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Abstract. Gelfand–Tsetlin polytopes are classical objects in algebraic combinatorics arising
in the representation theory of gln(C). The integer point transform of the Gelfand–Tsetlin
polytope GT(λ) projects to the Schur function sλ. Schur functions form a distinguished
basis of the ring of symmetric functions; they are also special cases of Schubert polynomi-
als Sw corresponding to Grassmannian permutations.

For any permutation w ∈ Sn with column-convex Rothe diagram, we construct a poly-
topePw whose integer point transform projects to the Schubert polynomialSw. Such a con-
struction has been sought after at least since the construction of twisted cubes by Grossberg
and Karshon in 1994, whose integer point transforms project to Schubert polynomials Sw

for all w ∈ Sn. However, twisted cubes are not honest polytopes; rather one can think of
them as signed polytopal complexes. Our polytope Pw is a convex polytope, namely it is
a Minkowski sum of Gelfand–Tsetlin polytopes of varying sizes. When the permutation w
is Grassmannian, the Gelfand–Tsetlin polytope is recovered. We conclude by showing that
the Gelfand–Tsetlin polytope is a flow polytope.
Keywords. Schubert polynomials, Gelfand–Tsetlin polytopes, flow polytopes
Mathematics Subject Classifications. 05E05

1. Introduction

Schubert polynomials, introduced by Lascoux and Schützenberger in 1982 [LS82], are exten-
sively studied in algebraic combinatorics [BJS93, FK96, BB93, FS94, LLS21, WY18, Len04,
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Man01, KM05, KM04, BS98]. They represent cohomology classes of Schubert cycles in flag
varieties, and they generalize Schur functions, a distinguished basis of the ring of symmetric
functions.

A well-known property of the Schur function sλ is that it is a projection of the integer point
transform of the Gelfand–Tsetlin polytope GT(λ). This has inspired the following natural ques-
tion for Schubert polynomials:

Question 1. For w ∈ Sn, is there a natural polytope Pw and a projection map πw such that the
projection of the integer point transform of Pw under the map πw equals the Schubert polyno-
mial Sw?

The construction of twisted cubes by Grossberg and Karshon in 1994 [GK94] is the first at-
tempt at an answer to the above question. The integer point transforms of twisted cubes project
to any Schubert polynomial. Indeed, Grossberg and Karshon show that for both flag and Schu-
bert varieties, their (virtual) characters are projections of integer point transforms of twisted
cubes. The one catch with twisted cubes is that they are not always honest polytopes; intuitively
one can think of them as signed polytopal complexes due to self-intersection (see [Kir16] for
some discussion). For the Grassmannian case they do not yield the Gelfand–Tsetlin polytope.
Kiritchenko’s beautiful work [Kir16] explains how to make certain corrections to the Grossberg–
Karshon twisted cubes in order to obtain the Gelfand–Tsetlin polytope for Grassmannian per-
mutations.

Recall that given a partition λ = (λ1, . . . , λn) ∈ Zn
⩾0, the Gelfand–Tsetlin polytope GT(λ)

is the set of all nonnegative triangular arrays

x11 x12 · · · x1n

x22 x23 · · · x2n

· · · · · ·
xn−1,n−1 xn−1,n

xnn

(†)

such that

x1i = λi for all 1 ⩽ i ⩽ n, (1.1)
xi−1,j−1 ⩾ xij ⩾ xi−1,j for all 1 ⩽ i ⩽ j ⩽ n. (1.2)

To state our main result, which is a partial answer to Question 1, we need to consider the
Minkowski sums of Gelfand–Tsetlin polytopes of partitions with different lengths.

Fix n, and for each k ∈ [n], let λ(k) be a partition with k parts (with empty parts allowed).
We wish to study the Minkowski sum

GT(λ(1)) + GT(λ(2)) + · · ·+GT(λ(n)).

To make this Minkowski sum well-defined, we embed R(
k+1
2 ) into R(

n+1
2 ) for each k. To do

this, let yij be coordinates of R(
k+1
2 ) and xij be coordinates of R(

n+1
2 ) as in the definition of the

Gelfand–Tsetlin polytope. The embedding is given by

yij 7→ xi,j+n−k for all i+ j ⩽ k + 1.



combinatorial theory 2 (3) (2022), #4 3

•
•

•
•

•
•

Figure 1.1: The permutation w = 256413 is column-convex and has Rothe diagram
D(w) = {(1, 1), (2, 1), (3, 1), (4, 1), (2, 3), (3, 3), (4, 3), (2, 4), (3, 4)}. We also have ParD =
(∅,∅, (1, 1, 0), (2, 2, 2, 1),∅,∅).

In other words, when computing the Minkowski sum, we align the upper right corners of each
array and sum coordinatewise.

To any permutation w ∈ Sn, we associate its Rothe diagram D(w), which is the subset of
N× N given by

D(w) = {(i, j) | 1 ⩽ i, j ⩽ n, w(i) > j, w−1(j) > i}.

We can visualize D(w) as the set of boxes remaining in the n × n grid after crossing out all
boxes below or to the right of (i, w(i)) for each i ∈ [n]. We say D(w) is column-convex if, for
each j, the set {i | (i, j) ∈ D(w)} is an interval in N. (This will occur whenever w avoids the
patterns 3142 and 4132.)

In the case when D = D(w) is column-convex, we associate to w a family of partitions
ParD = {λ(1), . . . , λ(n)} in the following way. The shape λ(i), i ∈ [n], has i parts and is obtained
from D by ordering the columns of D whose lowest box is in the ith row in decreasing fashion
and reading off λ(i) according to the French notation. In other words, λ(i) = (λ

(i)
1 , . . . , λ

(i)
i ),

where λ(i)
j is the number of columns c of D such that

(i− j + 1, c), . . . , (i, c) ∈ D, (i+ 1, c) /∈ D.

Our main result can then be stated as follows.

