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ABSTRACT

Curved bridges have become a major component of highway systems in
recent years. Elevated freeways and multi-level interchange structures
are very common in densely populated areas and could hardly be construc-
ted without curved bridges. Usually, these bridges are of cellular cross
section so that the high torsional moments due to curvature can be re-
Sisted economically. Methods of analysis and design to date have been
very approximate, but because of the large number of curved bridges being
constructed everywhere, refined methods of analysis are desirable.

In this dissertation, the main geometric parameters of curved
bridges are studied, as they are prescribed by highway engineering re-
quirements. The existing approximate methods of analysis are reviewed,
and two new refined methods developed. The first one is based on the
finite element method, for which a general computer program was written,
This method may be used to analyze general non-prismatic folded plate
structures with an incorporated three-dimensional frame. The second
approach is the finite strip method of analysis applied to folded plate
structures curved in plan, for which also a general computer program
has been written. This method of analysis is restricted to structures
simply supported along their straight radial edges. But the extension
of the theory to include interior supports is also discussed.

On the basis of these refined analytical methods, the behavior of
curved box girder bridges is studied. 1In particular, wheel load distri-
bution characteristics are investigated especially with respect to how
they change with the major bridge parameters. Finally, design recommen-
dations are presented aimed at combining efficiency and accuracy of the

design of curved box girder bridges.
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1. INTRODUCTION

1.1 General

The present mode of vehicular traffic transportation is not likely
to change rigorously within the foreseeable future, i.e,, mass trans-
portation will to a large extent be handled by vehicular traffic
requiring an efficient highway network. Hence, in all industrialized
nations as well as in those which are in the process of industrializa-
tion, the efforts of constructing efficient highway systems will
continue if not increase,

With the growth of urban populations everywhere in the world,
this construction of highways will to a great extent be concentrated
on arterials in urban built-up areas. In fact, it will be a challenging
and exciting requirement imposed on the responsible agencies charged
with the construction of urban highways to help. in modelling new cities
and restructuring existing ones. A main design concept for this pur-
pose will be the multiple use of the highway corridor both vertically
and horizontally such that the entire corridor is planned as an
integrated part of the city.

The consistent separation of vehicular and pedestrian traffic on
different levels will, for example, be one solution for providing
sufficient safety of people and property. Likewise, the consistent
use of cross-traffic free intersections within the highway system will
increase its efficiency and reduce losses due to accidents. 1In urban
areas with high land values, these cross-traffic free intersections
are usually most economically obtained using multi-level interchange

structures,




Thus, bridge structures will play an increasing role in future
highway systems as a major cost factor. Therefore it is desirable
that engineers are familiar with all problems inherent in the design

of a bridge of general geometry,

1.2 The Bridge as Part of the Highway

Being an integrated part or subsystem of the highway system, the
bridge itself is influenced by a variety of factors such as urban
design, traffic and highway engineering requirements, structural en-
gineering, topographical and soil conditions, political and aesthetical
considerations, etc,, all of which may in certain cases be very impor-
tant, However, for most bridge designs, structural considerations are
usually not very important with respect to the choice of general loca-
tion and geometrical layout, These are more likely to be determined
by traffic and highway engineering requirements or urban design
considerations. Because it is the purpose of both the highway and
the bridge to convey traffic, traffic requirements have usually clear
priority for the determination of location and geometrical layout of
a bridge. Thus, in the "decision-making stage' of the design process,
structural considerations are often not decisive, although they become

of prime importance once the geometrical layout has been determined.

1.3 Objective and Scope of Present Investigation

The objective of this dissertation will be to present the curved
bridge design problem in a broad sense. First, the role of the
structural engineer in the decision-making stage of the design process
in which location and geometrical layout are determined, will be dis-

cussed, Then, a summary of highway and traffic engineering principles




will be presented as they have important consequences on the bridge
gcecometry, so that structural engineers may obtain a complete picture
of the range of geometrical parameters of curved bridges.

As for the analysis, present methods are usually very approximate
and often based on empirical considerations., In view of the large
number of curved bridges built everywhere, it therefore appears to
be desirable to have at hand more accurate methods of analysis, If
a comparison study shows that present methods of analysis capture the
overall structural behavior in all cases well enough for engineering
purposes, then engineers will be satisfied with this confirmation
that their empirical rules were correct, If, however, it can be
shown that the approximate methods lead to unreliable results for cer-
tain types of structures, then the need for refined methods will have
been clearly demonstrated,

Thus, it will be the main goal of this dissertation to critically
review existing methods of analysis and design of curved bridges and
to develop new methods which take most of the major bridge parameters
into consideration. With the aid of these refined methods of analysis,
the behavior of bridges under loads will be studied as a function of
horizontal curvature. Since torsional moments, which become increas-
ingly important with higher curvatures, are most economically resisted
by closed cross sections, the design methods to be proposed in Chapter

7 will primarily be oriented towards box girder bridges,




2. BRIDGE AND HIGHWAY

2.1 The Basic Design Problem

It is thc.objective of this chapter to inVestigate the salient
features of interaction between bridge and highway as they are im-
portant in the more general aspects of a bridge'design.

Bridge and highway form a system which is most suitably treated
with the tools of systems design. The best or obtimum solution will
be the one which optimizes benefits compared to cdsts. Both costs
and benefits have to be conceived in a wide sense, including right-
of-way, construction and maintenance cost compared with the economi-
cual benefits, but also user and accident costs and human and cultural
factors such as the impact on the adjacent environment should be
considered. Therefore not only highway and traffic engineering
requirements and structural engineering principles govern the design,
Urban design considcrations, political, social and aesthetical
aspects, topographical and soil conditions may very well be even more
important factors to be taken into account,

It is beyond the scope of this dissertation to cope with the
design of the bridge-highway system in its broadest sense. This study
will be restricted therefore to the general discussion of only highway,
traffic and structural engineering aspects, although one should always
keep in mind that they may often be less important than some of the
other above mentioned factors,

Traffic and highway engineering prinéiples furnish the criteria
by which the serviceability of the overall highway design is evaluated.
These criteria ask for the most efficient traffic flow, safety, and

elimination of accident hazards at optimum cost which might be
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evaluated with the help of a road user benefit analysis, taking into
account all the cost factors just mentioned.

The structural engineering aspect of the design defines the
criteria for strength, stability, and safety under various loading
conditions at optimum cost. The fact that skew and especially curved
structures are more expensive due to higher stresses and construction
cost therefore needs consideration,

In the optimization process, the various influencing factors have
to be weighed against each other, Figure 2.1 shows a qualitative flow
chart of how an optimal solution might be arrived at. As can be seen
in this diagram, structural considerations influence the bridge align-
ment and overall geometrical layout (such as for example curvature,
roadway width, span lengths and skew) only when the structural cost is
a very important cost factor in the overall project, because otherwise
the savings due to a suboptimization of the bridge alone will seldom
Justify the cost increase associated with realignment of the approaches
that become necessary to meet certain traffic standard requirements,

A typical example which makes an overall optimization indeed desirable
is the elevated freeway.

Historically, the basic interaction between bridge and highway has
been recognized and considered in design only quite recently. 1In
earlier times, the importance of a bridge structure was usually largely
overemphasized compared to the highway design., Thus, almost exclu-
sively straight and right-angle bridges were built, resulting often in
sharp turns at the approaches and generally tortuous alignment because

the most favorable bridge site was the only criterion for location.
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Curved bridges have been introduced into highway systems much
more recently. Pressure from highway engineers for better align-
ments stimulated a rapid improvement of curved bridge design. In
addition, structural engineers were becoming more and more familiar
with the special problems due to the curvature of bridges. But still,
research on curved highway bridges, in particular on those having the
advantageous cellular cross sections, has been scarce, The large
number of existing bridge structures have proven to be satisfactory
with respect to serviceability and strength, It shall be the objective
of further research to produce curved bridges that satisfy also the

requirement of economy.

2.2 Principles of Geometric Highway Design

2,2.1 General

In order to study curved bridges it is necessary to understand
the principles of geometric highway design which determine the bridge
centerline alignment as well as the major bridge dimensions.

The objective of all highway design is a balanced composition of
the various design elements which are to be consistent with an appro-
priate design speed. Because the efficiency of a highway is primarily
evaluated in terms of its capacity, any highway is only as efficient
as its weakest point. Critical points are the intersections and inter-
changes which therefore have to be designed with utmost care, otherwise
the rest of the highway might be overdesigned., Bridge structures are
employed primarily at these critical points, thus confirming the impor-
tance of the bridge-highway interaction discussed in the previous

section,




Another important measure of highway efficiency is the safety
which it provides for traffic., The high priority of the need for
climinating accident hazards imposes certain requirements on the
design of highway bridges. Drivers tend to be confused by narrow
roadway widths on overpasses and by column piers and massive abut-
ments at underpasses which therefore have to be designed properly,

Geometric highway design may be subdivided into two categories,
design of open highways and design of intersections, The governing
design principles usually vary from one category to the other, there-
fore it is also appropriate to distinguish two classes of bridge
structurcs, While the first class includes bridges over valleys,
waterways, and railway tracks as well as any grade separation struc-
tures without ramps, the second class contains all types of grade
separation structures with ramps, i.e., interchange structures,
Elevated freeways are a special combination of the above two groups
and will therefore be treated separately,

Below, those design elements will be discussed briefly which
define the geometry of highway bridges, Reference may be made to two
publications of the American Association of State Highway Officials,
"A Policy on Geometric Design of Rural Highways," [1.17, and "A Policy
on Arterial Highways in Urban Areas,” [1.2], both excellent summary
treatments of geometric highway dcsign, on which most of the design

data below are based,

2.2.2 Horizontal Alignment

In a highway design, all geometric elements should, as far as

economically feasible, be balanced to permit safe and continuous




opcration at design speed, Given this design speed, V, in miles per
hour, the roédway superelevation rate, e, in foot per foot, and a

side friction facter, f, then the minimum permissible radius of

curvature can be derived from a law of mechanics and is given by

2
= {1 Y _ 2
- R = 15 e+f (2.1)

in feet. Often, instead of using the radius as measure of curvature,

the "degree of curve,” D, is specified which is defined to be the
degree subtended by a 100 ft, long curve and which is related to R

as D = 5729.58/R, so thut Eq. (2.1) can be stated in the form
D = 85 900 &1 (2.2)
v

Maximum curvature restrictions are different on the open highway
than they are at intersections, Likewise, turning roads and ramps
have their own maximum requirements, and highways in urban areas are
designed differently than in rural areas, Curvatures in urban areas
are generally sharper than in rural areas because of lower design
sSpeeds.,

Two types of horizontal curves are most commonly used in highway
practice--circular curves with minimum radius requirements according
to Eq. (2.1), and easement curves providing smooth transitions be-
tween highway sections with different curvatures.

As transition curves, clothoid spirzls are very popular because
they have the property of linearly varying curvature if moving along

the curve coordinate g, Fig. 2.2,

= a"s (2.3)

Rl

In parameter form, the spiral is defined as
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¢
2
X = arF/casL;— F {3
. . (2.4)
y = aﬁ/sin’-;—"‘ dt
a

With

o]
Fig. 2.2 Clothoid Spiral
The parameter a2 is the "sharpness' of the spiral and defines the

rate of curvature increase per unit length of curve,

Transition curves should be fitted in between curves of sub-
sluntially different curvature radii and between tangents and curves
with smaller than certain minimum radii which are prescribed as
functions of the design speed. While these spirals are essential
for railbound traffic to avoid jerks, many highway departments prefer
circular curves with intermediate curvatures as transition curves,
arguing that traffic lanes are wide enough to let each driver select
his own spiral within a lane.

Often, maximum curvatures cannot be utilized because the stopping
sight distance might govern the design, i.e,, the minimum distance
which a vehicle traveling near design speed requires to stop before
reaching an ohject in its path. fThe sight distance should at any
point on a highway be as long us possible but cannot be shorter than
certain 1imits.

Passing sight distance, on the other hand, is of importance mostly
only for 2-lane highways and should be provided only over as large a
portion of the highway as feasible and will therefore seldom control

the horizontal alignment,




11

2,2.3 Vertical Alignment

In a discussion of vertical alignment as design element, maxi-
mum grades and vertical curves need to be considered,

Maximum grade restrictions depend on the nature of the area, i,e,,
urban or rural or mountainous, as well as on the highway type, design
speed, nature of traffic, etc. But also very important is the length
of grade, because long grades reduce the speed of trucks considerably,

Vertical curves provide the gradual change between tangent grades,
They should be safe and comfortable in operation, pleasing in appear-
ance and adequate for drainage, Usually they are of simple parabolic
shape and maximum curvatures are generally controlled by stopping
sight requirements for both crest and sags. In the latter case, the
sight distance at night (headlights) governs, 1In addition, gravita-
tional and vertical centrifugal forces act in the same direction in
Sags so that driving comfort plays a role. To consider passing sight
distance for vertical alignment is often impractical because too flat
curves would be required,

Vertical curvatures are generally so small that they can be
usually neglected for structural considerations, For example, a crest
vertical curve from + 5% to - 5% grades for a design speed of 50 mph
has to be 850 ft. long while the corresponding sag vertical curve needs
only to be 750 ft, long, Approximating these curves by circular arcs,

radii of 8500 ft, and 7500 ft. would be required, respectively,

2.2.4 Superelevation

Maximum horizontal curvature limits depend on a given design
speed, developed side friction factor, and on the rate of super-

elevation. The maximum permissible superelevation rates depend on
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climatic conditions {(snow and ice), terrain conditions (flat or
mountainous), type of area (rural or urban), and the frequency of
slow moving vehicles, This variety of influence factors explains
the variety of prescribed maxima,

The common maximum superelevation for open highways is 0,12 ft,
per ft,, preferably less., In urban areas with high traffic volumes
and generally lower average speeds, the general maximum is 0.10 ft,
per ft. and in areas with snow and ice, 0,08 ft, per ft,.

If transition curves are used between curves and tangents, then
the superelevation can be run off on these transition curves, Other-
wise ut least a portion of the runoff has to be applied on the tangent
before the curve. Geometrically, the superelevation runoff produces
a twisted roadway surface, However, considering that the maximum
difference in slope between the roadway edges seldom exceeds 1%, this
twist can be neglected in a structural idealization.

On the other hand, superelevation itself may in some cases affect
the state of stress in a bridge such that it should not be neglected,
For example, on a 2-lane roadway with a superelevation of 0,10 ft,
per ft., the outer edge is 2.4 ft. higher than the inner edge. The
vertical lever arm for centrifugal loads is thus increased by that

amount .

2.2.5 Roadway Width

Bridge structures generally have to be designed to carry the
complete roadway width, which includes the total number of traffic
lanes, shoulders and a median separating lanes of opposing traffic in

divided highways,
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Lane widths of 11 to 13 ft. are essential for safe and efficient
operation, and 12 ft. lanes have been accepted as general standard.
Lanes of 10 ft. or less should be avoided or reserved for low volume
roads because narrow lanes greatly reduce the highway capacity and
lead to high accident rates,

The median in divided highways should for safety reasons be as
wide as possible., However, the desirable minimum of 60 ft. is often
impractical, especially in urban areas. The required absolute mini-
mum is 4 ft,, but the actual median width will usually be a compro-
mise between safety and economy,

Shoulders are used for emergency stops or parking of disabled
vehicles as well as to insure full traffic capacity. One stalled
vehicle in rush hour traffic might have catastrophic consequences on
the traffic situation. Therefore, shoulders are essential require-
ments for arterial highways in urban areas, and their use might be
Jjustified even on long bridges. They also serve as safety margins
between the through traffic and guardrails, curbs, bridge piers, etc.

The desirable minimum shoulder width is generally 10 ft.,
preferably 12 ft., Where this is considered too costly, as for example
on elevated freeways, a partial shoulder of 5-6 ft. width might be
justified. On long-span structures, even this might be too expensive
so that only a minimum offset of 2-3 ft, is provided to separate the
roadway from the barrier curb.

In general, however, it does not pay to save money in reducing
the roadway width. The savings will usually be too small to justify
daily rush hour congestions and high accident rates. Besides, minimum

designs often prove to be inadequate even almost at the time of
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completion,’

2,2.6 Miscelluaneous

If sidewalks are required for pedestrian traffic, they are
provided on either one or both sides of the bridge, with widths of
at least 6 ft,, preferably 8-12 ft, in built-up districts and at
least 4 ft., preferably 6 ft. in residential areas., On elevated
freeway structures, sidewalks are never included except for river
or valley crossings or other long-span structures where other means
for pedestrian crossing are not readily available.

On bridge structures, the roadway is usually curbed with barrier
curbs as purt of the rail-parapet. Curbs should be offset from the
edge of the through traffic lanes at least 2 or 3 ft. if no shoulders
are usced. There is increased tendency to eliminate barrier curbs
along walls or faces of bridge parapets if these are separated by
several feet from the edge of the through traffic lane, for example

if a shoulder is carried across the structure.

2.3 Geometry of Highway Bridges

2.3.1 Types of Bridge Structures

The best bridge structure in a highway engineering sense is the
one which drivers practically take no notice of because only then will
their driving behavior be the same as on other points of a highway.
This requirement demands among others, liberal shoulder clearances
everywhere and adequate offset of piers, columns, abutments, walls,
etc, The presence of a structure tends by itself to be already a
hazard which has to be overcome by a careful and liberal geometric

design, as far as economically feasible, 1In fact, to counterbalance
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any sense of restriction caused by abutments, piers, etc., geometric
standards at a highway grade separation should ideally be even
higher than on the open highway.

Highway bridges should in general be of the deck type because of
appearance and possibility of future widening. Only long-span struc-
tures may require through girders or trusses.

In this subchapter, three classes of highway bridges will be
considered, ordered according to their special geometric characteris-
tics.

a) Structures on the open highway facilitating a smooth and
efficient highway alignment over obstacles such as water-
ways, valleys, railway tracks and cross roads;

b) Grade separation structures at interchanges carrying the
intersectingyhighWays as well as ramps which provide turning
movements from one highway leg onto another one;

c) Elevated freeways which are an important component of ar-
terial freeway systems in urban areas, requiring structures
of both aforementioned types and which will be discussed

separately because of their special problems,

2.3.2 Bridge Structures on the Open Highway

The simplest case of those bridges to be considered here is a
simple overcrossing over a minor cross road. There will hardly be any
interaction between bridge and highway in the sense of the overall
design problem discussed in Section 2.1, because the structure cost
is relatively small compared to the highway cost. Bridge location
and geometry are completely predetermined by the highway alignment,

In general, the horizontal curvatures of these bridges will be very
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small if not negligible,

If long bridge structures are required, for example at waterway
and valley crogsings, then the bridge economy may affect the highway
design in some way or other, because the highway can no longer be de-
signed without any regard to the bridge. An extreme example is the
Golden Gate Bridge, Fig. 2.3. Here, bridge location and geometry had
to be chosen without any consideration for highway approaches and
alignment because their costs are almost negligible compared to the
bridge cost, Also, roadway dimensions had to be reduced to the ab-

solute bearable minimum,

2,3.3 Geometry of Bridge Structures on the Open Highway

Maximum permissible curvatures of open highways for given design
speeds, maximum superelevations, and side friction factors can be cal-
culated accd?ding to Eq. (2.1) or (2.2), and rounded values are given
in Table 2.1 which are valid for both rural and urban highways.

Transition curves between tangents and circular curves are re-
quired only for curvatures exceeding the upper limits given in Table
2.2, while below these limits, they are desirable but not essential.

As can be seen, all curves except for those with very small curvatures
require traﬁsition curves,

Maximum grades are a function of the design speed and of topographic
conditions and are given in Table 2.3, Vertical curvatures are
generally so small that they are unessential for bridge geometry
considerations,

The generally accepted maximum superelevation rate is 0,10 ft,
per ft,, but according to traffic, climatic and topographic conditions,

it may be as high as 0.12 or as low as 0,08 ft. per foot for rural
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TABLE 2,1, MAXIMUM DEGREE OF CURVE AND MINIMUM RADIUS
(FT'.) FOR LIMITING VALUES OF SUPERELEVATION
e AND SIDE FRICTION FACTOR f.
Maximum e
0.06 0.08 0.10 0.12
(ft. per ft.) ’
Design
Speed Maximum | R | D R . D R . D R . D
min max min max min max min max
(mph) £
30 .16 273 4{ 21.0 2501 23,0 231 | 25.0 214 | 26.5
40 .15 508 | 11.5 464 1 12.5 427 1'13.5 395 | 14.5
50 .14 833 7.0 758 7.5 694 8.5 641 9.0
60 .13 1263 4,511143 5.0 (1043 5.5 960 6.0
70 12 1815 3.0 1633 3.5 | 1485 4,0 11361 4.0
80 .11 2510 2.5 | 2246 2.5 1 2032 3.0 | 1855 3.0
TABLE 2,2, MINIMUM CURVATURES REQUIRING TRANSITION
CURVES BETWEEN TANGENTS AND CURVESY
Design
e | Speed 30 40 50 60 70 80
(mph)
Rmax 1432-3730)2865-7639]3820-7639[5730-22918!7639-22918]11459-
.06
Dmin 1°-4° 0°45'-2°10°45'-1°30"] 0°15'-1° |0°15- 0°45"{ -0°30"
Rmax 1637~-5730|2865-763915730~11459|5730~22918] 7639-22918(11459~
.08
min 1°-3°30'] 0°45'-2°1 0°30'-1°| 0°15'-1° |0°15-0°45"' | -0°30"
Rmax 1637-573012865-7639 [5730-11459 |7639-22918|7639-22918}11459~
.10
Dmin 1°-3°30' | 0°45'- 2°} 0°30'-1° |0°15-0°45" [0°15'~ 0°45' | -0° 30"
Rmax 1910-573013820~7639 15730-11459|7639-22918|7639-22918[11459-
.12 Dmin 1°-3° 0°45'-1°30' | 0°30'-1° [0°15- 0°45' | 0°15'-0°45"' [ ~0°30"

*Lower limits are desirable, upper limits essential,
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highways, while in urban areas, it generally varies between 0.05 and

0.08 ft, per ft., with an average maximum rate of 0.06 ft,. per ft.

