces appears when the 

helicity is ±1, corresponding to circularly polarized dipoles. In practice, the helicity depends on the 

direction and polarization state of the incoming plane wave, the anisotropy of the metasurfaces, and the 

distance between the particle and the structure.  

As happens in the case of standard plasmonic surfaces [23], the polarization of the incident light plays 

a key role to tailor the helicity and to control the strength of the forces. To illustrate this behavior, Figure 

5.5 shows the dipole polarization helicity around the x axis, η=, versus the polarization state of the incoming 

 

Figure 5.5: Influence of the polarization of an incident plane wave on the lateral optical forces induced on a 

Rayleigh particle located 40nm above a lossless anisotropic metasurface. (a) Particle polarization helicity with 

respect to the x direction (see Figure 5.1a). Results are plotted versus the metasurface conductivity along the y axis, σ??, for a fixed σ== = i10 mS. (b) Lateral forces induced on the particle when it is located above isotropic (black; 

with σ== = σ?? = i10 mS), �-near zero (red; σ== = i10 mS, σ?? = −i0.1 mS), and hyperbolic (blue; σ== =i10 mS, σ?? = −i10 mS) metasurfaces. The incoming plane wave has an axial ratio equal to 1 and polarization 

states that follows a circular trajectory on the Poincaré sphere. Other parameters are as in Figure 5.1. 
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light and the metasurface conductivity value along the y axis, keeping constant the surface conductivity on 

the orthogonal axis (σ==). For the sake of simplicity, the incident light is aligned in this example with the x 

axis (ϕ� = 0), thus avoiding cross-polarization components on the reflected waves. The resulting helicity 

η= is zero when the total electric field does not simultaneously exhibit components along the y and z axis 

to induce a spin around x, as happens in this case with incident TE and TM waves. On the contrary, plane 

waves with elliptical and right/left handed circular polarization (RHCP/LHCP) possess these field 

components and thus might polarize the particle with a desired spin. Interestingly, the helicity increases as 

Wσ??W gets closer to zero because the metasurface becomes almost transparent there and the particle acquires 

 

Figure 5.6: In-plane helicity of a Rayleigh particle located above an isotropic metasurface defined with a diagonal 

conductivity tensor of (a) σ== = σ?? = i10 mS and (b) σ== = σ?? = i0.5 mS versus the direction of propagation 

(�� , ϕ�) of a TM-polarized incident plane wave. The particle is in free space at a distance z' = λ'/37=1 μm over 

the metasurface, and other parameters are as in Figure 5.1. 
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the polarization of the incident light. As Wσ??W increases, the fields reflected from the structure interfere with 

the incident wave, thus altering the particle polarization. In such cases, the helicity can be enhanced by 

simply changing the angle of incidence of the incoming light. Note that the helicity around the y axis is 

only affected by the TM component of the incident light and therefore is constant .η? ≈ −0.71/ for all 

incident polarizations, except for purely TE waves, where it is strictly zero. Figure 5.5(b) shows the lateral 

optical forces induced on the particle versus the polarization of the incoming light. As expected, the induced 

lateral forces are minimum for incident TE waves .|FZj�| = 0, |FZj| = WFZj'W/, whereas their maximum strength 

 

Figure 5.7: In-plane helicity of a Rayleigh particle located above an hyperbolic metasurface defined with a diagonal 

conductivity tensor of (a) σ== = i10 mS,  σ?? = −i10 mS  and (b) σ== = i0.5 mS,  σ?? = −i0.5 mS versus the 

direction of propagation (θ�, ϕ�) of a TM-polarized incident plane wave. The particle is in free space at a distance z' = λ'/37=1 μm over the metasurface, and other parameters are as in Figure 5.1. 
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depends on the interplay between the polarization states and the metasurface anisotropy. Overall, plane 

waves with specific combination of polarization state and angle of incidence should be used to adequately 

polarize the particle and maximize the strength of the induced optical forces.  

Figures 5.6-5.8 explore the helicity of the particle polarization versus the direction of propagation of 

an incident plane wave with TM polarization considering isotropic, hyperbolic, and σ-near zero (i.e., an 

example of extremely anisotropic metasurface operated at this topological transition) metasurfaces, 

respectively. In all cases, the metasurface conductivity along the x axis, ���, is kept constant and the 

 

Figure 5.8: In-plane helicity of a Rayleigh particle located above an extremely anisotropic metasurface defined 

with a diagonal conductivity tensor of (a) σ== = i10 mS,  σ?? = −i0.05 mS and (b) σ== = i0.5 mS,  σ?? =−i0.05 mS versus the direction  (θ�, ϕ�) of a TM-polarized incident plane wave. The particle is in free space at a 

distance z' = λ'/37=1 μm over the metasurface, and other parameters are as in Figure 5.1. 
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different metasurface topologies are obtained by modifying the σ?? component of the conductivity tensor. 

Figure 5.6 considers a particle located above an isotropic metasurface. In this case, the total in-plane helicity 

is independent of the azimuthal angle (ϕ�) of the incoming wave (similar as in Ref. [23]). This is shown in 

the figure by the alternance in the maximum/minimum values of the particle polarization helicity with 

respect to the x and y axis. Specifically, when the incident plane wave is aligned towards the x axis (ϕ� =
0°), the helicity with respect to this axis is zero –there is no field along y that can induce the spin– but 

maximum along the y-axis. This situation is reversed when the incoming wave is aligned towards the y axis 

(ϕ� = 90°), because there the x-component of the incoming wave electric field vanishes. Figure 5.7 

considers that the particle is located now over a hyperbolic metasurface. In this case, the helicity along the 

y axis is quite similar to the previous case because the metasurfaces have identical σ== values and the cross-

polarization is small. However, note that the helicity along the x axis is reversed (i.e., it goes from RHCP 

to LHCP and vice-versa) with respect to the isotropic case, which is due to the polarization change (from 

inductive to capacitive) of the σ?? conductivity component of the hyperbolic metasurface. In the last 

 

Figure 5.9: In-plane helicity of a Rayleigh particle located above an anisotropic metasurface versus the components 

of its diagonal conductivity tensor. The particle is illuminated by a plane wave coming from the direction  θ� =35' and ϕ� = 0' (the reference system is shown in Fig. 1a of the main paper) with a (a) TM; (b) TE; (c) RHCP; 

and (d) LHCP polarization. The particle is in free space at a distance z' = λ'/37=1 μm over the metasurface, and 

other parameters are as in Figure 5.1. 



116 
 

example, Figure 5.8 considers the case of a particle over a σ-near zero metasurface. While the helicity along 

the y-axis again resembles the previous examples, its value along the x-axis is significantly damped. This 

is due to the near zero value of the σ?? conductivity component, which prevents strong reflections of waves 

with this polarization. It should also be noted that larger conductivity values lead to higher helicity of the 

particle polarization. 

Figure 5.9 investigates the helicity of a Rayleigh particle located above an anisotropic metasurface 

versus the components of the metasurface diagonal conductivity tensor. For the sake of simplicity, the 

particle is illuminated by a plane wave coming from the direction  θ� = 35' and ϕ� = 0' (i.e., along the x 

axis). Panel (a) considers the case of an incoming wave with TM polarization. Results confirm that helicity 

around the x-axis is always zero. As noted above, this is because at ϕ� = 0' the y-component of the incident 

wave electric field is strictly zero and therefore it cannot induce any spin along the x-axis [54]. This scenario 

is different for the helicity along the y axis, which can take values up to +1 and −1 (i.e., RHCP and LHCP, 

respectively) for a wide variety of σ== conductivity components – I stress that σ?? is not relevant in this 

case, since the TM wave does not have an electric field along the y direction. Panel (b) considers the case 

of an incident plane wave with TE polarization. In this case, the helicity is always zero independently of 

the metasurface topology. This is because TE waves do not exhibit any ‘z’ component (see Chapter 2) and 

therefore they cannot provide any in-plane spin angular momentum. Panels (c) and (d) consider the case of 

incoming plane waves with RHCP and LHCP, respectively. Results confirm that the helicity of the particle 

polarization around the x axis acquires similar polarization as the incoming CP waves possesses, which 

occurs due to the very small reflection from the metasurface. However, the other in-plane component of the 

helicity (along the y-axis) presents a response that depends on the σ== of the metasurface conductivity, 

similarly to what happens when the particle is illuminated by a TM plane wave. This response appears 

because only the TM component of the incoming CP waves interacts with the metasurface, and therefore 

the reflected waves acquire such polarization.  
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Figure 5.10: In-plane helicity of a Rayleigh particle versus its distance z' over an anisotropic metasurface and the σ== component of the surface conductivity. The conductivity along the y direction is kept constant and equal to σ?? =i10 mS. The particle is illuminated by a plane wave coming from the direction  θ� = 35' and ϕ� = 0' 

(reference system is shown in Fig. 1a of the main paper) with a (a) TM; (b) RHCP; and (c) LHCP. The particle is 

in free space at a distance z' = λ'/37=1 μm over the metasurface, and other parameters are as in Figure 5.1. 
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Finally, Figure 5.10 depicts the smooth variation of the in-plane helicity versus the distance between 

the particle and the metasurface, considering different conductivity values of the surface along the x axis. 

It should be noted that this variation is more pronounced in case of hyperbolic metasurfaces because the 

free space behaves as a filter for the evanescent spectrum which dominate the response of these structures. 

5.2.2 WAVENUMBER OF THE SUPPORTED SPPS 

The main mechanism that enables giant lateral recoil force over anisotropic metasurfaces is related to 

the wavenumber of the surface plasmons supported by the structure, expressed in Eq. (5.2) through the 

spatial derivative of the scattered Green’s function, and associated to the local density of states. It is 

important to stress that the recoil force can be expressed analytically in terms of the plasmon wavenumber 

when the metasurface is isotropic as detailed in Chapter 4. In the case of hyperbolic metasurfaces, such 

analytical treatment becomes much complicated, and it is beyond the scope of this thesis. However, the 

strength of the recoil force always directly depends on the plasmon wavenumber independent of the 

metasurface topologies. 

 

Figure 5.11: xz-component of the scattered Green’s function tensor of an emitter located at r̅' = 0x8 + 0y8 + 40z8 

(nm) over an anisotropic metasurface, plotted along an observation line that goes through the x-axis and crosses 

the source position. (a) Real part. (b) Imaginary part. Results are computed for hyperbolic (σ== = i0.5 mS  and σ?? = −i0.5 mS, blue line), extremely anisotropic (σ== = i0.5 mS  and σ?? = −i0.05 mS, red line) and isotropic 

(σ== = i0.5 mS  and σ?? = i0.5 mS , green line) metasurfaces, and are normalized with respect to the imaginary 

part of the free space Green’s function.  Operation frequency is set to 8 THz. 

0

(a)

0

(b)
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Let me consider an electric point dipole located above an anisotropic metasurface. Figure 5.11 shows 

the real and imaginary part of the G=k� (r̅, r̅'), i.e., the xz component of the scattered dyadic Green’s function, 

plotted along the x axis -and crossing through the source position- for three different lossless metasurfaces: 

isotropic, hyperbolic, and σ-near zero. Results are normalized with respect to the imaginary part of the free-

space Green’s function G'(r̅, r̅') [16] to avoid the singular behavior of the function at the emitter location. 

Panel (a) shows that the real component of G=k� (r̅, r̅') is an odd function with respect to the source position, 

with similar behavior for the three metasurfaces considered here due to their identical conductivity along 

the x axis, σ==. Panel (b) plots a similar study for the imaginary component of the Green’s function, i.e., 

ImGG=k� (r̅, r̅')J. This function is also odd, crossing through zero at the source position. Very importantly, 

the slope of such crossing is determined by the metasurface anisotropy and the wavenumber of the 

supported modes. The inset of Figure 5.11(b) confirms that the slope of ImGG=k� (r̅, r̅')J at the source position 

is significantly steeper as the topology of the metasurface changes from isotropic to hyperbolic/σ-near zero. 

Figure 5.12 shows the spatial derivate of ImGG=k� (r̅, r̅')J along the x direction at exactly the source 

position, r̅'. Results (normalized with respect to the imaginary part of the free space Green’s function to 

 

Figure 5.12: Real and imaginary parts of the G=k�  spatial derivative along x, computed at exactly the source position. 

The emitter is located at r̅' = 0x8 + 0y8 + 40z8 (nm) over an anisotropic metasurface. Results are plotted versus the 

metasurface conductivity along the y-axis (σ??), keeping σ===i0.5 mS, and the operation frequency is 8 THz. 
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avoid the influence of the source singularity) are plotted versus the conductivity along the y axis (σ??), 

keeping σ== constant. As expected, the real part of the function does not depend on the metasurface 

topology. However, the imaginary part of the derivative drastically increases –several orders of magnitude– 

when the metasurface topology changes from isotropic to hyperbolic, a response related to the significant 

enhancement of the density of states provided by these structures. This is fully consistent with the analysis 

in Chapter 4: the imaginary part of the derivative enhances dramatically with the plasmon wavenumber. 

I stress that the lateral forces induced on particles near anisotropic metasurfaces are directly 

proportional to the term Im R�Ê�fË (�Z,�Z )
	� S, as explicitly described in Eq. (5.2). Therefore, by tailoring this 

parameter through the metasurface anisotropy, the induced optical forces can be significantly boosted. 

5.2.3 POWER RADIATED BY THE PARTICLE 

The last parameter that controls the interaction force is related to the total power radiated by the dipole 

moment induced on the particle. Figure 5.13 investigates such power versus the metasurface response 

 

Figure 5.13: Total power radiated by the xz and yz components of the polarized particle versus the  σ?? component 

of the metasurface keeping σ== fixed at i0.5 mS. The power is computed assuming that the particle has been 

polarized in the presence of the metasurface and then radiates in free space. Results are normalized with respect 

to the power radiated by the same particle when it is polarized in free space. Other parameters are as in Figure 5.1. 
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(similarly as in Figure 5.12). Results are normalized with respect to the power radiated by the same particle 

when it is polarized in free-space. It can be observed that the presence of the anisotropic metasurface 

modifies the total amount of radiated power, but only up to a limited extend. Specifically, the dipole radiates 

slightly more power when the structure presents a �-near-zero response and decreases when the absolute 

value of one component of the metasurface conductivity tensor increases. Similar responses can be found 

for other configurations. 

This study demonstrates that the power radiated by the dipole moment components involved in the 

recoil force does not significantly increase due to the presence of extremely anisotropy or hyperbolic 

metasurface. In particular, the enhancement of optical forces acting over Rayleigh particles located near 

anisotropic and hyperbolic metasurfaces can only be attributed to the density of states provided by such 

structures. 

5.3 ADDITIONAL FEATURE OF LATERAL AND VERTICAL FORCES  

In this section, I explore the influence of metasurface loss and particle properties on the total lateral 

force response to assess the viability of hyperbolic metasurfaces in practice. 

5.3.1 INFLUENCE OF PLATFORM LOSS 

The presence of loss in anisotropic metasurfaces reduces the strength of the optical forces induced on 

Rayleigh particles located nearby. To explore the loss influence, Figure 5.14 plots the total lateral forces 

induced on a particle versus the amount of loss of the metasurface, considering hyperbolic and �-near zero 

topologies. Results confirm that the force strength decreases with larger loss. This response arises because 

the isofrequency contour of anisotropic metasurface shrinks as loss increases (see panels (b) and (c) in the 

figure), thus limiting the local density of states provided by the structure. 
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Figure 5.14: Influence of loss in the strength of the lateral forces induced on a Rayleigh particle located 40nm 

over hyperbolic (blue line; σ== = i0.5 mS, σ?? = −i0.5 mS) and �-near-zero (red line; σ== = i0.5 mS, σ?? =−i0.01 mS) metasurfaces. Results are normalized with respect to the free space scattering force. Panel (c) and (d) 

illustrate the isofrequency contour of the metasurfaces highlighted in panel (b). Other parameters are as in Figure 

5.1. 
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5.3.2 INFLUENCE OF PARTICLE PROPERTIES 

The enhancement of the lateral optical forces induced on Rayleigh particles located over anisotropic 

metasurfaces as a function of the size and relatively permittivity of the particles is shown in Figure 5.15. 

Intuitively, the enhancement becomes smaller for larger particles due to the increased electrical distance 

between the particle and the metasurface. In addition, such enhancement is not sensitive to the electrical 

properties such as relative permittivity of the particle. 

5.4 LATERAL FORCES ABOVE REALISTIC CONFIGURATION 

Hyperbolic metasurfaces operating in the visible spectrum – frequency range in which optical tweezers 

are usually operated – have been experimentally realized using single-crystal silver nanostructures [34]. 

Here, I numerically investigate the lateral optical forces acting on an electric Rayleigh particle located over 

such structure when it is illuminated by a plane wave with RHCP polarization, as illustrated in Figure 

5.16(a). Figure 5.16(b) depicts the strength of the induced forces, normalized with respect to the power 

radiated by the dipole in free space when it is polarized in the absence of the metasurface, versus frequency 

 

Figure 5.15: Strength of the lateral optical forces induced on a Rayleigh particle located at z'=r+25nm (being r 

the particle radius) over hyperbolic (blue line; σ== = i0.5 mS, σ?? = −i0.5 mS), �-near zero (red line; σ== =i0.5 mS, σ?? = −i0.01 mS) and isotropic (black line; σ== = σ?? = i0.5 mS) metasurfaces. Results are plotted 

versus the particle (a) radius, keeping the permittivity fixed to  εe = 3; and (b) relative permittivity, keeping the 

radius fixed to a =  15 nm. Other parameters are as in Figure 5.1. 
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-near zero MTS
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and compares it to the one obtained when the hyperbolic metasurface is replaced with bulk silver [57]. 