Theorem 1.1. Let w ∈ Sn be a (3142 and 4132-avoiding) permutation with column-convex
Rothe diagram D, and let ParD = {λ(1), . . . , λ(n)} be defined as above. Then the Schubert
polynomial Sw is a projection of the integer point transform of

PD := GT(λ(1)) + GT(λ(2)) + · · ·+GT(λ(n))

(using the embedding specified above). We obtain Sw(xi) from the integer point transform
σPD

(xij) via the specialization

xij 7→

{
x1 when i = 1,

x−1
i−1xi when i > 1.
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For instance, it follows immediately in this case that Sw(1, 1, . . . , 1) is the number of lattice
points in PD.

In the special case when w is a Grassmannian permutation, Sw is a Schur polynomial
sλ(x1, . . . , xk). All of the λ(i) are empty except for λ(k) = λ, so we recover that sλ(x1, . . . , xk)
is a projection of the integer point transform of the Gelfand–Tsetlin polytope GT(λ).

In fact, we will prove in Theorem 2.7 that for any column-convex diagramD, the character sD
of the flagged Schur module associated to D can be obtained as a projection of the integer
point transform of a Minkowski sum of Gelfand–Tsetlin polytopes. This will immediately imply
Theorem 1.1 since Sw is the character of the flagged Schur module associated to D(w).

As a corollary, we deduce a combinatorial interpretation for Sw or sD in the column-convex
case in terms of column-strict, row-flagged fillings of D up to rearranging entries within rows—
see Corollary 3.10.

It is interesting to note that the Newton polytope of a Schubert polynomial is a general-
ized permutahedron [FMSD18, MTY19]; thus, the affine projection specified in Theorem 2.7
maps PD(w) to a generalized permutahedron for column-convex D(w).

In [EM18], flow polytopes are connected to certain Grothendieck polynomials, a K-theoretic
analogue of Schubert polynomials. The implications of this connection for the corresponding
Schubert polynomials are explored in [MD17] (by the second and third author of the present
paper). One implication is the existence of flow polytopes whose integer point transforms project
to a family of Schubert polynomials. Analogously, we prove that Gelfand–Tsetlin polytopes can
be realized as flow polytopes.

Theorem 1.2. GT(λ) is integrally equivalent to the flow polytope FGλ
.

We then investigate some consequences of Theorem 2.7 in the context of flow polytopes.
Further discussion along these lines can be found in [LMSD19], also by the current authors.

This paper is organized as follows. After covering necessary background material, the proof
of Theorem 2.7 can be found in Section 2. Section 4 contains background material on flow
polytopes as well as the proof of Theorem 1.2, followed by some corollaries and discussion.

2. Diagrams, Schur modules, and Gelfand–Tsetlin polytopes

This section is devoted to introducing background about diagrams, flagged Schur modules and
their characters, and Gelfand–Tsetlin polytopes. We will state our main theorem (Theorem 2.7)
as well as determine the inequalities that define a Minkowski sum of Gelfand–Tsetlin polytopes.

2.1. Diagrams

A diagram is a finite subset of N× N. Its elements (i, j) ∈ D are called boxes. We will think
of N × N as a grid of boxes in matrix notation, so (1, 1) is the topmost and leftmost box. We
will sometimes implicitly associate to D a number of rows n, where D ⊆ [n]×N. (Some rows
may be empty.)

Canonically associated to each permutation is its Rothe diagram.
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Definition 2.1. The Rothe diagram of a permutation w ∈ Sn is the collection of boxes

D(w) = {(i, j) | 1 ⩽ i, j ⩽ n, w(i) > j, w−1(j) > i}.

Definition 2.2. A diagram D is column-convex if, for each j, the set {i | (i, j) ∈ D} is an
interval in N.

The Rothe diagram for any dominant or 132-avoiding permutation is the Young diagram of
a partition (in English notation), which is column-convex. Permutations with column-convex
Rothe diagrams can be characterized by a pattern avoidance condition.

Proposition 2.3. The Rothe diagram D(w) is column-convex if and only if w avoids the patterns
3142 and 4132.

Proof. If D = D(w) is not column-convex, then there exists some column l′ and rows i, j, and k
with i < j < k such that (i, l′), (k, l′) ∈ D but (j, l′) /∈ D. Let l = w−1(l′), so that (k, l′) ∈ D
implies k < l. Then from the boxes appearing in column l′, we find that w(i), w(k) > l′

but w(j) < l′. It follows that the subsequence w(i)w(j)w(k)w(l) of w forms either a 3142 or
4132 pattern in w. The reverse direction is similar.

Such permutations are counted by the (large) Schröder numbers—see [Kre00, Corollary 9].
To any column-convex diagram D with n rows, we associate a sequence of partitions

ParD = {λ(1), . . . , λ(n)}
= {(λ(1)

1 ), (λ
(2)
1 , λ

(2)
2 ), . . . , (λ

(n)
1 , λ

(n)
2 , . . . , λ(n)

n )},

where λ(i)
j is the number of columns c of D such that

(i− j + 1, c), . . . , (i, c) ∈ D, (i+ 1, c) /∈ D.

In other words, λ(i) is the partition with i parts (empty parts allowed) whose Young diagram in
French notation is obtained by considering only the columns of D whose lowest box is in the ith
row and ordering them according to decreasing size.

2.2. Flagged Schur modules

Given a diagram D with n rows, we can construct a GLn(C)-representation called a Schur
module as follows. (See also, for instance, [ABW82, KP87].) Denote by ΣD the symmetric
group on the boxes in D. Let Col(D) be the subgroup of ΣD permuting the boxes of D within
each column, and define Row(D) similarly for rows. Let TD denote the C-vector space with
basis indexed by fillings T : D → [n] of D. Observe that ΣD, Col(D), and Row(D) act on TD

on the right by permuting the filled boxes.
Define idempotents αD, βD in the group algebra C[ΣD] by

αD =
1

|Row(D)|
∑

w∈Row(D)

w, βD =
1

|Col(D)|
∑

w∈Col(D)

sgn(w)w,
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where sgn(w) is the sign of the permutation w. Given a filling T ∈ TD, define eT ∈ TD to be
the linear combination

eT = T · αDβD.