TABLE 2.3, MAXIMUM GRADES OF HIGHWAYS, %

Design Speed, mph
ngz:rzzhy 30 | 40 | 50 | 60 | 70 | 80
Flat 6 5 4 3 3 3
Rolling 7 6 S 4 4 4
Mountuinous 9 8 7 6 5 -

Road widths on bridge structures should preferably be the same as
on any other highway point., This implies a constant number of lanes
with 12 ft. per lane. Na;rower lanes may have to be widened on sharp
curves.

The desirable shoulder width depends on the length or cost of the
bridge. Short bridges in this sense are defined to be structures with
lengths up to 50 ft. or preferably 150 ft., for freeways or other high
type highways even up to 250 ft. These structures will generally carry
full shoulder widths of 10 ft. For longer structures, high structural
costs may permit only partial shoulder widths or minimum curb clear-
ances of 3.5 - 4,5 ft., unless a relatively high ratio of the design
hour volume to the design capacity justifies employment of partial or
even full shoulders, In any case, it is good design practice to make
an economic study for each long structure individually to obtain a
feasible shoulder width as well as a reasonable median width for
divided highways. Since it is generally more economical to build a

single structure for median widths below 20 ft., double structures are
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unusual in urban areas, Commonly used roadway widths are summarized
in Table 2.4.

Spans of overpass structures are governed by clearance require-
ments at supports and abutments for the underpassing roadway, asking
for the least amount of restriction of drivers as possible, Center
supports, for example, should only be used where the median is wide
enough for adequate clearances, Likewise, the sense of openness and
unrestricted lateral clearance is favoring open-end spans more than
solid abutments, Fig. 2.4,

From a pure highway safety point of view, a one-span structure
would be the most desirable solution--but also the most expensive one,
The optimum solution, therefore, has to be found as a compromise be-
tween structural cost and value in utility and safety. Edge clearance
requirements between roadway pavement and outside face of columns,
piers, etc. are modified from time to time towards more liberal and
therefore safer values, With those listed in Table 2.4 (see Refs,
[1.1] and [1.27]), resulting spans of highway overpasses can be calcu-
lated and are summarized in Table 2.5, These spans apply only to
straight right-angle overpasses and have to be modified appropriately
in case of curvature or skew supports, Spans of structures other than
highway overpasses are influenced by so many factors that it is un-

feasible to summarize them here.

2,3.4 DBridge Structures at Intersections

Grade separation structures are required for a cross-~traffic-
free intersection of two highways. If no provision for moving from
one highway onto the other one is made, relatively simple structures

which actually belong to the class of bridges just discusséd may be
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sufficicent, But if any interchanges between the highways are provided,
quite elaborate multi-level structures might become necessary and may
in fact even be the cheapest solutions in built-up urban areas, The
choice of a specific interchange design is influeﬁced mainly by ques-
tions of right-of-way, topography, and the nature of traffic,

Interchanges have to be designed with liberal alignment if the
capacities of the approaching highways are to be fully utilized, Steep
grades and sharp turns are apt to be hazards and tend to reduce high-
way capacities, On the other hand, too flat curves usually result in
long extra travel distunces which can be avoided by reasonably re-
ducing design speeds which drivers generally accept when approaching
interchanges,

The type of an interchange depends on the kind of ramps used,
There are four basic ramp types: diagonal, loop, semidirect, and
direct connection, Fig. 2.5. The superiority of the direct connec-
tion over the loop is obvious, 1In order to perform a left turn, the
loop requires a right turn of 270°, while the direct connection leads
directly around 90°, The semidirect connection is the intermediate
solution, Ramp structures are normally subjected to higher curvatures,
grades, and superelevations than the structures carrying the inter-
secting highways, therefore design speeds are generally lower on
ramps., Some interchange types are shown in Fig. 2.6.

The interchange design is largely controlled by highway engineer-
ing requirements rather than structural considerations. Since the
whole interchange is constructed solely for the purpose of providing a
safe and efficient cross-traffic-free intersection, it would be un-

realistic to impede the ramp alignment because of structural reasons,
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On the other hand, dtructure costs arc usually so high that any measure
compatible with the alignment should be taken if it reduces the cost,
For example, if a cost analysis reveals that the 6 simple bridge
structures of Fig, 2.6f is still cheaper than the one 4-level struc-
ture of Fig. 2.6g, then this is a strong recommendation for choosing
the interchange pattern of Fig. 6f. Thus, in general the final design
has to be the result of a complete feasibility study in which the
structural point of view is often very important.

For illustration, Fig. 2.7 shows the interchange between the

Santa Monica and San Diego Freeways in Los Angeles, California,

2.3.5 Geometry of Bridge Structures at intersections

Geometric design standaids for intersecting highways at intef—
changes should be comparable to those for the open highway. Bridge
structures supporting the through highways will therefore have layouts
and dimensions similar to those on the open highway, although design
speeds will generally be lower,

Those structures which are really different in terms of geometric
parameters are the ramp structures supporting the turning roads of in-
terchanges. ' These bridges have the most unusual geometrical layouts
that are known in modern bridge design. Sharp horizontal curvatures,
steep grades and maximum superelevations, twisted roadway surfaces and
tapered cross-sections may be their characteristics., Design standards
are generally lower than on the open highway, coupled with reduced
design sgspeed, thus permitting larger horizontal curvatures., But speed
reductions at intersections and interchanges are generally considered
by drivers as unavoidable, especially for turning movements. These

unusual structures suggest themselves to reinforced concrete as the
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proper material for construction, Furthermore, cellular cross sections
are generally the most economical ones to carry the incurring torsional
moments, -

The design speeds for ramps should generally equal the average
running ‘speed of the intersecting highways and are summarized in

Table 2.6.  The corresponding curvature radii can be derived, once

TABLE 2.6. GUIDE VALUES FOR RAMP DESIGN SPEED

Highway Design Speed, mph 30 40 50 60 65 70 75 80

Ramp Design Desirable 25 35 45 50 55 60 60 65

Speed, mph Minimum 15 20 25 30 30 30 35 40

suitable superelevation rates and gide friction factors have been
selected, and are summarized in Table 2,7,-which isjust a continua-
tion of Table 2.1 into lower design speeds. Minimum stopping sight
distance must always be provided, but passing sight distance for 2-
lane two-way turning roads is not u de¢sign control because they are
short and should be marked for no passing,

TABLE 2.7. MINIMUM CURVATURE RADII AND SPIRAL
LENGTHS FOR TURNING ROADS

Design (Turning) Speed, mph 15 | 20 25 30 35 40 45
Suggested Minimum Radius, ft 50 { 90 {150} 230 | 310 | 430 } 550
Corresp. Max.. Degree of Curve - | 64 38 25 18 13 10
Suggested Min, Spiral Length, ft. L 70 90| 110 | 130 | 160 } 200

In view of the strong curvatures of ramps, transition curves,

preferably spirals, are almost always used to define a natural travel
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path, For compound curves, spirals or circular curves with interme-

diate radii are required if R_ = 2R, preferably if R

=
o 1 1.75R1. Due to

2
lower design speeds, spiral lengths may be shorter on intersection
curves than on open highways but no shorter than given in Table 2.7.
Maximum grades on intersection curves should be as low as
possible, especially in urban areas, and in no case exceeding the maxi-

mum for open highways, while superelevations should be as high as

practical., Generally accepted maximum values are summarized in Table

2.8,

TABLE 2.8, MAXIMUM GRADES AND SUPERELEVATION

RATES FOR TURNING ROADS
Condition General Heavy Volume Snow and Exceptional
. or Urban Area Ice

bz
Max. Grades, % 4-6 3-4 5 8-10
Max, Superelev,, ft/ft 0.06-0,12 0.10 0.06-0,08 0.14

Ramp widths are governed by special design considerations and are
summarized in Table 2.9. Shoulders are generally not carried on ramps,
but ramps should be wide enough to allow passing a stalled vehicle,

Spans of bridge structures for intersecting highways and ramps are
governed by the same factors as those of overpass structures on open

highways as discussed above.

2.3.6 Elevated Freeways

Arterial highways in densely populated areas have either to be
depressed (below grade) or elevated (above grade) freeways in order to
provide cross-traffic-free intersections with all major cross streets,

thus obtaining large capacities, Various reasons such as restricted
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right-of-way, high water tablc, extensive underground utilities,
etc., may prohibit the construction of a depressed freeway, so that
resort to an elevated freeway has to be taken, in extreme cases even

to a double~deck structure,

TABLE 2.9, RAMP DESIGN WIDTHS, FT,

. 1-Lane, One- 1-Lane, One-way 2-Lane Operation
Radius on Inner . . . .
Edge of Pavement way Operation | Operation - Passing Either One-way _
g £t I No Passing Stalled Vehicle or Two-Way
A B C A B C A B C
50 16 17 20 21 24 27 30 33 37
100 14 16 17 19 21 24 27 30 33
200 13 15 16 18 20 22 26 28 29
400 12 14 15 17 19 21 25 27 28
Tangent 12 14 14 16 18 20 22 24 24

A - Predominantly passenger vehicles, but also some single unit trucks.

B - Sufficient single unit trucks to govern design, but some
consideration for semitrailer vehicles,

C - Sufficient semitrailer trucks (43 or 50 ft. long) to govern design,

Flevated freeways may be located on viaducts or embankments, but

here only viaducts are of interest. 1In fact, such a viaduct may be an

extremely long structure and therefore deserves special attention be-

cause structural cost has a decisive influence on the overall freeway

project, g
The columns have to be spaced such as to leave as much of the

ground level area open for other purposes such as streets, parking

lots, etc., as possible. For rolled steel girders, spans between 50
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and 70 ft, have been found to be economical, Concrete bhox girders are
competitive for the same span range, but prestressed girders make
spans of over 100 ft, feasible too,

Minimum clearances for overcrossings are the same as for any other
overcrossings, 14 ft. over streets and 22 ft. over railroad tracks.

At ramp exits and terminals, the deck elevation should be as low as
possible to reduce length and therefore cost of ramps. Coupled with
the vertical clearance requirements for cross roads, this goal results
in a rolling freeway profile which may lead to a pleasing effect in
driving and appearance.

Horizontal and vertical curvatures as well as grades are similar
to those of other urban freeways. Superelevation rates of more than
0.08 ft, per ft., however, are aesthetically unsatisfactory for multi-
lane freeways,

Common minimum widths of elevated freeway structures are summa-
rized in Table 2,10, Feasible minimum median widths are 6-8 ft., al-
though emergency use, snow removal, lighting standards, etc., might
justify wider medians, especially for 6- and 8-lane freeways, But
never should the median be widened at the expense of shoulder width
on the right, because shoulders or at least emergency parking bays are
very important on high-volume roads. These emergency parking bays are
10 to 11 ft. wide, 50~75 ft, long, and the structure cross section
widens to the new width over a length of 50-75 ft. on both ends of the
bay, resulting in a taper of as much as 0.2 ft, per ft. Some typical
sections of elevated freeways arc shown in Fig. 2.8.

Ramp terminals for elevated freeways may be classified as para-

llel and lateral ramps, Fig. 2.9. Both types require 11 ft, wide




32

*9IqRITSOpD - (q wnmyuTw -

"33 21 ppe ‘ouUE] OIFyEIl EUOTITPPE UDES Jog,

(9)e + (9)2+ 188IJ0 |[S9pPIS Yylog uo
+
(8°2)2 ¢ ¢ verve (¢°2)¢ @)z 4 vz N unuiuig [dwey [ayyeIRg
9 + 9 + 39s330| 9pIS BuQ uo
+ +
(c'2)z Z 4 LTHve | c'2)z @)z 14 I5+52 | W mnutuTy |duey torrereg
e G Sep1s yjzog uo
:_~;a . S ) 1983310 Aeg "jaieg
mwﬁn (¢°2)z - - 23+%e ,mmx, (§°'2)e - 4 (s€)C| W wnmT Iy 1o aueT
. Are1yixny
apTIs 8auQ uo
. S . 195330 Aeg ‘xyieq
($°2)zZ - Z IT+¥2 | 0L (§°2)2 0+2 4 SE+PE | W wnwTuTN To aumq
AxeiTIXNY
(s°2)¢ € g ve g9 (¢°2)¢ (€)e 9 (¥2)2 | al 1es310
(§°2)2 4 4 ¢4 awam (6°2)2 @)z 14 (¥2)e | Wjunuruiy
(s°2)2 9 (4 ve | T4 |1 (S72)8 (92 9 (¥2)2 | ajxapinoyg sduey
(572)z S g e | 29 |(s'2)z (6)2 b (2)2 | W| 1813004 100UITH
§'g+g 01 4 44 8L @)z (o1)z 9 (¥2)2 | ,af 1ep1noyg
c'z+z 8 z o @)z (8)2 b (b2)z | W| TN
o {s1adexeg|isprnoyg |1apinoys sjadeaeq I3pInoyyg
. ' " SIa no ueip9g soue
qany 33Ty 13971 qIny PIROUS HETPON 1 Fo 2d&l  yot30ag
aINn31onIls Aepm-auQ aue - 2an3onilg Aem-om] SueI-p

‘Ld LNO-0L-IN0 ‘SAVMITYI QALYALTA 40 SHIAIM WOANININ "01°2 dATdVL



[T r—

]

25" &t Y 4’ ' s a5

Surface Streef

M
a) Ega/ar Tivo- (Jay Structure

a6 ! é' 8 24’ 4’ 24/ 8 &' A X 44

T 1T T 17 T

¢) Regular Tio-lLiay Sfructure with On- aud Of/-kaw/ms
Fig. 2.8 Typical Elevated Freeway Sections

e

LTSI TT I ST TTIIIILIIIIIPIHI IS I TITIN I NTTIIITIIIIOTIOITIII TN NI LLLLLLLLI L L

—n

]II]'lJ’lllllllI’l?llllllIIIII llll]lllllllllll’l’l’lll,
j 7 Shealsler or Med an
b) Lateral Raurs

Fig. 2.9 Typical ,Qaa(/p Armyeucmﬁs For Elevarted Freetoa s




34

auxiliary lanes in which vehicles may accelerate or decelerate.
Ramp design criteria are the same as those discussed before,

As can be seen in Fig. 2,9, bridge cross sections at ramp ter-
minals are tapered, While for parallel ramps, this taper is generally
fairly small so that the bridge structure basically preserves its pris-
matic nature, lateral ramps on the contrary join the structure like
tree branches, thus adding truly a second dimension to the structural
system, This fact is important with regard to analytical treatment,
Methods of analysis developed for prismatic structure types are un-
likely to be applicable to the general non-prismatic case, and only
very general numerical methods like the finite element method will per-
mit a rational assessment of stresses and deformations of such complex

structural systems,




35

3. METHODS OF ANALYSIS

3.1 General

It is the objective of the structural analysis within the wider
context of a design to provide an insight into the response of a
given structure to specified actions such as dead weight and static
wheel loads or dynamic effects due to wind and moving vehicles as well
as temperature, shrinkage and creep effects. Provided this informa-
tion is available to the designer, then he will be in the position to
check if the structure is satisfactory with respect to certain design
criteria concerning strength, stability, and economy,

It is important to note in this context that approximate methods
of analysis are often superior over so-called exact methods. On the
one hand, approximate methods very often give results which are in
error only as much as or even less than the errors inherent in deter-
mining important material properties, or errors associated with fabri-
cation and construction tolerances. On the other hand, closed-form
solutions, if possible at all, are often so involved and time-
consuming, that the savings in computational effort might very well
favor the employment of a proper approximate solution technique rather
than an exact solution,

For the analysis of straight bridges, a variety of efficient and
accurate methods are available, but research on curved bridges has
been relatively scarce and incomplete. In fact, the lack of experience
with curvature effects both in construction and in analysis and design
seriously limited the use of curved bridges, both for highway as well
as for rail-bound traffic, and as a consequence, made smooth and effi-

cient alignment difficult.
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The first curved bridges built were probably steel truss bridges
for railroads. Hence it was logical that this structure type attracted
the attention of researchers first. The work of Kapsch, [6.2], in
1914, for example, on the bridges of the elevated rapid-transit sys-
tem in Hamburg, Germany, initiated extensive research efforts in
Germany on this type of bridge, [6.37] through [6.7]. Curved concrete
bridges probably did not appear before the 1920's, But once the first
structures proved to be successful, [7.17] [7.2], engineers did not
hesitate to design and build more elaborate structures, thus satis-
ying the highway engincers' desire for improved highway alignment.

T» date. lhousands of curved bridges have been built in steel,
in reinforced or prestressed concrete, as well as for composite action.
Jhey are being studied all over the world, and the extensive biblio-
graphy recently collected by McManus et al,, [9.16], indicates the
amount of literature that has been published in the last few decades.
The bibliography in the Appendix of this dissertation was compiled
independently and attempts to classify this large amount of informa-
tion according to the main analytical methods and bridge types,

In this chapter, the most comnmon methods proposed so far for the
analysis of curved bridges will be reviewed shortly with special
emphusis on their respective assumptions and the resulting limitations,
It will be the objective of the next two chapters to describe in more
detail different approaches which are believed to be more accurate
than the traditional methods. The purpose of the development of
these refined analysis techniques is not so much to replace the old
methods but rather to test their accuracy and to establish limits of

applicability.
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3.2 Straight Bridge Approximation

It seems to be a paradox to open the discussion of curved bridge
analyses With the straight bridge approximation. However, it is true
that many bridges have only such small degrees of curve that the
curvature effects are indeed negligible and straight bridge analyses
sufficient. 1In fact, many curved bridges'on the open highway - as
has been shown in Chapter 2,3 - have such small éurvatures that curved
bridge analyses are not necessary.

For straight bridges, numerous methods of analysis have been
proposéd and are in use by practicing engineers; some of which are
referenced in the Appendix. For box girder bridges,‘the methods de-
veloped by Scordelis, [10.17 [10,2], have been found to be very
accurate and efficient in conjunction with the use of digital com-
puters,

In the past it used to be up to the common sense of bridge en-
gineers to decide the limiting values for curvatures and opening angles
up to which straight bridge approximations would be permissible. It
is one objective of this dissertation to employ refined analytical

methods in order to rationally investigate these limits.

3.3 Curved Beam Theory

Curved beam theory has virtually been the only means.so far by
which engineers attempted to account for curvature effects in curved
bridges. This theory is generally based on the following assumptions,
(1) cross sectional dimensions are small compared to the span

length so that the elastic properties can be assumed to be

concentrated along the beam centroidal axis;
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(2) Cross scctions do not distort transverscly;

(3) Plane sections remain plane,

Assumptions (1) and (2) may in some practical cases be grossly vio-
luted thus raising some doubt about the validity of curved beam
results, ' However, torque-resistant closed sections will generally
keep cross-sectional distortions small, and closely spaced truns-
verse diaphragms are the ultimate structural means to satisfy assump-
tion (2), Then, if it can be shown that the maximum effects on
individual bridge girders for design purposes as predicted by beam
theory are close to values based on more refined analyses, then the vio-
lation of the above assumptions becomes less important, Finally,
curvatures are often so small that even rough estimates of their
effects introduce only small errors into the final results,

The circularly curved beam loaded normal to the plane of initial
curvature can be analyzed using very elementary tools of structural
analysis, It is therefore surprising how much literature has been
published on this subject in the past 50 years. In fact, many of the
references in the Appendix are virtually repetitive. Before pre-
senting some curved beam formulas, it should be noted that the simply
supported curved beam without torsional end constraints is unstable.
In bridge practice, almost all supports are designed to offer at least
partial fixity, for example single column supports, if not complete
fixity as most end supports do.