Numerical results obtained using COMSOL Multiphysics [58] confirm that the hyperbolic structure induces 

lateral optical forces with a strength more than three orders of magnitude larger than silver over a broadband 

frequency range (from 500 to 750 THz). It is important to highlight that such enhancement is independent 

 

Figure 5.16: Lateral optical forces on a Rayleigh particle located 25 nm above nanostructured silver. (a) 3D 

schematic, showing an incident RHCP plane wave coming from θ� = 35' and ϕ� = 0'. Superimposed field plot 

illustrates the y-component of the magnetic field excited on the structure (not to scale) at 612 THz due to the 

scattering process. (b) Lateral optical forces induced on the particle, normalized with respect to the power radiated 

by the particle when it is polarized in free space, plotted versus frequency. Results obtained when the particle is 

located above bulk silver are included for comparison purposes. (c) Absolute magnitude of the normalized 

Poynting vector on the metasurface at the operation frequencies shown in panel (b). The particle has a radius r=15 

nm and relative permittivity εe = 3. The metasurface dimensions are W = 120 nm, H=80 nm, and L = 180 nm. 
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to the electrical properties of the dipolar particles and that similar responses can be obtained using light 

with different polarization states and coming from other directions. Figure 5.16(c) illustrates the magnitude 

of the Poynting vector of the fields scattered by the particle plotted exactly on top of the metasurface at 

 

Figure 5.17: Magnetic field components (
�Ç-top row, 
ùÇ-middle row and 
�Ç-bottom row) of the surface modes 

excited by the light scattered on a particle located above the nanostructured silver surface. Results are computed 

for different operation frequencies, 565 THz (left column), 612 THz (middle column), and 680 THz (right 

column). The particle is illuminated by a right-handed circularly polarized incident plane wave coming from ϕ� =0', θ� = 35'. Other parameters are as in Figure 5.16. Results have been obtained with COMSOL Multiphysics. 
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different operation frequencies, confirming the directional excitation of highly confined surface modes. 

Inspecting these power plots, it is easy to observe the evolution of the metasurface topology from σ-near-

zero to hyperbolic as frequency increases. Remarkably, the strength of the reported forces is even larger 

(up to 11 times) than the one found over bulk silver at its plasmonic resonance – located in the near 

ultraviolet at ~890 THz [16]. Note that the silver nanostructure considered here is designed to operate at 

visible frequencies [34] and it does not behave as a homogeneous metasurface in that band. Besides, such 

strength is comparable to the one appearing on strongly chiral particles in the presence of evanescent fields 

[59]. For the sake of completeness, Figure 5.17 shows the magnetic-field components of the surface modes 

excited by the scattering process at different frequencies. Inspecting these scattered fields, it is clear the 

evolution of the metasurface topology from �-near zero to hyperbolic as frequency increases. 

 

 

Figure 5.18: Normalized lateral optical forces on a Rayleigh particle located 25 nm above the nanostructured silver 

surface, computed with COMSOL Multiphysics. The particle is illuminated with an incident TM plane wave 

coming from θ� = 35' and ϕ� = 0'. Results obtained when the particle is located above bulk silver are included 

for comparison purposes. Other parameters are as in Figure 5.16. 
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It is instructive to analyze the response of lateral forces induced on the particle versus the azimuthal 

angle of incidence ϕ� and polarization state of the incoming plane wave. Figure 5.18 plots the force strength 

when the polarization of the wave (still aligned along the x axis, i.e., ϕ� = 0°) is changed to TM. Results 

confirm that, even though the forces induced on the particle are still significantly larger than those found 

over bulk silver, their strength have diminished almost two orders of magnitude with respect to the case 

where the particle was illuminated with CP light. This response appears because the y-component of the 

local electric field acting on the particle is strictly zero (note that there is no cross-polarization at the 

surface), thus vanishing the helicity of the polarization around the x axis (see Figure 5.9) and therefore 

nulling the y-component of the induced force. In addition, the incident and reflected TM wave cannot 

effectively polarize the particle in the yz plane, thus leading to a limited overall strength of the lateral force. 

Figure 5.19 shows the forces induced on the particle versus the azimuthal angle of incidence for several 

polarization states of the incident plane wave. In case of incident TM waves, the strength of the forces 

increases with the azimuthal angle of incidence. This enhancement appears because the local electric field 

 

Figure 5.19: Strength of the normalized lateral optical forces induced on a Rayleigh particle located 25nm above 

the nanostructured silver surface versus the azimuthal angle of incidence ϕ� of a plane wave at 650 THz coming 

from θ� = 35'. Results, computed with COMSOL Multiphysics, are plotted for different polarization states of the 

wave, including RHCP (blue line), LHCP (red line), and TM (black line). Other parameters are as in Figure 5.16. 
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has now all three components, enabling a more effective out-of-plane polarization of the particle. It should 

also be noted that incident plane waves with RHCP and LHCP induce optical forces on the particle with a 

smooth dependence on the azimuthal angle of incidence. Note that this study has been carried out at 

650THz, where the nanostructured silver surface exhibits an almost �-near zero topology. 

Figure 5.20 illustrates the lateral optical forces induced on a Rayleigh particle located over the 

nanostructured silver surface when it is illuminated with a TM plane wave coming from ϕ� = 25°. Results 

 

Figure 5.20: Lateral optical forces on a Rayleigh particle located 25 nm above the nanostructured silver surface. 

Results have been obtained with COMSOL Multiphysics. (a) 3D schematic, showing an incident TM plane wave 

coming from θ� = 35' and ϕ� = 25'. Superimposed field plot illustrates the y-component of the magnetic field 

excited on the structure at 612 THz due to the scattering process. (b) Normalized lateral optical forces induced on 

the particle versus frequency. Additional data when the particle is located above bulk silver is included for 

comparison purposes. (c) Absolute magnitude of the normalized Poynting vector on the metasurface at the 

operation frequencies shown in panel (b). Other parameters are as in Figure 5.16. 
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confirm that the induced forces are three orders of magnitude larger than over bulk silver for a broad 

frequency band. This study highlights that the strength of the forces found over hyperbolic and extremely 

anisotropic metasurface can be maximized by employing laser beams with adequate sets of polarization 

state and angle of incidence.  

Finally, Figure 5.21 shows the optical forces induced on Rayleigh particle versus its position over one 

strip within the periodically nanostructured silver structure. Results confirm that the induced forces barely 

depend on the position of the particle within the surface. 

5.5 CHAPTER CONCLUSIONS 

In conclusion, I have reported a giant enhancement of lateral optical forces acting on electrically 

polarizable Rayleigh particles located near hyperbolic and extremely anisotropic metasurfaces. The 

enhancement is enabled by the interplay between the increased density of states provided by these structures 

and the in-plane helicity of the polarization acquired by the particle. Theoretical and numerical results 

confirm that the induced optical forces are broadband, robust against fabrication tolerances, and quite 

 

Figure 5.21: Lateral optical forces, normalized by the power radiated by the dipole when it is polarized in free 

space, induced on a Rayleigh particle versus its position over a strip within a periodically nanostructured silver 

structure that behaves as a hyperbolic metasurfaces. Operation frequency is 750 THz. Other parameters are as in 

Figure 5.16. 
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resilient to loss. Hyperbolic and extremely anisotropic metasurfaces can be realized in different frequency 

bands to provide boosted lateral optical forces, using, for instance, nanostructured silver in the visible or 

nanostructured graphene in the terahertz and infrared bands. My analysis is based on a classical 

electromagnetic approach that neglects other potential source of forces such as fluctuation induced, thermal, 

or quantum [65-67]. However, the very large enhancement of the reported optical forces and the fact that 

they appear over a broad frequency band strongly suggest that this response is of fundamental nature. In 

addition, I expect that anisotropic metasurfaces will also greatly influence fluctuation-induced forces since 

they depend on the same scattering problem analyzed here. These findings might have significant 

implications in practice. In particular, hyperbolic metasurfaces seem ideal candidates to construct highly 

performing nano-optical tweezers to precisely manipulate and trap nanoparticles as well as assembling them 

through optical binding, allowing to significantly reduce the intensity of the required laser beams and to 

prevent damaging due to photoheating. Furthermore, the large density of states provided by these structures 

will boost phenomena such as SERS and photoluminescence, finding exciting applications in fields such as 

nanophotonics, bioengineering and biochemistry. 
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Chapter 6:  Engineering Optical Traps Above Anisotropic 

Metasurfaces  

Optical trapping of small particles in the micrometer range has triggered numerous applications in 

microbiology [1-3], colloidal dynamics [4], and lab-on-a-chip applications [5], among many others [6-9]. 

In conventional optical tweezers [10-13], an optical trap is set through a tightly focused laser beam that 

confines the particle near the higher electric field intensity. There, the gradient of the electric field intensity 

that surrounds the particle generates the required trapping forces. Unfortunately, it is challenging to extend 

this approach to trap particles whose size is particularly in the nanometer range as (i) the gradient force 

significantly lessens with the third power of the particle size [14]; and (ii) the thermal fluctuation induced 

motion of the particles increases [15,16], thus favoring them to escape from the trap. As a result, stable 

trapping demands high-intensity and tightly focused laser beams that may damage the nanoparticles due to 

photoheating. 

In this context, recoil force has recently been exploited to trap nanoparticles near bulk metals using a 

linearly polarized Gaussian beam [17]. This elegant approach takes advantage of the peculiar distribution 

of the electric field within the beam: the components parallel to the surface are even-symmetric with respect 

to the laser beam axis whereas the out-of-plane component is odd-symmetric. The interplay between 

even/odd symmetries of the in-/out-of- plane electric field components enforces that the nanoparticle 

acquires an out-of-plane polarization spin with a rotation handedness always pointing away from the beam 

axis that excites SPPs toward this direction. This response holds independently of the particle position 

within the beam. The combination of recoil force coming from the excitation of directional SPPs in the 

scattering process together with gradient force originating from the Gaussian beam generates an optical trap 

located exactly at the beam axis [17]. Unfortunately, this platform might not be suitable for many practical 

applications because it requires specific laser sources operating at wavelengths very close to the intrinsic 

plasmon resonance frequency of metals. As the laser operation frequency is shifted away from such 
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resonance, the presence of the metals does not play a significant role on the force acting on the particle and 

the trap performance becomes similar to a common optical tweezer governed by gradient force originating 

from the Gaussian beam. In addition, the performance of this approach in terms of potential distribution, 

trap depth, and minimum beam intensity required to achieve stable optical trapping has not yet been 

investigated. The calculation of these parameters is challenging due to the intrinsic nonconservative nature 

of the recoil force, which prevents the use of common theoretical approaches based on the definition of 

potential energy in the case of conservative force fields [18].  

In this Chapter, I propose stable optical trapping of nanoparticles using ultrathin anisotropic and 

hyperbolic metasurfaces illuminated with low-intensity Gaussian beams. This platform, illustrated in Figure 

 

Figure 6.1: Hyperbolic optical trap created by illuminating a Rayleigh particle (yellow) located above an ultrathin 

anisotropic metasurface (cyan) with a p-polarized Gaussian beam (red). The beam has waist w' and has been 

focused at a distance f' normal to the surface. During the light scattering process, the particle excites highly 

confined surface plasmons (grey) on the metasurface propagating away from the beam axis where the optical trap 

is generated. The hyperbolic metasurface is constructed using subwavelength metallic rods with width W, height 

H and periodicity L, and is supported by a medium of refractive index nK. 
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6.1, permits to engineer optical traps in which giant, nonconservative recoil force coming from the 

directional excitation of ultra-confined SPPs determines the overall performance of the traps. The incident 

Gaussian beam enforces that the nanoparticle acquires an adequate out-of-plane polarization spin and set 

the optical trap at its axis. Strikingly, and in stark contrast with the case of bulk metals studied in Ref. [17], 

the properties of the traps are directly linked with the anisotropic and broadband features of the supported 

SPPs, and can be modified by tailoring the electromagnetic response of the metasurface. In general, and 

compared to traps set over common isotropic surfaces (bulk metal and uniform thin layers), the proposed 

optical traps exhibit (i) significantly larger trapping forces, associated to the high momentum of the 

supported plasmons; and (ii) a broadband response, in the sense that stable trapping can be set with beams 

oscillating at any frequency within a wide range in which anisotropic metasurfaces supports SPPs. To 

investigate this platform, explore its practical viability, and compare its performance with respect to other 

configurations, I develop a rigorous theoretical formalism based on (i) the Lorentz force within the dipole 

approximation merged with anisotropic Green’s functions [18] to compute the trapping forces; and (ii) the 

Helmholtz decomposition method [19] to compute the potential energy of nonconservative forces. I validate 

the results using full-wave numerical simulations performed in COMSOL Multiphysics [20]. My approach 

permits to calculate the spatial potential distribution of the trap, including the trap depth, and allows to 

elucidate the minimum beam intensity required to achieve stable optical trapping. I have applied my 

formulation to explore the trapping response using three realistic configurations, namely a bulk silver 

substrate, a uniform and thin silver layer, and an array of densely packed silver nanostrips [21] that behaves 

as a hyperbolic metasurface. Numerical results reveal an outstanding trap performance of nanostructured 

silver over an ultra-wide frequency band ranging from the visible to the infrared (IR). Compared to the case 

of a thin silver layer or bulk silver, the nanostructured configuration greatly enhances the trap depth over 

the entire band that in turn reduces the beam intensity required to achieve stable optical trapping. It should 

be noted that at the plasmon resonance, the thin silver layer exhibits better performance than the bulk or 

nanostructured silver. This response appears because the nanostructured configuration does not exhibit a 

hyperbolic response at that wavelength. Next, I explore the asymmetrical potential distribution of the traps 
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as the topology of nanostructured silver layer evolves from elliptical to hyperbolic regimes going through 

its topological transition, and reveal the presence of local potential barriers that might appear along precise 

directions within the surface. Such potential barriers arise over anisotropic surfaces thanks to its rotationally 

asymmetric response, exhibit larger energy than the trap depth, and might be useful to predict the direction 

taken by an energetic particle to escape from the trap. This response is in stark contrast with the rotationally 

symmetrical and smooth potential distribution of traps set over thin and bulk metals which are isotropic in 

nature. These results position anisotropic and hyperbolic metasurfaces as promising candidates to trap and 

manipulate nanoparticles using low-intensity laser sources operating in the visible and near-IR band, and 

might lead to important applications in a wide variety of fields ranging from physics and chemistry to 

bioengineering. 

6.1 NON-PARAXIAL MODEL OF GAUSSIAN BEAM 

The common paraxial approximation to model a Gaussian beam is valid when the electric field does 

not change its amplitude significantly within one wavelength along the propagation direction [22,23]. 

However, for a tightly focused beam possessing waist in the order of wavelength or smaller, as the one 

 

Figure 6.2: Example of electric field intensity distribution of a Gaussian beam in the xz-plane showing the beam 

axis and the beam center. The beam exhibits a similar response in the yz-plane. 
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employed in the proposed platform, this approximation is not valid. In that case, a more general non-

paraxial model [22,23] should be used to describe the beam. Here, I review this formulation to model a 

linearly polarized Gaussian beam incoming to the metasurface and its reflection. This model does not 

include the presence of the emitter, as its presence would be negligible in the overall reflection process.  

The electric field of a p-polarized (i.e., transverse magnetic) Gaussian beam employed in the proposed 

platform possesses Ú and ® components (in-plane) that are even-symmetric with respect to the beam axis, 

whereas the ¯ component (out-of-plane) is odd-symmetric [17]. The non-paraxial incident electric field 

vector components of such a normally incident Gaussian wave can be expressed as [18] 

E=,�ÆQÊ
 (r̅) = � hèÑ∬ ^�^fc^_^c e�¿_h� h� e�^fc; e�.^�=�^�?�^fck/dk=dk?^c�^c , (6.1a) 

E?,�ÆQÊ
 (r̅) = � hèÑ∬ ^�^fc^_^c e�¿_h� h� e�^fc; e�.^�=�^�?�^fck/dk=dk?^c�^c , (6.1b) 

Ek,�ÆQÊ
 (r̅) = � hèÑ∬ ^_^c e�¿_h� h� e�^fc; e�.^�=�^�?�^fck/dk=dk?^c�^c , (6.1c) 

where w' and f' are the beam waist and focus position, respectively; and k� is the wavenumber in the 

medium above the surface with a transverse component kZ j = x8k= + y8k? and a vertical component kk� =
lk�K − kjK. A phase shift e�^fc;  is introduced as a measure of tuning the laser focus position f' along the z8-

axis [17,18]. Note that the integration limits in Eq. (6.1) are set to ±k�, because the propagative modes 

dominate the response of the beam, and the influence of evanescent spectrum is negligible [17]. Figure 6.2 

shows the electric field intensity distribution of the beam propagating in free space in the xz-plane (see the 

coordinate system in Figure 6.1) indicating the center and the beam axis. Note that the intensity distribution 

is completely symmetric in the radial direction. 