Identify TD with the tensor product V ⊗N , where V = Cn and N is the number of boxes
of D, in the following manner. First, fix an order on the boxes of D. Then read each fill-
ing T in this order to obtain a word i1, . . . , iN on [n], and identify this word with the tensor
ei1 ⊗ ei2 ⊗ · · · ⊗ eiN ∈ V ⊗N , where e1, . . . , en is the standard basis of Cn. As GLn(C) acts
on V , it acts diagonally on V ⊗N by acting on each component. This left action of GLn(C) on TD

commutes with the right action of ΣD. Thus, the subspace of TD spanned by all elements eT is
a submodule, called the Schur module of D.

Call a filling T ofD row-flagged if T (i, j) ⩽ i for all i, j. LetBn be the subgroup ofGLn(C)
consisting of upper triangular matrices.

Definition 2.4. The flagged Schur module SD of a diagram D is the Bn-submodule of TD

spanned by
{eT | T is a row-flagged filling of D}.

The formal character char(SD), denoted by sD, is the polynomial

sD = char(SD)(x1, . . . , xn) = Trace(X : SD → SD),

where X is the diagonal matrix in Bn with diagonal entries x1, . . . , xn.

A particularly important subclass of characters of flagged Schur modules is that of Schubert
polynomials as shown by Kraśkiewicz-Pragacz [KP87] and explained in Theorem 2.6 below.
Schubert polynomials are associated to permutations, and they admit various combinatorial and
algebraic definitions. For a permutation w ∈ Sn, we will define the Schubert polynomial Sw

via divided difference operators ∂i on polynomials.

Definition 2.5. The Schubert polynomial of the long word w0 ∈ Sn (w0(i) = n − i + 1 for
1 ⩽ i ⩽ n) is defined as

Sw0
:= xn−1

1 xn−2
2 · · ·xn−1.

For w ̸= w0, there exists i ∈ [n − 1] such that w(i) < w(i + 1). For any such i, the Schubert
polynomial Sw is defined by

Sw := ∂iSwsi ,

where
∂i(f) =

f − sif

xi − xi+1

=
f(x1, . . . , xn)− f(x1, . . . , xi−1, xi+1, xi, . . . , xn)

xi − xi+1

,

and si is the transposition swapping i and i + 1. The operators ∂i can be shown to satisfy the
braid relations, so the Schubert polynomials Sw are well-defined.

Schubert polynomials appear as the characters of flagged Schur modules of Rothe diagrams.

Theorem 2.6 ([KP87]). Let w ∈ Sn be a permutation, D(w) be the Rothe diagram of w,
and sD(w) be the character of the associated flagged Schur module SD(w). Then

Sw(x1, . . . , xn) = sD(w)(x1, . . . , xn).
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We can now state our main theorem, which relates the character sD for any column-convex
diagram D with the Minkowski sum of Gelfand–Tsetlin polytopes. (See the introduction for the
definition of Gelfand–Tsetlin polytopes.)
Theorem 2.7. The character sD of the flagged Schur module associated to a column-convex di-
agram D with n rows and ParD = {λ(1), . . . , λ(n)} is a projection of the integer point transform
of

PD := GT(λ(1)) + GT(λ(2)) + · · ·+GT(λ(n)). (2.1)
We obtain sD(x1, . . . , xn) from the integer point transform σPD

(xij) via the specialization

xij 7→

{
x1 when i = 1,

x−1
i−1xi when i > 1.

Recall that in order to take the Minkowski sum, we embed GT(λ(k)) ⊆ R(
k+1
2 ) into R(

n+1
2 )

by
yij 7→ xi,j+n−k for all i+ j ⩽ k + 1.

Example 2.8. If D is the diagram in Figure 1.1, then we find that

PD = GT(1, 1, 0) + GT(2, 2, 2, 1).

These two Gelfand–Tsetlin polytopes have the following lattice points:

GT(1, 1, 0) :
1 1 0

1 a
b

where 0 ⩽ a ⩽ b ⩽ 1,

GT(2, 2, 2, 1) :

2 2 2 1
2 2 c

2 d
e

where 1 ⩽ c ⩽ d ⩽ e ⩽ 2.

Summing these polytopes using the embedding described above gives the polytope PD with
lattice points

2 3 3 1
2 3 a+ c

2 b+ d
e

where 0 ⩽ a ⩽ b ⩽ 1 and 1 ⩽ c ⩽ d ⩽ e ⩽ 2.

The twelve possible choices for a through e only yield nine distinct possibilities
for (a+ c, b+ d, e):

(1, 1, 1), (1, 2, 1), (2, 2, 1), (1, 1, 2), (1, 2, 2), (2, 2, 2), (1, 3, 2), (2, 3, 2), (3, 3, 2).

Under the specialization given in Theorem 2.7, these triples give

sD = x3
1x

3
2x

2
3x4 + x3

1x
2
2x

3
3x4 + x2

1x
3
3x

3
3x4 + x3

1x
3
2x3x

2
4 + x3

1x
2
2x

2
3x

2
4

+ x2
1x

3
2x

2
3x

2
4 + x3

1x2x
3
3x

2
4 + x2

1x
2
2x

3
3x

2
4 + x1x

3
2x

3
3x

2
4.

We will prove Theorem 2.7 in Section 3.
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2.3. Minkowski sums of Gelfand–Tsetlin polytopes

As a first step towards Theorem 2.7, we will describe the inequalities defining the Minkowski
sum of Gelfand–Tsetlin polytopes.

Proposition 2.9. Let λ(1), . . . , λ(n) be partitions such that λ(i) has i (possibly empty) parts. The
Minkowski sum GT(λ(1)) + · · ·+GT(λ(n)) is defined by the following inequalities:

• for all 1 ⩽ i ⩽ j ⩽ n, xi−1,j−1 ⩾ xij; and

• for any positive integer k and nonempty sequence I of even length 0 ⩽ ik < ik−1 < · · · <
i1 < j1 < j2 < · · · < jk ⩽ n,

k∑
s=1

xjs−is,js −
k−1∑
s=1

xjs+1−is,js+1 ⩾
ik∑
s=0

λ
(n−s)
j1−s , (∗)

with equality when k = 1 and j1 = i1 + 1.