For the analysis of continuous curved beams it is then logical
to select the simply supported beam fixed against torsion as the

primary structural element, Fig. 3.1, which is statically indeterminate




39

to the first degree. If the ends
were only partially constrained
against rotation, then the equations

below would have to be slightly modi-

fied.
Treating the torsional end mo-~
V(e moment TA = X as redundant, one finds
T(8 for a unit load P = 1 acting at some
M(e)
angle w, that
® Downward Veckr
U of Veet = = -
© Upward Vecfor X=T, R( SMQ) (3.1)
Fig 3./ Cus&dI 384»( £/¢»(e«f The other reactions are then
=SMe _ X _
R“ sim8 R
- 4. ® _ Gpw
Ro=1- 220 X = G20 (3.2)
Te = R({- Sl + 3m (6,~w) +X = R(G-w _ sm(&-w)
B ( —etig 7 ( A 6”\90)
and internal shears and moments are
_ SMw X Gw )
Vo) = 2 - 1-%X = fo?
M(§) = M8 sin(8o-w) 5 > 0= 84 o
4’“&‘
T) = R(l - casﬂsa'o}{g;g+sh\w)+x =R(gi" cnsa-su\(g‘fq')
Sin
(3.3)

= Smw_ X _ @
vee) oAl

z SM© 340 (6-8)
()] oy R

7(9) = -‘Mggfsf_f'ﬁ”bx =L émo «_9,—"/),2 J

while the end rotations at the supports A and B become
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Psy

2 e - -
c& =ng[um(9 o)zéi;a;5mwcas9 (1+K) + 'K(Q 4...\9,)]
i (3.4)
Pal 2 . _ . -
ds =ERT[QSM(Q—Q)§0:§=9:0" sty @ (14 &) + «(gw 6mo. ]
with
EJ
K= & (3.5)

Similarly, if the beam is loaded with a unit twisting moment T = 1 at

the angle w, Fig, 3,1, then the redundant torque at point A becomes

x=7;=-;5;_5;;i> (3.6)

while the other reactions are

_shaw | X _
RA" Rson®, R ~ et
= Smew X _
Re= Reing* 2= © 3.7

Ty = Sim, O + sin (§-w) X = s&ufﬁraﬂ

60\'\9 5‘4‘\&
and internal shears und moments,

V(9)=‘%—?&?Q—EX = 0

M(e) - 60‘1(@“0}6‘”\0

6h«6
3 . o0z
778) = SOS59Sin(g-c) + smw  x _ cosOsm(g-al
Sin § Sem 6,
(3.8)
M(8) = — S 6;4\(92-9/
Sh 6
. WDefe g
T(6) = S (/- cos(§-6)) +X = _ cas(@-g)simw
S8 Sin 8
The end rotations for this load case are then
Taf 2 0 % & - oA (B=co)
d ='£_ (8- w)Smw oS, — ¢35 sbn( (le)
4 £1 285028,
(3.9)

‘Gn“ R (B,=0) Smw — oSt (Bw) <08 8,

Er 2 644328
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Finally, the reactions, internal shears and moments, and end
rotations duc to o unit bending moment. M - 1 ot point. A, Fig., 3.1,

are as follows,

{
Ra= -Rg = —;
Ta = i— e (3.10)
= J -
Ta= 3 - i3 :
vie) = - L&
M(6) = ;’;":Z (3.11)
M=f °
- R_[8,-smb,cas, cas 6,
d == Zsmig (“‘)*'k(s&«e‘, 9,)]
M=l R gwg 'Y 5 { p (3-12)
- -~ S e
o cE[RTTGEg T (tew) « a(Gg - )]

By proper integration of Eq. (3.1) - (3.9), most practical load cases
can be treated. For example, for uniform load of intensity p, the

reactions are

Ry=Rg = %ﬁ r°

S =PRZ/§’-'—;;\C%9") (3.13)
and shears and moments,

Vi) = pR(6-%)

M@) = pR* (S o2 =28 _y) (3.14)

76 = pR (% -9 + C“S__L’i_‘;i/;ﬁ" )

These or similar formulas have been derived in the literature so often

that reference to individual authors will not be made here.
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On the basis of Eq. (3.1) - (3,14) or their equivalents for
different torsional support conditions, the analysis of continuous
curved beams poses no basic difficulties, Solution techniques de-
veloped for straight continuous beams can be readily applied to the
curved case if modified properly. In relaxation methods such as
moment distribution, for example, the numerical iteration scheme is

p
complicated because bending and twisting moments are coupled,
[3.4], [3.5], [3.7], [3.27], and in all stiffness methods, the stiff-
ness coefficients for the straight beam element have to be replaced
by appropriate curved beam stiffness coefficients., Stampf [3.11]
[3.19] and Morris [3.36], for example, derived these coefficients in
general form, Utilized in a direct stiffness approach in conjunction
with a digital computer, this method is probably the most efficient and
versatile one and superior over other solution techniques proposed in
the literature, such as the conjugate structure [3.9], or the transfer
matrix application [3.267], a numerical forward integration procedure
[3.17], or the variety of flexibility methods and various stiffness
techniques. For small curvatures, however, approximate methods may be
appropriate. Bretthauer and Notzold [(3.20] and Tung and Fountain
[4.42] show that it is accurate enough, for certain conditions, to
determine the redundant bending momenté over the supports from a
corresponding straight continuous beam analysis,

Concluding, it may be stated that the curved bridge problem can be
solved for most practical cases, provided the structure can adequately
be approximated by a continuous beam curved in plan and having con-

stant curvature in each field of discretization.
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H 3.4 Refined Curved Beam Theories

The behavior of curved beams under transverse loadings depends
largely on its resistance to torsion, The curved beam theory out-
lined above is fairly accurate for solid cross sections, provided

their torsional rigidity constant JX can be determined with suffi-

: cient accuracy., Thin~-walled beams, on the other hand, will

generally require a refined analysis, especially if cross sectional
distortions must be expected under loading. Thin-walled beams of
closed cross sections carry most of the torque by Saint-Venant
torsion, while open sections have to develop torsion bending stresses
as a consequence of restrained warping, which may carry an appreciable
portion of the applied torque,.

In reinforced or prestressed concrete bridge girders with fairly
large plate thicknesses, warping stresses are generally low, so that
ordinary beam theory will often give reliable results, Steel girders
with thin plate thicknesses, however, develop much higher warping
stresses, which can only be determined with refined torsion bending
analyses, which are often very complex, involving the solution of
systems of differential equations,.

A considerable amount of literature has been published on the

theory of torsion bending of thin-walled beams, but only those contri-

1 butions dealing directly with curved beams are referenced in the

é Appendix, Much pioneering research has been done in the Soviet Union,
originating from Vlassov [4,17], Umanskii {4.27 [4.3] [4.7], and
Grigoriev }4.97] |4.107]. The most advanced work of more recent date
has been published mainly in the German steel construction journal

"Der Stahlbau,"” primarily by Dabrowski [4.187 [4.26] [4.30] [4.31] from
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Poland, who summarized much of his work in a book [4.40]., In Japan,
Konishi and Komatsu, [4.20] [4.227] [4.34], developed their own,
less rigorous theory. For open sections, Becker [4.32] presented an
extended theory in conjunction with a direct stiffness analysis pro-
cedure which he programmed for the digital computer,

For practical purposes, the above mentioned refined theories for
curved steel girders are probably accurate enough. For concrete
girders, these theoretical refinements are generally not necessary,
although some findings might be also then of practical value, ' Thus,
the idealization of a curved bridge as a thin-walled beam can often

lead to satisfactory results.

3.5 Plate and Grid Analyses

A plate shaped as a circular ring sector, Fig. 3.2., can be ana-
lyzed without difficulties as long as the straight radial edges are

simply supported. 1In this case, the plate

equation
.12 .02.y & 619
(57-‘ rirt z:‘fo‘ Tﬂa riaea)
with
3
Et 16
D 3,2”-“:) (3.186)

Fig. 3.2 Curved Plate

can be uncoupled by developing the exter-

nal loads and the displacements into

sine series,

#= :);, , Sin 2ZE (3.17) ’
-Zwém%@ (3.18)

As/

because a solution to Eq, (3.15) in the form of Eq. (3.18) satisfies
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automatically the boundary conditions

i

U/ = 0 (3.19)

M,
6:0,4, ’Ie=a,9,

Substitution of Eq. (3.17) and (3.18) into Eq. (3.15) leads to the

. ordinary differential equation

» dih L 2 LW, 2y 1 W, ! dWu o ity Wn = 3n

T TR (2L G e (e g e M T = B (3.20)
with

: = a7 (3.21)

& M 60 ’

For numerical reasons, it is convenient to introduce the dimension-

less radial coordinate

7= r (3.22)
o
with
h o = e+ 0y (3.23)
2
so that Eq. (3.20) reads now
a("N, 2 43 —(l+2 z) (1+2n3) 4 didy m*(m=4) Wn = if (3,24)
(] 3 - “—4‘ - .
An* 72 7 "‘ (A
for which the homogeneous solution is given by
h o1 ~bg (7% ~sie 2
Watn) = Aup +8uy)  +Can ™ "+ Dy (3.25)
In order to find the particular integral of Eq. (3.24), this Euler
equation with variable coefficients has to be transformed into an
equation with constant coefficients, using the transformation T = Z,
? The particular integral is then readily found to be
P 4".?
()= —M-Lo . 4 3.26
1 wl 7) D(m* 2oui +64) "n o # ( a)
o .%D —f

where for uniform load of intensity qo,

= ..4_‘_’.. = 4
7&_ n’r _';'_%:_ (3.27)
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The complete solution of Eq. (3.15) becomes then

0o
- —hg el -l
w(7/€} = ;/(A"v "'8"7 *C,‘V( "’Dn 7 . E(M“ 20‘“1““)

)sm mé (3,28)

The constants of integration, A B

n

) Cn' Dn’ are free to adjust the
general solution to any boundary conditidns along the curved edges.

Moments and shears throughout the plate are then given by

M = —DZ/[A. (mm)(/- V)7"-2+ 8, (' tm)(/-v) 7’"'24- Culm*+3m+2-vm*+Vm+r2 ) 7“'

*Dn(m=3m + 2= Vi vms 20) s (,2"(‘::_—”:0:74-449 F “s“‘ 4 (3.29)
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while the Kirchhoff shear becomes
- l.a_/‘iro
h=Q-7%

-4
=-DJ [IAR(u'z-n(’)(f-v)? %8, (s p)., D, e 3nle b e 0uEORD) 7’"”
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-8y [~Sr ﬁ!Z*JW‘!‘}’}"’ .Sm Ma
+ Fa

+ Dp (> 30— 1y - v 14 .«-Wu)7 D(m*-20m2 ¢ 64)

(3.34)

In the case that m = 4, the particular integral (3.26b) should replace

(3.26a) in all equations (3.29) to (3.34). "
Solutions such as given abéve have been known for a long time

[6.1] [5.2] [5.6] and have recently been extended to include variable

plate thickness [5.187] [5.19],
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Rudiger [5.157 went further and derived the flexibility matrix of
the ring scetor plate of Fig, 3.2 in plate bending as well as in-
planc action, subjecting it to various harmonic edge loads, Deriving
similar flexibility coefficients‘for the curved beam, and developing
all external loads into Fourier series, he was then in the position
to assure complete compatibility along the circumferential Jjoints
using the flexibility method of analysis in order to find the unknown
interaction forces between the various structural clements, Fig, 3.3,
lﬁkligur's solution is then exact within the assumptions of the theory of
elasticity except that vertical clements are approximated by beam
theory. For practical application, however, it is advisable to con-
vert this approach to a direct stiffness method and to program it for
the computer, in a very similar way as his theory of straight folded
plates [10.14] was converted by Goldberg and Leve [10.15] and later
by Scordelis [10.167]. Although Rudiger applied his theory only to
open sections, Fig, 3.4a, the extension to closed sections, Fig. 3.4b,
should not pose any difficulty if the direct stiffness method is used,

The main limitation of Rﬁdigur's approach is its restriction to
horizontal and vertical structural colements. Although the cextension
to sloping elements which would be scgments of conical frustra
might be possiblc, the derivation of closed-form stiffness coefficients
will be very involved, as has been demonstrated for a slightly
different problem by Popov et al. [10.207], so that a suitable approxi-
mate method will in general be preferable. Such an approximate method
will be describhed in detail in Chapter 5,

Gruber [5.137 developed a difflerent approximate method which is

the extension of the so-called ordinary folded plate theory to the
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curved case,  In his derivation, the theory is restricted to open
cross-sections, Fig. 3.4a, but is also cxtended to take continuity
into account, Finally, Gruber gives also an estimate for the effect
of skew end supports,

The finite difference technique is another method to solve
curved plate problems, and its potential for the analysis of struc-
tures of simple geometry is largely recognized., Yuksel [5.31]
applied this method to isotropic continuous curved plates, and Heins
and Looncy [5,327] used it to analyze curved orthotropic plates, Bell
and Heins [5.327 studied also the interaction between an orthotropic
bridge deck and curved girder supports, expressing the solution in
terms of a Fourier series and deriving the necessary stiffness co-
efficients by a slope-deflection method.

The technique of analyzing interconnected bridge systems,
associated with the names of Guyon [10.25] and Massonet [10.26 7, has
been widely accepted for the analysis and design of straight bridgés
[10.277]. 1t is therefore surprising how little effort has been under-
taken so far to apply this technique to the curved bridge problem
15.237.  For box girder bridges, however, this method may prove to
be inappropriate, because even in the straight case, the problem of
assigning appropriuate equivalent torsional stiffnesses has not been
successfully solved so far. Therefore, also the other approaches of
approximating the bridge by a grid [5.177 [5.26] [5.28] [5.33] will be
very difficult to apply to bridges with closed sections,

Steel bridges, on the other hand, in particular railroad bridges,
are very often grids physically and offer themselves to grid analyses,

Most of the references listed in the Appendix, which address themselves




to the analysis of steel bridges, are based on various grid methods,
and provided the individual member stiffnesses can be derived

accurately enough, then the bridge analysis presents no basic

difficulties,
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4, FINITE ELEMENT ANALYSIS

4,1 General

The finite clement method of analysis has been developed in re-
cent years and has since found useful applications in a variety of
problems of structural engineering and mechanics. An extensive amount
of literature has been published on the various aspects of this power-
ful technique, and Zienkiewicz has published a text which gives a
summary treatment of the subject with many references [10,12],

In this chapter, the application of the finite element method to
bridge type structures will be briefly discussed, because its versa-
tility lends itself to the analysis of structures with complex
geometries such as curved box girder bridges, A general computer
program called FINPLA2 has been developed by the writer which is
capable of analyzing general non-prismatic folded plate structures
with an arbitrarily integrated three-dimensional frame. The element
models used in this program will be described, as will be the program
itself and its usage. Some examples will illustrate its applicability

to curved bridge structures,

4,2 Finite Element Models

Much rescarch has already been directed towards the objective of
obtuining finite clement models with optimum properties for certain
problems, both regarding accuracy of results and expenditure in
computation,  For the analysis of folded plate structurcs, it appears
advantageous to uassign six degrees of freedom to each nodal point,
three translational, and three rotational, Although five degrees of

freedom have often been used for general shell programs, special
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techniques are required to take account for the missing sixth degree
of freedonm, i.e., the rotation normal to the shell or plate surface.
The addition of the sixth degree of freedom in FINPLA2 is particularly
important since the finite element system is combined with a three-
dimensional frame in which the member nodes also have six degrees of
freedom. The elimination of the complications associated with the
five degree of freedom system justifies the increase in computational
effort involved in solving the larger number of equations,

Subdividing a general folded plate structure such as shown in
Fig. 4.la into a number of flat quadrilateral elements, interconnected
at the corner nodal points, thebproblem of analyzing this system can
be reduced to one of standard structural analysis, once proper stiff-
ness matrices for each of the elements have been established.

For a smali~deflection linear theory, the in-plane and plate
bending actions are uncoupled. The associated stiffness coefficients
may therefore be derived independent of each other.

The plane stress element model used in program FINPLAZ2, was de-
rived in its original form by Abu Ghazaleh [10.77 for a rectangular
shape and has also been described in detail in [10.27. Willam [10.6]
rederived the element stiffness in skew natural coordinates for a
general quadrilateral shape. The special feature of this element is
that in addition to the commonly used two translational degrees of
freedom per node, each node is assigned a rotational degree of freedom,
defined as the averaged rotation about thé element z-axis, Fig. 4.1b,

1,e,, for a rectangular element,

O = 1 [(%) _(;9_;«);] (4.1
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thus raising the total number of degrees of freedom for the element
to 12, The actual element displacements u and v are assumed to vary
linearly with the translational degrees of freedom ui, vi, and as

beam functions with the rotational degrees of freedom 8 Fig. 4.1d.

‘i

The assumed nodal rotations introduce angular discontinuities at the
nodes so that the element is incompatible,

The plate bending element employed in program FINPLA2 has been
derived by Felippa [10,9]. This compatible quadrilateral element is
made up of four subtriangles, each of which has 11 degrees of freedom,
Fig. 4.1lc. In combining the four subelements, a quadrilateral with 19
degrees of freedom is obtained, However, the 7 internal degrees of
frecedom can be eliminated from the element stiffness by static con-
densation, reducing the stiffness to the essential 12 degrees of
freedom, for each node the rotations Gx' and Gy_ and the translation

1 1
w..

i
The beam element used in the three-dimensional frame assembly has
the 12 degrees of freedom shown in Fig, 4.,2a. The stiffness matrix
for this element can be found in the literature [10.28]. 1In order to
allow for arbitrary eccentricities of the beam elements, rigid links
are introduced to connect the beam nodes with those nodal points pre-
defined by plate type finite elements, Fig. 4.2b. The transformation

relating the joint displacement degrees of freedom ri to the beam

deformations vi is given for either one of the two end points by
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where the aij quantities are the direction cosines of the element axes,

and ex, ey, eZ constitute the components of eccentricity of the beam
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node under consideration,

The solution process of the finite element method has been des~-
cribed so often, that only the main steps will be enumerated below,.
1, Discretize the structure into a number of quadrilateral elements

by dividing it longitudinally into a number of segments, and
transversely into individual elements, Fig. 4.la. Nodal points
within a section have to be numbered such as to minimize the
bandwidth of the system of equations.

2. Calculate all element stiffnesses and transform them to a common
global coordinate frame,

3. Form the structure stiffness by assembling the element stiffnesses
according to the standard direct stiffness method of structural
theory.

4. Set up the load vector containing all specified external loads,
For loads distributed over the area of an element, calculate
equivalent nodal loads using the tributary area principle or
some other appropriate technique such as consistent load theory,
If more than one load case is considered, a load matrix has to be
established.

5. Apply given boundary conditions to the set of equations. If non-
zerc displacements are specified, a modification of the load
vector (or matrix) will be necessary.

6. Solve the system of equations by a technique which takes advan-
tage of the banded nature of the structural stiffness, If also
the variation of the bandwidth is taken into account, considerable

reduction in computational effort may result,
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7. Once the nodal joint displacements are known as the solution to
the equations of step 6, reactions may be found by multiplying
the original structure stiffness (i.,e., not modified duec to
boundary conditions) with the displacement vector. A complete
matrix multiplication will also yield the residual loads on the
structure which are a measure for the accuracy with which the
equations had been solved.

8. Transform nodal displacements from global to element coordinates
for the computation of internal stresses and moments in plate and

beam elements,

4,3 Description of Program FINPLA2

The purpose of a general computer program is that it provides for
some given problem satisfactory results involving a minimum of the
following items: a) required amount of input preparation, b) execution
time and core storage requirements in the computer, and c¢) amount of
output data reduction necessary for meaningful interpretation. Program
FINPLA2, a generalization of a previously reported program [10.57, was
conceived and written with due consideration of all three aspects
above, Its objective was to provide rapid solutions to a large class
of structures which are so far.'-not amenable to other methods of analy-
sis, The program was designed primarily for general non-prismatic
folded plate structures of arbitrary horizontal alignment, which may or
may not be integrated into a gencral three-dimensional frame, Fig.4.la.

The structure is discretized by dividing it longitudinally into
a certain number of structure segments by vertical sections, and by
subdividing each such segment into finite elements, The approximate

prismatic naturc of the considered class of structures has the
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requirement that each section contains the same number of so-called
primary nodal points, and maintains the same overall shape. The
structure may have variable width and depth along its length., Secon-
dary nodal points are introduced independently to allow the integra-
tion of arbitrary frame members with end points not predefined by
plate type elements,

The structure alignment is described by a reference line which
may be a straight line, a circular curve, or an arbitrary planar
string polygon. Cross sections may vary from section to section within
the above mentioned limitations and the material law for each plate
element may be linear orthotropic, Loading on the structure may con-
sist of any surface loads uniformly distributed over any finite
elemént, and of concentrated loads which may be applied to any nodal
point of the structure., Each structure can be analyzed for an arbi-
trary number of load cases, Boundary conditions, including specified
non-zero displacements, may be applied to any point of the structure.
The array dimensions are kept variable so that problems of practically
any size and complexity can be solved.

The required input is kept to a minimum and consists of a des~
cription of the reference line and the configuration of the structure
segments, with repeating segments being internally generated. Input
further contains description of transverse diaphragms; nodal point
configuration, connectivity and element properties of the three-
dimensional frame; boundary conditions; loading data; and information
on various output options such as coordinate transformations or

averaging of internal stress resultants and moments,
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Output consisis of a complete echo check of the input data which
may be supplemented by some internally generated information such as
nodal point coordinates or element stiffnesses; displacements of all
nodal points in the structure; reactions and residual loads at nodes
for which displacements have or have not been specified; internal
stresses and moments in all plate and beam elements. In skew struc-
tures, internal stresses in plate elements may be rotated as desired,.
A general option to average stress resultants and moments is very
cffective in reducing tedious manual computation for output inter-
pretation purposes., Another option provides, for any section, the
complete statical moment of the structure which is useful in particu-
lar for bridge structures for which it may be broken up into indivi-
dual girder moments, Finally, the execution times for the various
phases of the program are printed out,

It is intended to document this computer program elsewhere
[10.29], so that reference for further details may be made to this

publication,

4,4 Examples

The first example is the simply supported curved beam of Fig, 4,3,
with the ends restrained against rotation about the beam axis, haviné
an opening angle of 60 = 30° and a developed span length of 20 ft,
Figure 4.3a shows the moment diagram for uniform loading, and Fig. 4.3b
for a concentrated midspan load. Results obtained from ordinary curved
beam theory as outlined in Chapter 3 are compared with program FINPLAZ2
results, which are shown for a solid cross section (discretized by 2

elements transversely and 12 elements longitudinally for half the beam)
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and a square box section (represented by 8 elements transversely and
12 elements longitudinally), In view of the fairly coarse meshes
used, agreement of the two theories appears to be very good, and can
be expected to increase with further mesh refinement,

It may be interesting to note that the midspan nodal point
reactions corresponding to the displacements which for symmetry
reasons were sct equal to zero, agree exactly with the theoretical
bending moments.