The reflected electric field vector components from the anisotropic surface are computed as 
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E=,�:;Ê
 (r̅) − � hèÑ∬ !R�e ^�̂_ + Ree ^�^fc^_^c ( e�¿_h� h� e�^fc; e�.^�=�^�?�^fck/dk=dk?^c�^c , (6.2a) 

E?,�:;Ê
 (r̅) = � hèÑ∬ !−R�e ^�̂_ + Ree ^�^fc^_^c ( e�¿_h� h� e�^fc; e�.^�=�^�?�^fck/dk=dk?^c�^c , (6.2b) 

Ek,�:;Ê
 (r̅) = � hèÑ∬ Ree ^_^c e�¿_h� h� e�^fc; e�.^�=�^�?�^fck/dk=dk?^c�^c . (6.2c) 

Here, Ree and R�e are the Fresnel reflection coefficients that characterize the reflection of ‘p’ and ‘s’-

polarized waves from the anisotropic surface when it is illuminated with ‘p’-polarized waves [31]. In most 

scenarios, the total fields described in Eq. (6.2) keep a similar symmetry as the incident Gaussian beam in 

free space, as discussed below, and polarize the particle with the desired handedness to enable optical 

trapping. It should be noted that the symmetry of these fields may change when the Gaussian beam is 

focused well below the metasurface. In that case, the particle may acquire an out-of-plane polarization spin 

with rotation handedness pointing toward the beam axis and the recoil force becomes an “anti-trapping” 

 

Figure 6.3: Electric field intensity distribution of the standing wave formed due to the superposition of the 

incident Gaussian beam and the reflected one from (a) hyperbolic metasurface; and (b) bulk silver. The beam 

waist is w' = 2 μm, it is focused at f' = z = 0, and its operation wavelength is 540 nm. The metasurface is 

constructed using nanostructured silver (see Figure 4.1) with parameters W = 60 nm, L = 180 nm, H = 10 nm, 

and nK = 1.05. 
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force [17]. The intensity distribution of the standing wave (i.e., superposition of the incident Gaussian beam 

and the reflected one) formed above a nanostructured silver layer and above bulk silver is shown in Figure 

6.3. Here, the incident beam is focused exactly at z = 0. Results show that an intensity hotspot is formed 

above z = 0 even though the incident beam is focused exactly on the surface. Such standing waves may 

exert a repulsive vertical gradient force on the nanoparticle that will be discussed later in this Chapter. 

6.2 THEORETICAL FRAMEWORK 

Let me consider an isotropic, non-magnetic, and electrically polarizable spherical Rayleigh particle 

located at a position r̅' = (x', y', z') above an anisotropic metasurface defined by a conductivity tensor 

σ9:;; = σ==:;;x8x8 + σ??:;;y8y8, as shown in Figure 6.1.  The ultrathin metasurface is placed in the plane z = 0, 

lying on the interface between two media with refractive indices n� (top) and nK (bottom). The particle is 

illuminated by a normally incident Gaussian beam, i.e., the beam axis is aligned with the z8-axis (see Figure 

6.2), that has a beam waist w' and is focused at a distance f'. The focus position f' is defined as the vertical 

distance between the metasurface and the center of the Gaussian beam [17], and it is positive (negative) 

when the beam is focused above (below) the metasurface. Following the theoretical development in Chapter 

4, the total optical forces on the particle are composed of conservative gradient and nonconservative recoil 

components. The gradient force reads as 

FZ¬�Ð� = �K Re
⎣⎢⎢
⎢⎡p=∗ ��= E=Ê
 + p?∗ ��= E?Ê
 + pk∗ ��= EkÊ
p=∗ ��? E=Ê
 + p?∗ ��? E?Ê
 + pk∗ ��? EkÊ
p=∗ ��k E=Ê
 + p?∗ ��k E?Ê
 + pk∗ ��k EkÊ
⎦⎥⎥

⎥⎤
, (6.3) 

where EnÊ
 is the superposition of the electric field of the standing wave formed due to the incident laser 

beam and its reflection from the metasurface. The nonconservative recoil force exerted on the particle yields 

to 
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FZ�:Q =
⎣⎢⎢
⎢⎡ −2ImGp=∗pkJIm R ��= G=k� S−2ImNp?∗ pkOIm R ��= G?k� S�ht K Re Í|p=|K ��k G==� (r̅', r̅') + Wp?WK ��k G??� (r̅', r̅') + |pk|K ��k Gkk� (r̅', r̅')Î⎦⎥⎥

⎥⎤
. (6.4) 

Let me analyze these gradient and recoil forces in the context of optical trapping. Eq. (6.3) shows that 

the conservative gradient force always acts toward the higher electric field intensity of the standing wave 

[24-26]. The nonconservative recoil force shown in Eq. (6.4) appears to compensate the momentum of the 

directional SPPs excited on the surface [27-30]. These two force components have a very different origin: 

the gradient force depends on the gradient of the electric field intensity surrounding the particle, and thus 

varies with the type of beam employed. For instance, in the case of plane waves, this term would lead to a 

radiation pressure pointing toward the direction of the wavefront; whereas in the case of a Gaussian beam, 

this component leads to gradient force pointing towards the beam center, as in common optical tweezers 

[12]. On the other hand, the recoil force mostly depends on the properties of the surface plasmons supported 

by the metasurface. Besides, this force also depends on the effective dipole polarization spin or helicity 

acquired by the particle. For a given distance between the particle and the metasurface, the recoil force is 

maximized (strictly zero) when the particle acquires a quasi-circular (linear) polarization state. Using a 

properly focused Gaussian beam, the particle acquires an out-of-plane polarization spin with rotation 

handedness against the beam axis and the resultant recoil force is directed towards the beam axis. In the 

case of isotropic metasurfaces, this force points exactly towards the beam axis independently of the particle 

position within the beam [17]. However, in the case of anisotropic metasurfaces, the direction of the recoil 

force may not point towards the beam axis due to the broken rotational symmetry of the system [i.e., 

G=k� (r̅') � G?k� (r̅') in Eq. (4.8)]. As discussed below, the recoil force will then push the particle towards 

the beam axis following a parabolic trajectory. In addition, Eq. (6.4) unveils that the strength of the recoil 

force depends on the imaginary part of the spatial derivative of scattered Green’s functions out-of-plane 

tensor component, which measures the momentum of the excited directional plasmons. 
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6.2.1 TRAP STIFFNESS 

An important parameter that defines the performance of an optical trap is the trap stiffness, which 

measures the restoring force that acts on the nanoparticle to bring it back to a stable position within the trap 

– similar to the spring constant in a common mechanical system. This parameter is more significant in 

Brownian systems, where particles suspended in liquids may acquire random motion due to the continuous 

collision with the moving fluid molecules. The stiffness of a trap set over a surface can be approximated as 

[31] 

κ(ϕ) = − F|(ρ, ϕ)ρ �|→' (6.5) 

where F|(ρ, ϕ) denotes the radial component of the lateral forces evaluated at a position (ρ, ϕ) defined in 

polar coordinate system. In Eq. (6.5), I assume that the tangential force component is significantly weaker 

than the radial one, as happens in the plasmonic systems considered here. In most cases considered in the 

literature [12,17], for instance, the force generated by Gaussian beam in free-space or over common 

plasmonic materials, the trap stiffness is isotropic in the sense that it has polar symmetry and therefore 

provides an identical response in all directions: κ(ϕ) = κ. This is different in the case of traps set over 

anisotropic metasurfaces: the restoring force that a nanoparticle experiences towards the trap depends on 

the direction through which the particle is trying to escape. Traps with anisotropic stiffness are useful to 

predict the probable direction followed by the particle when it acquires enough energy to escape from the 

trap. 

6.2.2 TRAP POTENTIAL 

The trap potential is arguably the most important parameter that defines the performance of an optical 

trap [32,33]. Here, I will focus on the trap potential energy and trap depth, which is a quantitative measure 

of how long the particle remains confined within the trap. In the case of conservative forces, such as the 

gradient force originating from a Gaussian beam [13], the trapping potential U of a conservative vector 

force FZQ can be obtained as UQ(r̅) =  − ¶ FZQ(r̅′) ∙ dr̅′�Z��  [21]. This potential represents the energy required 
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to move a particle from a reference location with zero energy (considered here to be in the infinite) to the 

position defined by the vector r̅. Conservative forces are free of solenoidal components and thus the path 

chosen in the integral is not relevant: any trajectory from infinite to r̅ provides identical potential energy. 

This situation is different in the case of nonconservative vector forces because they possess a solenoidal 

component [34]. Nonconservative forces may arise in many scenarios, for instance in certain 

optomechanical systems [35], using structured or evanescent fields [36], or when a nanoparticle is 

illuminated near a plasmonic surface [27-30]. In such cases, choosing different paths to move the particle 

from a reference location to a position r̅ will lead to different potential energies due to the presence of the 

solenoidal force component. As a result, it is not possible to use direct integration methods to compute the 

potential energy. To avoid this issue, I apply here the Helmholtz decomposition method to compute the 

trapping potential of nonconservative forces [19]. Following this approach, I express the force field as [34-

36] 

FZ(r̅) = −∇U+ ∇ d An (6.6) 

where, U is the potential energy, An is the vector potential, and ∇U and ∇ d An denote the conservative and 

nonconservative (solenoidal) force components, respectively. Taking the divergence of Eq. (6.6) and 

applying the identity ∇ ∙ (∇ d An) = 0 permit me to find the potential energy through the differential 

equation [34] 

−∇KU = ∇ ∙ FZ on Ω (6.7) 

that is subjected to the Neumann boundary conditions [37] 

∇U ∙ ρ8 = FZ ∙ ρ8 on dΩ (6.8) 

where ρ8 is a unit vector pointing outwards with respect to the boundary of the domain Ω. This numerical 

approach is valid when the force field is defined over a bounded region Ω with a smooth boundary condition 

dΩ. The platform considered here fulfils these conditions: the domain is defined by the Gaussian beam 
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impinging over the metasurface, and the boundary conditions are related to the negligible force acting on 

the particle when it is located very far away from the beam axis. 

I will explore the potential distribution of optical traps set using Gaussian beams over isotropic surfaces, 

for instance ultrathin and bulk metals, and reveal that they are defined by a spatially rotational symmetric 

function centered at the beam axis. In stark contrast, the trapping potential over anisotropic metasurfaces 

illuminated with a Gaussian beam lacks such rotational polar symmetry. In both cases, the trap depth is 

unique and is defined as the potential difference between the energy computed at the beam axis and at a 

position located in infinite with zero energy. Strikingly, and as further detailed below, the intrinsic 

anisotropy of the metasurface gives rise to local potential barriers with larger potential difference than the 

trap depth. As a result, the particle might acquire enough energy to escape from the trap but not to overcome 

such potential barriers and thus will follow a special route within the plane to avoid them. Finally, it should 

be noted that stable optical trapping appears when the trap depth is larger than 10kóT, where kó is the 

Boltzmann constant and T is temperature. If this condition is not fulfilled, mechanisms such as thermal 

fluctuation [38,39] and Brownian motion [12,32,36] may provide enough energy to the particle to quickly 

escape from the trap. Thus, the minimum laser beam intensity required to achieve stable trapping is the one 

required to generate an optical trap with a potential depth V 10kóT  [18]. 

6.3 ENABLING MECHANISM OF OPTICAL TRAPPING 

In this section, I investigate the mechanisms that enable lateral trapping forces on a nanoparticle located 

near an ultrathin metasurface when illuminated by a p-polarized Gaussian beam. To this purpose, I first 

analyze the out-of-plane dipole polarization spin or helicity acquired by the particle that enables excitation 

of directional SPPs on the platform. Then, I analyze the recoil and gradient forces acting on a nanoparticle 

versus its position with respect to the beam axis, unveiling the mechanisms that conform the optical trap. I 

also compare the force response when the nanostructured silver is replaced by a pristine thin silver. 

Let me consider a spherical gold nanoparticle of radius ² = 15nm located at r̅' = (x', y', ²). The 

metasurface is constructed using nanostructured and periodic silver rods [21] with width W= 60 nm, height 
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H = 10nm and periodicity L = 180nm (see Figure 6.1) patterned over a porous polymer with refractive 

index nK = 1.05 [30]. The subwavelength thickness and periodicity of the layer allow to characterize it 

using an effective in-plane conductivity tensor [40-43], as discussed in Chapter 2, with negligible out-of-

plane polarizability [44,45]. Even though the use of different substrates might change the particle 

polarizability and the density of states provided by the structure, the overall response will not be 

significantly affected. I have carefully verified the accuracy of my model using full-wave numerical 

simulations as well as the dispersive hyperbolic response of the surface. For comparison purposes, I employ 

ultrathin silver with identical properties as the one employed on the nanostructured metasurface [21]. 

6.3.1 DIPOLE HELICITY 

I begin the analysis considering that the Gaussian beam is operating at λ' = 540nm. At this 

wavelength, the nanostructured silver layer behaves as a hyperbolic metasurface (see Chapter 2). For the 

sake of simplicity, I first assume that the nanoparticle is located along the metallic rods (i.e., the x8-axis). In 

this situation, the polarization state acquired by the particle can be computed from dipole moment 

pZ(x')=Gp=�(|x'|) + ip=�(|x'|)Jx8 + G∓pk�(|x'|)∓ ipk�(|x'|)Jz8, where the subscripts ‘r’ and ‘i’ denote the 

real and imaginary components of a complex number, and the upper (lower) sign appears when the particle 

is located in the negative (positive) portion of the x8-axis. I stress the symmetry of the electric dipole 

magnitude with respect to the beam axis, i.e., |pZ(x')| = |pZ(−x')|. This dipole can be expressed as a linear 

combination of two fundamental emitters that have opposite out-of-plane polarization rotation handedness 

with respect to the surface. The dipole moments of these emitters are pZ�(x')=p=�(|x'|)x8 ∓ ipk�(|x'|)z8 and 

pZK(x')=ip=�(|x'|)x8 ∓ pk�(|x'|)z8. The excitation of pZ� (pZK) depends on the real (imaginary) and imaginary 

(real) parts of the in-plane and out-of-plane electric field components of the standing wave created over the 

surface. Focusing the incident p-polarized Gaussian beam close to the metasurface ensures that the real part 

of the in-plane electric field components is much stronger than the other ones. As a result, the dipole pZ� is 
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strongly excited and dominates the scattering processes, thus generating SPPs that propagate in the radial 

direction against the beam axis. 

To explain this scenario, Figures 6.4-6.6 show the characteristics of dipole moment induced on the 

particle as a function of its position (x', y') with laser beam focused at f' = 0 and waist is w' = 2μm and 

Figure 6.7 displays the real and imaginary parts of the electric field components of the standing wave. 

Specifically, Figure 6.4(a) shows the in-plane, p= and out of plane, pk dipole moment components versus 

 

Figure 6.4: Dipole moment components p=, p? and pk induced on a gold nanoparticle located above nanostructured 

silver based metasurface when illuminated by a normally incident ‘p’-polarized Gaussian beam. Results are 

computed versus particle position (a) x', keeping y' = 0 fixed; and (b) y', keeping x' = 0 fixed. Note that p= =0 and p? = 0 for panels (a) and (b), respectively. The gold nanoparticle has a radius ² = 15nm and is located in 

free space at a distance z' = ² over the metasurface described in Figure 6.1. Other parameters are as in Figure 

6.3. 

(a)

(b)
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x' keeping y' = 0 fixed. In this case, p? = 0 and the responses are computed as a function of the electric 

field intensity available at the beam center. Results show that p= and pk exhibit even and odd symmetries 

versus the particle position with respect to the beam axis (i.e., x' = 0), respectively. The value of pk is 

strictly zero when it is located along the beam axis. This is because Ek,�ÆQÊ
  and Ek,�:;Ê
  vanish at this position 

as shown in Figure 6.7 and the particle behaves as a purely linearly polarized dipole. As the particle is 

moved away from the beam axis, the appearance of Ek,�ÆQÊ
  and Ek,�:;Ê
  induce an out-of-plane polarization 

component, pk. The interplay between p= and pk induces a polarization spin on the particle with a rotation 

handedness against the beam axis as shown in Figures 6.5 and 6.6. Following a similar approach, Figure 

6.4(b) shows the in-plane (p?) and out of plane (pk) dipole moment components versus y' keeping x' = 0 

fixed. In this case, p= = 0, and p? and pk exhibit even and odd symmetries with respect to the beam axis, 

respectively. The dipole helicity, a measure of out-of-plane polarization spin acquired by the particle, 

around the ρ8 = (x, y) axis can be computed from the dipole moment as η| = −2 £¤Ne©∗ efOWe©Wh�|ef|h [8]. Figure 6.5 

show the dipole helicity as a function of its position over the xy-plane of the surface. This confirms that the 

 

Figure 6.5: Helicity of the particle induced around x (left panel) and y (right panel)-axes computed as a function 

of dipole position in the xy-plane above the hyperbolic metasurface. Other parameters are as in Figures 6.3 and 

6.4. 
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dipole always acquires spin with rotation handedness against the beam axis independent to the particle 

position. 