Remark 2.10. A simple calculation shows that if, for instance, is+1 = is for some s, then neither
side of (∗) would change if we simply remove is+1 and js+1 from the sequence. Likewise,
if js = js+1 for some s, then neither side would change if we remove is and js from the sequence.
Therefore we may equivalently take the inequalities (∗) for sequences 0 ⩽ ik ⩽ · · · ⩽ i1 < j1 ⩽
· · · ⩽ jk ⩽ n.

One should observe that the entries occurring on the left side of (∗) lie at the corners of a path
that zigzags southeast and southwest inside the triangular array, starting at xj1−i1,j1 and ending
at xjk−ik,jk , where the lengths of the southeast steps are given by the differences js+1 − js and
the lengths of the southwest steps are given by the differences is+1 − is.

Example 2.11. Suppose n = 3. We first have inequalities x11 ⩾ x22 ⩾ x33 and x12 ⩾ x23 as
with ordinary Gelfand–Tsetlin patterns. Then for k = 1, we get equalities

x11 = λ
(3)
1 , x12 = λ

(2)
1 + λ

(3)
2 , x13 = λ

(1)
1 + λ

(2)
2 + λ

(3)
3 ,

as well as inequalities

x22 ⩾ λ
(3)
2 , x23 ⩾ λ

(2)
2 + λ

(3)
3 , and x33 ⩾ λ

(3)
3 .

Finally, for k = 2, there is one more inequality, namely

x12 − x23 + x33 ⩾ λ
(3)
2 .

One direction of Proposition 2.9 is given by the following lemma.

Lemma 2.12. Let

P = P (λ(1), . . . , λ(n)) = GT(λ(1)) + · · ·+GT(λ(n)),

and let Q = Q(λ(1), . . . , λ(n)) be the polytope given by the inequalities in Proposition 2.9.
Then P ⊂ Q.
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Proof. For any point (xij)1⩽i⩽j⩽n ∈ P , choose, for each 0 ⩽ m < n, points (y(n−m)
ij )1⩽i⩽j⩽m ∈

GT(λ(n−m)) summing to it, so that xij =
∑j−i

s=0 y
(n−s)
i,j−s . In particular,GT(λ(n−m))will contribute

to a coordinate of the form xj−i,j if and only if m ⩽ i.
Inequalities of the form xi−1,j−1 ⩾ xij are derived by summing the respective inequalities

y
(n−s)
i−1,j−1−s ⩾ y

(n−s)
i,j−s over all 0 ⩽ s ⩽ j − i. For inequalities of type (∗), consider a sequence I ,

and suppose first that 0 ⩽ m ⩽ ik. Then

k∑
s=1

y
(n−m)
js−is,js−m −

k−1∑
s=1

y
(n−m)
js+1−is,js+1−m = y

(n−m)
j1−i1,j1−m +

k−1∑
s=1

(y
(n−m)
js+1−is+1,js+1−m − y

(n−m)
js+1−is,js+1−m)

⩾ λ
(n−m)
j1−m ,

since each term in the sum is nonnegative by the defining inequalities of GT(λ(n−m)). If in-
stead m > ik, then let k′ < k be the minimum value such that m ⩽ ik′ . Then

k′∑
s=1

y
(n−m)
js−is,js−m −

k′∑
s=1

y
(n−m)
js+1−is,js+1−m =

k′∑
s=1

(y
(n−m)
js−is,js−m − y

(n−m)
js+1−is,js+1−m) ⩾ 0

since again each term in the sum is nonnegative. Summing these inequalities over all m then
gives the desired inequality. In the case that k = 1 and j1 = i1 + 1, we get equality since

x1,j1 =

j1−1∑
s=0

y
(n−s)
1,j1−s =

i1∑
s=0

λ
(n−s)
j1−s .

To complete the proof of Proposition 2.9, we will need the following Lemma 2.13, which is
proved in Section 4.

Lemma 2.13. If λ has n parts, then the Gelfand–Tsetlin polytope GT(λ) decomposes as a
Minkowski sum:

GT(λ) =
n∑

k=1

(λk − λk+1)GT(1k0n−k).

Armed with this, we are now prepared to finish the proof of Proposition 2.9.

Proof of Proposition 2.9. By Lemma 2.12 (and using the notation defined there), it suffices to
show that Q ⊆ P . We induct on n and the size of λ(n). First suppose λ(n) = ∅. The inequalities
involving xjj are x11 ⩾ x22 ⩾ · · · ⩾ xnn, and, when ik = 0,

k−1∑
s=1

(xjs−is,js − xjs+1−is,js+1) + xjk,jk ⩾ λ
(n)
j1

= 0

with equality if also k = 1 and j1 = 1. These imply that xjj = 0 for all 1 ⩽ j ⩽ n and
impose no additional constraints on the other entries. Removing the diagonal of entries xjj then
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yields a triangular array that satisfies the inequalities defining Q(λ(1), · · · , λ(n−1)). Therefore
by induction

Q(λ(1), . . . , λ(n−1),∅) = Q(λ(1), . . . , λ(n−1)) = P (λ(1), . . . , λ(n−1)) = P (λ(1), . . . , λ(n−1),∅).

If λ(n) ̸= ∅, then let m = ℓ(λ(n)) be the number of nonzero parts. We will
prove that Q ⊆ GT(1m0n−m) + Q′, where we let Q′ = Q(λ(1), . . . , λ(n−1), µ(n)) for
µ(n) = (λ

(n)
1 − 1, . . . , λ

(n)
m − 1, 0, . . . , 0). This will prove the result by induction on the size

of λ using Lemma 2.13 since then GT(1m0n−m) + GT(µ(n)) = GT(λ(n)).
Recall that Gelfand–Tsetlin polytopes are integral polytopes. Given any integer point

(xij) ∈ Q, set tj = 1 for 1 ⩽ j ⩽ m, while for m < j ⩽ n, set tj to be the minimum
value such that tj > tj−1 and xtj−1,j−1 = xtj ,j (if such an index exists, otherwise set tj = ∞).
Then define the point (zij)1⩽i⩽j⩽n ∈ GT(1m0n−m) by zij = 1 if i ⩾ tj , otherwise zij = 0.