The next example is the plate of Fig. 4.4, curved in plan with

an opening angle‘of Bo = 30°

Pelo*

and a developed centerline

éelo’ span of L = Reo = 20 ft. The
5:&0’
RE = 2o.0' straight radial edges are
X .
& = 3o° simply supported, and the
£ © #32000 ksf
Y = 0.5 curved edges are free, with

a unit concentrated load'

F£9 44 CUded P/a/e E)(dllff/e placed at midspan of either
the inner or the outer edge.
Figure 4,5 shows plate bending moments calculated according to the
plate theory discussed in Chapter 3, based on 25 non-zero terms of the
Fourier series, as well as results from program FINPLAZ, based on a
mesh representation of 4 X 12 = 48 elements for half the plate. The
agreement between finite element theory and the closed form solution,
as demonstrated in Fig. 4.5, is excellent and fully satisfactory for
practical purposecs, |

Results for curved box girder bridges based on finite element
theory will be presented in Chapter 6, and additional capabilities

of program FINPLA2 will be described in [10,297.
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5. FINITE STRIP ANALYSIS OF CURVED FOLDED PLATES

5.1 Introduction

5.1.1 General

In this chapter, the finite strip method of analysis will be
described in detail, as it is applied to simply supported folded plate
structures curved in plan and composed of elements which are in
general segments of conical frustra, interconnected along their common
circumferential edges, Fig. 5.1. This method, which will be designated
as the curved strip method, is an approximate numerical technique

capable of analyzing a variety of complex structural systems., All

a) Curved Box Girder

b) T/v/a/'ca/ Structural Elewrent

F\/y. 5.1  Curved Folded Plate Structure

static and geometric quantities are to be developed into Fourier series
along the hoop direction much in a similar way as 1is done to solve
various other problems involving plate and shell theory. Some of the
well-known techniques to which the curved strip method is closely

related, will be briefly summarized below, before the method itself is
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presented and some of its features are discussed,

5,1.2 Leve's Solution for Simply Supported Plates

This well known special solution technique has been described
in detail in the literature, for example by Timoshenko [5.8], and will
therefore be only briefly mentioned here. For a rectangular plate
which is simply supported along the two opposite sides, x = o and
x = a, Fig. 5.2, the plate equation

an w > (5.1)

a is conveniently solved with the de-

flection w expanded into a sine

X A ___0 series,
w-Zwtr)oMﬂ‘ (5.2)
way a
Y because a solution of this type

fzj 5-2 Slm,o/y Su”or/ed P{a/e satisfies automatically the boun-

dary conditions

/gso,a "/x-o,a M’/l.o,q

If the loading term is also expanded into a sine series,

= 5 p, sin (5.4)

Aes

-~

where, for example, for uniform loading,

s

f,' = (5.5)

then the substitution of Eqs. (5.2) and (5.4) into (5.1) leads to the

ordinary differential equation

d ('"T)Ld"“ (F) o = £ (5.6)
v*
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for which the homogeneous solution is given by
6l = A, eimkh DY+ B, cosh "IV + G W sinh T+ Dican Fr (5.7)
and the particular solution,
b 4
Wy = (5) £ (5.8)
The constants of integration, An’ B, C, Dn’ may then be deter-
mined such that the complete solution

&0
wity) = g:_I(A,,.sink ';’577’ + B, L7 cash "‘—?7’ + C, '-%’7,55";\'%5’4-0’\“‘/‘ '.;l"r‘('a)*?)w."o%’_x (5.9)

b
satisfies the boundary conditions along the edges y = % 5 -

5.1.3 Harmonic Analysis of Prismatic Folded Plate Structures

Adjusting the free constants of Eq. (5.9) successively to each

one of the following four sets of boundary conditions,

w/y== = e-.’/r"i = 0 g—‘;’/ .‘ = 16"’"2&’2‘ I

8§ oy
ay-.:i'-"g"‘:/ _f=a 3—5/#-}: 1 simnD , (5.10)
UY"!"'?;,«.:F‘O ), g = L sinE
g = Epgme g

and evaluating the corresponding edge forces for each case, it is

B
possible to derive a plate bending stiffness matrix [k ] in which
4X4

element k?j is the fofce component required to enforce the boundary
conditions associated with the unit edge displacement j in the n'th
harmonic mode as specified in Eq. (5.10).

Proceeding in a similar manner to solve the corresponding plane

stress problem

AL F = O (5.11)
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one can derive a plane stress

v, W
* P
v &) &, stiffness matrix [k ], thus es-

4x4

o

u,\ j“z
£d
{ge | Edge 2 tablishing the complete element

stiffness [k] associated with the

lfij. 5.3 EJJ& Di&flaccmenﬁs of 8x 8

Foldsd Plate Element 8 degrees of freedom shown in Fig,
5.3. Once this element stiffness
is available, it is possible to
perform a direct stiffness analysis of any plate assemblage for one
term of the Fourier series at a time, and to accumulate the final re-
sults as the sum of all harmonic terms, provided all plates are simply
supported at their ends which is equivalent to the assumption of
idealized end diaphragms which do not permit any displacements within
their plane but offer no resistance to displacements normal to their
plane,
This approach towards the analysis of folded plate structures
is closely associated with the names of Rudiger [10.147, Goldberg and
Leve [10.15], and DeFries-Skene and Scordelis [10,16]. Scordelis
[10.1] extended this method to incorporate intermediate transverse
rigid diaphragms which may or may not be externally supported, by
defining redundant interaction forces between diaphragms and plate
system, which are then determined using a force method. Current re-
search at the University of California at Berkeley incorporates also

flexible diaphragms and frame supports into the system,
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5.1.4 Finite Strip Analysis of Prismatic Folded Plate Structures

Instead of deriving an element stiffness based on the closed-
form solution of Eq. (5.6) and (5.11), one can find with slightly
less numerical effort an approximate stiffness based on a numerical
scheme called the "finite strip analysis,”" because of its close asso-
ciation with the finite element concept. In fact, the differential
equations (5.1) and (5.11) are summary statements which combine com-
patibility conditions (strain-displacement relations), material proper-
ties (stress-strain law) and equilibrium requirements, Hence, assuming
the displacements to vary in a certain fashion, as functions of some
unknown nodal displacements, the strains and stresses can be obtained
using the known strain-displacement and stress-strain relations, res-
pectively, so that the potential energy can be formed as a function of
the unknown nodal displacements, and from this energy expression the
element stiffness is readily extracted,

With this approach the names of Cheung [10.17] [10.187] and Powell
and Ogden [10.19] are closely associated. It will be presented in
detail later in this chapter as it is applied to curved folded plate
structures and will be shown in Section 5.6.2 to degenerate to the
straight folded plate case. Willam and Scordelis [10.4] extended the
theory to include orthotropic plates with eccentric stiffeners, and
Cheung [5.407] recently applied this method to the orthotropic curved

plate problem,

5.1.5 Finite Element Analysis of Shells of Revolution

If a shell of revolution is subjected to axisymmetric loads

only, it may be approximated by a series of conical frustra, Fig. 5.4.
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The derivation of the stiffness for
such an element is in principle a

v,
Edge /l \\ one-dimensional problem because it
w -

is independent of the circumferen-

£
A
&

Edge 2
M tial coordinate. Thus, one may
Wy Y
assume the element displacements to
Fg S 4 Ax"sy'nme,fn'c Shell vary along the meridian as

Element > b o o
CH-[22]8 e

where fvi}T = <v1 v2> and {wi}T = <wl W, wl w2> are the nodal dis-
placement values, Fig. 5.4, and <@u> and <§W> are vectors containing
linear and cubic interpolation polynomials, respectively. The strains
follow then from the appropriate strain-displacement equations and the
stresses from Hooke's law so that the strain energy can be formed as a
function of the nodal degrees of freedom, which in turn yields directly
the element stiffness.

If the applied loads are not axisymmetric, they may be resolved

into Fourier series, and then the displacements have to be developed as

il ez
W éﬂusnﬂ o o W,
= . (5.13)
v &l o #,sinnd o U,
N4 o fo) ﬁuékna W
D A ¢ "

where {ui}T = (ul u2> are the circumferential joint displacements which
raise the number of degrees of freedom per joint to 4. The structure
is then assembled and solved for the generalized joint displacements

for one harmonic at a time, in a very similar way to that used for the
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straight folded plate system.
Grafton and Strome [10.12] presented this theory for axisymmetric
loads for the first time, and Percy et al. [10.13] extended it to non-

axisymmetric loads,

5.2 Direct Stiffness Solution of Curved Folded Plate Structures

The curved strip method of analysis is a combination and exten-
sion of the techniques introduced in the previous paragraphs. It has
been developed for the analysis of simply supported structures which
are composed of segments of conical frustra in general, Fig. 5.5b, and
cylindrical shells, Fig. 5.5d, and circular ring plate segments, Fig.
5.5e, in particular, These curved elements are joined together along
their common circumferential edges.

Provided a stiffness matrix can be derived for a typical curved
strip element, which relates the generalized Joint displacements and
forces, it will be possible to apply the same techniques developed for
straight folded plates to perform the structural assembly process and
to solve the system for the generalized joint displacements. All loads,
displacements, and forces are for this purpose developed into Fourier
series such that the advantage of the simple end support conditions is
taken,

For the analysis, the following assumptions are made.

a) The thickness of each curved strip element is constant and small
compared with the other strip dimensions;

b) Straight lines which are perpendicular to the middle surface of
the undeformed element remain straight and perpendicular to the

deformed middle surface;
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c¢) The material is homogeneous and linear elastic, with orthotropic
properties which are constant throughout any one element.
However, material property variations in the radial direction may be
approximated by further subdividing each plate into curved strips
and assigning different broperties to each of them such as to simulate
the true variation of the element propertiés.
The actual steps in the analysis procedure can be summarized as
follows,
1. Replace all surface or line loads distributed across the width of a
curved strip element by a set of equivalent nodal joint loads and

F

transform their components to the global system, FH’ Fv, FM, p’

shown in Fig. 5.5a.

2. Resolve all loads to which the structure is subjected, into Fourier
series and form the loading vector by adding all load contributions
for one typical term of the series. The dimension m of this vector
equals four times the number of joints in the structure.

3. Calculate the 8X8 stiffness matrix of each curved strip element for
a typical term of the Fourier series.

4. Transform each element stiffness to the global cooidinates u,v,w,Q
of Fig. 5.5a, so that the structufe stiffness matrix may be
assembled according to the principles of the well-known direct
stiffness procedure. This mxm matrix, in conjunction with the
loading vector, constitutes the set of equilibrium equations for a
typical term of the Fourier series expansion,

5. Solve the system of equations for the unknown joint displacements
which actually are the amplitudes of the displacément fuhctiodE for

the respective harmonic term.
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6. Transform the joint displacements back to the element coordinates
in order to determine the edge displacements to which each curved
strip element is subjected.

7. Calculate for the edge displacements of this particular harmonic
the internal forces in each curved strip element,

8. Repeat all of the above steps for each harmonic of the Fourier
series and sum up the contributions of each term in order to ob-
tain the final displacements and internal stress resultants
throughout the structure.

The key step in this analysis is the derivation of the 8x8 stiffness

matrix for a general conical shell segment in the n'th mode of the

harmonic series, and will be described in detail in the next section.

The consistent load theory used to convert distributed loadings to

joint loads will be explained in Section 5.4, together with the deter-—

mination of internal forces.
A computer program called CURSTR has becn written so thal the
tedious numerical calculations can be performed very efficiently by

a digital computer. This program has been described in detail in

[5.417, and Section 5.5 will therefore give only a brief summary of

its capabilities.

5.3 Stiffness Matrix of Curved Strip Element

For a closed shell of revolution, the period of the Fouricer series
expansion is 1, Eq. (5.13). For a segment of a conical shell, Fig,
5.5b, it is logical to change this period accordingly, i.e. displace-

ments are described in the following form
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r 3 p T ¢ 9
u(n,6) Untp)cos fopcasF o o U,
¢ v(?',)n é{ q‘,,’,,,-,‘qio = g’ o s‘,f-psm— ° 4 v, b (5.14a)
‘w(.?,a)l ‘w,.rq)m'%' I o o] ¢“(7).ﬂ’n%; \ U‘J,\
where
R () = L Gup) = £<0=0) (len)) (5 141

!fl X )f/‘ ‘/ ‘(} e .‘//I )

P I3

- - S —endend) Sar . 3
and G = § {230 (203070), Pl S letmpenten®s)
are the polynomials interpolating the respective displacement quanti-

ties between their nodal values, Fig. 5,5c,

ul
WJ,
(ui}“ = u‘ {\’i}“= "l {Uc}'\z b 3 (5_14c)
Uz - Va n w,
<)

TN is the transverse natural coordinate, Fig. 5.6, defined to assume

the values -1 and +l1 at the joints 1 and 2, respectively. The trans-

‘verse rotations are then defined as

» 9w - 390 dn _ 2 du
w=55 = 57 :;-;I 3:&5_'.? (5.15)

where 512 is the meridional distance between joints 1 and 2, and s
the ordinary transverse coordinate, Fig. 5.6a.

In Eq. (5.14), a linear variation of the.in-plahe displacement
components u and v, Fig. 5.6b, and a cubic variation of the normal
displacement component w, Fig, 5.6c, has been chosen. One could

equally well replace Eq, (5.14b) by any order polynomials while
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adding degrees of freedom to the
element, resulting in an increase
in accuracy and computational
effort. 1In Section 5.8, a stiff-
ness based on quadratic in-plane
displacements will be presented,
together with a brief discussion
of its advantages and disadvan-
tages.

Most investigators studying
shells of revolution by the Finite
Element Method use the strain-

displacement relations derived by

Novozlilov [10,22]

3\
Pilg
s
Bu , case S ¥
vt TFVS w
du cos ¢ v
s = “* 5%
(5.16)
32.
-5
smPdu _ duw _ cos¢ dor
vi de ~ vijerT T+ s
2smpeasp 2 A 259 Jor
vt u“ T&?g‘* 2 SZJ

In order to express the strain vector in terms of the generalized nodal

displacements, substitution of Eq. (5.14a) into (5.16) leads for

harmonic number

n to
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The general orthogonal anisotropic material law reads
4 ) B T £ S
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L=vovee ® 1-vgvy s
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. 1 . . N
where superscript ''m" denotes membrane or in-plane characteristics

and superscript "b" stands for bending properties, Later, the

elements of the [D] matrix will be referred to by d
6X6

The commonly used, isotropic homogeneous material law follows

from Eq. (5.18) by setting

E'= E} = E) =Et=E
Vi = VM =pk = pb oy
2 os e os (5.19)
Mo b E
" =6 G 201+v)
fM= f‘=t

Using Eqs. (5.17) and (5.18), the potential energy stored in a conical

shell element can be expressed as

Ene= ‘é,’f {5}7‘[5} oA
A (5.20)
=435 {4 (f{m [DIT,.] Tds d8){ u,

Because of the orthogonality of the displacement functions, the triple

product vanishes for n # m, and for n = m,
f&m 1‘!90(9 fcos ’—‘gdﬂ:gp (5.20a)

so that Eq. (5,.20) simplifies to

= LN A
Ene=4 };‘,{uc}:(g:{c: [","]T[D][";]f‘f(s){u‘}u (5.21)

N . i
where [Tn] is equal to [Tn] with all sin Egg and cos Egg multipliers

o) o}
deleted.

The element stiffness for a typical harmonic n follows from Eq.

(5.21) as

[ TRTTDII#% ] + ds

o

[k,

Se [ [ 17017 ] v 4y .22

-t
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Partitioning [kjn with respect to the displacement components

u, v, w, one obtains
kuu kuv ku" ' Euu Euu Euu
L= &g kow koo| = Gefu f koo kool T d7 (5.23)
‘f
Cymmi ke - (syrm.) Zu
with
) r , i
[kuu],\ = [du (%r’-)*.p J_;; Casz?J’_l/%ﬁkdp? + .5",“2? [a(;;(%”)z.;. 4 dyg cas’]_//?;:%p d,z
I ! a7 T,
. ; (8. 6140
" da cos ;0/(#3“+¢“T¢“)J7 - 4dy 5“*17“57]—&—:;———) oy
N -t
! v Ty
ety < vawonie € 4
I r / , _
[hugl = =(F) cost (dechal] Td dy v (G [ 6y = (G e 4. g
(] ”, ) y

[kiol=

[kU'u],\ =
[kpes] .=

[l‘u'u],\ =

and

/ r ‘L
~ () dusiny | B dy — sinp () dee (e 4 cas's] [ £ 4

Py fr . m
s cost () Uos o440 [ B30y ¢ oy (s [ Bele

T . T _
b ldy sim ws;o('fﬁff)_[/f%u? - 4dy sms»(ng{/_[ﬂg.z dy (a-£)
T > l’r/
Loy o'+ oy ()T B dy oo [, 2 b5, ) e + 4, [ vy

! r /
Ay sasf’w;ﬂ/f%gﬁ dg + d, sA«V/é,’,ré_, dy
2 4
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(5.24)
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A prime denotes differentiation with respect to s, i.e.

d)’___é:ia (5.25)

P S 2N

All integral expressions in Eqs. (5.23a-f) are of the form

. f L=O//I"'16 (5.26)
f/ (arz*"b)'l _/"01’! 2,3
with
asDzh 4. mem
2

Substituting r = aT+b, N = (r-b)/a, dT = dr/a, one obtains

$~t

L= ;IT., [:/Ir-"y;(r + c,é‘al/'r"'/-";lr L+ b v"j"dr + bi/fr.ja/r-] (5.27)

where Ck are the binomial coefficients, With this expansion, the
integrals Eq. (5.26) are easily evaluated explicitly. However, after an
extensive numerical investigation it was found that for large radii,
which are likely to occur in the analysis of curved bridges, the explicitly
integrated expressions are extremely sensitive to numerical calcula-
tion because they are formed as differences of very large numbers of

almost equal magnitude. For example, the computed integral 1 was

3

g v

6

already of opposite sign to the correct value for a mean radius
b = 500 and a = 5. Therefore, this procedure is replaced by numeri-
cal integration, the accuracy of which increases even for large radii,
as can be easily shown by a limiting process with Eq. (5.26). It was
found that an 8'th order Gaussian quadrature formula gave results
which were sufficiently accurate for all practical values of a and b.
Before assembling the element stiffness matrices to form the
structure stiffness, Eq. (5.23) has to be transformed into global

coordinates,

[k] = [A]T[k][A] (5.28)

ST
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where the transformation matrix |A7] is defined by

£ = AV
y, o o o 1 ) e o o v
u, o o o o o o o L W,
v cas ¢  simny O o o o o o £,
114 o o) o 0 P smf O o] u,

1 = 1 [ .29
w, S$im¥ -cas? O o o o o o vV
W, o o o O sn¢ -ws¥ © o W
@, o) o -A o o o o o £,
@, o o) o o o o -4 o u,
N 4 e - N/

Finally, it shall now be verified that the curved strip formulation
converges toward the straight finite strip theory if the limits

r —» ® and 80-* O are approached such that L = rBO = const,, i.e., as
each conical element loses more and more curvature until it approaches
the shape of a rectangular plate. Thus, substituting L = r@o into

Eq. (5.23) and going to the limit, one obtains

ki kuy keo N ki ki ki
o= 521 kb = 52 [ R Rl O
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n n
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These stiffness coefficients are identical to those derived by
Willam and Scordelis [10.4]

Note that because of [k
bending and membrane actions are no longer coupled

o = IRy, J, =

0
vwn
and, of course

80
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the angle ¢ does not appear anymore, because the element stiffness
of a rectangular plate must be independent of its orientation, while

for a conical shell, the inclination angle has an important influence

on the element stiffness,

5.4 Consistent Load Analysis and Determination of Internal Forces

If loads are distributed over the whole width of a plate element
with an arbitrary variation in the circumferential direction, their

components in the u, v, w directions, Fig, 5.5c, can be written as

Pulp) G o o Pul®)
Porlp = | © & o Pslé) (5.31a)
Purl9,6) o o %m Pu®
or symbolically,
(P&} = [ Batm] {$.(6)} (5.31b)

where Ei(e) are the intensities of the distributed 1oad components at

the nodal joints and @p(ﬂ) is an appropriate interpolation polynomial

which for this discussion is chosen to be linear, (compare Fig. 5.6b),
$p = $ - 1em) (5.32)

Because the [@p(ﬂ)]—matrix is a function of T only, the Fourier repre-

sentation of the load vector {pi(ﬂ,e)} may be applied to its nodal

values only, which are then developed as

{f:0)} = g{é}nsin’%g (5.33)

where the vector

6,

(P =% [(192(9)} sin 0 49 (5.34)
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contains the amplitudes of the Fourier series of Eq. (5,33) which can
be found explicitly for various load cases, If the load is dis-

tributed uniformly with respeét to O, one obtains

.y 4 ;.
A (5.35)
where Si is the load intensity at joint j. For a transverse line 1oad

at 8 = Gp of intensity ﬁi at joint j, one gets

5/ — 2 sin TS 5/
; , =J : & )
and for a load of intensity Py at joint j between Gp— 3 and 9p+ 5
and zero outside this range, the result is
- . ﬂ”g . nﬂ’f _j
P‘:’: =7‘-I$r- S -;;P -50'13:‘7. o (5.37)

In consistent load analysis, the distributed loads of Eq. (5.31)
are replaced by consistent nodal loads

(-

{R(8)} = % (R, sén"—Zf (5.38)

nes

such that the work done by their amplitudes {Ri}n' while going through
the corresponding nodal displacement amplitudes {Gi}n equals the work
done by the distributed loads {pi(ﬂ,e)} while going through their

associated displacement field {ui(ﬂ,e)}, i.e.
(@ (R}, = % [[{w60)(p.g0) rdyds (5.39)

70
Substituting Eqs. (5.14a) and (5.31b) into (5.39) and making use of

the orthogonality relations of Eq. (5.20a) and the virtual work

principle, one obtains

(R}, = 22l [ [l Thopl {F.}, Tdy (5.40)
?
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which becomes explicitly, for the interpolation polynomiuls of EKq.