In a parallel development, the dipole moment pZ induced on the particle (Figure 6.4) can be decomposed 

into two fundamental emitters with opposite spin as pZ = pZ� + pZK. First, I consider the case when the dipole 

is located along the metallic rods of the structure (with y' = 0). There, the fundamental emitters are 

pZ�(x')=p=�(|x'|)x8 ∓ ipk�(|x'|)z8, with a spin rotating against the beam axis, and pZK(x')=ip=�(|x'|)x8 ∓
pk�(|x'|)z8, with a spin rotating towards the beam axis. In these equations, the negative (positive) sign 

 

Figure 6.6: Dipole moment components of the two fundamental emitters pZ�(t')=p|�(|t'|)t̂ ∓ ipk�(|t'|)z8 and pZK(t')=ip|�(|�'|)t̂ ∓ pk�(|t'|)z8, with t = 2x, y3, as a function of particle position. (a) In-plane and out-of-plane 

dipole moment components of the two emitters (pZ�: solid lines and �̅K: dotted lines). (b) Out-of-plane polarization 

spin of net dipole moment (blue solid line), emitter pZ� (red dotted line) and emitter pZK (magenta dotted line) versus x' keeping y' = 0 fixed. Panel (c)-(d) show the similar study versus ®' keeping x' = 0 fixed. Other parameters 

are as in Figures 6.3 and 6.4. 
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appears when the particle is in the negative (positive) part of the x8-axis, and the subscripts ‘r’ and ‘i’ denote 

the real and imaginary components of a complex number, respectively. Figure 6.6(a) shows the dipole 

moment components of these two emitters as a function of particle position x'. Results confirm that the 

dipole moment magnitude of the emitter pZ� is much stronger than the one of dipole pZK. Figure 6.6(b) 

displays the particle total helicity (blue solid line) together with the helicities associated with the dipoles pZ� 

(red dotted line) and pZK (magenta dotted line) versus the particle position x'. It is clear that both the particle 

and the emitter pZ� possess a similar polarization spin that rotates against the beam axis and generates recoil 

trapping force, whereas the emitter pZK possesses a polarization spin that rotates in the opposite direction 

and generates anti-trapping recoil force. I remark that the latter forces are negligible because the emitter pZK 

is weakly excited. A similar study is shown in Figure 6.6(c-d) when the particle is located across the 

nanorods of the structure (with x' = 0). In this case, the particle net dipole moment pZ is decomposed as 

pZ�(y')=p?�(|y'|)y8 ∓ ipk�(|y'|)z8 and  pZK(y')=ip?�(|y'|)y8 ∓ pk�(|y'|)z8. Results confirm that the dipole 

moment magnitude of the emitter pZ� is always stronger than the one of dipole pZK. I also stress that the net 

dipole polarization spin follows the one of dipole pZ�. I stress that the electric field .EnÊ
 = En�ÆQÊ
 + En�:;Ê
/ 

 

Figure 6.7: Real and imaginary part of the in-plane (E=Ê
 and E?Ê
) and out-of-plane (EkÊ
) electric field 

components of the standing wave formed above nanostructured silver due the superposition of the incident 

Gaussian beam and the one reflected from the surface. Results are computed as a function of particle position x' 

(left panel) and y'(right panel) keeping y' = 0 and x' = 0, respectively. Other parameters are as in Figure 6.3. 
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of the standing wave plays a key role that enables strong excitation of the emitter pZ�. To investigate this 

scenario, Figure 6.7 displays the real and imaginary parts of the electric field components of the standing 

wave as a function of particle position when the incident Gaussian beam is focused at the metasurface (f' =
0). Results show that the real parts of the in-plane electric field components (E=Ê
 and E?Ê
) dominate, 

which in turn ensure a strong excitation of the dipole pZ�. 

6.3.2 DIRECTIONAL SPPS AND TRAPPING FORCE 

The response of the SPPs excited on the metasurface depends on polarization state acquired by the 

dipole. Figure 6.8(a) shows the power of the SPPs launched on the metasurface for several particle positions 

along the nanorods (i.e., ®' = 0). When the particle is located away from the beam axis (i.e., x' � 0), it 

mostly scatters evanescent waves with a transverse spin that excites directional plasmons with wavevectors 

pointing away from the beam axis, associated with a “trapping” recoil force acting toward the beam axis. 

When the particle is located exactly on the axis of the Gaussian beam, it acquires a linear polarization 

pZ(x' = 0) = p=(x' = 0)x8 (see Figure 6.4a) and scatters waves without any specific spin that excites SPPs 

propagating symmetrically through the surface. As a result, the recoil force vanishes, and an optical trap is 

set at x' = 0. It is important to note the role of the dipole pZK(x'): it excites directional plasmons 

propagating towards the beam axis (see Figure 6.6b) that result into “anti-trapping” recoil force [17]. In the 

case shown in Figure 6.8(a), the magnitude of this emitter is very small (see Figure 6.6) and thus it barely 

contributes to the excitation of SPPs. In a more general case, it is possible to engineer trapping or anti-

trapping recoil forces by controlling the strength of the orthogonal dipoles that characterize the 

electromagnetic response of the particle. This can be done by manipulating the properties (focusing, 

polarization, etc.) of the incident Gaussian beam. 

The total optical forces exerted on the nanoparticle are determined by the superposition of gradient and 

recoil forces. Figure 6.8(b) shows the x-component of the total (blue solid line) and recoil (red solid line) 

forces versus the particle position along the x8-axis. For the sake of comparison, it also shows these forces 

arising when the nanostructured layer is replaced by a thin silver layer (dashed lines) of similar thickness. 
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Results show that the recoil force strength over nanostructured silver is more than an order of magnitude 

(~40 times) larger than the one found over the thin layer. This enhancement appears thanks to the large 

 

Figure 6.8: Trapping Rayleigh particles over a nanostructured metasurface with a Gaussian beam. (a) Normalized 

power of the surface plasmons excited on the surface when the particle is located in different positions with respect 

to the beam axis. The top inset illustrates the dipole polarization spin that rotates against the beam axis, direction 

of the plasmon wavevector, and the recoil forces acting on the particle. (b) Total lateral forces F= (blue solid line) 

and recoil forces F=,�:Q (red solid line) exerted on the nanoparticle versus its position with respect to the beam axis. 

Results obtained above actual nanostructured silver using COMSOL Multiphysics (markers) are included for 

validation. Dotted lines correspond to the forces acting on the nanoparticle when the metasurface is replaced by a 

thin silver layer of identical thickness as the nanostructured metasurface. (c) Attractive vertical forces Fk acting 

on the nanoparticle as a function of its position x' with respect to the beam axis. Other parameters are as in Figures 

6.3 and 6.4. 
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wavenumber (momentum) of the surface plasmons excited over the nanostructured surface. As a result, the 

trapping mechanism is very different in both platforms: above the thin silver layer, the trap is dominated 

by the gradient force generated from the Gaussian beam and its reflection from the surface; above the 

nanostructured silver layer, the trap is primarily determined by the strong recoil force originating from the 

directional excitation of hyperbolic surface plasmons. Overall, the hyperbolic response of nanostructured 

silver enhances the total lateral force strength over six times with respect to the nonpatterned case. This 

example highlights how anisotropic metasurfaces can enable plasmon-assisted optical traps at desired 

wavelengths determined by the surface properties. Figure 6.8(c) compares the vertical forces acting on the 

particle when it is located over these two configurations. In both cases, the total vertical force is always 

attractive, pushes the particle towards the surface, and exhibits a maximum strength near the trapping 

position. Note that a nanoparticle located above a bulk silver substrate experiences a repulsive vertical force 

due to the dominant contribution of the gradient component as will be discussed later, whereas the lateral 

components exhibit a similar response as in the case of thin silver. Numerical full-wave simulations 

performed in COMSOL Multiphysics (markers) are included in Figure 6.8(b). Results are obtained 

considering realistic nanostructured silver and applying the Maxwell’s stress tensor formalism. This study 

 

Figure 6.9: Optical trapping of a Rayleigh particle located above a hyperbolic metasurface when it is illuminated 

with a Gaussian beam. (a)-(b) Lateral components of the total force acting on the nanoparticle versus its position (x', y') with respect to the beam axis. (c) Quiver plot detailing the direction of the lateral forces. Other parameters 

are as in Figures 6.3 and 6.4. 
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shows that the effective medium approach can be applied to model the trap response of hyperbolic structures 

even though the particle is in the near field with more detail provided later in this Chapter. 

Although the study above has been focused on nanoparticles located along the metallic rods of the 

nanostructure (x8-axis in the coordinate system of Figure 6.1), the underlying mechanisms hold 

independently of the particle position within the surface. Figure 6.9 explores this scenario and shows the 

components of the lateral forces acting on the particle as well as a quiver plot indicating the force direction. 

Results confirm that an optical trap is created exactly at the beam axis. Furthermore, this analysis reveals 

the intrinsic anisotropy of the metasurface: the strength of the recoil force exerted on the nanoparticle lacks 

rotational symmetry. This asymmetry appears because SPPs travelling towards different directions within 

the surface possess different momentum and spin, and the resulting force might not be directly directed 

towards the beam center. Instead, the particle would follow a parabolic trajectory towards the trap, as shown 

in Figure 6.9(c). Note that the recoil force is significantly larger than gradient force for all particle positions 

and thus dominates the trap performance. 

The success of optical trapping using nonconservative recoil forces relies on the interplay between 

radial and polar (solenoidal) components. The radial component attracts the nanoparticle toward the beam 

axis and the polar component rotates the particle around the beam axis. In the case when the solenoidal 

 

Figure 6.10: Optical trapping of a Rayleigh particle located above a hyperbolic metasurface when it is illuminated 

with a Gaussian beam. Radial (a) and polar (b) components of the total lateral forces acting on the nanoparticle 

versus its position (x', y') with respect to the beam axis. (c) Quiver plot detailing the direction of the lateral forces. 

Other parameters are as in Figures 6.3 and 6.4. 
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component outperforms the radial one, the particle will spin around the trap through a circular or elliptical 

trajectory, and will be kicked out of the trap. The radial and polar components of the lateral trapping forces 

can be computed from the x and y-components as FZ� = x8F= cos ϕ + y8F? sin ϕ and FZÛ = −x8F= sin ϕ +
y8F? cos ϕ. Here, ϕ is the angle between the x8-axis and FZ� computed in a counterclockwise direction. Figure 

6.10(a)-(b) shows the strength of radial and polar components of net lateral forces, FZ = r8F� + ϕãFÛ above 

nanostructured silver as a function of particle position (x', y', a) computed at 540nm operation wavelength. 

Results show that the radial force strength is much stronger (4~5 times) than the polar one, and the interplay 

between them draws the nanoparticle toward the trapping position through a parabolic trajectory as can be 

seen from the quiver plot as shown in Figure 6.10(c). 

6.4 STABILITY OF OPTICAL TRAPS 

In this section, I explore the performance of the optical traps induced on nanoparticles located above 

nanostructured silver. I investigate key parameters of the trap including trap depth and stiffness, spatial 

potential distribution, local potential barriers, and the laser beam intensity needed to achieve stable trapping 

versus the wavelength of the incoming beam. As the wavelength increases, the metasurface topology 

evolves from an anisotropic elliptical to a hyperbolic regime going through a topological transition, which 

permits to study how the different light-matter interactions enabled by these regimes conform the properties 

of the optical trap. During this study, I compare the performance of the proposed traps to the one found 

using Gaussian beams in free-space [11-12], bulk metals [17], and thin films, aiming to highlight the pros 

and cons of this platform with respect to other configurations and to assess its practical viability. 

6.4.1 TRAPPING POTENTIAL 

Figure 6.11(a) shows the potential depth of the traps engineered over nanostructured silver versus the 

wavelength of the incident Gaussian beam. Results have been normalized with respect to the beam intensity 

available at the focus position. This figure highlights the extreme bandwidth in which optical traps with 

very large potentials can be set, covering the band from around 300nm to over 2�m, and how the trap depth 
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correlates to the metasurface topology. Theoretically, the structure exhibits hyperbolic responses in the 

near-infrared and beyond. However, due to the difficulty to appropriately focus the beam at these 

 

Figure 6.11: Performance of optical traps engineered over anisotropic metasurfaces versus frequency. (a) Trap 

depth normalized with respect to the power density available at the center of the incident Gaussian beam. (b) 

Minimum amount of power density required to achieve stable trapping. Results are computed for a nanoparticle 

that is illuminated by a Gaussian beam and is located above an array of silver nanorods (red), above bulk silver 

(magenta), above a thin silver layer (dotted blue), and in free space (black). The background shaded region 

corresponds to different metasurface topologies (yellow: elliptic, green: hyperbolic) going through the topological 

transition (blue) associated with the nanostructured silver layer. Other parameters are as in Figures 6.3 and 6.4. 

Elliptic Topological transition Hyperbolic

(a)
Nanostructured Ag Thin Ag Bulk Ag Free space

(b)
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frequencies and the smaller amount of power scattered by the particle there, the analysis is restricted to the 

visible portion of the spectrum. It should be noted that different type of anisotropic and hyperbolic 

metasurfaces can be designed to operate in the infrared region [46-49]. Figure 6.11(a) also shows the trap 

depth obtained with a similar Gaussian beam focused over a thin silver layer (blue dotted line), bulk silver 

(magenta solid line) and in free space in the absence of any structure (black solid line). Results show that a 

thin layer of silver enables optical trapping with a performance comparable to the nanostructured one in the 

range of 325~425 nm wavelength and exhibits a slightly better trap depth (~1.4 times) at the intrinsic 

plasmon resonance frequency of silver (~340 nm). This response appears for two main reasons. First, the 

proposed nanostructured silver behaves as a hyperbolic metasurface only for wavelengths larger than 

425nm. In the range of 340~425nm, it behaves as an anisotropic elliptical surface that exhibits moderate 

density of states. Therefore, in this frequency range the comparison is between two elliptical surfaces, one 

isotropic and another anisotropic. Note that nanostructured silver can be redesigned to exhibit hyperbolic 

response in this frequency range (340~425nm), but this might be challenging to fabricate in practice. 

Second, the electrical distance between the dipole and the surface is not negligible at 340nm. There is a 

clear trade-off [27,28] between the particle-surface distance and the surface modes that can be excited: 

when the particle is located in the very near field of the surface, it can couple to surface plasmons with large 

wavenumbers that boost the overall performance of the optical trap; when the particle is moved away from 

the surface, scattered fields are partially filtered out by free space and cannot efficiently excite surface 

plasmons. In the latter case, evanescent fields with low/moderate wavenumbers are not strongly attenuated 

and can still couple to structures that support them, as happens in the case of thin layer of silver. The 

combination of these two factors explains why a thin layer of silver exhibits a better response over 

nanostructured silver at 340 nm. In the case of bulk silver, maximum potential depth is obtained near 340nm 

and is approximately 2 times weaker than the one obtained above nanostructured silver. When the particle 

is illuminated in free space in the absence of any configurations, the trap depth increases as the laser 

wavelength decreases, a response associated to the higher amount of power scattered by an electrically 

larger particle. Results confirm that nanostructured silver exhibit very large trap depth over a very wide 
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bandwidth, which is not possible to achieve with uniform thin films. Figure 6.11(b) shows the minimum 

laser intensity required to achieve stable trapping (i.e., a trap depth ~10 kóT) in these configurations. This 

study reveals that the nanostructured metasurface permits to reduce the required beam intensity by an order 

of magnitude with respect to the other platforms. This has significant implications in practice as it allows 

to use low-intensity laser sources operating in the visible/infrared to trap and manipulate nanoparticles 

while avoiding delicate adjustment between the surface response and the laser wavelength. 

To further investigate the performance of these platforms, Figure 6.12 shows their isofrequency 

contours – i.e., slices of the two-dimensional momentum space (k=, k?) at a constant wavelength. These 

contours describe the wavenumber of the supported SPPs versus their direction in space and are very useful 

to engineer  plasmonic optical traps. From the figure, it is evident that hyperbolic metasurfaces support 

surface plasmons with larger momentum over a large wavelength range; whereas isotropic materials support 

surface plasmons with moderate momentum near the plasmon resonance frequency of the material. The 

potential distribution of the traps above these structures are shown in Figures 6.13 and 6.14. The potential 

energy is computed varying the particle position (x', y') over the surface with respect to the beam axis. At 

the silver plasmon resonance, found at λ' ≈ 340nm [18], both bulk and thin film configurations support 

 

Figure 6.12: Isofrequency contour of (a) a nanostructured silver layer; (b) a thin silver layer; and (c) bulk silver 

at different wavelengths. The physical dimensions of the nanostructure are detailed in Figure 6.3. 
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TM isotropic surface plasmons (Figure 6.12b) that lead to a rotationally symmetric potential distribution 

around the beam axis (Figure 6.13b-c). At this frequency, the nanostructured silver layer behaves as an 

elliptical anisotropic surface (Figure 6.12a) and supports rotationally nonsymmetric surface plasmons. 

Interestingly, the intrinsic metasurface anisotropy translates into a nonsymmetric potential distribution that 

is illustrated in a 3D fashion in Figure 6.13(a). Figure 6.14 further studies the 1D potential distribution 

above this configuration when the particle is moved along the main axes (i.e., x8 and  y8) of the metasurface. 

At 340nm wavelength, along the silver nanorods (i.e., x8 axis with y' = 0), the potential is spatially smooth, 

and the trap depth (∇U==δ�) corresponds to the difference between the potential energies when the particle 

is located at the beam axis and infinity. Across the strips (i.e.,  y8 axis with x' = 0), the potential presents 

local maxima with energy larger than zero that leads to local barriers with potentials greater than the trap 

depth (∇U? > δ�). Such local potential barriers appear above anisotropic surfaces because they support 

surface plasmons with different wavenumbers (momentum) along different polar directions within the 

surface. As a result, the lateral recoil force exerted on the particle strongly depends on its azimuthal position 

with respect to the beam axis. Remarkably, barriers with potential energies even larger than the trap depth 

can be obtained by leveraging extreme anisotropic responses, associated with SPPs possessing drastically 

dissimilar wavenumbers as they travel towards different directions within the plane. This case can be found 

at the metasurface topological transition, which appears at λ' = 390 nm (see Chapter 2) and exhibits a 

canalization-like response along the y8 direction [50]. There, plasmons propagating towards the x8 axis 

possess significantly larger momentum than those traveling toward the canalized direction, enabling local 

potential barriers along the strips (see Figure 6.14) with an energy ∇U= >  ∇U?. In such configuration, a 

trapped particle that gains kinetic energy will probably escape in the direction perpendicular to the 

nanorods, which in addition to lower potential also exhibits a reduced trap stiffness. It should be noted that 

the trap depth at this wavelength slightly decreases (Figure 6.11a) due to the overall moderate local density 

of states exhibited by the metasurface (Figure 6.12a). However, the trap depth is still larger than the one 

found over uniform silver (Figure 6.13b) because this material provide reduced light-matter interactions 
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when operated off-resonance. As the operation wavelength further increases, the nanostructured silver layer 

behaves as a hyperbolic metasurface and supports highly confined SPPs. Isofrequency contours of these 

SPPs and associated trapping potentials at λ' = 540nm and λ' = 785nm are shown in Figures 6.12-6.14. 