We claim that (x′
ij) = (xij − zij) ∈ Q′. Our choice of tj guarantees that xi−1,j−1 − xi,j ⩾ 1

whenever zi−1,j−1−zi,j = 1, which ensures that x′
i−1,j−1 ⩾ x′

ij for all 1 ⩽ i ⩽ j ⩽ n. Therefore
it suffices to show inequalities of type (∗) for (x′

ij).
Given any sequence I , suppose that for some s, zjs−is−1,js = 0 but zjs−is,js = 1. Consider

what happens to the left hand side of (∗) if we insert j′ = js − 1 between js−1 and js, and we
insert i′ = js − tjs between is and is−1 to get a new sequence I ′. (Note that js−1 ⩽ j′ < js and
is ⩽ i′ < is−1.) This reduces the left hand side of (∗) by

(x′
j′−is−1,j′ − x′

js−is−1,js
)− (x′

j′−i′,j′ − x′
js−i′,js) = (x′

js−1−is−1,js−1 − x′
js−is−1,js

)

− (x′
tjs−1,js−1 − x′

tjs ,js
)

= x′
js−1−is−1,js−1 − x′

js−is−1,js

⩾ 0,

while the right hand side of (∗) is unchanged. Thus (∗) for the sequence I is implied by (∗) for
the new sequence I ′. Since zjs−i′,js = ztjs ,js = 1, by iteratively applying this procedure to the
new sequence, we will eventually arrive at a sequence for which such an s does not exist.

It therefore suffices to prove inequality (∗) for (x′
ij) in the case that there exists some s′ such

that zjs−is−1,js = 1 and zjs−is,js = 1 exactly when s ⩽ s′. If j1 ⩽ m, then the left hand side of
(∗) is

k∑
s=1

x′
js−is,js −

k−1∑
s=1

x′
js+1−is,js+1

=

(
k∑

s=1

xjs−is,js − s′

)
−

(
k−1∑
s=1

xjs+1−is,js+1 − s′ + 1

)

=
k∑

s=1

xjs−is,js −
k−1∑
s=1

xjs+1−is,js+1 − 1,

while the right hand side is

µ
(n)
j1

+

ik∑
s=1

λ
(n−s)
j1−s =

ik∑
s=0

λ
(n−s)
j1−s − 1,
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so this inequality follows from the corresponding inequality for (xij) ∈ Q. If j1 > m,
then consider the sequence obtained by inserting m,m + 1, . . . , j1 − 1 before j1,
and j1 − tj1 , j1 − 1 − tj1−1, . . . ,m + 1 − tm+1 after i1 in the sequence. For (xij) ∈ Q, this
yields the inequality(

j1−1∑
j=m

xtj+1−1,j +
k∑

s=1

xjs−is,js

)
−

(
j1−1∑
j=m

xtj+1,j+1 +
k−1∑
s=1

xjs+1−is,js+1

)
⩾

ik∑
s=0

λ
(n−s)
m−s .

But xtj+1−1,j = xtj+1,j+1, and the right side is strictly greater than
∑ik

s=0 λ
(n−s)
j1−s (since

λ
(n)
m > 0 = λ

(n)
j1

). Thus

k∑
s=1

xjs−is,js −
k−1∑
s=1

xjs+1−is,js+1 ⩾
ik∑
s=0

λ
(n−s)
j1−s + 1,

or equivalently,(
k∑

s=1

xjs−is,js − s′

)
−

(
k−1∑
s=1

xjs+1−is,js+1 − s′ + 1

)
⩾

ik∑
s=0

λ
(n−s)
j1−s = µ

(n)
j1

+

ik∑
s=1

λ
(n−s)
j1−s ,

which is the inequality (∗) for (x′
ij) ∈ Q′. This completes the proof.

We can give the following combinatorial interpretation for the integer points in

PD = GT(λ(1)) + · · ·+GT(λ(n)).

Call a filling T : D → [n] column-strict if the entries in each column increase from top to
bottom. Call two fillings T and T ′ row equivalent if one can be obtained from the other by
permuting elements within each row. (In other words, the number of occurrences of i in row j
is the same for T and T ′ for all i and j.)

Corollary 2.14. Let D be a column-convex diagram and ParD = {λ(1), . . . , λ(n)}. The lattice
points of PD = GT(λ(1)) + · · · + GT(λ(n)) are in bijection with column-strict, row-flagged
fillings of D up to row equivalence. Specifically, a point (xij) ∈ PD corresponds to a filling in
which xij is the number of entries in row n+ i− j that are at least i.

Proof. Let D have columns C1, C2, . . . . Our inductive proof of Proposition 2.9 actually showed
that any integer point of PD is a sum of integer points, each lying in some PCs = GT(1m0k−m),
where Cs has m boxes, the lowest of which lies in row k.

The standard bijection between Gelfand–Tsetlin patterns and (reverse) semistandard Young
tableaux sends each integer point (yij) ∈ GT(1m0k−m) ⊆ R(

k+1
2 ) to the column-strict filling of

Cs such that yij is the number of entries in row k + i − j that are at least i. After embedding
R(

k+1
2 ) into R(

n+1
2 ), the image (xij) ∈ R(

n+1
2 ) then has xij equal to the number of entries in row

n + i − j that are at least i. Combining the fillings for each column Cs therefore has the effect
of adding the corresponding coordinates xij , so the result follows.
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Example 2.15. Using the diagram D from Figure 1.1, the twelve column-strict, row-flagged fill-
ings are given below with row equivalences indicated. The nine equivalence classes correspond
to the lattice points in PD as well as the terms in sD as found in Example 2.8.

1
2 1 1
3 2 2
4 3

1
2 1 1
3 2 3
4 3

1
2 1 2
3 2 3
4 3

1
2 1 1
3 2 2
4 4

1
2 1 1
3 2 3
4 4

∼
1
2 1 1
3 3 2
4 4

1
2 1 2
3 2 3
4 4

∼
1
2 2 1
3 3 2
4 4

1
2 1 1
3 3 3
4 4

1
2 1 2
3 3 3
4 4

∼
1
2 2 1
3 3 3
4 4

1
2 2 2
3 3 3
4 4

In the next section, we will show how the facet description of PD is related to the characters
of flagged Schur modules.