(5.14b) and (5.32) used,

) 7 3
rQ«, r23'(26--0) lob o) o o o f__“
Ry, lob lo(2b+a) o o o o Puy
R, o 0 lo(2b-a) 106 o o B
4 >
R te) o lob Lo(2b+a) o o O
4 V" = 28 ‘ ( 4 P (5.41)
l20
R, o o o o (Ab-11d)(9b-a) o,
R, o o o] o (96 +a)(2b+Ua) ‘ﬁ@ ;
Re, le] o o fo) 5, (36-a) 2bs,
‘R“‘Jn _ o o le] o -26bs, -s,;(sbqj
with
-7 _ Ta+ T
a T b = 2

The {Ei]n vector depgnds on the typc of loading and has bcen given
for some cases, Eqs. (5.35), (5.36), (5.37). For the cqualtion of
equilibrium of the structural assembly, the consistent nodal 1oad
vector {Ri}n has to be transformed into the global coordinate system

of the structure, Fig. 5.5,

(F}=[AI(RY (5.42)
where [A]T is the transpose of the displacement transformation matrix
of Eq. (5,29).

Line loads or concentrated loads acting directly on the joints,
are treated like distributed surfuce loads, except that the integra-
tion extends only over the respective joint rather than over the whole

element area.
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Once the equations of equilibrium have been solved, and the final
Jjoint displacements determined as the sum of the various harmonic
contributions, then internal forces throughout the curved plate are

calculated as follows. Substituting Eq. (5.17b) into (5.18b) leads to

{6} = [D][R]{u;),\ (5.13)
or explicitly,
r 1 ™ nir . w8 a_é cas ) "_”.g . . Tg— u,_'
A(5 - ('Fpa) dll ¢u Sm -9: (d" as‘,“ d’z _y-f¢v)‘sm E‘ Lu’:{"{ll ¢LJ ‘SM’Lé;
'U’L.
/VH - (:'_Zg) dpp Pu i "?7:9 (dlz ?;r"dn g—,.qu.,) Sim "gig 5——2’;’_‘ 4224{, Sta %:"g W n
9
Neo dos (Y - L3P )cos IO (47 dy , cos 0
¢ ¢ = (5.43b)
: . nid z By %4.7.; ard
Ms ‘(%)5—:\2”’05% 5“\%’; o] kféﬂ)dus?su“{w;%"c-‘:_—’;ywas sy
N - 2 3 . ﬂﬂ
M, ()t dogp, ST O [ destydec By - 2P ST
. 2 p) nrd
‘MS,J P (3 - L) easT 0 24, () @Pp, - W) cos T |
n oo

where (3 ) = (& ) and (® ) are given by Eq., (5.14b), and d. . = d..
u v w ij ji
are the elements of the constitutive matrix [D] of Eq. (5.18). The

edge displacements have to be calculated from the global joint dis-

placements by applying the simple transformation

{u:;}, = [A]{u‘.}" (5.44)
to be substituted into Eq. (5.43). The final internal forces are

then accumulated as the sum of the harmonic contributions,

{6} = f (¢}, (5.45)
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Figure 5.7 defines the sign convention for internal forces and moments.

8, s

z

N’ Msg MS&

Fig. 5.7 Sign Convention Ffor Internal Forces And

Moments

5.5 Description of Program CURSTR

A computer program called CURSTR has been written in FORTRAN IV
language by means of which it is possible to uanalyze very efficiently
prismatic folded plate structures curved in plan and simply supported

along their straight radial edges. A detailed program description is

given in Ref. [5.417.

The dimensioning of the arrays has been kept variable so that
structures of almost any practical size may be analyzed. Each plate
may have material properties described by the general law, Eq. (5.18).
The loading may consist of surface loads which vary linearly across
the width of an element and arec constant over a specified portion of
the circumferential length of the element, as well as joint loads which
may also extend uniformly over the whole length of a joint or over a
specified fraction of it.

If all applied loads are symmetric about the midspan section, a
program option may suppress all even terms of the Fourier series.

Similarly, for antisymmctric loadings, all odd harmonics may be
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suppressed. ‘For a complete axisymmetric shell subjected to axi-
symmetric loading, the Fourier analysis degenerates such that only
the zero'th harmonic term survives. This special case has also been
incorporated into the program,

Another option enables the user to print out not only the final
results after all harmonic contributions‘have been summed but also
results after any partial sum of harmonics has been accumulated, This
option is useful to study the convergence of various output quantities,

For most structures, in particular bridge structures, it is often
very useful to compare the known statical moment at some section due
to the applied loads with the gross internal resisting moment as a
check. This gross moment may be calculated as the sum of individual
girder moments which in turn are calculated by multiplying the longi-
tudinal stress resultants with the respective distance to the neutral
axis and then integrating these differential moments over the girder
areas., Wherever longitudinal plate bending moments also contribute
to these moments, they are taken into account.

Output, then, consists of the final displacements of all joints
in the structure; internal stress resultants, moments and element dis-
placements for each curved strip elément at as many transverse sections
and intermediate harmonics as specified by the user; gross resisting
moment of each individual girder as well as the percentage of this
moment compared to the statical moment contributed by all girders at
any specified section; and finally, computer execution time for each
completed problem.

Computing times for the execution of small structures amount to

only a few seconds on the CDC 6400 of the Berkeley Computer Center of
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the University of California, and all of the examples studied so far

required far less than one minute of central processing time.

5,6 Examples

5.6.1 Straight Beam and Square Plate

The simply supported straight beam of Fig. 5.8 has been analyzed

by program CURSTR for uniformly distributed load and a concentrated

‘I

midspan load, using a radius

T:T of curvature R = 10 000" and
Bl
Z eo = 0.01 Rad. Table 5.1

| L=R§ = lo L E = #3looo ksf 1ists the results together
Y = 0./§

with those from elementary

Ff.q 58 EXGMF/B 1 - 5”"!0/)/ beam theéry as well as the
Suﬂaor/a/ Sfragkf Beam

closed form elasticity solu-
tion [10.17] (program MULTPL)
and the straight finite strip theory [10.4] (program MULSTR). In
studying the effect of mesh refinement on the curved strip results,
one recognizes the convergence towards the elasticity solution. 1In
particular, the stress concentration under the concentrated load is
approached rapidly, but the gross internal moment does not change with
mesh refinement. Elementary beam theory, of course, does not include
the stress concentration, but the deflection check is in fair agree-
ment, |
Figure 5.9 shows the midspan moments of a square plate due to a
concentrated load placed at the plate center and expressed by 50 non-
zero terms of the respective Fourier series, The plate is in all cases

simply supported along two opposite edges, and the boundary conditions
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TABLE 5.1. RESULTS FOR SIMPLY SUPPORTED STRAIGHT BEAM

MIDSPAN MAX. STRESS MIDSPAN
LOADING METHOD NO. OF | DEFLECTION | RESULTANT N, | MOMENT
STRIPS | (ftXx 1072) (1b/ft) (ft-1b)
Beam Theory 3.6169 ~75.00 1250.0
S o~
ﬁ g MULTPL 2 3.6928 -75.27 1250.9
[oa ]
) j MULSTR 2 3.6626 -75.46 1250.6
§ o
s 1 3.6043 -75.04 1250.6
f s
W g CURSTR 2 3.6648 -75.46 1250.6
gu‘)
5 3.6895 -75.50 1250.6
~~
o e Beam Theory .05787 -1.500 25,00
Ao
i E MULTPL 2 .05943 -1.876 25.23
S &
a " MULSTR 2 .05881 -1.556 24, 90
< O
QM
35 3 1 .05793 -1.494 24.90
s &
.2 CURSTR 2 .05884 -1.577 24,90
g o
Se 5 .05928 -1.820 24 . 90

for the other two edges are a) free, b) simply supported, and c¢) fixed,.
Radius of curvature is taken as R = 10 000!, and 90 = .001 Rad, As
can be seen, CURSTR results based on an idealization with 10 strips
agree very well with the closed form solution of program MULTPL, ex-
cept right under the load, However, Mx— values ugree surprisingly well
even there, in spife of the large stress gradients., The disagreement
between the MULTPL results for Mx and My under the load in case b)
where they should be equal, stems from the fact that even 50 non-zero
harmonics are not sufficient to describe the sharp peak of the moment

curve more accurately,
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5.6.2 Axisymmetric Shells

The following two e¢xamples illustrate the degencration of the
curved strip theory for a shell of revolution under axisymmetric load-
ing, The cylinder of Fig, 5,10a is fixed at the bottom and subjected
to a uniform radial load at the free top edge. It was analyzed with
program CURSTR using the four mesh representations indicated in Fig.
5.10a, For comparison, the free constants of Flﬁgge's closed form
solution [10,.217 have been adjusted to the boundary conditions of
this problem, and the resulting displacements and moments are shown
in Fig. 5,10 as "exact" solution,

As can be seen in Fig, 5.10, CURSTR displacements agree very well
with the closed form solution, even for the coarse mesh A, Also the
bending moment check is excellent throughout the region of the edge
disturbance, except for the unbalanced moment right at the free edge.
The curved strip method, of course, is an approximate analysis tech-
nique, In particular, it does not satisfy force boundary conditioﬁs
so that unbalanced force quantities at free edges as well as inter-
element stress discontiguitiés exist, While these inter-element stress
discontinuities can to a large extent be easily overcome by averaging
the stress resultants and moments between adjacent elements, unbalanced
forces at free edges can be reduced only by employing finer meshes,
Table 5,2 shows how rapidly the unbalanced moment of example 3 de-

creases with mesh refinement,

TABLE 5,2, UNBALANCED MOMENT (IN-LB/IN.)
AT FREE EDGE OF CYLINDER

Mesh A B C D Theoretical
Unbalanced | . 0004 | 022330 .007458 | .002126 000000
Moment
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Example No, 4 is the toroidal shell of Fig. 5.11, subjected to
internal pressure, and analyzed by program CURSTR, using 18 elements
to represent half of the torus., Because it is very difficult to ob-
tain a closed form bending solution for this problem [10,237, the
curved strip results are compared in Fig, 5.11 only with Flﬁgge's
membrane solution [10.217]. The deformation incompatibilities at the
top and bottom circles, B = 0 and B = 180°, where the Gaussian curva-
ture changes sign, cannot be resolved by membrane stresses alone, and
the CURSTR results for bending moments MS and hoop stresses Ne illus~
trate what kind of bending action is necessary to restore continuity,

A refined mesh was also studied, with 72 elements representing half

of the torus, but the results shown in Fig. 5.11 were hardly changed,

5.6.,3 Structures with Arbitrary Opening Angle

Example 5 - Curved Beam Problem

The curved beam of Fig. 5.12a is at both ends simply supported
and fixed against rotation about its axis and has been analyzed by
program CURSTR and curved beam theory, Section 5,3, for the four
cross sections depicted in Fig, 5.12a. The radius of curvature R
and the opening angle 90 are variable such that the span remains

Re 90 = 20 ft = const. Denoting with

Mcurved
0 = ——— (5.46)

Mstraight

the ratio between the bending moments in a curved beam and in the
corresponding straight beam of equal span length L = R 90, curved

beam theory predicts an increase of this ratio with growing curva-

ture. This incfease is illustrated in Fig, 5.12b for the midspan
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moment due to uniform load, and in Fig, 5,12c for the moment one
fdot away from a concentrated midspan load, bccguse right under a
concentrated load, the moment curve is discontinuous, and too many
Fourier series terms would be required to adequately represent that
value,

The main importance of Fig. 5.12 is that it shows that even an
opening angle of 30° increases the midspan moment by at most only
3%. In the light of this observation, the differences between the
CURSTR results for the four cross sections are clearly negligible,
although it is interesting to note the consistent moment increase for
channel, I-beam and box sections, in that order, while results for
the solid beam, section A, are almost identical with curved beam
results,

Example 6 - Curved Plate Problem

The curved plate of Fig, 5.13a is simply supported along the
straight edges and free at the curved boundaries. It has been ana-
lyzed for various opening angles 90 (such that the span length
L = RGO remained constant) using program CURSTR., The results are com-
pared with those obtained from the closed form solution of the plate
equation for this special boundary value problem, Section 3.5,

Figure 5.14 illustrates the effect of curvature on the statical
midspan moment as well as on the longitudinal plate bending moments
Me at midspan of the two edges. Definipg the p-ratio as in the pre-
vious example, Eq., (5.46), its variation with 90 plotted in Fig, 5,14
reveals several interesting facts. For a unit load placed at point A,
the statical moment decreases With increasing 60 beéause the actual

length of the loaded interior edge is reduced with increasing 90.
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Conversely, the statical moment for a load placed at point B increases
because the outer edge becomes longer with increasing 90. With in-
creasing curvature, the inner edge of the plate becomes stiffer and
the outer edge more flexible, Note that for both load positions

the Me moments at point A (inner edge) and B (outer edge) are res-
pectively greater than and smaller than the average moment across

the width represented by the statical midspan moment curves, This
corroborates the fact that the inner edge becomes stiffer than the
outer edge of the plate for increasing angles 90,

Figure 5.13b shows the transverse bending moments Mr at midspan
for an opening angle of 60 = 30°, with unit loads placed at point A
and B,

In all cases, the excellent agreement between the elasticity
solution and the curved strip theory is to be noted., The reason for
the unbalanced moment Mr at the loaded edge has been discussed
previously.

Example 7 - Curved Box Girder

This example, finally, illustrates the versatility of the curved
strip theory and the computer program CURSTR, by studying the in-
fluence of superelevation on the state of stress in a curved single-
box girder bridge, Fig. 5.15. The girder is subjected to a single
concentrated 1 kip load at midspan over the outer web, The change in
longitudinal stress resultants Ne and transverse bending moments Mr
is almost entirely due to the horizontal component of the unit load
which is assumed to act normal to the deck of the superelevated box,
As a consequence, the box is subjected to a small bending moment

about its vertical axis so that compression stresses arc superimposed
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to stresses in the interior girder (left) of the plane box, and
tensile stresses in the exterior girder (right). One check on the
results can be obtained by comparing the internal resisting moment
with the statical moment due to the applied load, calculated on the
basis of curved beam theory. These moments are summarized in Table

5.3 and the agreement is excellent,.

TABLE 5.3. MOMENTS (FT-KIPS) IN CURVED BOX GIRDER

Box Without Box With
Superelevation Superelevation
Left Girder 10,894 11,013
(CURSTR)
Right Girder 14,186 14,198
(CURSTR)
Total Moment 25,080 25,211
(CURSTR)
Total Moment 25,081 25,189
(Curved Beam Th.)

5.7 Study of Strain-Displacement Relations

5.7.1 Remark on Thin Shell Theorics

The strain-displacement relations, Eq. (5.16) are due to
Novozhilov [10,227, 1If a different shell theory had been used,
other strain-displacement equations might replace them, All so-called
thin-shell theories have in common is that they approximate the three-
dimensional elastic continuum (which the shell actually is) by a two-
dimensional system because this is more amenable to analytical treat-
ment, However, this approximation usually involves assumptions which
will in most cases lead to certain inconsistencies or inaccuracies,

The consideration of higher-order thcories will often have some
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advantages but is scldom justified for ordinary shell problems.

It is the objective of this subchapter to compare the results
based on Flugge's theory (10.217] with those obtained using Novozhilov's
thin shell theory [10.227. In fact, most authors studying shells of
revolution by the finite element method [10,10] [10.117 [10.13] have
used Novozhilov's equations, It therefore seemed to be of interest
to investigate if there was any rationale behind this seemingly tacit
agreement,

In his discussion of shells of revolution, Flugge derived two
sets of strain-displacement equations. Simplifying these for the

conical shell, one has

(5.47)

- BHAZ du _ Ttz ; { { i o
= BE N - SEhr kot B g ke DY - poE 05

and
- @ 2
€& = 55’_ 9st *
- 2u . cosP 2 dw Son ¥
be =7 * 5F "'raaoz‘%—izrz*"r—” (5.48)
2
26 o Oy _ cos® v 9w 2cos? s
86 Js A R ry R =l v el

All differences between Egs. (5.47) and (5.48) are due to the one
assumption that z (or thickness t) is negligibly small compared to

r, = r/sing, Fig. 5.16,
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The force-displacement equa~

tions resulting from these two sets

of equations are as follows.

Notations for Conical Shell

- 2 3 cas ¥ A I PN
No = BIGE o+ 55000 efu)] - k S0t S
[
= cos i ¥ Jv 2 s 2% J
Yo = DMl ¢ R - ) ] i shefes, s T ety

= Nl 3 dy _ cos® =Y Sing[3mP Ju | Sim@ cas o v
Moo= D5[5¢ + 55 - 22 ] #ROGESREERT g S Y

-

Ngg = D L¥[3u +3_v_£fu] KLY sing [_mzé’v - g Ju g

6s 2L3s Trae T T = A .
3

Mo = K[ GELZ)r vIE] 14 KL Sl ey
Moo= Ki2[2 2w _ 2 cesf fy tREL SB[ 0, g cs®,]
Mas = I-V[Zfa‘aa 2:0;32';; +K%.£%Z rae gs‘,‘*w]
with
D=7 5% K‘/TEI{;) = 2%

All contributions to the right of the dashed line are due to the higher
order terms of Eq, (5.47). With the simplifying assumptions *
V"O, NS"NOS; M“=M‘s

it 1s possible to write Eq. (5.49) in the form

{6} = [Dl{¢}
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where [D] is given by Eq. (5.18a) with v = 0, and the strain vector is

r 3 4 | ) 3
I dv | Sin? t*
s ds r 12 3s%
|
2 ; me t #cos sl 2w L casp
b F_‘5_9+_Cg$r_¢v+5._m’:s_"w:_6¢ [73 ‘m\rl PV"‘ r? w+r’9€"+ _;Fa—s-)
v _cos? |, gim tsmV’Ju smpasP P |, wsp du
22‘1 9 Trae T Ty M |+_F"z'( i M R P 7)
1 (= 5 ! , > (5.50)
du —~ Sin¥ v
% 9st T
|
ey L 8¥ du — S PSP
e 2T T 3 : r w5 v)

Pwr cos® I sm¥roU _ cos®
246, 27352 7T ae' 2225( 52 “)

S A ! J

where the terms on the left of the dashed line form the strain vector

of the simplified theory based on Eq. (5.48) while the higher-order
theory of Eq. (5.47) requires in addition the terms on the right of
the dashed line,

Substituting the displacement functions (5.14a) into Eq. (5.50)
and carrying out the triple product under the integral of Egq, (5.22),
lengthy expressions for the stiffness coefficients are obtained which

. s . 2, 2 ,
can be simplified by suppressing terms whenever at /r appears beside
1

1, with constant "a" usually involving the angle ¢. The expressions

obtained are as fcllows,

kuu kuv k“
[k], = D a’:"f kw  kyo| 7 (5.51)
- (symm.) Em'

with
r
Fuw = (7 252] Db s 1474 £ ¥ (404 o JT00)
oy .
ku Qms?(f_i’;]")‘f@ *z(%r)?% (5.51a-c)

o (SRt () Tz ()5 L [T S 6Th)- S84 ]
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i
ko = 8+ [cos’y + 402 ] B

/:,,L, = ﬂ‘_;_&is_‘pqrd)w singcos? 5 ¢* 6/ ¢ _ St L[zms ‘% 4 /n/r)]¢ ¢U M.ﬁ:ﬁ’;"r’
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The underlined contributions are due to the higher order terms of
Eq. (5.50).

By comparing Egq. (5.50) with (5.16), one recognizes that
Novozhilov's and Flugge's simplified theory lead to almost identical
strain-displacement equations, except for three terms. It is the ob-
jective of this section to study qualitatively the importance of
Flﬁgge's higher-order terms as well as to investigate the effect of
the three terms in Novozhilov's theory which are not included in
Flugge's simplified theory. However, it will be helpful to discuss
briefly the significance of eigenvalues and rigid body modes of a
conical shell element, before proceeding to numerical studies on the

element level, and on the structural level thereafter.

3.7.2 Eigenvalues and Rigid Body Modes

Physically, an cigenvalue of an element stiffness matrix can be
interpreted as the energy stored in the element while it is deformed
the associated mode shape., A mode of deformation in which no energy
stored, is called a rigid body mode.

For a complete conical shell element, there are four rigid body
displacement configurations possible, Fig, 5,17. 1In order to obtain

all four of them, the complete expansion of displacements has to be

(5.51d-f)

in

is
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This expansion shows that the first two rigid body modes of Fig. 5.17
are associated with n = 0, and the other two with harmonic n = 1. Al-
though the expansion (5.14a) contains only the symmetric part of Eq.
(56.52), all four rigid body modes should be present in our stiffness
formulation because the constant terms of the w-expansion which
leads to the only rigid body mode contained in the antisymmetric part
of Eq. (5.52) is automatically absorbed in the stiffness formulation of
Eq. (5.23),

Finally, the ratio between the absolute values of the largest and
smallest non-zero eigenvalue of a matrix, which is called the condition
number, is of interest because it provides information about the

stability properties of a matrix, [10,247.

5.7.3 Studies on Element Level

The first objective of these studies was a numerical comparison
between element stiffnesses based on Fliigge's higher-order theory, Eq.
(5.47), and his simplified theory, Eq. (5.48). In analyzing a coni-
cal shell element with an r/t-ratio of order 10, it was found that
many higher-order terms contributed almost nothing to the final stiff-
ness coefficients, For an r/t—ratio of about 40, the contributions of

the remaining higher~order terms were also found to be small. But
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the final stiffness coefficients were often formed as differences of
large numbers, thus upgrading the importance of small additional con-
tributions. Based on this finding it was decided to study in some

detail the effect of the three terms in Novozhilov's equations, see

Eq. (5.16),
fés ; 7 gf. 3
€ fg% + 9%??U'+ n#,,
2Esp é-s‘i——rffu«a-;a—%

$ ) = ¢ >  (5.53)

which are not present in Flugge's first-order strain vector (5.50),
and which have been labelled in Eq. (5.53) for identification. In
the final element stiffness of Eq. (5.23), only submatrices ﬁ;u and

k are affected by these terms, namely

N 2 ®

K= [z (0)'+ g cos'p] 8 4 i *0[dss("F) +%aasf‘:/ﬁ-;~—dﬁ S fd 4

— 4oy S (Y o gT8) + da G + b LS
12.6) @
} © o 0]

Ky = —smf"(””/_z& ¢¢,‘,—~5m?’(§j["§3{£7+4‘4;“5£]q¢” sinfcos’ / ]("ffs*“/“)‘?ﬁ

(5.54)
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where the underlined contributions are due to the term with the
corresponding number label.
In selecting elements for com-

parison it should be noted that all

a) Circular P/.u‘g, ¥=o0 three terms under consideration have
the multiplier sin® and would drop
—e out automatically for a circular

10/ plate element, Fig. 5,18a.