Hyperbolic surfaces lead to asymmetric potential distribution and very significant trap depths, greatly 

extending the functionality of the proposed anisotropic platform from the visible toward the infrared. Local 

potential barriers also arise in the hyperbolic case due to the different features of plasmons propagating 

towards x (see Figure 4.8a) and y semi-planes. SPPs properties evolve as the wavelength increases and the 

metasurface hyperbolic branches slowly close and tend to behave as in a canalization regime along the x8 

 

Figure 6.13: Trap potential versus the position (x', y') of the particle when it is illuminated by a Gaussian beam 

oscillating at 340 nm, 390 nm, 540 nm and 785 nm operation wavelength. Results are computed when the particle 

is located above (a) a nanostructured silver layer; (b) a thin silver layer; and (c) bulk silver. Other parameters are 

as in Figures 6.3 and 6.4. 
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direction, which in turn leads to local potential barriers across the nanorods (i.e., y8-axis). For comparison, 

thin layer and bulk configuration mostly behave as a lossy dielectric reflector as the wavelength increases 

even further. At these frequencies, they do not effectively contribute to conform an optical trap rather than 

enhancing/decreasing the gradient force acting on the particle by modifying the standing wave field 

patterns. 

 

Figure 6.14: Trapping potential computed as a function of the particle position (x', ®') along (x' with y' = 0; 

blue line) and across (y' with x' = 0; magenta line) the nanorods of a nanostructured silver layer for several 

operation wavelengths. Local potential barriers along and across the nanorods are denoted as ∆U= and ∆U?, 

respectively. Other parameters are as in Figures 6.3 and 6.4. 
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6.4.2 TRAP STIFFNESS 

To complete this performance analysis, Figure 6.15 shows the stiffness of the optical traps engineered 

over the considered platforms versus the beam wavelength and the azimuthal angle ϕ within the surface 

defined with respect to the positive x8-axis, i.e., along the strips. In the case of the nanostructured silver 

layer, the trap stiffness dramatically increases when the metasurface topology changes from elliptical TE 

to anisotropic elliptical TM, at around 340nm. As happens with the potential, the stiffness exhibits a 

rotationally nonsymmetric distribution and, starting from the topological transition at 390 nm to around 

750nm, it presents local maxima in the directions along the metallic rods (i.e., ϕ = 0°  and 180°) and 

minima in the orthogonal ones (i.e., ϕ = 90°  and 270°). Such response is associated to the distribution of 

the nonconservative force that conforms the trap (as the one shown in Figure 6.9a-b) and is consistent with 

the local potential barriers found along the strips shown in Figure 6.14. Thus, it is probable that energetic 

particles will escape from these optical traps in the direction across the strips. As wavelength increases 

further, the metasurface changes its polarization profile and tends to canalize waves along the x8 axis. This 

mechanism swaps the direction of maximum (minimum) stiffness, which now appears across (along) the 

strips. In those optical traps, energetic particles will scape in the direction parallel to the strips. For 

 

Figure 6.15: Trap stiffness induced on a nanoparticle as a function of the wavelength (λ') of the incident Gaussian 

beam and the polar angle (ϕ) defined with respect to the x8-axis in Fig. 1. Results are computed for a nanoparticle 

that is illuminated by a Gaussian beam and is located above (a) a nanostructured silver layer; (b) a thin silver 

layer; and (c) bulk silver. Other parameters are as in Figures 6.3 and 6.4. 
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comparison, the trap stiffness obtained focusing the beam over a thin silver layer and over bulk silver is 

shown in Figure 6.15b-c. As expected, optical traps engineered over them only show better stiffness around 

the metal plasmon resonance and always exhibit a rotationally symmetrical profile around the trap. Overall, 

anisotropic metasurfaces significantly boost the stiffness of engineered optical traps over a large frequency 

band. 

 

Figure 6.16: Influence of the Gaussian beam properties on the optical forces acting on a nanoparticle located 

above a hyperbolic metasurface. The first and second column correspond to the total lateral induced forces (F=) 

and recoil forces (F=,�:Q) exerted on the particle as a function of its position x' with respect to the beam axis. 

Results are plotted versus (a) the beam focus, keeping the beam waist to w' = 2μm; and (b) the beam waist, 

keeping the beam focused at f' = 0. Other parameters are as in Figures 6.3 and 6.4. 
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6.5 ADDITIONAL RESPONSE OF LATERAL AND VERTICAL FORCES 

In this section, I investigate the influence of laser focus position and beam waist, substrate refractive 

index and particle size on the total optical forces exerted on the particle. The lateral trapping forces show a 

robust response against all these parameters. The only exception appears when the laser focus position is 

set well below the surface: anti-trapping forces appear in that case since the dipole pZK dominates the 

scattering process as discussed in section 6.3. The total vertical force is always attractive in nature that 

always confines the particle in the near field of the metasurface. 

6.5.1 INFLUENCE OF THE LASER BEAM 

The proposed optical traps and vertical force response are robust against the features of the incoming 

Gaussian beam. This is because the beam is mainly employed to adequately polarize the particle instead of 

generating additional trapping forces. To investigate the potential influence of the beam properties on the 

trap performance, Figure 6.16 displays the lateral forces acting on the nanoparticle as a function of the beam 

waist w' and focus position f'. In particular, Figure 6.16(a) shows the total lateral forces and the 

contribution from the recoil forces as a function of particle location x' versus the focus position f', which 

is varied from positive (i.e., above the surface) to negative (i.e., below the surface) while keeping the beam 

waist constant to w' = 2μm. Results show that the particle experiences very large trapping forces when 

the beam is focused near the surface and that the force strength progressively lessens as the focus position 

is shifted away from the surface. Importantly, the recoil component of the force is very robust against the 

focus range and clearly dominate in all cases. It should be noted that when the beam is focused very close 

to the surface, the gradient force become noticeable and might contribute up to one fifth of the total induced 

force. In addition, the “trapping” forces might become “anti-trapping” when the beam is focused well below 

the metasurface [lower than -50μm in Figure 6.16(a)]. There, the particle acquires an effective out-of-plane 

polarization with a handedness pointing towards the beam (i.e., the effective dipole pZK dominates over the 

dipole pZ� following the description in section 4.3). However, the strength of these anti-trapping forces is 

quite limited due to reduced amount of power that the particle scatters in this unfocused scenario – i.e., the 



168 
 

magnitude of the electric dipole pZK that characterizes this scattering process is very small. Figure 6.16(b) 

shows a similar study versus the beam waist w' considering that it has been focused exactly on the surface 

(f' = 0). It can be observed that trapping forces dramatically increases as the beam waist reduces. This is 

because the large confinement of the electric field near the focus spot boosts the power scattered by the 

 

Figure 6.17: Influence of the Gaussian beam focus position on the vertical component of the total forces acting on 

a nanoparticle located above (a) a nanostructured silver layer; (b) a thin layer of silver; and (c) bulk silver. Results 

are computed as a function of particle position x'(μm) versus the beam focus position f' keeping the beam waist 

fixed to w' = 2 μm fixed. Left, middle and right columns show the response of the total, recoil, and gradient 

vertical forces, respectively. Results are in the same scale. Other parameters are as in Figures 6.3 and 6.4. 
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particle in form of surface plasmons, which in turn enhances the strength of the recoil force. There, the 

gradient of the electric field intensity also increases thus enhancing the gradient force as well. In all cases, 

the particle always experiences attractive vertical forces that pushes it towards the surface as will be 

discussed now. 

Figure 6.17 shows the vertical forces versus the particle position x' and beam focus f' when the particle 

is located above the nanostructured silver layer, uniform and thin silver layer, and bulk silver. Specifically, 

Figure 6.17(a)-(b) confirms that the vertical forces above the thin layers are negative and attract the particle 

towards the surfaces. Such response appears due to the dominant vertical recoil force where the evanescent 

tails of the surface plasmons introduce attractive response. However, the gradient component of the force 

is repulsive due to the superposition of the incident and reflected fields of the beam that aims to push the 

particle towards the nearest intensity hotspot above the surface (see Figure 6.3). Figure 6.17(c) shows that 

the net vertical forces induced above bulk silver is repulsive (positive). There, the repulsive gradient 

 

Figure 6.18: Influence of the Gaussian beam waist on the vertical component of the optical forces acting on a 

nanoparticle located above a hyperbolic metasurface. Results are computed as a function of particle position x'(μm) versus the beam waist w' with focus position set to f' = 2 μm. Left, middle and right columns show the 

response of total, recoil, and gradient vertical forces, respectively. Results are in the same scale. Other parameters 

are as in Figures 6.3 and 6.4. 
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component is much stronger than the attractive recoil one and leads to positive vertical forces that tend to 

kick the particle away from the surface. 

It is important to highlight that the attractive nature of the vertical forces above the nanostructured 

metasurface is preserved for Gaussian beams possessing different beam waist (w'), as shown in Figure 

6.18. This further confirms that the dominant behavior of the recoil component over the gradient one 

determines the vertical force response and pulls the particle near the surface. Finally, Figure 6.19 shows 

that such attractive response always appears above the metasurface independently of the particle position 

within the beam. 

6.5.2 INFLUENCE OF SUBSTRATE REFRACTIVE INDEX 

It is important to investigate the influence of the refractive index of the substrate that supports the 

hyperbolic metasurface on the optical force response. To this purpose, Figure 6.20 shows the response of 

lateral and vertical forces as a function of particle position. Three different substrates are considered here: 

(i) porous polymer (nK = 1.05), (ii) fused silica (nK = 1.46), and (iii) crystal silica (nK = 1.52). Results 

show that both the lateral and vertical force strengths decrease as the substrate refractive index increases. 

This can be attributed to the change on the particle helicity with respect to the substrate refractive index. 

 

Figure 6.19: Vertical optical forces induced on a gold nanoparticle located above a hyperbolic metasurface when 

it is illuminated with a Gaussian beam. Result is computed as a function of particle position (x', y'). Other 

parameters are as in Figures 6.3 and 6.4. 
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6.5.3 INFLUENCE OF PARTICLE SIZE 

The electrical distance between the dipole and the metasurface plays a key role on the performance of 

the induced trap. For instance, when the illuminating Gaussian beam oscillates near the silver resonance 

frequency (~340nm), the electrical distance between the particle (of radius 15nm) and the metasurface 

increases thus leading to a slightly better (~1.4 times) trap depth induced above thin silver in comparison 

to the nanostructured silver (see Figure 6.11). There is a clear trade-off [4,8] between the particle-surface 

distance and the state of modes that can be excited: when the particle is located in the very near field of the 

surface, it can couple to surface plasmons with large wavenumbers that boost the overall performance of 

 

Figure 6.20: Optical forces induced on a nanoparticle located above a nanostructured silver layer versus the dipole 

position for different types of substrate. (a) Lateral trapping force. (b) Vertical force versus particle position Ú' 

(left column) and ®' (right column) keeping ®' = 0 and Ú' = 0 fixed, respectively. Blue, red, and magenta lines 

correspond to the case when the metasurface is supported by porous polymer (nK = 1.05), fused silica (nK = 1.46), 

and crystal silica (nK = 1.52), respectively. Other parameters are as in Figures 6.3 and 6.4. 
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the optical trap; when the particle is moved away from the surface, scattered fields are partially filtered out 

by free space and cannot efficiently excite surface plasmons. In the latter case, evanescent fields with 

low/moderate wavenumbers are not strongly attenuated and can still couple to the structures that support 

them, as happens with the thin layer of silver. The combination of these two factors explains why thin silver 

exhibits a better response over nanostructured silver at 340 nm for this specific configuration. Note that the 

electrical distance between the particle and the metasurface decreases in the case of particles with smaller 

radii. Figure 6.21 explores this scenario and shows the net lateral forces and the recoil force exerted over a 

nanoparticle with radius of 5nm located above nanostructured silver and thin layer of silver at 340nm. 

Results show that the strength of the lateral force is ~2 times stronger in the case of nanostructured silver. 

 

 

Figure 6.21: Trapping of gold nanoparticles over a nanostructured metasurface with a Gaussian beam. Total lateral 

forces (F=,  F?: blue solid line) and recoil forces (F=,�:Q,  F?,�:Q: red solid line) exerted on the nanoparticle versus x' 

(left panel) and y' (right panel) with y' = 0 and x' = 0 fixed. Dotted lines correspond to the forces acting on the 

particle when the metasurface is replaced with a thin layer of silver with identical thickness. The gold nanoparticle 

has a radius ² = 5 nm and is located in free space at a distance z' = ² over the surface. Operating wavelength of 

the incident Gaussian beam is 340nm and other parameters are as in Figures 6.3 and 6.4. 
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6.6 FORCE RESPONSE ABOVE BULK SILVER 

The response of optical forces exerted on a gold nanoparticle located above a bulk silver when 

illuminated by a Gaussian beam oscillating at 540 nm wavelength is shown in Figure 6.22. Specifically, 

Figure 6.22(a) shows the lateral total and recoil forces versus the particle position. Results show that lateral 

recoil force strength is significantly weaker (but not strictly zero) and the trapping mechanism is primarily 

enabled by the gradient force arising from the beam – a response similar to the one obtained above thin 

silver (see Figure 6.8b). This analysis confirms that the trap performance above nonpatterned metals, 

operated away from the plasmon resonance frequency of metal, is mostly determined by the gradient force 

with minimal/negligible contribution from the recoil force. Moreover, Figure 6.22(b) shows the vertical 

force experienced by the nanoparticle above the silver substrate. There, one can see that the vertical force 

is positive – repels the nanoparticle away from the surface – thanks to the dominant contribution of repulsive 

vertical gradient force. 

 

 

Figure 6.22: Optical trapping of a gold nanoparticle above a silver substrate illuminated with a p-polarized Gaussian 

beam operating at 540 nm wavelength. (a) Total lateral force F= (blue solid line) and recoil force F=,�:Q (red solid 

line). (b) Total vertical force Fk exerted on the particle versus its position. Other parameters are as in Figures 6.3 

and 6.4. 
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6.7 NUMERICAL SIMULATIONS 

In this section, I detail the numerical simulations performed using COMSOL Multiphysics [20] and 

then compare the results with the ones obtained following the theoretical approach as detailed in Chapter 

4. 

6.7.1 SIMULATION SET UP 

In numerical simulations, the nanostructured silver layer is characterized considering the frequency-

dependent complex permittivity available in Ref. [51]. The gold nanoparticle is characterized using a 

Drude-Lorentz model [18]. The entire domain of the simulation is shown in Figure 4.11. Scattering 

 

Figure 6.23: Optical trapping of a gold nanoparticle over a nanostructured silver illuminated by a normally incident 

p-polarized Gaussian beam. Lateral force components F= and F? exerted on a particle with radius ² = 15GnmJ 
located at (x', y', ² + 0.5GnmJ). Results are computed versus x' (keeping y' = 0) and y' (keeping x' = 0), 

respectively, at (s) 540nm and (b) 785nm. Solid blue and red lines correspond to the results computed using our 

theoretical model and full wave simulations, respectively. Other parameters are as in Figures 6.3 and 6.4. 
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boundary conditions have been applied to the outer surfaces of the domain to avoid unwanted reflection of 

electromagnetic waves. A fine tetrahedral mesh has been applied to the entire domain. Note that the 

convergence of numerical simulation largely depends on the mesh applied to discretize the silver nanorods 

and gold nanoparticle. To better capture the electromagnetic interaction during the scattering process, I 

apply an extremely fine mesh with maximum element size of λ'/70 and λ'/350 to the silver layer and 

nanoparticle, respectively. Finally, I compute the total optical forces induced on the nanoparticle using 

Maxwell’s stress tensor formalism [18]. 

6.7.2 COMPARISON OF FORCE RESPONSE: FULL WAVE SIMULATION VERSUS THEORY 

To verify the accuracy of the theoretical model in the near field of the surface, I have performed full 

wave numerical simulations in COMSOL Multiphysics considering a spherical gold nanoparticle with 

radius ² = 15nm located at a position r' = (x', y', ² + 0.5GnmJ). The setup is illuminated by a normally 

incident p-polarized Gaussian beam. Figure 6.23 shows the total lateral force components (F= and F?) 

computed using my theory based on effective medium approach (blue solid line) and using full wave 

simulations (red solid line) considering actual nanostructured silver. Results show the force component as 

a function of the particle position when the incident Gaussian beams oscillates at (a) 540nm and (b) 785nm. 

Very good agreement between theory and simulations for the x-component of the force along the Ú8-axis is 

found in all cases. Such agreement appears because the effective medium approach captures very well the 

system response along the x-direction. However, it should be noted that the numerical response of y-

component of the force (F?) is not completely smooth versus the particle position y' along the y8-axis. 

Numerical results show small ripples on the force as the particle moves along the y8-axis from one metallic 

rod to another through the airgap in between them. These ripples become stronger as the operation 

wavelength decreases and the particle is electrically closer to the surface. Even though theoretical results 

are not able to capture these small oscillations, as they arise due to the near-field interactions among the 

nanorods, the effective medium approach is able to predict well both the magnitude and the averaged spatial 
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profile of the force. It should be noted that these ripples (i) do not change the profile of F?; and (ii) have a 

very limited impact on the force amplitude; therefore, they do not significantly modify the trap response.  