3. Demazure operators and parapolytopes

To prove Theorem 2.7, we will need a formula for the character sD. The following formula
is essentially a particular case of one due to Magyar [Mag98]. (See also Reiner–Shimozono
[RS98].) We first define the isobaric divided difference operator (or Demazure operator) πi

acting on polynomials f(x1, . . . , xn) by

πif(x1, . . . , xn) = ∂i(xif) =
xif − xi+1sif

xi − xi+1

,

where sif is the polynomial obtained from f by switching xi and xi+1. Note that πif = f if f
is symmetric in xi and xi+1.

Proposition 3.1. Let D be a column-convex diagram with n rows with ParD = {λ(1), . . . , λ(n)}.
Define D̃ to be the diagram with n − 1 rows such that ParD̃ = (λ̃(1), . . . , λ̃(n−1)), where
λ̃
(i)
j = λ

(i+1)
j − λ

(i+1)
i+1 . (Here, D̃ is obtained from D by removing any column with a box in

the first row and then shifting all remaining boxes up by one row.) Also let

µ = (λ
(1)
1 + λ

(2)
2 + · · ·+ λ(n)

n , λ
(2)
2 + · · ·+ λ(n)

n , . . . , λ(n)
n ),

the partition formed from all columns of D with a box in the first row. Then

sD = xµ1

1 · · ·xµn
n π1π2 · · · πn−1(sD̃).

Proof. Note that D can be obtained from D̃ by switching the ith and (i + 1)st row for
i = n − 1, n − 2, . . . , 1, and then adding µi columns with boxes in rows {1, . . . , i} for each
i = 1, . . . , n. The result then follows immediately from [Mag98] (see, for instance, Proposi-
tion 15).

We now show that the polytope for D can be constructed iteratively in a way that mimics the
application of the operator πi. This geometric operation is the same as the operator Di given by
Kiritchenko in [Kir16] specialized for our current situation.

The key lemma is the following calculation.
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Lemma 3.2. Choose nonnegative integers N1, N2 and µ1 ⩽ ν1, . . . , µk ⩽ νk such that

k∑
i=1

(µi + νi) ⩽ N1 +N2.

Define the polynomial

f(x1, x2) =

ν1∑
c1=µ1

· · ·
νk∑

ck=µk

xN1−c1−···−ck
1 xc1+···+ck−N2

2 .

Then

π1f(x1, x2) =

ν1∑
c1=µ1

· · ·
νk∑

ck=µk

νk+1∑
ck+1=0

x
N1−c1−···−ck−ck+1

1 x
c1+···+ck+ck+1−N2

2 ,

where νk+1 = N1 +N2 −
∑k

i=1(µi + νi).

Proof. Note that reversing the order of each of the summations in the expression for f gives

f =

ν1∑
c1=µ1

· · ·
νk∑

ck=µk

x
νk+1−N2+c1+···+ck
1 x

N1−νk+1−c1−···−ck
2 = (x1

x2
)νk+1 · s1f.

Hence

π1f =
x1f − x2s1f

x1 − x2

= f ·
1−

(
x2

x1

)νk+1+1

1− x2

x1

= f ·
νk+1∑

ck+1=0

x
−ck+1

1 x
ck+1

2 ,

as desired.

Consider R(
n+1
2 ) with coordinates xij for 1 ⩽ i ⩽ j ⩽ n. Let φk : R(

n+1
2 ) → R(

n+1
2 )−n−1+k

be the projection onto the coordinates xij for all i ̸= k.

Definition 3.3 ([Kir16]). A parapolytope P ⊂ R(
n+1
2 ) is a convex polytope such that, for all k,

every fiber of the projection φk on P is a coordinate parallelepiped.
In other words, for every k and every set of constants cij (i ̸= k), there exist constants µj

and νj (depending on the cij) such that (xij) ∈ P with xij = cij for i ̸= k if and only
if µj ⩽ xkj ⩽ νj .

We denote this parallelepiped (which depends on k and cij for i ̸= k) by

Π(µk, . . . , µn; νk, . . . , νn) = Π(µ, ν) = {(xkj)
n
j=k | µj ⩽ xkj ⩽ νj} ⊂ Rn+1−k.

Given a polytope P ⊂ R(
n+1
2 ), let σP be its integer point transform

σP (xij) =
∑

(cij)∈P∩Z(
n+1
2 )

∏
1⩽i⩽j⩽n

x
cij
ij ,
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and define sP (xi) to be the image of σP (xij) under the specialization sending

xij 7→

{
x1 when i = 1,

x−1
i−1xi when i > 1.

In other words, the point (cij) ∈ P ∩Z(
n+1
2 ) corresponds to the monomial in which the exponent

of xi is Ci − Ci+1, where Ci =
∑n

j=i cij .

Lemma 3.4. Fix 2 ⩽ k ⩽ n, and let P,Q ⊂ R(
n+1
2 ) be parapolytopes. Suppose that for

any fixed integer point c = (cij)i ̸=k, the fiber over c of the projection φk on P is the (integer)
parallelepiped

ΠP = Π(µk, . . . , µn−1, 0; νk, . . . , νn−1, 0),

while the fiber over c of φk on Q is

ΠQ = Π(µk, . . . , µn−1, µn; νk, . . . , νn−1, νn),

where µn = 0 and

νn =
n∑

j=k−1

ck−1,j +
n∑

j=k+1

ck+1,j −
n−1∑
j=k

(µj + νj) ⩾ 0.

Then sQ = πk−1sP .

Proof. For fixed c, the contribution to sP of the fiber over c has the form

M ·
∑

(ckk,...,ck,n−1)∈ΠP

x
Ck−1−

∑
j ckj

k−1 x
∑

j ckj−Ck+1

k ,

where M is a monomial that does not contain xk−1 nor xk, and Ci =
∑n

j=i cij only depends on c
for i ̸= k. This summation has the same form as the one in Lemma 3.2, so applying πk−1 as per
the lemma immediately gives the result.