The actual effect which the

l 14’ l suppression of any one of those

terms on the element stiffness matrix
has, can be studied by comparing the
eigenvalues of the respective stiff-
ness matrices. These have been

summarized in Table 5.4 for the cy-

g / 790 éo® linder and cone of Fig. 5.18., 1In
c) Conical Frustfram , =

Fig. 518 Shel Elements

studying Table 5.4, the following

obgservations can be made.

1. The third term in Eq. (5.53) has no influence on the cylinder stiff-
ness because of its multiplier cose,

2. The first six eigenvalues are only slightly affected by suppressing
any one of the three terms, But this influence will increase for
higher harmonics because of the multipliers n, nz, and n4, Eq.
(5.54). |

3. In retaining all three terms of Eq. (5.53), all four rigid body
modes mentioned earlier are preserved, However, the suppression

of any one of the three terms may lead to the loss of at least
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one rigid body mode. The third term, for example, suppresses
three rigid body modes of the cone;

4. As for the condition number which is to be understood as the ratio
of the largest to the smallest non-zero eigenvalue, the orders of
magnitude are small, and the suppression of none of the three
terms changes this ratio considerably.

5. As can be seen from Eq, (5.54) or (5.23), all contributions due to
the three terms under consideration decrease more or less rapidly
with increasing radius. 1In fact, in rerunning the above examples
with mean radii increased by factor 100, it was found that the in-
fluence of the three terms on the first six eigenvalues was seldom
felt in the sixth significant figure, while "zero'" eigenvalues
were by order 104 or more smaller than given in Table 5.4,

The above observations lead to the conclusion that the two different
shell theories discussed may eventually lead to different results. It
will be the objective of the studies on the structural level to inves-

tigate the actual degree of the discrepancy.

5.7.4 Studies on Structural Level

In order to assess the actual importance of the three additional
terms in Novozhilov's strain-displacement relations of Eq. (5.53), a
variety of test examples have been studied, some results of which are
summarized in Table 5.5. The example is the curved beam of Fig, i
5.12a with variable curvature such that the actual span length along
the arc remains constant 20 feet, In addition to the four cross- f
section types of Fig, 5.12a, the sccetions of Fig., 5.19 have been
annlyzed nlso,  The Internal presisting moments Pisted In Table 5.5

have been obtained by integrating longitudinal stress resultants N9
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as described in Section

% ® -
, 2/
4L———é————} Y 2/ In studying the re-
sults of Table 5.5, the
4k
2

® —
[:j::::] :11/ 2 following observations can

be made,

2’ 1. Since all terms

6 :’:_1 AT
:i under consideration de-

S
(Cross Sechons A,8,C,D see Fj S5/2a)

~
~

crease with growing curva-
ture radius, Eq. (5.54),

both shell theories con-

/E/g 5719 Additional Curved Beaw
Sections for Ca»(laar/;saq of

s“e// Técor'/'es ' as well as towards the

straight finite strip

verge towards each other

formulation, as has been
shown in Section 5.3. For R = 20,000 ft. and 60 = .0573° ~ 0, there-
fore, the results based on Novozhilov's and Flugge's simplified theory
are practically identical.

2, As the curved beam theory indicates, the statical midspan
moment increases with curvature. While this behavior is very well
represented by the curved strip analysis based on Novozhilov's theory
for the solid beam section A, Fig. 5.12a, the results of Flugge's
theory virtually remain constant at the midspan moment of the equiva-
lent straight beam. For large curvatures, the discrepancy might be
appreciable., Although deflections according to Flugge's theory do

increase with curvature, the rate of this increase is far too low.
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TABLE 5.5 COMPARISON BETWEEN NOVOZHILOV'S AND FLUGGE'S THEORY
. Midspan
Cross No. Midspan Moment Deflection X ft/1072
Scction 60 of Beam
Type Strips || Theory | Novozhilov Flﬁgge Novozhilov Flﬁgge
A ~ 0° 2 50,000 50,024 50,024 .73252 ,73252
A 15° 2 50,359 50.384 50,024 .75435 .74406
A 30° 2 51.469 51,493 50,024 .82319 .77868
A 45° 2 53.428 53.452 50.025 , 95014 .83639
A 90° 2 67.150 67.175 50,025 2,03266 1,14799
E 90° 1 67.150 67.318 67,318 5,91987 5.,91987 |
B ~ 0° 3 50,000 50,024 50,024 . 92726 , 92726
B 45° 3 53,428 53.518 51,981 4,17679 3.94468
B 90° 3 67.150 67,555 56,120 26.22461 18.68155
B 90° 12 67.150 67,587 56,118 26.30997 18.,73175
C /& 0° 5 50,000 50,024 50.024 .58652 .58652 :
C 45° 5 53.428 53.562 52,887 3.20511 3.13114
c 90° 5 67.150 67.722 62,938 16.85551 14,84996
C 90° 12 67.150 67.260 62,521 16,91540 14,89676
F 90° 4 67.150 67.593 60,593 14.,71497 12,16201
F 90° 10 67.150 67,206 60,256 14,79501 12,22125
90° 4 67.150 67.740 66,755 2.49613 2,44067
90° 12 67.150 67.309 66,335 2,51123 2,45528
D 90° 4 67.150 68,043 67.477 1,47193 1.45352
D 90° 16 67.150 68.045 67.477 1.48365 1,46506
90° 4 67.150 67.626 66,945 4,88982 4.82237
90° 12 67.150 67.596 66,914 4,93291 4,86484
I 90° 4 67.150 67.595 65.559 92.01084 88.52158 >
I 90° 10 67,150 67.589 65,549 92.69715 89.18390
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3. Because all three terms establishing the difference between
Flugge's and Novozhilov's theories have the multiplier sin® , both
theories yield identical results for the curved plate, section E,

4., It follows from the last two observations that the behavior
of beams composed of horizontal and vertical plates will fall somewhere
in between the two extremes just considered., Because the vertical
webs of the channel, section B, carry an appreciable amount of the
load, Flﬁgge's theory compares poorly with curved beam theory. But
in the I-beam section C, the horizontal flanges constitute the essen-
tial load-carrying components, and therefore the comparison is much
more favorable.

5. The response of a box beam is largely governed by its high
torsional stiffness for which a general estimate is given by Bredt's

formula, \

4 A*
¢gf_§ (5.55)
t

while open sections can regist torsional moments only by non-uniform

j =

shearing stress distribution within each plate making up the cross
section, as well as by torsion bending. The excellent agreement be-
tween the two shell theories for the square box, section D, suggests
that the three terms do not affect the torsional rigidity of a closed
section.

6. If the box section becomes narrower, sections G and F, then
Bredt's stiffness of Eq. (5.55) decreases rapidly, and the behavior of
the box will approach that of a vertical plate element, with Flugge's
theory worsening. If the box becomes flatter, scctions H and I,

Bredt's stiffness also decrcases, but the box behavior will approach
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that of a horizontal plate, with Fligge's theory comparing very well,

7. Refinements of the mesh representation of the beam sections
have very little influence on the results, and the discrepancies be-
tween-the two shell theories are hardly affected,

From the preceding comparative studies the following conclusions
may be drawn,

1. Basing the curved strip theory on Fllugge's simplified strain-
displacement equations (5.48) leads to some reduction in storage re-
quirements and execution time for the computer program, because various
contributions to the curved strip stiffness matrix do not have to be
calculated, However, compared with the overall computational effort,
the element stiffness calculations do not require much time anyway.

2. The three terms not present in Flﬁgge’s simplified theory are
essential in describing the torsional rigidity of a vertical curved
plate element. Although the associated error decreases in built-up
cross sections, in particular for cellular sections, no general state-
ment can be made regarding the accuracy of Fllgge's theory for open
and closed sections,

3. Concluding this discussion, it is recommended that the three
terms in Novozhilov's strain-displacement equations (5.53) be retained
for curved strip analyses, as most investigators working in the field

of finite element analysis of rotational shells in fact do.

5.8 Study of Quadratic In-Plane Displacement Functions

5.8.1 Element Stiffness and Consistent Load Vector

The accuracy of results based on an approximate theory such as
the curved strip method of analysis, can be improved in two ways.

Firstly, the structural idealization may be refined by discretizing
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the structure using a larger number of curved strip elements, i.e.,
increasing the number of joints.. Secondly, one may refine the element
model itself, i.,e., increasing the number of degrees of freedom of
each element so that the accuracy of the results is improved without
increasing the number of élements'or joints,

In this section, the second approach will be illustrated by im-

proving the relatively crude approxi-
7 »
oint 1 mation of in-plane displacements,
Eq. (5.14). 1In order to obtain a
Joiat ©
quadratic variation, a new joint o
w; is introduced halfway between joints
Toint 2,
1 and 2, having two degrees of free-
Va
a) Toint Dgrecs of Freea(oq dom as shown in Fig. 5.20. These

additional degrees of freedom are

utp)

easily added into the previously

u derived element stiffness, if they
2

u,
- +1 g 7
b) In-Plane D,:ao/aceu(e.m‘ Functions

Fig. 5.20 Curved Strip .
Llement with Quadratic will now be written as

/e ( ) i N

I‘QLM’ZZ‘:&\SD/S/D acement ut,8) ¢..(7)cas’-'-’f o o ||u

are understood as deviations from

linearity, Fig. 5.20b. Accordingly,

the displacement functions (5.14)

*Uﬁzl")¥=f o ¢(7I~5k\"g o <V; y (5.56)

e
2 r)su" ;
Z..t(?,)J _o o & %)

where

) = Cboad = §< Loy (to) 20147

(5.56a)
(Puty) = 1<(2-37“() (2039 -4%) P1-g-g'ef) P ltnegien’)

and
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(w5 )
u, Yi w;
2
{u"}:: Uz {U:-}n= Vi {”é}..=< o (5.56Db) ‘
u, Y |
R n L&hlﬂ

The final element stiffness is again calculated according to
Eq. (5.23), except that the new vectors @u and @; have to be substi-
tuted, so that the stiffness will be a 10X10 matrix.

Similarly, by regtricting again the transverse load variation
across an element to linearity, substitution of (5,56a) into (5,40)

leads to a consistent load vector, to be calculated from

rku,‘ ' r/o(zb—a) lob o o o o ] 'f“"
Ruy lob  lo(24+q o o o o Pu,
Ry, (204-4a) (20b+4a) © o o o P )
Ry o o lo(2b-a) lob o 1o) 1 o, f ’
JRV‘> _ 58 ° o lob  l(2t+s) o o P (5.57)
Rug 201 0 0 (20b-%a)(20b+4a) 0 o Pis J
Ry o o o o (Ub-lla) Bb-a) L
Rus, o o o o (9b+a) (2Ub+lla)
R, o o o O  $,(3b-a) 2bs,,
| Re, o o o O =2bs, -5, (3L+a.)J

Before assembling the structure stiffness for solution of the equa-

tions of equilibrium, it is advantageous to eliminate the interior °
degrees of freedom on the element level by the standard technique of

static condensation, thus resulting again in an 8X8 element stiffness

and an 8X1 consistent load vector.
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In order to study the effect of the additional degrees of freedom,
some comparative studies on the element level are presented below,

followed by selected studies on the structural level,

5.8.2 Studies on Element Level

Becau;e the displacement functions used for the stiffness deri-
vation satisfy completeness and inter-element continuity requirements,
convergence of the results will be expected to be monotonic, and the
refined element discussed in this section will always yield more
flexible results than the previously discussed element,

For the closed conical frustrum and curved beam shown in Fig,

5.21, eigenvalues have been calcu-

lated from the element stiffness

o t te! matrix based first on linear in-
' ! plane displacement functions
: 1" ' (referred to as CONE(1)), as well
a) Coxga/efe Conecal FrasStrym as on quadratic in-plane displace-

ment functions, with interior de-

E = 432000 ksf grees of freedom condensed out
yve= o/5

(referred to as CONE(2)), and are

summarized in Table 5.6, In addi-

’
Iz tion, Table 5.6 shows the eigen-—

p values calculated from the differ-~

b) Curved Beam

ence matrix K __,

pift = Kcone(1)
Fig. 5.2/ Example Elewents

CONE(2) *
In studying the results shown in Table 5.6, the following observa-

tions can be made.
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(1) CONE(2) results are always more flexible than the corresponding
CONE(l) results. Therefore the difference matrix has only posi-
tive non-zero eigenvalues. The numerical reduction of eigenvalues
due to the additional degrees of freedom may be appreciable. 1In
case 4, for instance, the largest eigenvalue is reduced by 71.4%.

(2) Rigid body modes are not affected by the added degrees of free-
dom, In the closed conical shell element, all four zero eigen-
values are retained, and two in the curved beam, the other two
being contaminated with the loss of axisymmetry.

(3) The difference matrix has only two non-zero eigenvalues, as one
would expect as a consequence of the static condensation process,
because thus the 8X8 CONE(2) stiffness contains a linear com-
bination of the two interior degrees of freedom, and this is not
present in the 8X8 CONE(1l) stiffness. In the curved beam example,
for n=0, only one non-zero eigenvalue appears because, with
cos® = 0, no energy is stored in the second eigenmode associated
with the interior degrees of freedom,

The above results show that the CONE(2) stiffness is indeed more

flexible than the CONE(1l) stiffness, while still being an upper bound

- to the true stiffness, so that better results can be expected on the

structural level,

5,8.3 Studies on Structural Level

The curved beam of Fig, 5.12a has been analyzed for an angle of
curvature, 90 = 90° and the cross sections B (channel), C (I-Beam), and
D (square box), Fig. 5.12a, as well as the narrow box section F, Fig.

5.19, using the two different element stiffnesses discussed above, and




120

the results are summarized in Table 5.7. In studying these results,

the following observations can be made,

1. Deflections.increase in all cases only slightly with mesh refine-
ment. While for CONE(1l) results, this change might amount to

almost 1%, the chunges of CONE(2) results are much smaller,

o

The effect of mesh refinement on internal forces is slightly

bigger but still hardly noteworthy. But it is interesting to

note that the internal resisting moment, which is calculated as

described in Section 5.5, is virtually unaffected by mesh refine-

ment. A similar observafion has already been made in Table 5.5,

3. The fact that both, CONE(1) and CONE(2) results hardly change with
mesh refinements, together with the observation that the results

of both theories agree to several figures, leads to the conclusion

that these results are very accurate,

Regarding the actual distribution of internal forces, the quadratic
in-plane displacement formulation may have some advantage, Figure 5,22
illustrates the shearing stress distribution at the end of a simply
supported straight beam with a concentrated midspan load and dis-
cretized by various numbers of elements. As can be seen, the results
based on the quadratic variation of in-plane displacements approximate
the true stress distribution much better than the results stemming from
linear in-plane displacement functions, However, at mid-element, the
two formulations are almost identical, so that the stress distribution
from CONE(1) can be considerably improved if mid-element values are
interpolated. But still, the large stress discontinuities between
adjacent elements are not present in the CONE(2) results, so that these

seem to be still more reliable, because in other cases it is more




121

"61°G pue BZI'G "S3T4 295,

601°89] S+0°89 ) 6L¥9° 8LV9" LL9° ST 1PL°GT v009° 1 €665°1 | 689¢ 1| 089¢°1| 91 01 (xoq
axenbs)
680°89| £F0'89| 88G9" 1869° 6L9°G1 | 20L°ST | 886G'1 OL8G 1 | SL9¢ 1| 69S€°1 7 6 a
602 L9 902 L9| g6ES’ 26£6G° 8€9'PP | 9€8'FP | L61°GT 061°6S1 90F " ¥1| 00F ' ¥1| 01 8 (xo0q
MoaIavru v
£€6G°L9| €65 29| PE0O9" 1509° 99 ' PP | P89°PH | GBI'GI 60T°GST | S6£ ¥1| 12€°F1 iZ L d
LLGL9| SIS L9| 1206° 8106 ° 61266 LLS 66 8€6 91| 26 91| %2 9
(neag-1)
0L2°L9] 092" L9 216" 1116° 6VC 66 | GZ8°66 866 91| 916°91| 2CI g ]
29L°L9| T2L L9| T1S6" SLP6 " 6€€ 66 986 " 66 GE6°9T| 968°91| ¢ 7
06S°L9] L8S°L9| 1v22°E€| €522°€ | 001°09 | ¥22°'09 | 10L°€CE P69°€E | 086 81| 926°81| 21 €
(12uueyon)
P6G°L9| €8G°L9| £I0E€ €| SS0E'E | S00°09 | PL0°09 | 269°CE 0L9°€€ | LZ6°81) 116°81] 9 2 d
28G7L9| SGG°L9| 2881'¢€| 9L61°'E | 2I1°6G | €80°'6S | 299°¢e 26S°¢€c | 206°81| 268°81] ¢ 1
(2)ENOD | (T)ENOD | () ANOD [ (T)ENOD | (2)INOD | (T)ANOD | (2)EANOD) | (1)EANOD | (2)ANOD{ (1) ANOD sdyaag| “on ‘ox
juauoly uedspip M wnurxey *N wnutxey gom 3ydty qam 31391 J0 ‘oy|ese) aoMpuww
z-0T X u0T3091y5q uedspiy S804

TIAHT TVHALIMLS NO (Z)dINOD QNV (1I)dINOD NAAMLALE NOSIHVAWOD L°'S TIdVI




122

advantageous to average
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stresses between adja-

cent elements rather

than choosing mid-element

/
| = _ _J
! Elengeyt 2 Elements

values, and this confu-
sion regarding stress in-
terpretation is greatly
reduced in the CONE(2)

theory.

Finally, Fig. 5.23

§ Elestents lo Elemeuts
shows that for a straight

- == COMEG)
—— CONEC2)

box beam, the stress con-
Fg 522 SAw/'\\j Stress Distribufion af centration under an ec-
EK/ 07’ 6"90/)’ sa”or/ec{ﬂeﬂl‘] centrically applied mid-
span concentrated load is much better represented by the CONE(2)
results than by CONE(1l) theory. The CONE(2) result for the coarse
mesh (6 elements) represents the critical Nx—value even better than
the CONE(1l) theory with the fine mesh (12 elements). Accurate ref-
erence values for comparison were obtained by program MULTPL [10.17.
Concluding, it may be stated that the slightly increased compu-
tational effort and additional computer core storage requirement of
about 1300 words justifies the employment of quadratic in-plane dis-
placement functions only if stress concentrations are expected or if
difficulties in interpreting internal stress output arise, i.e., if no
general rationale is available to determine if mid-element stresses or

stress averages of adjacent elements should be used. Improvement of

deflections and overall structural response is so small that it alone
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makes the use of the refined elemenl unnecessary.

5.9 Continuous Curved Folded Plate Theory

5.9.1 Introduction

As versatile and accurate as the curved strip theory in its
form just discussed may be, its restriction to simply supported
single-span structures is a severe limitation which weighs even heavier
if curved bridges are to be analyzed, because many of them, in parti-
cular interchunge structures,; are continuous,

Likewise, muany rcinforced concrete bridges have intermediate
diaphragms which prevent cross sectional distortions under loading, 1In
this case, however, the bridge structure is forced to behave more or
less like a curved beam, and some of the curved beam theories mentioned
earlier should be capable of producing reliable results,.

In addition, it will often be difficult to describe with a folded
plate theory alone the structure-support interaction if the bridge is
supported by single- or multiple-column bents, as most continuous re-
inforced concrete bridges are,

In this section, a force method will be described by means of
which it will be possible to account for continuity as well as trans-
verse diaphragms and flexible frame supports. This method has been
applied by Scordelis [10,17 and Lo [10.87] to straight folded plate
structures to incorporate rigid diaphragms which may or may not be
externally supported. The computer program MUPDI which was written on
the basis of this theory, gave excellent results for a variety of
structures [10,1] [10.2], although there are problems inherent in the

theory, which will be briefly discussed later.
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5.9.2 Continuous Curved Strip Theory

This theory is based on the standard force method of struc-
tural analysis, All unknown intermediate reactions and generally
continuous interaction forces and moménts are approximated by an
appropriate set of discrete forces which are taken as redundants so
that the simply supported single-span structure serves as the primary
structure. Let {501 be the vector containing all displacements of the
structure due to external 1loads acting alone, with all redundants re-
moved, Fig. 5.24a., Each element of this féo?—vector is to correspond
to one element of the redundant force vector fX]. In successively
applying unit redundant loads to the system and solving for the dis-
placements, the individual columns {fi} of the structure flexibility
matrix [F] = [fl f2...fn] will be established, with n being the number
of unknown redundants which are found from the compatibility
requirement

{4} + [F]{x} = [0} (5.58)

from which

{x} = - [FI{4} (5.59)

The actual steps for solving a continuous curved folded plate
structure can then be summarized as follows,

1. 1Identify all intermediate reactions and interaction forces and
moments as redundants and remove them from the structure. Plate
interaction forces may be assumed to vary linearly across a
Plate element, while joint interaction forces are considered con-
centrated or uniformly distributed longitudinally over the width

of the diaphragm or frame support,
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2. Analyzeé the primary structure for the given external 1loads only
and solve for the displacements ¥603 corresponding to the redun-
dant forces,

3. Analyze the primary structure for one redundant force Xi of unit
value, with all other'external actions removed, and solve for
the same displacement quantities as in step 2 to obtain column
{fi] of the structural flexibility matrix [F].