To further investigate the accuracy of my model, I have performed a similar analysis at 540 nm 

considering that the particle is shifted away 15 nm from the surface and is now located at r' =
(x', y', 30GnmJ). Results, shown in Figure 6.24, confirm again a very good agreement between the theory 

and simulations. Note that the strength of the ripples that appears due to near-field interactions among the 

nanorods is decreased, which is expected as the particle is electrically farther away from the surface. 

6.8 CHAPTER CONCLUSIONS 

I have put forward the concept of anisotropic and hyperbolic optical traps to manipulate nanoparticles. 

These optical traps are created by illuminating a nanoparticle over an anisotropic metasurface with a linearly 

polarized Gaussian beam and their properties strongly depend on the surface topology and light-matter 

interactions. To analyse this platform, I have developed a rigorous theoretical formalism able to compute 

the induced trapping forces based on the anisotropic scattered dyadic Green’s function approach merged 

 

Figure 6.24: Optical trapping of a gold nanoparticle over a nanostructured silver layer illuminated by a normally 

incident p-polarized Gaussian beam. The figured show the lateral force components F= and F? exerted on a 

particle with radius ² = 15nm located at (x', y', 30GnmJ). Results are computed versus x' (keeping y' = 0) and y' (keeping x' = 0), respectively, at 540nm. Solid blue and red lines correspond to the results computed using 

our theoretical model and full wave simulations, respectively. Other parameters are as in Figure 6.3 and 6.4. 

-3 -2 -1 0 1 2 3

-100

-50

0

50

100

-3 -2 -1 0 1 2 3

-100

-50

0

50

100

Analytical solution Full wave simulation



177 
 

with the Lorentz force within the Rayleigh approximation. This approach, validated with full-wave 

numerical simulations in COMSOL Multiphysics, reveals that giant, nonconservative recoil force pointing 

towards the beam axis dominates the overall trap response. This force appears due to the excitation of ultra-

confined SPPs on the anisotropic metasurface. Then, I have applied the Helmholtz decomposition method 

to calculate the potential energy of the resulting nonconservative force-field. My formalism permits to 

compute fundamental metrics that characterize optical traps engineered over plasmonic materials through 

nonconservative fields, including spatial potential distribution, trap depth and stiffness, local potential 

barriers, as well as the minimum laser intensity that achieve stable optical trapping.  

The performance of the proposed anisotropic optical traps is outstanding: they exhibit large trap depths 

over an extremely broadband frequency range that covers the entire visible spectrum extending well into 

the IR band. As a result, a wide variety of low-intensity laser sources can be employed to achieve stable 

trapping of nanoparticles avoiding precise alignments between the surface response and the operation 

wavelength, and significantly reducing the possibility of damaging trapped particles due to photoheating. 

As a specific example, I studied the performance of optical traps engineered over a nanostructured silver 

layer and analysed how the trap response evolves as the metasurface topology changes from anisotropic 

elliptical to hyperbolic going through the topological transition. In addition, I have found that the 

momentum imbalance of the SPPs excited by the particle on anisotropic surfaces gives rise to local potential 

barriers and larger trap stiffness along certain spatial directions, thus breaking the rotational symmetry that 

characterizes common optical traps. The engineered traps exhibit a much larger potential depth and stiffness 

than the one found focusing identical Gaussian beam over uniform thin silver, bulk silver or in free-space, 

and, more importantly, maintain such response over a large bandwidth. I note that my formalism is based 

on classical Maxwellian approach and omits additional forces that might originate from other mechanisms, 

such as Casimir forces [18]. Investigating the influence of such forces in the proposed platform is the scope 

of future research.  
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Moving forward, ultrathin metasurfaces enable unique possibilities to construct optical traps with 

excellent performance, including the possibility to engineer local potential barriers, at a desired wavelength, 

by tailoring the surface topology, local density of states, and the momentum of the supported plasmons. To 

this purpose, different plasmonic materials – including metals such as gold or silver and semimetals as 

graphene and WTeK[52]– can be appropriately patterned in subwavelength arrangements. In addition, 

natural anisotropic and hyperbolic materials [53,54] can also be employed to trapping purposes, including 

hexagonal boron nitride [55], hybrid composites [56,57], van der Waals crystals [58-60] and an increasing 

family of  2D materials [46-49].  I envision that anisotropic and hyperbolic metasurfaces will lead to the 

next generation of low-power nano-optical tweezers. 
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Chapter 7:  Lateral Recoil Forces Above Nonreciprocal 

Metasurfaces 

Lateral recoil forces on nanoparticles located near plasmonic surfaces have enabled trapping [1-6] and 

manipulation [7-13] if those objects with important applications in bioengineering and chemistry [14-21]. 

I recall that the origin of recoil forces relies on the spin-orbit interaction of light [22] that excites 

directionally propagating SPPs, as detailed in Chapters 5 and 6. Unfortunately, when the fields scattered by 

the particle are linearly polarized, the excited SPPs propagate symmetrically within the surface and the 

recoil forces completely vanish. This behavior restricts the practical use of those reciprocal plasmonic 

surfaces to manipulate linearly polarized dipolar objects. Potential approaches to achieve directional surface 

plasmon excitation with linearly polarized light rely on the use of magneto-dielectric particles, such as 

Janus and Huygens dipoles [23] and high-index particles [24-26], that exploit combined effects of electric 

and magnetic dipole moments [27-29]. Unfortunately, these complex particles are not commonly found in 

chemical and biological applications.  

An alternative route to overcome these challenges is using nonreciprocal plasmonic surfaces, for 

instance using magneto-optic materials biased with a magnetic field [29-34]. When the applied external 

bias is perpendicular to the surface, the polarization symmetry of the supported plasmons is broken. There, 

a linearly polarized nanoparticle can experience lateral recoil forces [29] because the scattered light 

undergoes a polarization conversion that excites directional surface plasmons. The strength of this force is 

similar to the one found in reciprocal systems [7] whereas its direction depends on the incident angle of the 

laser beam. When the applied external magnetic bias is parallel to the surface, the supported modes exhibit 

a broken symmetry in both amplitude and polarization [35-46]. Such structures have been shown to exert 

fluctuation-induced recoil forces on polarized atoms located nearby [47-50], in which the main emission 

channel is associated to the excitation of unidirectional surface plasmons supported at the material interface. 

Even though this platform allows to control the strength and direction of the induced forces with the external 
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bias and the atom transition frequency, fluctuation-induced forces are uncapable of manipulating 

nanoparticles in practice.  

In this Chapter, I investigate lateral optical recoil forces exerted on nanoparticles located near 

nonreciprocal interfaces illuminated with a plane wave. I focus on general plasmonic platforms with an in-

plane nonreciprocity that appears by applying an external bias parallel to the surface, and manifests itself 

by a broken symmetry of the amplitude and polarization profile of the supported plasmons, as happens in 

the case of drift-bias graphene [35-40] and thin metals [41] or externally biased magneto-optic materials 

[42,44-46]. I have developed a theoretical formalism based on the scattered Green’s functions of the system, 

and then derived analytical approximate expressions of lateral recoil forces as detailed in Chapter 4. This 

approach reveals that the dispersion relation of a plasmonic system suffices to determine these forces, 

shedding light into the underlying mechanisms that control recoil forces and facilitating the easy and 

accurate design of platforms capable of manipulating nanoparticles. Additionally, I show that momentum 

imbalance of nonreciprocal surface plasmons leads to a dominant lateral recoil force component that acts 

along/against the applied bias and is mostly independent of the properties of the incoming laser beam. I 

study these forces over drift-biased graphene [35-40], a plasmonic system that exhibits a nonreciprocal 

 

Figure 7.1: Dispersion relation of drift-biased nonreciprocal graphene. (a) Isofrequency contours of the states 

supported by the platform versus (a) the velocity of drifting electrons flowing along the graphene sheet and (b) 

wavelength. Graphene’s chemical potential and relaxation time are set to μQ = 0.1eV and τ = 0.3ps, respectively. 
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response over a broad range in the infrared region and that is proposed here to sort nanoparticles as a 

function of their size. Taken together, these properties are very promising for trapping and manipulation of 

nanoparticles using nonreciprocal and plasmonic platforms. 

7.1 ORIGIN OF RECOIL FORCES NEAR NONRECIPROCAL SURFACES 

In this section, I provide a brief overview of the physical mechanisms enabling recoil optical forces on 

nanoparticles located near nonreciprocal metasurfaces based on the theoretical framework developed in 

section 4.3. 

The overarching goal here is to capture the response of lateral recoil forces on a nanoparticle located 

near nonreciprocal plasmonic metasurface. To this purpose, I consider a platform subjected to an external 

in-plane bias along the +y axis, as shown in Figure 4.3(a) for the case of drift-bias graphene. If the bias is 

applied along any other direction within the plane, such response can be captured by applying a coordinate 

rotation. An example of isofrequency contours of this structure is illustrated in Figure 4.3(b). Figures 7.1(a-

b) complete the characterization of the platform by plotting its isofrequency contours versus drift velocity 

and wavelength, respectively. Following the procedure detailed in Chapter 4, the nonreciprocity-induced 

lateral recoil forces can be expressed in terms of the spatial derivatives of the scattered dyadic Green’s 

function as 

F?Æ��Ð = �ÑQ ^ h ∑ P�Ð�Æ Re Í ���GÆÆ� (r̅', r̅')ÎÆÙ=,?,k , (7.1a) 

F=Æ��e = �ÑQ ^ h P�Ð�=? χ=?Re Í ��= G=?� (r̅', r̅')Î, (7.1b) 

and the lateral spin-orbit forces read as 
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F=� = �ÑQ ^ h P�Ð�=k η?Im Í ��= G=k� (r̅', r̅')Î, (7.2a) 

F?� = �ÑQ ^ h P�Ð�?k η=Im Í ��? G?k� (r̅', r̅')Î. (7.2b) 

The definitions of the relevant parameters are available in Chapter 4. Note that F?Æ��Ð strongly dominates 

over F=Æ��e because it depends on the plasmon wavenumber with a power of six (see Eqs. 4.62-4.63 in 

Chapter 4), whereas F=Æ��e shows a ∝ ke�Ð�¤�Æè  dependence (see Eq. 4.70 in Chapter 4). F=Æ��e may still be 

relevant in case of magneto-optical substrates biased with a perpendicular magnetic field [29] in which 

F?Æ��Ð vanishes. Therefore, I recall the analytical expressions of the dominant recoil forces from Chapter 4 

that read as 

F?Æ��Ð ≈ ÄÑì&í«�fêQ �& È!^�Õ^ (è e�Kk }.^�Õ/h�^ h − !^�Ô^ (è e�Kk }.^�Ô/h�^ hÉ, (7.3a) 

 F=� ≈ �Ñì&í«�f ~�êQ �& !^�^ (è e�Kk }^�h�^ h, (7.3b) 

F?� ≈ ÄÑì&í«�f ~�êQ �& È!^�Ô^ (è e�Kk }.^�Ô/h�^ h + !^�Õ^ (è e�Kk }.^�Õ/h�^ hÉ. (7.3c) 

where k?� and k?� are the wavenumber of the surface plasmons supported along and against the bias, 

respectively; and k= is the plasmon wavenumber in the orthogonal lateral direction. Eq. (7.3a) shows that 

F?Æ��Ð depends on the fourth power of k?±, gets attenuated as z' increases, and is independent of the 

polarization state acquired by the particle. The only dependence of this force component with the direction, 

polarization, and wavelength of the incoming laser is through the amount of scattered power, P�Ð�?k . Eq. 

(7.3a) explicitly reveals that the force is significantly enhanced as the asymmetry in the kZ-space along the 
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bias direction increases and that it is zero in case of reciprocal media (i.e., k?� = k?�). This equation also 

shows that nonreciprocity leads to a two-state system governed by the interplay between the distance z' 

and the momentum of the supported modes. Specifically, the force acts along the bias direction when the 

particle is close to the surface and excites confined surface plasmons with wavenumber k?� that propagate 

against the bias. In this situation, the positive term of Eq. (7.3a) dominates because z' → 0 and k?� > k?� 

[see Figure 4.3(b)]. On contrary, the force acts against the bias direction when the particle is located 

relatively far away from the surface. There, the high-kZ components of the scattered waves are filtered out 

by the free-space –exponential terms in Eq. (7.3a)– and cannot efficiently excite confined k?� modes 

whereas they can still couple to the less confined k?� state. The threshold distance zj at which the direction 

of F?Æ��Ð reverses can be approximated as 

zj ≈ 2 �Æ.^�Õ/��Æ.^�Ô/^�Õ�^�Ô , (7.4) 

which only depends on the plasmonic modes along/against the bias. Note that Eq. (7.3a) holds when the 

polarization of the particle dipole moment along the direction orthogonal to the bias is not dominant, and 

thus the scattered power fulfills P�Ð�= þ P�Ð�?  and P�Ð�= þ P�Ð�k . Such conditions are easily met in most 

practical scenarios (see Figure 4.5). An exception appears when the nanoparticle is illuminated from the 

normal direction of the platform with a beam polarized in the direction orthogonal to the bias. In such case, 

Eq. (7.3a) underestimates the strength of the induced forces, and Eq. (7.1) together with the complete 

dispersion relation of the platform should be employed. 

In the following, I explore lateral recoil forces acting on a gold Rayleigh particle located near drift-bias 

graphene transferred on hexagonal boron nitride, a broadband nonreciprocal platform that has recently been 

demonstrated experimentally [39,40]. 
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7.2 FORCE RESPONSE NEAR DRIFT-BIASED GRAPHENE 

Figure 7.2 shows the strength of lateral recoil forces versus the drift velocity v�, the properties of the 

incoming plane wave in terms of the azimuthal and elevation angles ϕ� and θ�, polarization, and wavelength, 

as well as the dipole position z' over the metasurface. The force is normalized with respect to the power 

radiated by the particle’s acquired dipole moment when it is located in free space, P�Ð�' =
Q ^ h�KÑ !|p=|K + Wp?WK + |pk|K( [51]. Figure 7.2(a) shows the force components versus v� assuming a 

transverse magnetic polarized incident light aligned with the x8-axis (see Figure 4.3a). As expected, F?Æ��Ð 

 

Figure 7.2: Normalized strength and direction of the lateral recoil force components acting on a gold nanoparticle 

with radius ² = 15 nm located over the drift-bias graphene platform described in Figure 1. Results are calculated 

versus (a) the drift velocity of the flowing electrons, the properties of the incoming plane wave in terms of (b) 

azimuthal and (c) elevation angle of incidence, (d) polarization, and (e) wavelength; and (f) the separation 

distance ¯' between the particle and the surface. Solid lines are computed using the exact numerical solution 

[Eqs. (7.1)-(7.2)] and markers with the proposed formalism [Eqs. (7.3)]. Parameters that are not swept in a panel 

are kept to: z' = a + 1 GnmJ, v� = 0.5v�, ϕ� = 0', θ� = 60', and light with transverse magnetic polarization. 
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strength increases with the applied bias and outperforms all other force components by over an order of 

magnitude even with moderate drift velocities (i.e., v� ≈ 0.2v� [47-49]), whereas F=Æ��e is negligible due 

to the weak polarization conversion in the system. Results reveal that the spin-orbit recoil force F=� does not 

depend on the external bias whereas the orthogonal component F?� increases with it. This is because larger 

bias enhances the confinement of the modes supported along the y direction whereas it does not affect the 

modes supported on the orthogonal x-axis. This analysis holds even when the linearly polarized light comes 

from different azimuthal directions ϕ�, as shown in Figure 7.2(b). F?Æ��Ð remains dominant in all cases and 

exhibits a unidirectional response that does not depend on the beam direction. However, both the strength 

and direction of all other force components strongly depend on the laser-particle alignment. Figure 7.2(c) 

explores the response of the recoil force components versus the elevation angle θ�. Maximum force strength 

is found in a relatively large angular range, roughly from 15° to 80° measured from the normal direction. 

Polarization also plays a critical role in this process, as it determines the helicity acquired by the particle 

and the total power that it radiates. Figure 7.2(d) shows that F?Æ��Ð dominates when the incoming light is 

quasi-linearly polarized and also reveals that, in case of quasi-circularly polarized light, spin orbit forces 

acquire a comparable strength due to the strong polarization spin acquired by the particle. There, the total 

recoil optical force is determined by the interplay between F?Æ��Ð and F?�, and the net optical forces over the 

system are not unidirectional anymore but change with the laser angle of incidence. Figure 7.2(e) shows 

the recoil forces response versus operation wavelength. Again, F?Æ��Ð dominates even for a laser beam 

oscillating over a wide frequency region in the infrared. Such response arises because drift-biased graphene 

exhibits a broadband nonreciprocal behavior (see Figure 7.1d), and it is in stark contrast with reciprocal 

[35,36] and even nonreciprocal plasmonic systems [29,51,52] that require lasers tuned to their plasma 

frequency to provide significant recoil forces. Finally, Figure 7.2(f) studies the system response versus the 

particle position z' over the surface and confirms that F?Æ��Ð directs the nanoparticle along or against the 

applied bias with respect to the threshold position zj described in Eq. (7.4). At exactly z' = zj, the energy 

and momentum of plasmons flowing along and against the drift are equal thus yielding to F�Æ��Ð = 0.  
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When the particle is illuminated from the normal direction (θ� ≈ 0°) with a transverse magnetic-

polarized laser beam, it acquires a dominant x-directed dipole moment. In that specific scenario, Eq. (7.3a) 

underestimates the force F?Æ��Ð because it does not account for the power scattered in the direction 

orthogonal to the bias, P�Ð�= . Figure 7.3 shows such an example for different azimuthal directions of the 

incident light ϕ� = 210', 25', 45', 90'3. As described before, Eq. (7.3a) may underestimate the recoil force 

response when the power radiated by the dipole along the direction orthogonal to the bias is dominant, a 

situation that appears when ϕ� ≈< 25' and θ� ≈< 25' (see Figure 4.5 in Chapter 4). Beyond these ranges 

of angles, P�Ð�=  becomes comparable/weaker than P�Ð�?  and P�Ð�k  and thus its influence on the lateral recoil 

force is negligible. Figure 7.3 shows two cases with ϕ� = 245', 90'3 beyond the above-mentioned ranges 

with excellent agreement between the numerical and analytical solutions. 