Remark 3.5. The operator that produces Q from P is denoted by Dk−1 in [Kir16]. However,
it is important to note that the operator Dk−1 will not in general yield a parapolytope (or even
necessarily a polytope) from a general parapolytope P . Indeed, the inequality xkn ⩽ νn satisfied
by Q can cause φk−1(Q) and φk+1(Q) to have fibers that are not parallelepipeds due to the sums∑

ck−1,j and
∑

ck+1,j appearing in νn. In the application below, we will see that this issue does
not occur since most of the terms in

∑
ck−1,j +

∑
ck+1,j will be canceled out by −

∑
(µj + νj).

We are now ready to prove our main theorem.

Proof of Theorem 2.7. Let D be a column-convex diagram with n rows with

ParD = {λ(1), . . . , λ(n)},
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and let
PD = GT(λ(1)) + · · ·+GT(λ(n)).

We first claim that we can reduce to the case when D does not contain any boxes in the first
row. Indeed, adding a column with boxes in rows 1, 2, . . . , k to D serves to add 1 to each part
of λ(k), which, by Lemma 2.13, translates GT(λ(k)) by the single point GT(1k) and hence does
the same to PD. This translation adds k+1− i to the sum of row i for i = 1, . . . , k, so it multi-
plies sPD

by x1x2 · · ·xk. Since Proposition 3.1 shows that adding this column also multiplies sD
by x1x2 · · ·xk, the claim follows.

Therefore, we may assume that D has no boxes in the first row, so that λ(k)
k = 0 for all k,

which implies that PD is contained in the hyperplane x1n = 0. Denote by P(m)
D the intersection

of PD with the subspace x1n = x2n = · · · = xmn = 0. In fact, P(m)
D is also the orthogo-

nal projection of PD onto this subspace. To see this, note that for any Gelfand–Tsetlin pattern
(yij)1⩽i⩽j⩽k ∈ GT(λ(k)), setting yin = 0 for any i ⩽ m again yields a valid Gelfand–Tsetlin
pattern. Thus for any (xij) ∈ PD, setting xin = 0 for all i ⩽ m will again yield an element
of PD.

Note also that P(n)
D is just a translate of PD̃ where D̃ is the diagram obtained from D by

shifting each box up by one row. (Any Gelfand–Tsetlin pattern for λ(k) in which the last entry in
each row is 0 is just a Gelfand–Tsetlin pattern for λ(k), thought of as a partition of length k− 1.)
It follows that sD̃ = sP

D̃
= sP(n)

D
.

We first show that the inequalities defining P(m)
D are precisely the inequalities for PD de-

scribed in Proposition 2.9 that do not involve any xin for i ⩽ m (together with
x1n = x2n = · · · = xmn = 0). Clearly any inequality of the form xi−1,n−1 ⩾ xin for i ⩽ m is
redundant since it is implied by inequality (∗) for i1 = n− i and j1 = n− 1. Then consider any
inequality (∗) for a sequence I with jk = n and ik−1 ⩾ n−m:

k−1∑
s=1

xjs−is,js −
k−2∑
s=1

xjs+1−is,js+1 + xn−ik,n − xn−ik−1,n ⩾
ik∑
s=0

λ
(n−s)
j1−s .

Let I ′ be the sequence obtained from I by removing ik and jk. The corresponding inequality is

k−1∑
s=1

xjs−is,js −
k−2∑
s=1

xjs+1−is,js+1 ⩾
ik−1∑
s=0

λ
(n−s)
j1−s .

Since xn−ik,n ⩾ 0, xn−ik−1,n = 0, and ik−1 > ik, we see that the inequality for I follows
immediately from that for I ′.

Since none of the inequalities defining P(m)
D involve two coordinates in the same row, P(m)

D

is a parapolytope. It therefore suffices to show thatP(m)
D andP(m−1)

D are related as in Lemma 3.4,
for it will then follow that sP(m−1)

D
= πm−1sP(m)

D
, which combined with sD̃ = sP(n)

D

and sPD
= sP(1)

D
will imply that sPD

= π1π2 · · · πn−1(sD̃) = sD by Proposition 3.1, as desired.
Therefore, fix cij for i ̸= m, with cin = 0 for i < m, and define µm, . . . , µn, νm, . . . , νn as in

Definition 3.3 for P(m−1)
D . We claim that νj + µj−1 = cm−1,j−1 + cm+1,j . It will then follow by



16 Ricky Ini Liu et al.

summing over all j that

νn =
n−1∑

j=m−1

cm−1,j +
n∑

j=m+1

cm+1,j −
n−1∑
j=m

(µj + νj).

Together with noting that the only lower bound on xmn is 0, this will complete the proof by
Lemma 3.4.

Consider the upper bounds on xmj in P(m−1)
D . We need to show that if xmj ⩽ C (where C

is some function of cij for i ̸= m), then xm,j−1 ⩾ cm−1,j−1 + cm+1,j − C. This is immediate
for the inequality xmj ⩽ cm−1,j−1 since xm,j−1 ⩾ cm+1,j . Then consider a sequence I such that
js′+1 − is′ = m and js′+1 = j for some s′, so that −xmj appears on the left side of (∗). Thus
C − xmj ⩾ 0, where

C =
k∑

s=1

cjs−is,js −
∑

1⩽s⩽k−1
s ̸=s′

cjs+1−is,js+1
−

ik∑
s=0

λ
(n−s)
j1−s .

Inserting js′+1− 1 = j− 1 before js′+1 = j as well as is′ − 1 = j−m− 1 before is′ = j−m in
the sequence I yields a new sequence I ′. The left side of (∗) for I ′ differs from the left side of
(∗) for I by xm,j−1 + xm,j − cm−1,j−1 − cm+1,j . Therefore the inequality (∗) for I ′ is equivalent
to

C + xm,j−1 − cm−1,j−1 − cm+1,j ⩾ 0,

or xm,j−1 ⩾ cm−1,j−1 + cm+1,j − C, as desired. A similar argument shows that any lower
bound xm,j−1 ⩾ C ′ yields an upper bound xmj ⩽ cm−1,j−1 + cm+1,j −C ′, which completes the
proof.