4. Repeat step 3 for i =1, 2,..., n so that the [F]- matrix is com-

plete, and solve Eq. (5.59) to find all unknown redundant forces,

L

Final results are found by superposition of all actions imposed

on the structure, i.e., for some output quantity s,

!
S=s, + L 8 X% (5.60)

czy

where sO is the result due to external loads alone, and si is

the result due to the unit redundant Xi'

If a curved folded plate structure has an intermediate transverse
diaphragm which is not externally supported, then the compatibility
condition, Eq. (5.58) has to be modified because now only the relative
displacements of the various joints have to be zero, provided the dia-
phragm is considered rigid., For example, the 12 redundant interaction
forces shown in Fig. 5,24b are not independent if the diaphragm can
undergo three rigid body displacements so that only 9 interaction force
patterns and the corresponding displacements enter the compatibility
condition Eq. (5,58), The modified flexibility matrix can then be

obtained by

[F] = [BITFI[B] . (5.61)

3=9 9n2 12212 12n9

where [B] is a 12X9 force transformation matrix relating the original
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12 redundants of Fig., 5.24b to a new set of 9 lincarly independent
self-equilibrating interaction force patterns,

In the case that the diaphragm is not rigid or that some flexible
frame is built into the plate system, such as shown in Fig. 5, 24c,

Eq. (5.58) has to be modified as

{dh}+[FI{x} = {J} (5.62)

where
{d}= [F1{-%} (5.63)

is the actual displacement vector for the points where the interaction

forces are acting, so that the redundants are found to be
-1
(X} = -(tr1+0,1)"'{4,} (5.64)

provided the flexibility [£] of the supporting frame is known. For
a general computer program, it is generally advantageous to find [£]

as the inverse of the frame assembly stiffness,.

5.9.3 Examples

The curved box girder of Fig, 5.25a is continuous over two
spans of 50 ft. and subjected to dead 1load only. The interior support
can be thought of as an externally supported diaphragm which may be
simulated by enforcing the conditions 65V = 614V = 610H = 0, Fig, 5.25b,
requiring the solution of three simultaneous equations.

Considering that the same curved box girder has a single simply
supported span of 100 ft., but a rigid movable diaphragm at midspan,
then the 8 selected interaction forces shown in Fig. 5.25c¢ are not in-
dependent, and the original 8X8 flexibility matrix has to be reduced

to order 5 using the transformation, Eq. (5.61), Choosing the inter-

action forces X3, X4, X8 as dependent quantities, the required force
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transformation becomes

v = 9 (53
X, lo 0 o o ) X,
><2_ (o] I.O (@] (o] [o] zz
X3 ~lo 0 -l.o o 10 1 )23 Y
< X, 048 -12 ok 02 O X,
X¢ 0 o] l.o o o X
A/
Xe o o o lo o
X, o 0 o o 1o
Xg "'0-4’5' 0.1 '014‘5- —/.2 o
] 4 2 a2

In the case where the rigid midspan diaphragm is connected to a
flexible single column, as shown in Fig. 5.25d, three additional
degrees of freedom may be introduced, Fig, 5.25e.’ The four corner
node$ can then be connected to the column head by rigid links, Al-
though the system has only three independent degrees of freedom, it is
convenient to solve Eq. (5,64) directly for all 11 interaction forces,
The [F]- matrix for the curved box without column and diaphragm can

11X11

be established from unit-load analyses, while the bent flexibility

may be calculated according to

[f] = [8][f][8]

e lf w3 3x3 3wy
where

B 3 2]
L o L
3eT _ 2E1

= £ o

t1=le &

(2 L
Q =
2&r Er
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represents the flexibility of the single column fixed at its base,

and [B] is the force transformation matrix, in expanded form

%, ]
xl
X3
X
Xs
X6
¥
Xg
%y

Xio
\ x“'J
In Fig. 5.26, longitudinal stress distributions at the midspan section

x = 50 ft, (B = 11.46°) are plotted for the single simply supported

span and the three other cases for which it serves as primary struc-

ture, As can be seen, the influence of the movable diaphragm appears

to be small, but the load transfer from the interior (left) to the ex-

terior girder (right) is clearly noticeable, Fig. 5.26c. Actual 1load
distributing effects will be more pronounced under the action of con-

centrated loads and should be studied using more redundant interaction

forces, The high stress concentrations over the points of unyielding

support, Fig. 5,26b, would be reduced if more interaction forces had

been selected, as the stress distribution over the flexible support

already demonstrates, Fig. 5.26d,

Figure 5,27 illustrates the Variation of transverse bending

moments at the quarterspan section x = 25 ft. (8 = 5,73°) for all four

cases, While the movable diaphragm reduces these moments slightly,

Fig. 5.27a and c, the moments arc almost identical in the two con-

tinuous cases, Fig. 5.27b and d,
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Figure 5.28, finally depicts the variation of gross internal
resisting moment along the span. The column stiffness in this example

is so high that the maximum negative moment is reduced by only 6.5%.,

The axial force in the column was found to be 220.5k, the bending

moment 3.26|k, and the shear force, O.53k_ A total of 50 non-zero

harmonics has been used to represent all loadings and interaction

forces,

5.9.4 Problems Related to Continuous Bridge Theory

One main difficulty inherent in curved strip results for con-
tinuous structures originates in the harmonic idealization of the
problem. The question of how many terms of the Fourier series are
needed to yield satisfactory results depends on a) the type of load-
ing, b) which output quantity is referred to, and c¢) what specific
degree of accuracy is called satisfactory.

Regarding the loading type, it should be noted that the Fourier

representation of a uniform 1load,

R

N . AT
4“604&&(2“‘1“5“-\

P = = yoo L (5.65)

"

is converging slowly but in a monotonic manner, Fig, 5,29%a, while

the representation of the Dirac-delta for a concentrated load P at

X = gr
2P g S oo MR
0 o °  AFX
<« s G X
P =T N-oao‘,'z_, MR (5.66)
is divergent, Fig. 5.29c, or more specifically, the distance between *

successive roots of Eq. (5.66) converges towards zero, while the
amplitudes remain bounded by the envelope indicated in Fig. 5.29c by

the dotted line. The series
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4 . N_ﬁb&ﬂs- wrd oz ATX
40<’<>=—f“5:~;..2n Lo SMIr S T (5.67)
Anl

finally, represents a load of intensity P» uniformly distributed

L
over a width &, with centroid at €, Fig., 5.29b., For € = 8§ = — ,

2
Eq. (5.67) takes on the form of Eq, (5.65), and for 8§ = O such that
po-6 = P, it reduces to Eq. (5.66), The rate of convergence of the
series Eq. (5,67) depends on the ratio 5/L.

The convergence of output quantities is illustrated by Fig. 5.30
for the simply supported single-span curved box girder of Fig, 5.25a,
subjected to a vertical concentrated midspan load at joint 10, All
output quantities shown in Fig. 5.30 are measured in the web element
right under the load, only the values given for u, Nse, and MSe are
those at the support because they are zero at midspan, Figure 5,30
clearly demonstrates the different convergence behavior of displace-
ments, in-plane forces, and bending moments, It is of particular
importance to realize how slow the convergence of moment quantities
for this type of loading may be,

The required degree of accuracy will usually be up to the designer
for whom slide~rule accuracy used to be one guideline. 1In this light,
displacements and membrane forces in the example of Fig., 5.30 are
accurate enough for N 2 80, i.,e. if at least 40 nonzero terms are
used,

There are cases, however, for which a very high degree of accuracy
may be necessary. The flexibility matrix [F] of certain continuous
folded plates may be highly unstable in a numerical sense, For

example, even the set of equations for the redundants of Fig. 5.25b

is not very well-conditioned, Using 25 nonzero harmonics, one obtains
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with the solution
X,= —llo, 01677 Xy = —0.0517 9151 Xg = — U4, 15455 |
If 50 non-zero terms are accumulated, the equations become !
=] _ 4 * o -
5846 W7 -15° 6076 84sv 155 . 60236992153 [ x, 1206 2957 10°

6576 8454157 . T672 5983157 . Mo3 7208-10"*| { X, P D=L /932 Boof 1o

502369921073 . 1/03 7218 107 | 6230 #286-15 %

= [

S /263 3673 '/0‘7

with the solution

X, = = . 42848 X, = - 0.4586 §520  X3= - [08.9265%

A maximum change of the flexibility coefficients well below 1% effects
a-change of the vertical reactions by 5%. The flexibility matrices of
other structures may be so ill-conditioned that small changes of the
individual coefficients may alter the reactions completely.

The consequence of this fact is that either an extremely large
number of Fourier terms has to be used in the analysis, or less
coupled sets of redundant force patterns must be selected in order to
reduce the magnitude of the off-diagonal flexibility coefficients. But
for a general computer program, it will be difficult to establish for
each case a well-conditioned set of redundant force patterns automa- :
tically,

Finally, the choice of the primary structure itself is generally
poor, because large correction forces are required to restore com-

patibility, However, this deficiency may be partially overcome by
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estimating the magnitude of éertain interaction forces and analyzing
the structure subjected to these estimated forces in addition to the
given external loads. The correction forces required to restore

complete continuity can be reduced considerably by this procedure,
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6, BEHAVIOR OF CURVED BOX GIRDER BRIDGES

6.1 Objective

In this chapter, curved box girder bridges are analyzed using the
methods presented in the last two chapters. After a comparison between
the results of the finite element and curved strip theory, selected
parameter studies will be described with the objective of providing an
insight into the behavior of curved box girder bridges. Only once
their main structural action is basically understood and the influence
of the various geometric parameters recognized, will it be possible to
derive some generally applicable design recommendations.

In Chapter 2 it has been shown that the designer is generally con-
fronted with two basic types of highway bridges -- those supporting
through traffic lunes (open highway), and those supporting turning
roads. While the open highway is usually designed for higher speeds
(therefore small curvatures), it is mainly the ramps with lower design
speeds and sharp curvatures that are of interest for refined analyti-
cal studies., These ramp structures, moreover, very seldom carry more
than two traffic lanes, so that cross sections with 1 to 5 cells may
constitute economical designs. In this chapter, therefore, the one-
and two-cell bridge will be studied in some detail, and the findings

will be extrapolated to 3- and 4-cell bridges,

6.2 Comparison Between Finite Element and Curved Strip Theory

In order to study the relative agreement between the two methods
of analysis described in chapters 4 and 5, the box girder bridge of
Fig. 6.1, subjected to a standard AASHO truck in either position A or

B, has been analyzed by programs FINPLA2 and CURSTR with the mesh
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layou. depicted in Fig. 6.1c., Resulting longitudinal stresses N9
and transverse bending moments Mr due to the truck placed at
position A are shown in Fig. 6.2, and for truck B in Fig. 6.3, all
results referring to the midspan section.

As can be seen in Figs. 6.2 and 6.3, disagreement between Ne—
values may be as high as 10%. However, this high discrepancy is mainly
restricted to web elements, while agreement in the top and bottom deck
piates is much better, so that the total statical moment by the two
methods differ by only a few percent. There are several possible
sources to explain the difference between the two theories. Firstly,

fairly coarse mesh layout was used so that it is difficult for both
theories to capture the severe stress concentrations in the vicinity
of the concentrated wheel loads. Secondly, only 50 harmonic terms were
used in program CURSTR to describe the wheel loads. As was shown
earlier, this is clearly not enough to obtain convergence of any in-
ternal forces or moments in the vicinity of the load. Additional
harmonic terms will increase the critical stresses, and better agree-
ment with finite element results which are consistently higher, can be
expected.

Agreement between the two theories for transverse bending moments,
on the other hand, is excellent. In fact, the differences are almost
negligible, which seems to indicate that the plate bending element
model of program FINPLAZ behaves much more like the curved strip ele-
ment than the in-plane element model does.

Concluding, it may be stated that the agreement between finite

element and curved strip theory is satisfactory for practical purposes,
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and it can be expected to improve with further mesh refinement. This
check is invaluable for the analysis of curved box girder bridges

for which no other general refined methods of analysis are available,
Since both theories are completely independent, it can be assumed if
they lead to very similar resulis, that these results are good

approximations to the true solution.

6.3 Concept of Wheel Load Distribution

Before studying the effect of the various influence parameters on
the behavior of curved box girder bridges, it is necessary to define
the concepts of the design philosophy in which the subsequent findings
will be evaluated. The final design question in the context of this
chapter will be the determination of the amount of reinforcing steel
required for sufficient strength under design loadings. One direct
approach to the solution of this problem is to analyze the bridge by
an appropriate method for all possible loading conditions, to deter-
mine for each point the maximum or minimum stress, and to assign the
corresponding quantity of reinforcement to cover these stresses. For
practical purposes, however, this approach will be Justified only for
very unusual structures, and for more ordinary bridges, a simplified
method of design will be desirable.

One such simplified approach can be obtained by defining discrete
girders in the bridge. For box girder bridges, interior girders will
in general be of I-beam shape with top and bottom flanges equal in
width to the web spacing while exterior girders consist of an exterior
web with a top flange extending from the midpoint between girder webs

to the edge of the cantilever overhang and the bottom flange being
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cqual in width to half of the web spacing, Fig. 6.4. Once these

J L I L 1 } L |

\\ J J N I lé>/

Fig. 6.4 Design Model for Box Girder Br/{ga

discrcete girders have been defined, the problem of obtaining the re-
“quired amount of reinforcement is much easier, because the question

to be answered becomes now: How much reinforcement does any one of the
individual girders require fqr sufficient strength under some given
design loading or loading envelope?

This problem can be solved by introducing the concept of load
: distribution, as long as it can be determined what the maximum share
of the load is that any one girder may take. In [10.3] the distribu-
tion of wheel loads in straight box girder bridges had been studied
extensively. In particular, the useful concept of two extreme cases
had bheen introduced: a so-called "rigid" bridge with perfect load
distribution, in which each girder takes the load proportional to its
bending rigidity; and the so-called '"'flexible' bridge without any
load distribution, in which each girder has to carry alone all loads
directly applied to it. Any realistic bridge will fall somewhere in

between these two extremes.
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In Chapter 7, the application of this design concept will be
exemplified. The definitions introduced so far shall be sufficient to
explain the emphasis put on load distribution in the following sec-
tions. The discussion shall be restricted to distribution of wheel
loads, because for spans usually encountered in highly curved bridges,

these will be the most important design live loads.

6.4 The Single-Cell Curved Box Girder

Notation for the prototypc box girder to be studied in this sec-

tion is given in Fig., 6.5. The large number of influence parameters
A R /
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makes thce problem prohibitive, thereforec it has to be restricted to
those considered to be the most important. Besides the span L and
curvature radius R , also the cell width at the top, Bt , and
depth , D, or depth~span ratio will be taken into account, whereas
other factors such as plate thicknesses, web inclination angle, top

slab overhang, and material properties will be kept constant at the

values indicated in Fig. 6.5. The box girder is considered to be simply

supported at both ends. Loading consists of a standard AASHO truck

{10,291, placed transversely in either position A or B, and longitudi-

nally such that the second axle is acting on the midspan section.
Table 6.1 summarizes the cases that were studied, indicating the

selected values for the variable parameters. As for the cell width,

TABLE 6.1 CASE STUDY LIST FOR SINGLE BOX

Radius R | 100004 1 000 400 300 200 100
B|D/L L Truck | Truck| Truck| Truck]| Truck Truck| Truck |Truck} Truck {Truck| Truck
A A B A B A B A B A B
40 X X X X X
60 X X X X X X bq
80 X X X X X X X X X
12
100 X X b's X X X X X X
.04 | 60 b3 X X X X X X
.07 { 60 X X X X X X X
14} .055{ 60 X X X X X
16| .055| 60 X X b4 X X

*Considered to be a "straight” bridge.
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it must be admitted that the listed values are unusual for one-cell
box girders in the United States, although they are fairly common in
European practice. But then, the plate thicknesses usually taper
towards the webs, and the values given in Fig. 6.5 are probably in-
adequate. For studies of load distribution, however, the values indi-
cated are believed to be informative. The cases with R = 10,000 ft.
are considered as limiting cases of essentially straight bridges.

All 54 cases listed in Table 6.1 have been analyzed by program
CURSTR, using a mesh of 10 elements for B = 12' and 11 elements for
B > 12', with 50 terms of the Fourier series representing each wheel
load assumed to be distributed longitudinally over one foot. Resulting
midspan girder moments are listed in Tables 6.2a and 6.2b. The amount
of wheel load distribution may be represented by the moment percentage
which is the fraction of the total moment carried by any one girder.
These moment percentages are also listed in Tables 6.2a and 6. 2b.

Some small inconsistencies may be discovered in comparing cases
which should theoretically have the same total moment from the analy-
sis, The disagreement is mostly due to the coarse mesh and small
number of harmonic terms used in the analysis, These differences,
however, are of influence only in comparing the absolute girder mo-
ments, but the moment percentages are hardly affected. For verifi-
cation, one case (Table 6.2a, R = 100 ft,, L = 60 ft., Truck A) was
also analyzed using 18 elements and 100 harmonic terms. As a conse-
quence, the girder moments are changed from 415.8 to 440.1 and from
333.3 to 350.5 ft-kips, respectively, while the percentages change
only from .555 to .557 and from .445 to .443, respectively. This case

reinforces the contention that the approximate analyses gave accurate
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girder moment percentuages.,

In studying the results of Tubles 6,24 and 6.2h, the following

obscervations can bhe made,

Load distribution is always better under truck B, i.c.,, when the
truck is pluced on the outside girder. This phenomenon is similar
to the one discussed with the curved plate problem in Section
5.6.3. The interior girder is stiffer than the exterior girder
and therefore attempts to carry a larger portion of the load.

I directly lToaded with the truck, it is not willing to {ransfer
much of this load, But il the more flexible exterior girder is
loaded, the interior girder is very successful in attracting an
appreciable amount of the load,

If curvature increases, the outside girder becomes more flexible
and the inside girder stiffer., Consequently, load distribution
improves with curvature increasc, as long as the outside girder
is loaded, otherwise load distribution gets worse. This behavior
is independent of span, cell width, and depth-span ratio,

A truck placed on the outside girdér produces a bigger total
statical moment than if pluaced on the inside girder, because the
spans of the two girders are different,

The two phenomena just discussed have a cancelling effect, While
the span increuase tends to incrcase the moment carried by the
outside girder, the reduction in stiffness tends to decrease it
again, The converse is true for the inside girder. The very in-
tercsting consequence of this fact is that the design moments for
both girders are very similar. In that respect it can be said

that curvature has only a small effect on the relative girder
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moments, although the absolute moments do increase with curvature,
In one case of Table 6.2a (R = 100 ft,, L = 80 ft.), the interior
girder takes more moment than the exterior girder, even if the
truck 1is placed over the outside girder. This case, however,
involves an opening angle of 45.8° which is highly unlikely to
occur in bridge practice.

The influence of span is similar to the one found for straight
bridges [10.3]. Short spans are stiff longitudinally, and wheel
loads cannot easily be distributed onto unloaded girders. As the
span becomes longer, the transverse bridge stiffness increases
relative to it, so that load distribution improves.,

The depth-span ratio has a similar effect. If the girders become
shallower, the longitudinal bridge stiffness decreases, and load
distribution will improve. For h;gh depth-span ratios, on the
other hand, load distribution will worsen,

Also the influence of the cell width can be interpreted in this
manner, except that now the transverse bridge stiffness is
affected. An increase of this stiffness relative to the longi-
tudinal bridge stiffness will improve load distribution (decreasing
Bt). But an increasing cell width Bt weakens the transverse
stiffness, and the loaded girder will have less chance to transfer
load to the other girder. The influence of plate thicknesses can
be predicted with the same reasoning.

Since the selected box dimensions permit only one traffic lane to
be carried, the moments listed in Tables 6.2a and 6.2b would be

design moments,




6.5 The Two-Cell Curved Box Girdoer

The cross section of the prototype bridge to be studied in this
section, is shown in Fig. 6.6. As variable parumeters, again the
radius of curvature, R, and the cell width Bt deserve most attention,
but aulso two different spans were considered. Table 6.3 lists all

cases studied,

TABLI 6.3 CASE STUDY LIST FOR TWO-CELL BOX

Cell Span CrlFlcal Radius
Width B I Loading for .
’ Girder 10 000 1000 400 300 200 100
1 X x < x
60 2 x x
3 " x N
7
1 x x x - <
100 2 x X x «
3 x x x x
1 X x x <
8 60 2 x N
3 x X <
1 X < x <
Ho 60 2 X X X X
3 x < .

In an investigation of this bridge with the three girders as shown

in Fig., 6.6, the question of critical truck positions arises, While
these positions are obvious for both exterior girders 1 and 3, the

loading ftor the center girder 2 c¢an only be tound by trial and error,
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because shifting a truck from the central position towards the outside
girder increases its total staticual moment, and provided there is enough
curvature, then "the share that girder 2 gets from this added moment
may very well be larger than the loss due to the shift of the truck
away from center, Table 6.4 illustrates this phenomenon for two

cases., The trial truck positions are shown in Fig. 6.7,

TABLE 6.4 MOMENTS OF GIRDER 2

Truck Position
(Fig. 6.7) A B c
R = 200'
Case 1 - 343.4 345.7 346 .0
L = 60'
R = 1000’
Case 2 - 627 .4 626 .6 622.9
L = 100

In case 1, the curvature is large enough so that truck position C is
the critical case, while in case 2, truck position A produces the
maximum moment as in a straight bridge situation,
For a cell width of Bt =7 ft., only one truck may be placed on
the bridge, because the AASHO

6 4’ 6’
N L L L AP . .
] T 7 T specifications [10,297] require

a clearance of 4 ft. between

> 4
\ / standard trucks. For Bt = 8 ft,

[ however, two trucks can fit on-
¥

[+
—
n

to the 16 ft. roadway, with
Fg. 6.8 (ritical Loaiz@ for
Tdo- Cell Box with, 31"‘8#

their transverse position fixed,

Fig. 6.8, This loading will be
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critical for all three girders. The cases listed in Table 6,3 for
Bt = 8 ft., were therefore analyzed for up to three single truck
loadings, two of which give the loading of Fig. 6.8 if combined. For
Bt = 10 ft,, finally, two trucks may be shifted transversely across
the bridge to produce the maximum moments for any girder, In prac-
tice, the 20 ft. roadway might correspond to a 12 ft. lane plus an
8 ft. shoulder.