This nonreciprocal platform can readily be applied to sort nanoparticles as a function of their size. 

Figure 7.4(a) illustrates the normalized z-component of the electric field associated to the plasmons excited 

on the metasurface when it is biased with vZ� = 0.5v�y8 and a gold nanoparticle with radius ² is located at 

 

Figure 7.3: Strength of nonreciprocity-induced lateral recoil force due to the broken symmetry in amplitude of 

the surface plasmons excited on drift-biased graphene versus the elevation angle �� of the incoming light. Results 

are computed for different azimuthal angles ϕ� = 10' (red), ϕ� = 25' (blue), ϕ� = 45' (magenta) and ϕ� = 90' 

(black). Solid lines and markers correspond to the exact and analytical solutions calculated using Eq. 7.1 and Eq. 

7.3(a), respectively. Other parameters are as in Figure 7.1. 
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z' =  ² + 1GnmJ over the system and is illuminated with a transverse magnetic-plane wave. Top and 

bottom panels consider the case of a particle with radius ² = 20 nm and ² = 50 nm, respectively. In both 

cases, the particle scatters quasi-linearly polarized light (i.e.,  � → 0) thus leading to almost negligible 

lateral spin-orbit forces F�� . In this scenario, the recoil force F?Æ��Ð arising from the broken symmetry of the 

platform dominates the optical forces, leading to the two-state system described in Eq. (7.4). When the 

particle is small (top panel), the confined k?� plasmon propagating toward -y is efficiently excited and the 

recoil force is exerted along the bias direction; however, when the particle size increases, k?� states cannot 

be excited but the scattered light still couples to the less confined k?� plasmons travelling toward the +y 

axis, which result in a recoil force acting against the bias direction. Figure 7.4(b) investigates the total forces 

acting on gold nanoparticles versus their size and the azimuthal direction of the incoming beam. As 

expected, the strength of the total optical force increases with the particle size as they scatter a larger amount 

 

Figure 7.4: Lateral sorting of gold nanoparticles as a function of their radius ² using the platform described in 

Figure 1 with drift velocity v� = 0.5v�. The particles are located at a distance ̄ ' = ² + 1GnmJ over a drift-biased 

graphene and illuminated with a TM-polarized plane wave at λ' = 14 μm coming from the elevation angle θ� =60'. (a) Normalized z-component of the surface plasmons excited on the platform for particles with radii 20 nm 

(top) and 50 nm (bottom). (b) Normalized total lateral force strength |FZj| = }F=K + F?K (left) and direction ∠|FZj| =
tan��.F?/F=/ (right) versus the particles radii and azimuthal angle ϕ� of the incident plane wave. Other 

parameters are as in Figure 7.1. 
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of power that couple to the system surface. Results show that particles with a radius larger than ~42 nm 

experience unidirectional forces against the drift, whereas those with a radius smaller than ~37 nm are 

dragged along the applied bias. Such response is preserved independently of the direction of the incoming 

laser beam. The numerically computed threshold between the two states of the system agrees well with the 

~38 nm predicted by Eq. (7.4). The particles with radii close to the threshold experience lateral forces that 

smoothly change direction with respect to ϕ�, a response that appears due to the interplay between spin-

orbit and broken-symmetry recoil forces. Finally, it should be noted that this sorting platform is dynamic 

in the sense that the particles radii threshold to direct them along/against the bias (zj) can be manipulated 

in real time by changing graphene’s Fermi level through a gate bias. Figure 7.5 shows the normalized force 

strength versus the particle position above the surface for two different chemical potentials: μQ = 0.1eV 

and μQ = 0.15eV. Results confirm that the nanoparticle size required to be sorted along/against the bias can 
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be tuned in real time by through graphene’s gate-bias while barely affecting the force strength. Numerical 

and analytical (Eq. 7.4) are in good agreement. 

7.3 CHAPTER CONCLUSIONS 

In summary, I have explored lateral recoil forces acting on Rayleigh particles located over plasmonic 

platforms with in-plane nonreciprocal response. The study in Chapter 4 revealed that the Green’s functions 

that describe such forces can be solved analytically using the integration along the imaginary axis technique 

combined with the residue theorem. The resulting approximate expressions establish a fundamental link 

between the dispersion relation of reciprocal and nonreciprocal platforms, and the lateral recoil forces acting 

on nanoparticles located nearby. Additionally, in-plane nonreciprocity leads to a lateral recoil force 

component that only depends on the broken symmetry of the supported plasmons and the total optical power 

scattered by the particle, while being almost-independent of any other property of the incoming light 

 

Figure 7.5: Normalized strength of nonreciprocity-induced lateral recoil force due to the broken symmetry in 

amplitude of the surface plasmons excited on drift-biased graphene versus the particle position ¯'. Results are 

computed for graphene’s chemical potential μQ = 0.1eV (red) and μQ = 0.15eV (blue). Solid lines and markers 

correspond to the exact and analytical solutions calculated using eq. 1a and eq. 4 of the main paper, respectively. ¯� refers to the threshold distance where the force direction reverses. Other parameters are as in Figure 7.1. 
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(wavelength, angle of incidence, polarization). Such force can be significantly larger than other recoil force 

components and creates a two-state system in which the particles are dragged along/against the external 

bias depending on their size and distance to the platform surface. Moving beyond, I envision that lateral 

recoil forces based on nonreciprocal platforms, including those composed of magneto-optical materials 

such as cobalt-silver alloy [29], topological gyrotropic materials [52], photonic topological insulator [51], 

or drift-biased 2D materials [35-40] and thin-metallic layers [41], will find numerous applications in 

physics, chemistry and bioengineering, with emphasis on alleviating some of the challenges of conventional 

optical tweezers in terms of photoheating [53], alignment, operation wavelength, and resolution of the 

nanoparticles lateral position. 
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Chapter 8:  Dynamic Manipulation of Stable Optical Traps 

Above Nonreciprocal Metasurfaces 

Stable optical trapping of nanoparticles, in the range of 1~50nm, and dynamic manipulation of those trap 

sites remain a challenge since the invention of optical tweezers in 1970 [1]. Over the years, the use of 

plasmonic nanostructures [2,3], such as metallic nanotips [4], nanoapertures [5,6] or nanocavities [7-9], 

have greatly resolved the issue of trapping nanoparticles by enhancing conservative gradient trapping force 

[10-13]. There, the trap sites strongly depend on the structure geometry and cannot be controlled in real 

time. As a partial solution, graphene nanostructures (i.e., couple strips [14], nanoribbons [15-18], nanoholes 

[19]) have been proposed to manipulate the traps. In these configurations, the position of the localized field 

intensity and the feature of gradient trapping force are controlled by changing the carrier density of graphene 

using a gate bias [18]. However, all these nanostructures exhibit a strong resonant behavior and require 

precise fabrication process thus limiting their applications in practice. Another common approach relies on 

the use of counter-propagating evanescent surface waves that creates a periodic potential well near planar 

waveguides [20-24]. There, the potential minima or trap sites are controlled by tuning the phase of one of 

these surface waves, as is commonly done using a microheater [22,23]. This technique is less efficient for 

nanoparticles, but sub-micrometer objects. This is because nanoparticles may jump out from one trap to the 

neighboring ones due to the weak gradient force in this scale thus resulting in unstable trapping [20]. 

To overcome the dependence of conservative gradient force, several studies have been performed to 

realize strong nonconservative spin-orbit recoil force on quasi-circularly polarized dipolar nanoparticles 

located near plasmonic surfaces [25-27]. The origin of this force is completely different than the 

conservative one [28] and it depends on the spin-orbit interaction of light [29,30] as discussed in Chapter 5 

and 6. This phenomenon has been exploited to dramatically enhance the trapping forces on dipolar 

nanoparticles located near metallic surfaces when illuminated by a laser beam [31]. There, the particle 

exhibits dipole polarization spin rotating against the beam axis independently to its position, and the 
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resulting recoil force originates optical trap at the beam axis with superior performance (see Chapter 6). 

Unfortunately, these reciprocal systems are unable to manipulate the trap sites as they lack real-time 

tunability to dynamically control the optical forces. 

In this context, nonreciprocal plasmonic systems with an external momentum bias, such as magnetic 

field [32-34] and drift-current bias [35-40], have been proposed to obtain tunable optical forces [41] as 

detailed in Chapter 7. These active structures exhibit a dispersion relation with broken symmetry in 

amplitude and polarization of the supported modes in the momentum space. Illumination of nanoparticles 

located above them, such as magneto-optical surface [41] or drift-biased graphene (see Chapter 7), 

introduces a novel nonreciprocity-induced recoil force thanks to the broken symmetry of the surface modes. 

Importantly, the strength of this force is directly linked to the dispersion relation of the system and can be 

dynamically controlled by tuning the applied bias strength. 

In this Chapter, I propose dynamic manipulation of lateral optical traps on dipolar, spherical and 

Rayleigh nanoparticles [42] located near nonreciprocal plasmonic surfaces with in-plane momentum bias 

when illuminated by a normally incident laser beam. The trap mechanism is governed by the 

nonreciprocity-induced and spin-orbit recoil forces. On one hand, the spin-orbit recoil force depends on the 

dipole polarization spin and acts toward the laser beam axis. On the other hand, the nonreciprocity-induced 

force is independent of the dipole polarization, always acts along the bias axis and its strength can be 

controlled by tuning the bias strength. The interplay between these two recoil forces originates an optical 

trap that can be controlled in the physical space with ultra-subwavelength resolution. To investigate the 

importance of particle polarization, I derive an analytical expression of the required dipole polarization spin 

to trap it at any position above the metasurface with a given dispersion relation. As a practical example, I 

propose the use of drift-biased graphene, and explore the performance of stable optical trapping of 

nanoparticles located nearby and manipulate the trap site. Results show that drift-biased graphene provides 

stable trap response using a laser beam with power densities as little as ~6mWμm�K whereas the trap site 

can be finely manipulated with nanometric resolution by applying a voltage bias. 
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8.1 THEORETICAL FRAMEWORK 

Consider In this section, I provide a brief overview of the lateral recoil optical forces on nanoparticles 

located near nonreciprocal metasurfaces that originates tunable optical traps based on the theoretical 

framework developed in section 4.3. 

Let me consider a nonmagnetic, isotropic, spherical, and dipolar Rayleigh particle of radius a located 

at a position r̅' = 2x', y', z'3 above a nonreciprocal plasmonic metasurface. The system nonreciprocity is 

obtained by applying an in-plane momentum bias, such as magnetic field [32] or drift-current bias [36,37]. 

Figure 8.1a shows the schematic considering a drift-biased graphene. The relative permittivity of the media 

above and below the surface are ε� and εK, respectively. The setup is illuminated by a normally incident 

TM-polarized Gaussian laser beam with waist w'. The center axis of the beam is aligned with z8-axis of the 

reference coordinate system, and it is focused on a distance f' from the surface [31]. Here, the laser beam 

 

Figure 8.1: Nanoscale manipulation of optical traps induced on a nanoparticle near drift-biased graphene under 

illumination with a Gaussian laser beam. (a) Schematic of the configuration. (b) Normalized ¯-component of the 

excited SPP considering a gold nanoparticle located at the beam axis (left panel) and off the beam axis -exactly 

where the trap is created (right panel). The top inset indicates the dipole polarization state of the particle and the 

direction of the recoil forces. The particle’s radius is ² = 15 nm and its vertical position is z' = ² + 1GnmJ; the 

laser operation wavelength λ' = 10 μm, with a beam waist w' = λ' and focus position f' = 0; graphene’s 

chemical potential and relaxation times are set to μQ = 0.2eV and τ = 0.3 ps, respectively; and relative 

permittivity of the media above and below the metasurface are ε� = 1 and εK = 3.8. 
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is mainly employed to polarize the particle such that it exhibits a dipole polarization spin with rotation 

handedness against the beam axis [31]. As described in Chapter 6, this induces an optical trap exactly at the 

beam axis in the case of reciprocal systems. The electric field vector components of such a Gaussian beam 

can be modelled as detailed in section 6.1. Within the dipole approximation, total optical forces on the 

particle are calculated from the vector gradient of the local electric field at the particle position as derived 

in section 4.3. Following the framework described in Chapter 4, the total optical forces can be decomposed 

into two component: (i) conservative force FZ ¬ = �K ReNpZ∗ ∙ ∇EnÊ
(r̅')O; and (ii) nonconservative recoil Force 

FZ �:Q = �K ReGpZ∗ ∙ ∇En�(r̅')J. When the incident light is a Gaussian beam [31] or a plane wave, the 

conservative force is commonly referred as gradient force [31] or radiation pressure [25], respectively. This 

force is proportional to the third power of the particle size [42], is very weak (i.e., sub-femtonewton range) 

for nanoparticles whose radii lie below λ'/100 [2,43], and its influence on the total force response is usually 

negligible. In nonreciprocal systems, the nonconservative forces are composed of two components: (i) spin-

orbit force FZ � that originates due to the dipole polarization spin [25]; and (ii) nonreciprocity-induced force 

FZ Æ� that appears to compensate the momentum imbalance of the asymmetric surface plasmons excited on 

the platform (see Chapter 7 and Figure 8.1b). 

Without loss of generality, I assume that the external bias is applied along ®8-axis (see Figure 8.1a). 

Following the procedure detailed in Chapter 4, the dominant recoil forces are analytically expressed as 

F=� ≈ �Ñì&í«�f ~�êQ �& !^�^ (è e�Kk ^�Õ, (8.1a) 

F?� ≈ ÄÑì&í«�f ~�êQ �& �!^�Õ^ (è e�Kk ^�Õ + !^�Ô^ (è e�Kk ^�Ô�, (8.1b) 

F?Æ� ≈ ÄÑì&í«�fêQ �& �!^�Õ^ (è e�Kk ^�Õ − !^�Ô^ (è e�Kk ^�Ô�. (8.1c) 
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Here, k?�, k?� and k= are the plasmon wavenumbers along, against and in the orthogonal lateral direction of 

the bias, respectively (see Figure 4.3); c' is speed of light in free space; and ε� = �c��hK . Eq. (8.1) shows 

that the spin-orbit force direction is solely determined by the dipole rotation handedness (i.e., sign of 

helicity), whereas the direction of F?Æ� depends on the difference in plasmon momentum propagating along 

and against the bias. When the particle is located very close to the surface (i.e., z' → 0), F?Æ� always acts 

along the bias direction since k?� > k?� as shown in Figure 8.1b. When the forces F?� and F?Æ� are equal in 

magnitude and act in opposite directions, an optical trap is conformed. Importantly, the trap position can be 

manipulated along the bias axis since the strength of F?Æ� can be controlled by tuning the strength of the 

external bias. 

Now, it is instructive to analyze the dipole properties to explore the importance of its polarization state 

in the trapping mechanism. To this purpose, let me consider that the trap appears at a position (0, y�, z�) 

along the bias axis where F=� = 0 and F?� + F?Æ��Ð = 0. From Eq. (8.1), the dipole helicity at the trap position 

can be computed as 

η?(x�, y�) = 0, (8.2a) 

η=(x�, y�) = .^�Ô/�:Õhf"¿�Ô�.^�Õ/�:Õhf"¿�Õ
.^�Ô/�:Õhf"¿�Ô�.^�Õ/�:Õhf"¿�Õ. (8.2b) 

Eq. (8.2) shows that for a given dispersion relation of a system, one can easily calculate the required dipole 

helicity to trap it at a certain position. This situation is simpler in reciprocal systems since k?� = k?� and η= 

is strictly zero [31]. 

In the following, I employ my formalism (see Chapter 4) to explore the lateral trapping forces on a 

dipolar gold nanoparticle located near drift-biased graphene supported by hexagonal boron nitride – a 

platform that has been demonstrated experimentally [36,37]. The overarching goal is to obtain stable optical 
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trap and dynamically manipulate the trap site with ultra-subwavelength resolution. I compute the potential 

energy and the required trap depth for stable trapping aiming to overcome the thermal fluctuations [44] and 

Brownian motion [2,45]. I also provide examples of realistic laser sources that can be readily applied to 

achieve such response in practice. 