In analyzing with program CURSTR each of the cases listed in
Table 6.3 for maximum girder moments, the results summarized in Table
6.5 were obtained, again with 50 terms of the Fourier series repre-
senting the loads, and now 14 elements approximating the bridge cross
section, The moment values listed in Table 6.5 are actual design
moments, i.e., in each case produced by the most critical truck posi-
tions. The moment percentages indicate what fraction these design
moments constitute, compared with the total statical moments produced
by these critical loading conditions. Because moments for different
girders may be caused by different load patterns, the percentages do
not necessarily add up to 1.0.

In studying Table 6.5, the following observations may be made.
1. The moments of girder 1 and 2 always increase with curvature, al-

though this increase is worth mentioning only for strong curva-

tures--reflecting the increase of statical moment with curvature

as it was already observed in the curved beam problem, Fig. 5.12.
2. The moment of girder 3 initially decreases slightly with increasing

curvature and starts increasing for larger curvatures. This be-

havior clearly demonstrates the two opposing effects mentioned in

the previous section., A similar phenomenon was observed in the




158

TABLE 6.5 GIRDER MOMENTS IN TWO-CELL BOX GIRDER
cell Span
idth pL Radius R 100001 000| 400 300 200 100
By
Girder | Moment 252 .6 252,91 253.7 | 258.8
1 % .318 . 323 . 325 .332
Girder | Moment 340.7 341.4 | 346.0 | 364.2
60
2 T .429 .420 421 .420
Girder | Moment 252.6 253.41] 254,7 | 261.5
3 o .318 .312 .309 .301
7
Girdoer | Moment 177.6 | 178.8 | 482.5 | 485.1 | 493.1
1 % .316 .318 321 323 . 326
Girder | Moment 627.0 1627.4 1 630.51 636.0 1 649.0
100
2 % .414 .414 414 413 .409
Girder | Moment 477.6 | 176.7 | 477.3 | 478.4 | 482 .6
3 % .316 .313 310 .308 . 304
Girder | Moment 457.2 467.6 | 474 .1 | 500.4
1 % .288 294 297 . 306
Girder | Moment 674 .4 677.2 | 680.2 [697.3
8 60
2 o .424 .424 . 424 .424
Girder | Moment 457 .2 450.,5 | 448.7 | 448.6
3 % .288 282 .279 .270
Girder | Moment 470.3 478 .1 | 480.5 | 506.3
1 % .296 .302 . 303 .316
Girder | Moment 701,5 703.9 ) 706.9 | 723.6
10 60
2 % .442 .441 .441 .440
Girder | Moment 470.3 464.6 | 463.6 | 465.4
3 % .296 .289 .285 L275
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discussion of the curved plate problem, compare Fig, 5,14,

The fraction of the total moment which any girder of a straight
bridge carries is approxiﬁately proportional to its bending
rigidity., For example, the interior girder of the two~cell bridge
of Fig. 6.6 accounts for about 42% of the total bridge moment of
inertia, while each exterior girder contributes about 29%. These
values are very close to the moment percentages taken by the three
girders in the case R = 10,000 ft., Bt = 8 ft., for which the
loading of Fig. 6.8 happened to be the critical one for all three
girders.

In the curved case, the girders change their relative stiffness,
While the central girder maintains its original length, the out-
side girder becomes longer and more flexible, while the inside
girder becomes shorter and'stiffer. Correspondingly, the percen-
tages of girder 2 hardly change at all with curvature, but for
girder 3 it decreases steadily, and for girder 1 it increases with
increasing curvature,

The influence of span on load distribution is small, but the same
"distribution" effect of longer spans can be observed like in the
preceding section, For L = 60 ft,, R = 10,000 ft., girder 1 and 2
take 31.8 and 42.9% of the design load, respectively. For L = 100
ft., these values become 31,6 and 41.4%.

The cell width is important in two respects. First, it determines
the number of trucks that may be placed on the bridge. Secondly,
it accelerates the curvature effects, The wider the bridge is, the
faster the stiffness of girder 1 increases and the stiffness of

girder 3 decreases with growing curvature. This acceleration can




160

be seen in comparing the cases of Bt = 8 ft, with those of Bt =

10 ft,

6.6 Additional Studies of Curved Box Girders

In the last two sections, the one- and two-cell box girders have
been studied in some detail. In this section, the first objective
will be to investigate if the findings and observations of these
studies also apply to three- and four-cell bridges,

Figure 6.9 shows the selected bridge cross sections and the 1load
cases for which they were analyzed. Table 6.6 summarizes the cases

studied.

TABLE 6.6 CASE STUDY LIST FOR 3- AND 4-CELL BRIDGES

Z;i:;; 4-Cell Bridge
Load Case A B A B C D
Radius
10,000 X X X X X
400 X X
300 X X
200 b g X X X X X

Again, program CURSTR was used to analyze these bridges, using 50
harmonic terms to represent the wheel loads, and discretizing the
bridge cross section with the mesh layouts shown in Fig. 6.9. The
resulting girder moments at midspan and their percentages with res-
pect to the total midspan moment are listed in Table 6.7 for the

three-cell bridge, and in Table 6.8 for the four-cell bridge.
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Because of the small probability that many lanes are loaded simul-
tancously to the muxlmum, the AASHO specifications permit a reduction
factor of 0,9 for three loaded lanes, and 0,75 for 4 or more loaded
lanes, In Table 6.8, therefore, the moment values due to load cases

B and D are already reduced by 10%,

TABLE 6.7 GIRDER MOMENTS IN 3-CELL BRIDGE

Radius R 10,000 400 300 200
Moment 657 .6 671.0 677.5 693.4
Girder 1
% 217 .222 . 224 . 227
Moment 911.9 916 .7 920.,6 932.0
Girder 2
- % .302 .303 . 304 .305
(1)
a Moment 870.8 862.,7 862.1 864.1
© Girder 3
§ % , 288 . 286 .285 . 283
[
Moment 584.6 570.3 567.0 562.9
Girder 4
% .193 .189 .187 .185
Total Moment 3024.9 | 3020.7 | 3027.2 | 3052.4
Moment 584 .6 608.7 618.4 641.1
Girder 1
% .193 .199 . 200 . 204
Moment 870.8 890.1 898.7 919.9
Girder 2
@ % , 288 . 290 .291 .293
[}
o Moment 911.9 916.6 920.4 931.6
©1 Girder 3
E % .302 .299 .298 . 296
[
Moment 657.6 650.5 650.0 651.5
Girder 4
% . 217 .212 , 211 . 207
Total Moment 3024.9 | 3065.9 | 3087.5 | 3144.1




TABLE 6.8 GIRDER

MOMENTS IN 4-CELL BRIDGE

163

Radius R 10 000 400 300 200
Moment 558.1 580.8
Girder 1 -
rrae % 184 194
Moment 737.7 745.7
Girder 2 . .
< © % 244 249
Q Moment 688.6 679.7
b i rd 3 . .
8 Girder 7 558 556
Moment 614.8 592.8
= irder 4
g Girder % 203 198
Moment 425.1 398.7
i rd 5 .
Girder % 141 133
Total Moment 3024.3 2997.7
. Moment 680.8 730.7
Girder 1 . :
© % .167 .175
Moment 918.5 957.4
. 2 . .
@ Girder % 325 230
o Moment 909.6 927.1
m : d 3 . -
8 Girder 7 223 222
Moment 908.7 906.5
T i rd » .
@ Girder 4 % 222 217
—
Moment 666 .4 648.4
ird 5
Girder 7 163 156
Total Moment 4084.0 4170.1
Moment 426.7 482.1
Gird 1 -
traer % 141 151
. Moment 616.2 671.3
, der 2 : :
© Girder 7 203 210
)
bre . Moment 689.3 728.3
Girder 3
S % .228 .228
Moment 737.6 759.0
o : . .
Gird 4
§ traer % 2aa 237
Moment 557.0 5568 .4
ird 5
Girder % 184 174
Total Moment 3026.8 3199.1
. Moment 668.6 722 .6
d 1 .
Girder % lea 17%
Moment 909.8 954 .4
. 2 .
A Girder % 523 228
& Cirder 3 Moment 909.7 932.9
8 % .223 222
) . Moment 917.6 920.7
§ Girder 4 % 224 55¢
Girder 5 Moment 679.0 664 .4
% .166 .158
Total Moment 4084.7 4195.0
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Tables 6.7 and 6.8 exhibit very similar characteristics as werce

obscrved for one- and two-cell bridges., As belore, Lhe total moment
al midspan goes initially down with increasing curvature, if the stoan-
dard AASHO trucks are shifted towards the center of curvature, But if

the curvature grows further, then the total statical moment increases

also from some specific curvature on, The critical load case for i
girder 1 and 2 of the three-cell bridge is case A, while case B pro- .
duces the higher moments in girders 3 and 4, as one would expect.

Likewise, in the four-cell bridge, the load cases A and B are critical

for girders 1 and 2, while load cases C and D produce maximum moments

in girders 3, 4, and 5,

In comparing the girder design moments for the three-cell bridge,
it is interesting to note that the two interior girders 2 and 3 are
subjected to about the same maximum moment for all considered curva-
ture radii, while the design moment for girder 1 is always higher than
for girder 4. However, the average of the moment percentages for
girder 1 and 4 remains almost constant at the value .205, while the
average of moment pcrcentages for girders 2 and 3 is approximately
.295, independent of the curvature. These values are again the rela-
tive girder stiffness factors, i.e., the ratio of the individual girder
moment of inertia to the total bridge moment of inertia. The same
Observation can be made also with the four-cell bridge, where the
stiffness factors are .163 for girders 1 and 5, .224 for girders 2 and
4, and .226 for girder 3.

Finally, it is desired to obtain a general idea of the effect of
end boundary conditions on the load distribution of curved box girder

bridges. So far, only simply supported bridges have been analyzed.
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Below, the results for the two-cell box girder of Fig. 6.6 with one

or both ends fixed against any displacements, will be presented for

the two different truck positions of Fig. 6.8, The radius of curva-

ture was chosen to be R

B
t

= 8 ft., and depth D

200 ft,

i}

the span L = 100 ft., cell width

5.5 ft. For the analysis, program FINPLA2

was used, and the results are summarized in Table 6.9. The following

conclusions may be drawn from these results,

1,

Comparing the girder moment percentages at midspan and at a
fixed support, a redistribution of moments can be observed simi-
lar to the one previously found for straight bridges [10.37]. While
girder 2 takes at both sections a comparable fraction of the total
moment, girder 1 is released of much of the load due to truck A,
while gaining only little additional 1oad from truck B, so that

as a net result, at a fixed end support, girders 1 and 2 receive
moments of similar magnitude so that all three girders may be
assigned moments proportional to their moment of inertia,

In comparing the results of Table 6.9 with the corresponding ones
in Table 6.5 (L = 60 ft,, Bt = 8 ft., R =200 ft.), it is found
that at the midspan section, girder 1 takes a fraction of the
total moment which is almost independent of the end conditions
(.297 for both ends simply supported, ,292 for one end fixed,

.296 for both ends fixed), while the share of girder 3 tends to
decrease (.279, ,262, .259 for the three cases) .

Although the results of Table 6.9 are too few to permit any gen-
cral conclusions, similar continuity effects can be observed as
were reported on straight bridges [10.3]. Fixing either one or

both end supports reduces the effective span, and a general
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TABLE 6.9  MOMENTS IN-CURVED BOX GIRDER
WI'TII ONF OR BOTH ENDS FIXED

- e B IR
MLdspan support
Momont ot
Moment. % Moment. “
Girder 1 279.9 . 334 -314.2 .302
Girder 2 372.9 .445 -457.7 .440
Truck
A*
Girder 3 185.2 . 221 -267 .7 . 258
Total 838.0 | 1,000 | -1039.6 | 1.000 B
- Girder 1 215.0 .251 -289.8 ,259
0]
<
i | Truck Girder 2 382.0 .447 -495,2 . 442
o B*
5 Girder 3 258.0 . 302 -335.5 . 299
[}
5 Total 855.0 | 1.000 | -1120.5 | 1.000
Girder 1 494 .9 .292 -604.0 . 280
Truck Girder 2 754 .9 .446 -952.9 .441
A+B o
Girder 3 443.2 .262 -603.2 .279 .
Total 1693.0 | 1.000 | -2160.1 | 1.000 ‘
Girder 1 210.4 . 356 ~203.4 .317
Truck Girder 2 261 .9 .444 -281.6 .439
A*
Girder 3 117.7 . 200 -156.7 . 244
Total 590.0 | 1.000 -641.7 | 1.000
- Girder 1 143.4 . 236 -170.7 . 250
[43]
»
& | Truck | Girder 2 270. 2 .446 -301.4 .442
0 B*
E Girder 3 192.8 .318 -210,1 .308
§ Total 606.4 | 1.000 -682.2 | 1.000 )
m
Girder 1 353.8 .296 -374.1 . 283
Truck | Girder 2 532.1 .445 -583.0 .440 .
A+B
Girder 3 310.5 .259 -366.8 277
Total 1196.4 | 1.000 | -1323.9 | 1.000

*See Fig. 6.8,
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worsening of load distribution will result. As a consequence,
girder moment distribution factors will increase, although the
actual design moment might decrease because the total statical

moment due to the truck loading is divided into positive midspan

and negative support moments.




168

7. DESIGN OF CURVED BOX GIRDER BRIDGES

7.1 General

In Chapter 2, design had bceen defined in a very broad scensc, It
may be described as a process in the course of which by successive
decisions the most important parameters are to be determined, followed
by assigning values to the less important variables. As was seen in
Chapter 2, the general alignment and geometrical layout of bridges are
not likely to be determined by structural considerations. In most cases,
in fact, they will be chosen in order to satisfy highway engineering or
other requirements.

In the context of this chapter, design will be defined as follows.
Given the major dimensions of individual bridge components, what strength
has to be assigned to these components such that the bridge behaves
satisfactorily under given loadings at optimum cost? For this purpose
it will be necessary to determine the maximum shears and moments in all
"bridge girders under the most critical combination of loads.

Various approaches are possible to achieve this goal. As mentioned
in Section 6.3, an accurate method would require many complete bridge
analyses in order to construct maximum moment envelopes for each girder.
Approximate design methods, however, will in most cases be justified and
even preferable, as long as it can be shown that the resulting designs
are on the safe side and not overconservative. Such a simplitied design
method will necessarily take all major influence parameters into ac-
count. For straight bridges, the concept of ﬁumber of lines of wheel
loads was very useful. Because the actual moment associated with one

such wheel load line can be calculated fairly easily, any girder design
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moment may be determined as soon as it is known what the maximum possible
number of wheel load lines falling on the considered girder is,

For curved bridges, this wheel load line concept cannot be applied
without modification because the girder design moment due to one wheel
load line is a function of the transverse position of the line of wheel
loads. In Section 7.3, therefore, such a modification will be intro-
duced into a simplified design method.

The emphasis in this chapter is put on global design of the bridge

superstructure. Local design problems and substructure considerations

are of different nature, but may be equally important. They will

briefly be mentioned in Section 7.4,

7.2 Accurate Method of Design

The accurate determination of internal stresses in curved box
girder bridges requires the availability of computer programs such as
have been described in this dissertation, to give all important internal
forces at any point of the structure, due to wheel loads, placed any-
where on the structure. Since both programs, CURSTR and FINPLA2, have
been shown to converge towards results which are exact within the limi~-
tations of linear theory of elasticity, any degree of accuracy may be
achieved with mesh refinement. An accurate design procedure would then

involve the following steps.

1. Select for each bridge girder a set of points for construction of
the maximum moment envelope--for continuous bridges also for mini-
mum moments.

2. Using any approbriate refined method of analysis, establish the

influence surface for the moment at some point A out of the set of
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points selected in step 1. The ordinate at some point B of this
surface would indicate the girder moment at point A duc¢ to a unit
load at point B.

3. Find for this influence surface the most critical loading, by

forming any possible combination of standard AASHO trucks and
applying reduction factors if more than two lanes are loaded
simultaneously. For the critical truck combination, add up the
influence surface ordinates to obtain the maximum (or minimum)
design moment for the girder under consideration at point A.

4. Repeat steps 2 and 3 for all the points selected in step 1.

The design method outlined above leads directly to the critical design
moments, circumventing the determination of maximum numbers of wheel
lines from which the critical moments would have to be determined in
additional steps. «
This refined design method is recommended mostly for unusual struc-
tures for which approximate desipn methods are not reliable. It may
also lead to substantial savings whenever applied to repetitive standard
structures. The disadvantage of this method lies in the large number
ol required complete bridge analyses and the considerable amount of data
reduction. However, a multiple load case option in the computer program
may permit the execution of all necessary load cases in one run, for
little extra cost. A standard subroutine for plotting contour lines of

influence surfaces will help reduce manual data reduction considerably, -

7.3 Simplified Method of Design

Although the accurate design method outlined abgve may be used with

advantage for many structures, engineers generally prefer to determine
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girder design moments by a much simpler procedure, preferably by a set

of some simple equations, arguing that in most cases, the savings through
a refined design method are so small that they hardly justify the com-
putational effort involved in it,.

The results from the parameter studies of Chapter 6 are not com-
plete enough to base a very general design formula on them. However,
these results do permit a general prediction of curved box girder
behavior.

The proposed simplified design method would consist of the follow-

ing steps.

1, Calculate the moment M0 due to one line of wheel loads applied to
a straight beam of the same span as the developed length of the
curved bridge reference line. For the simply supported beam of

Fig. 7.1, this moment is given by

2
Mo =0.09 L. - .8398L - 54,041 (7.1)

| | where L is the span length.

l Llr | L/2 [

Fig. 1.1 Siwmply Saﬁaan‘ed Beaw
Wit Owe heel Line

2. Determine the number of wheel lines acting on the bridge, N

wL
For one traffic lane, NWL = 2, for two traffic lanes, NWL =4 ,
for three lanes, NWL = (6)(0.9) = 5.4, and for four or more traffic
lanes, NWL = (ZNL)(O.75) = 1.5 NL’ where NL is the number of lanes,
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3. Calculate for each girder the relative stiffness factor o,

according to the formula

|
_ IGlrder (7.2)
Bridge
where I is the moment of inertia of the girder under
Girder
consideration, and I is the moment of inertia of the total

Bridge

bridge cross section about the neutral axis. Because most box
girder bridges have regular web spacings, Eq. (7.2) will have to be
calculated usually only once for a typical interior girder, and
once for a typical exterior girder,

. 4. Calculate girder moment distribution factors according to the

formula
o=1+8[21 . Ly (7.3)
R 600 )
where

B is the average cell width
R is the radius of the bridge center line
L" is the effective space between inflection

points
5. The final girder design moment is then found to be

M=o e Nyoo M (7.4)

This design procedure is very approximate because a formula such as
Eq. (7.3) usually will not fit all available data, unless it becomes
unduly complicated and difficult to use. In particular, it will be very

involved to capture the coupling effects of some of the parameters
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involved such as thé relative magnitude between load concentration
factors of girders on the inside and on the outside of the bridge.

This parameter is completely ignored in Eq. (7.3). Besides, this formula
should be restricted to radii ﬁ 2 100 ft., effective spans L’ £100 ft.,
and cell widths B <16 ft. The maximum value for o« should be set at
1.20.

Additional parameter studies and further research might produce a
formula equivalent to Eq. (7.3) which takes more of the important para-
meters into account., However, the form of Eq. (7.3) already indicates
that curvature radii larger than 1060 ft, change the o~factors such a
small amount that bridges with such small curvatures may be considered

straight for analysis purposes.

7.4 Miscellaneous Design Considerations

Until now, only the global design of the bridge superstructure has
been considered. It should be emphasized, however, that local design
is of equal importance. In fact, tests and experienced bridge failures
have shown, that if reinforced concrete bridges fail, they do so usually
locally. But local design problems have not been discussed in this in-
vestigation, because it is the author's belief that the effect of curva-
ture on local design is almost negligible, so that methods developed
for straight bridges, may very well be applied also to curved bridges.

The substructure design, finally, also deserves special attention
and careful engineering design, because the substructure often comprises
a very important cost factor. 1In addition, curved bridges and in par-
ticular multi-span structures, pose a series of interesting and chal-
lenging problems, which are considered outside the scope of this

dissertation. However, an excellent treatise on this subject matter
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has been presented by Leonhardt and Andra [7.8]. Although this paper
was published 10 years ago, most of their design recommendations are
still valid today, with the exception of some complex bearing designs

to which American bridge designers usually prefer much simpler solutions.
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8. CONCLUSIONS

Due to the increased usage of curved bridges in modern highway
systems it appears to be desirable to replace or reinspect the approxi-
mate design methods which -are presently in use. 1In this dissertation,
two refined methods of analysis have been developed which are capable
of describing the complex structural behavior of curved bridges in a
more accurate way than existing methods do. One method is based on the
finite element method, and the other is the finite strip method as
applied to curved folded plate structures.

Based on these new methods of analysis, curved box girder bridges
were studied with special emphasis on their load distribution character-
istics. Finally, design recommendations were developed. A so-called
accurate method may be used to determine girder design moment with any
desired degree of accuracy. This involves considerable computational
effort. A simplified design method may help to determine the design
moments only approximately but very rapidly. Additional parameter
studies of curved box girder bridges may permit the refinement of the
proposed design equations, so that these bridges may be designed in the

future such that safety and also economy requirements are satisfied.
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