 

Figure 8.2: Response of lateral optical forces over the reconfigurable optical tweezer shown in Figure 8.1. (a) 

Nonreciprocity-induced (red) and spin-orbit (magenta) recoil forces, and gradient component (yellow) versus 

particle position y' keeping x' = 0. (b) Total lateral forces for biased (blue) and unbiased (green) graphene with 

gold spheres indicating the trap locations. Solid lines and markers correspond to the numerical and analytical 

solutions computed using Eqs. (7.1-7.2) and (7.3), respectively. (c) Total lateral forces versus drift velocity °	 and ®' using numerical and analytical approaches with black line indicating the trap position. Results are normalized 

with respect to the laser power. Other parameters are as in Figure 8.1. 
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8.2 DYNAMIC MANIPULATION OF OPTICAL TRAPS 

Let me assume that a gold nanoparticle of radius a = 15nm is located at a position (x', y', z') =
(0, y', a + 1nm) above a longitudinally dc-biased graphene that generates drifting electrons along the 

surface with velocity vZ� = y8v� (see Figure 8.1a). The platform is illuminated with a normally incident TM-

polarized Gaussian beam (see Eq. 6.1) operated at wavelength λ' = 10μm, focused on the surface (f' = 0) 

with a waist w' = λ'. Figure 8.1b shows the z-component of the electric field excited on the surface for 

two particle positions with v� = 0.5v�. When the nanoparticle is located at the beam axis (i.e., y' = 0), it 

behaves as a linearly polarized dipole and excites all possible modes supported by the surface. Particularly, 

the extremely confined modes with larger wavenumbers are strongly excited (i.e., in the −y8 half space), 

and the nonreciprocity-induced recoil force F?Æ��Ð pushes the particle toward the drift to compensate the 

momentum imbalance. When the particle is located off the beam axis (i.e., y' = 4μm), the induced dipole 

polarization spin modifies the field distribution where the extremely confined modes are not strongly 

excited anymore. There, the spin-orbit force F?� cancels the counteracting nonreciprocity-induced one F?Æ�, 

 

Figure 8.3: Tunable optical traps. (a) Position of the trap (®#) versus drift velocity. Insets show the polarity of dc-

bias for negative and positive v�. (b) Particle helicity η= at the trap position. Insets show the dipole polarization 

rotation handedness to trap it in the negative and positive ®-half spaces. Other parameters are as in Figure 8.1. 
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and an optical trap is created. In these scenarios, the particle does not experience any force in the orthogonal 

lateral axis (i.e., F= → 0) since the platform response is symmetric along that direction.  

Figure 8.2a shows all the lateral force components versus the particle position y'. As expected, the 

gradient force F?¬ is very weak since the electrical size of the particle is very small (i.e., a ≈ λ'/660). The 

spin-orbit component F?� exhibits an odd symmetry versus y' and is strictly zero at the beam axis, i.e., y' =
0. The nonreciprocity-induced force F?Æ��Ð always acts along the drift with maximum strength near the 

beam axis as the particle scatters optimum amount of power P�Ð�?k  , and progressively lessens away from it. 

The balance between F?Æ��Ð and F?� creates an optical trap (indicated by a gold sphere) off the beam axis at 

y' ≈ 4μm as shown in Figure 8.2b. This is fully consistent with the analysis in Figure 8.1b. In the absence 

of drift, the trap is conformed at the beam axis as recently explored in the case of reciprocal systems [31] 

(Chapter 6). Figures 8.2c-d show the total force response versus y' and v� to explore the real time tunability 

of the trap site (indicated by black line where F? → 0). Overall, the platform is capable to control the trap 

site up to a distance of ~5μm with ultra-subwavelength resolution by adequately tuning the bias strength. 

Figure 8.3 explores the tunability of the platform to create optical traps. I highlight the excellent agreement 

between the numerical [Eq. (4.54)] and analytical results (i.e., F? ≈ F?� + F?Æ��Ð) [Eqs. (4.65) and (4.72)] 

based on the theory developed in Chapter 4. Figure 8.3b shows the dipole helicity along x-direction at those 

trap sites and compare it with the one calculated analytically (markers) using Eq. (8.2). Insets show the 

required dipole rotation handedness to trap the particle in the positive or negative y-half spaces of the 

metasurface. This response is similar to the one obtained above reciprocal surfaces [31]: the dipole always 

exhibits a polarization spin with rotation handedness against the beam axis independent to its position. 

Exactly at the beam axis, the particle behaves as a linearly polarized dipole (i.e., η= → 0). Results confirm 

that Eq. (8.2) can be directly applied to calculate the required dipole polarization spin to trap it at a given 

position. 
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To investigate the platform performance, it is important to analyze the potential energy and trap depth 

that can be computed following the approach detailed in Chapter 6. Figure 8.4 shows the distribution of the 

trapping potential versus the particle position (x', y'). As expected, the response is rotationally symmetric 

in the case of unbiased (isotropic) graphene and the trap appears at the beam axis, i.e., (x', y') ≈ (0,0) as 

shown in Figure 8.4a. In the presence of drift, Figure 8.4b shows that the potential minimum appears away 

from the beam axis at a position (x', y') ≈ (0,4μm) where the trap is conformed (see Figure 8.2b). Unlike 

the traps found near reciprocal surfaces [31], the nonreciprocal system introduces a rotationally asymmetric 

 

Figure 8.4: Normalized trap potential versus particle position (x', y'). 3D-distribution of the trap potential versus x' and y' with (a) v� = 0 and (b) v� = 0.5v�. (c) Response computed for particle position along the x8 and y8-

axes going through the trap (versus x' keeping y' ≈ 4 μm: blue line; versus y' keeping x' = 0: magenta line) 

as in panel-(b). (d) Potential versus y' keeping x' = 0 for different drift velocities v�. Other parameters are as in 

Figure 8.1. 



211 
 

energy distribution within any in-plane directions. Figure 8.4c shows the potential energy in the direction 

along/orthogonal to the applied bias, going through the trap position (dashed lines in Figure 8.4b). Results 

shows that the nanoparticle experiences a local energy maximum in the y < y�-half space. This response 

is consistent with the local enhancement in the force profile against the bias as shown in Figure 8.2b. 

Therefore, a local potential barrier and larger trap depth ∇U? appears along the bias-axis, whereas the 

orthogonal direction (x) exhibits a symmetrical response with trap depth ∆U=. In the case that the 

nanoparticle acquires sufficient energy to escape from the trap, it will avoid this local potential barrier and 

preferably follow a path in the y' > y� semi plane. Figure 8.4d shows a similar response versus y' with 

different drift velocities. It shows that the trap site progressively moves along the bias direction as the drift 

velocity increases following a similar trend as in Figure 8.3a. I stress that for stable trapping, the absolute 

value of potential minima should be larger than 10kóT to overcome the thermal fluctuation and Brownian 

motion. To satisfy this condition, the required minimum amount of laser power is 6~10mWμm�K. This 

amount of power is readily available in practice using femtosecond pulses [46] and CO2 laser beams [47,48] 

operating at 10μm wavelength.  

8.3 CHAPTER CONCLUSIONS 

In summary, I have investigated stable optical trapping of dipolar nanoparticles located near 

nonreciprocal metasurfaces when illuminated by a laser beam, and explored the possibility to manipulate 

the trap location in a dynamic fashion. The trap mechanism is governed by the spin-orbit and 

nonreciprocity-induced lateral recoil forces. In particular, the spin-orbit force is robust against the applied 

bias, whereas the nonreciprocity one strongly depends on the bias strength thus providing a tunable response 

of optical traps. To analyze the force response, I have developed rigorous analytical expressions solving 

the Green’s function analytically using residue theorem [49]. These expressions directly link the forces with 

the dispersion relation of the nonreciprocal system, and allow to calculate the required dipole polarization 

spin to trap it at any position. Importantly, the theory can be applied to any nonreciprocal system with a 

given dispersion relation including topological gyrotropic materials [34], magneto-optical surface [32,33], 
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and drift-biased thin metals [35] or graphene [36-39], amongst many others. As a practical example, I have 

proposed the use of drift-biased graphene that has recently been experimental demonstrated [36,37]. I have 

assessed the stability of the platform for the ultra-subwavelength manipulation of optical traps by 

investigating the trapping potential and trap depth. Results show that stable trap performance can be 

obtained by using the conventional laser sources such as femtosecond pulses and CO2 laser beams. I 

envisage that nonreciprocal platforms would significantly advance the field of nano-optical plasmonic 

tweezers in terms of dynamic and precise routing, trapping, and manipulation of nanoparticles. 
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Chapter 9:  Conclusions and Future Research 

9.1 CONCLUSIONS 

In this thesis, I have proposed a novel class of nano-optical plasmonic tweezers based on engineered 

hyperbolic and nonreciprocal plasmonic metasurfaces, and analyzed the performance of this type of devices 

with respect to the state of art in terms of operation frequency, beam alignment and focusing, power, and 

particle properties, among many others. I have exploited unusual near field properties provided by these 

metasurfaces to sort, route, trap and manipulate nanoparticles located above them in unprecedented ways 

while enhancing the strength of the induced force with respect to conventional systems. The key findings 

of each Chapter are briefly summarized below: 

In Chapter 2, I have first presented a brief overview of anisotropic and hyperbolic metasurfaces, and 

studied their electromagnetic response using numerical and analytical methods. Then, I have analyzed the 

dispersion characteristics of the supported surface plasmons. Rooted on the exciting properties of such 

plasmons, I have exploited the photonic spin Hall effect of light to launch directionally propagating surface 

plasmons within the metasurface – a key mechanism to conform strong lateral recoil forces on nearby 

dipolar particles. This study constitutes the fundamental building block of the nano-optical plasmonic 

tweezers explored in this thesis. 

In Chapter 3, I have shifted the focus from reciprocal to nonreciprocal responses. As a realistic platform, 

I have considered a drift-biased graphene-based nonreciprocal metasurface that supports surface plasmons 

with a broken symmetry in amplitude and polarization within the plane. First, I have studied the 

electromagnetic behavior of these metasurfaces analyzing their dispersion characteristic and the properties 

of the supported SPPs. Specifically, the applied drift-bias allows to manipulate the wavefront of the surface 

plasmons in unprecedented ways and to enforce energy canalization. Then, I have proposed a practical 

application of drift-biased graphene as a broadband and planar plasmonic hyperlens with extreme 
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subwavelength resolution. These exciting findings motivated the use of nonreciprocal plasmonic platforms 

to develop optical tweezers. 

In Chapter 4, I have developed a rigorous theoretical framework to compute optical forces on Rayleigh 

particles located above plasmonic metasurfaces under illumination with a laser beam. To this purpose, I 

have applied the dispersions characteristics of the metasurface and the unusual properties of the supported 

surface plasmons discussed in Chapter 2 and 3. The proposed theory is general and can readily be applied 

to any class of metasurfaces including nonreciprocal ones. Moreover, I have developed a novel analytical 

formalism to calculate the lateral optical forces acting on nanoparticles. These expressions link the forces 

with the dispersion characteristics of the metasurfaces and unveil the underlying physical mechanisms that 

originate them. In addition, I have provided a brief overview on the numerical computation procedure of 

optical forces using full wave simulation in COMSOL Multiphysics. 

In Chapter 5, I have applied the theory developed in Chapter 4 to investigate the response of lateral 

optical forces on nanoparticles located near anisotropic, reciprocal, metasurfaces. First, I have analyzed all 

possible plasmonic metasurface topologies and compare the strength and direction of the recoil forces 

acting on particles located over them. Results have shown that the use of hyperbolic metasurfaces permits 

to enhance the force dramatically in comparison to the other topologies. Then, I have proposed a realistic 

visible frequency hyperbolic metasurface based on nanostructured silver that provides force enhancement 

up to 3 orders magnitude in comparison to the state of art plasmonic surfaces. Importantly, such 

enhancement appears over a broadband frequency in the sense that can be obtained using laser operating at 

from visible to infrared frequencies. 

In Chapter 6, I have extended this study aiming to stably trap nanoparticles located near nanostructured 

silver using low power laser beam. Results have shown that this hyperbolic metasurface enhances the trap 

depth and stiffness induced on the particle by at least an order of magnitude over a broadband frequency. 

Importantly, such response is robust against the beam focus that significantly relaxes the beam alignment 

issue in modern optical tweezers systems. 
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In Chapter 7, I have investigated lateral optical forces on nanoparticles located near nonreciprocal 

metasurfaces. The primary purpose of using nonreciprocal metasurfaces is to overcome the laser alignment 

issue in practice to manipulate the particle toward a desired direction. Here, I have considered drift-biased 

graphene based nonreciprocal metasurface and applied my theoretical framework developed in Chapter 4. 

Lateral recoil forces in this system exhibit interesting features, including (i) their direction barely changes 

with respect to the incident laser beam angle of incidence; (ii) the particle can be driven laterally along or 

against the applied bias as a function of its position, leading into a two-state system; and (iii) the force 

strength is significantly enhanced thanks to the confined nature of the supported modes.  

In Chapter 8, I have applied the concept of optical trapping to the case of nonreciprocal metasurfaces 

aiming to dynamically manipulate the trap position with subwavelength, precise, resolution. Results have 

shown that the use of drift-biased graphene enables to manipulate the trap site in-plane up to few microns 

by tuning the applied bias strength. These findings may significantly push the boundaries of optical 

tweezers as such tunable response cannot be obtained by common state of art devices. 

9.2 ONGOING EXPERIMENTS 

The proposed experimental set up to measure the lateral recoil force in the near field of hyperbolic 

metamaterial is based on lateral atomic force microscopy (see Figure 9.1a). The metamaterial is constructed 

by periodically organized gold and silicon dioxide layers with subwavelength scale. For the design 

purposes, I have performed theoretical and numerical studies to identify the required dimension that 

provides hyperbolic dispersion in the visible frequency band. With that given data, another member in our 

group fabricated it in the clean room and the scanning electron microscopic image is shown in Figure 9.1 

b. Rather than using a nanoparticle, a cantilever with a given torsional spring constant $% is used. The set 

up is illuminated by a green laser beam operating at 532nm. The tip head of the cantilever scatters light 

with similar properties as the ones of an electric point dipole, and excites directional hyperbolic modes in 

the structure following the physics as detailed in Chapter 5. To compensate the momentum surge, the 

cantilever experiences a lateral deflection ∆& in the opposite direction (see inset in Figure 9.1a). The 
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deflection is measured through the lateral atomic force microscopy system, and the resulting recoil force 

can be computed as F�:Q = γQ∆(. Note that this experiment is still in progress and expected to be finalized 

in the upcoming months. I stress that measurement of optical forces using cantilever is well known in the 

community and similar experiment has been carried out in ref-[1]. However, recoil forces using laser beams 

have not been measured to date. If successful, this experiment would constitute the first experimental report 

of recoil forces.  

To compare the force response with the state of art nano-optical tweezer systems, similar experiment 

will be carried out by replacing the hyperbolic media with pristine metal and bulk silicon dioxide structures. 

Following my theoretical and numerical analysis in Chapter 5, I anticipate at least an order of magnitude 

force enhancement near hyperbolic metamaterial in comparison to others. In addition, I would like to stress 

that hyperbolic metasurfaces (see Chapter 2) constructed by ultrathin nanostructured metal is being 

fabricated by one of our group members, and it is in advanced stage. The future goal is to use those 

 

Figure 9.1: Proposed experimental set-up to measure lateral recoil forces near hyperbolic metamaterial (HMTM) 

using lateral atomic force microscopy. (a) Schematic of the set up. A cantilever is suspended above a HMTM and 

illuminated by a green laser beam (green arrow). To compensate the momentum of directional hyperbolic modes 

(magenta arrow), the cantilever deflects in the opposite direction (see inset) thanks to the lateral recoil force (blue 

arrow). (b) Scanning electronic microscopic image of a HMTM constructed by periodically organized gold and 

silicon dioxide layer fabricated in our group.  
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metasurface aiming to further enhance the force strength. Moving beyond, I envision the development of 

optical tweezer by combining Gaussian laser beam operated in the visible or near infrared with these 

plasmonic metasurfaces. 

9.3 FUTURE RESEARCH LINES 

Most of the concepts developed in this thesis can be further refined and expanded in future research. 

For instance, past few years have gathered enormous interests in manipulating biological cells and atoms 

that exhibits chirality in nature [2,3]. Rigorous electromagnetic modeling of such chiral molecules, in terms 

of electric and magnetic dipole, can be combined with my theoretical framework to accurately measure the 

optical forces exerted on them. Another class of artificially engineered structures namely Moire 

metasurfaces [4-6], constructed by stacking periodically organized metals on top of each other, and the 

light-matter interactions provided by them have become a hot topic in photonic research community during 

the past years. These structures can also be integrated with nano-optical plasmonic tweezer systems to 

realize unusual recoil force response. 

Importantly, the experience gathered in the design and modeling of hyperbolic and nonreciprocal 

metasurface goes well beyond the field of optical tweezers and can be exploited in many other nanophotonic 

applications. In this context, I am currently involved in some collaborating research projects. A brief 

summary of such multidisciplinary current and future research lines is documented below: 

(i) X-ray detection using hyperbolic media: Recently, it has been reported that hyperbolic metamaterials 

enable Cerenkov radiation in the presence of a bunch of electrons flying above them thanks to the large 

plasmon wavenumber thus reducing the phase velocity of electromagnetic waves [7]. In this context, visible 

frequency hyperbolic metamaterials designed in our group (see Figure 9.1a) can readily be applied to 

generate Cerenkov radiation at visible frequencies upon illumination of X-ray waves. I have performed 

theoretical and numerical analysis to confirm the appearance of such Cherenkov radiation. Experimental 
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validation of this work is currently being pursued my other group members in the Lawrence Berkeley 

National Laboratory.  

(ii) Terahertz electromagnetic waves generation using drift-biased graphene: Recently, it has been 

shown that multilayer graphene structures support hyperbolic surface modes inside it [8,9]. In this work, 

the goal is to design a similar hyperbolic metamaterial and apply a drift-bias to the graphene sheets. The 

drifting electrons will couple to hyperbolic photonic modes inside the structure without requiring any 

external laser beams, effectively generating THz electromagnetic waves. Note that one of these structured 

is being fabricated in our group following my theoretical analysis, and it will be tested very soon. 

In summary, my theoretical and numerical analysis, and the ongoing experimental breakthroughs as 

detailed in this thesis may significantly push the boundaries of nano-optical plasmonic tweezers, and enable 

many other novel nanophotonic applications in bioengineering, physics, and chemistry. 
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