Example 3.6. Let n = 3, and let D be the column-convex diagram shown below with λ(3) =
(a+ b, a, 0), λ(2) = (c, 0), and λ(1) = (0).

1
2
3 · · ·

· · ·

a

· · ·

b

· · ·

c

Using the notation in the proof of Theorem 2.7, all the polytopes P(m)
D for m = 1, 2, 3 have

x11 = a+ b, x12 = a+ c, and x13 = 0.

• For m = 3, P(3)
D is a segment since we have a ⩽ x22 ⩽ a+ b.

• Form = 2, the fiber ofP(2)
D above a point ofP(3)

D is defined by 0 ⩽ x33 ⩽ x22, makingP(2)
D

a trapezoid. Note that for fixed x33, the condition on x22 is thatmax{a, x33} ⩽ x22 ⩽ a+b.
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P(2)
D

P(3)
D

P(1)
D

Figure 3.1: PD = P(1)
D with faces P(2)

D and P(3)
D as in Example 3.6. See also Example 2.11. Note

that P(1)
D is a parapolytope (as are P(2)

D and P(3)
D ): for instance, it intersects any plane x33 = c

(which is parallel to the leftmost face) in a coordinate rectangle.

• For m = 1, the fiber of PD = P(1)
D above a point of P(2)

D is defined by

0 ⩽ x23 ⩽ x11 + x12 + x13 + x33 − (µ2 + ν2)

= (a+ b) + (a+ c) + 0 + x33 − (max{a, x33}+ a+ b)

= c+min{a, x33}.

This is equivalent to the inequalities on x23 given in Example 2.11:

λ
(2)
2 + λ

(3)
3 = 0 ⩽ x23 ⩽ c+ a = x12,

x23 ⩽ c+ x33 = x12 − λ
(3)
2 + x33.

See Figure 3.1 for a depiction of P(m)
D for m = 3, 2, 1.

Note that in the special case when w is a Grassmannian permutation, we recover the fact that
the integer point transforms of Gelfand–Tsetlin polytopes project to Schur polynomials.

Corollary 3.7. For any partition λ = (λ1, . . . , λk), the Schur polynomial sλ(x1, . . . , xk) is a
projection of the integer point transform of GT(λ).

Proof. Ifw is the Grassmannian permutation (with descent at k) such thatSw = sλ(x1, . . . , xk),
then in ParD, λ(k) = λ and all other λ(i) are empty. Theorem 2.7 then gives PD = GT(λ),
implying the result.

In this case, the construction of PD = GT(λ) from the proof of Theorem 2.7 in terms of the
operators Di specializes to the description given by Kiritchenko [Kir16, Theorem 3.4].
Remark 3.8. The results of Magyar [Mag98] allow one to compute the character of the flagged
Schur module for any diagram whose columns form a so-called strongly separated family (or
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equivalently, for any percentage-avoiding diagram [RS98]), which includes all Rothe diagrams
of permutations. The technique above can be used to find suitable polytopes for a somewhat
more general class of diagrams and permutations as Minkowski sums of faces of Gelfand–
Tsetlin polytopes (such as the intermediate steps P(m)

D in the proof of Theorem 2.7), but it does
not apply in full generality to all Schubert polynomials due to the ill behavior of general para-
polytopes. For example, attempting to use these geometric operators to mimic the calculation
π1π2(x1x2 · π3π2(x1x2)) does not yield a parapolytope for the reason described in Remark 3.5.
Remark 3.9. It was shown in [FMSD18] (see also [MTY19]) that the Newton polytope of a
Schubert polynomial is a generalized permutahedron, so it follows that the polytopes PD in
Theorem 2.7 project onto generalized permutahedra. One can also prove this directly from the
definition of PD using the fact that each Minkowski summand is a Gelfand–Tsetlin polytope that
projects onto a permutahedron.

Combining Theorem 2.7 and Corollary 2.14 gives the following combinatorial interpretation
for sD. For a filling T of D, let xT denote the product of variables xi over all entries i appearing
in T .

Corollary 3.10. Let D be a column-convex diagram. Then

sD =
∑
T

xT ,

where T ranges over all column-strict, row-flagged labelings of T up to row equivalence.

Proof. After specializing (as in Theorem 2.7) the monomial of the integer point transform of PD

corresponding to a filling T (as in Corollary 2.14), the exponent of xi appearing is the number of
entries at least i appearing in any row of T minus the number of entries at least i− 1 appearing
in any row of T , which is the number of entries equal to i in T .

It would be interesting to investigate how this combinatorial interpretation is related to oth-
ers, such as the one given by Reiner–Shimozono [RS98] or, in the case that D = D(w) for
a permutation w, other known interpretations for Schubert polynomials (such as in [BJS93])
which are typically not polytopal in nature.

4. Gelfand–Tsetlin polytopes as flow polytopes

In this section we show that the Gelfand–Tsetlin polytope is integrally equivalent to a flow poly-
tope and give alternative proofs of several known results using flow polytopes. This will allow
us to view our earlier results from the perspective of flow polytopes. We start by defining flow
polytopes and providing the necessary background on them.

4.1. Background on flow polytopes

Let G be a loopless directed acyclic connected (multi-)graph on the vertex set [n + 1] with
m edges. An integer vector a = (a1, . . . , an,−

∑n
i=1 ai) ∈ Zn+1 is called a netflow vector.
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A pair (G, a) will be referred to as a flow network. To minimize notational complexity, we
will typically omit the netflow a when referring to a flow network G, describing it only when
defining G. When not explicitly stated, we will always assume vertices of G are labeled so that
(i, j) ∈ E(G) implies i < j.

To each edge (i, j) of G, associate the type A positive root ei − ej ∈ Rn. Let MG be
the incidence matrix of G, the matrix whose columns are the multiset of vectors ei − ej for
(i, j) ∈ E(G). A flow on a flow network G with netflow a is a vector f = (f(e))e∈E(G) in RE(G)

⩾0

such that MGf = a. Equivalently, for all 1 ⩽ i ⩽ n, we have∑
e=(k,i)∈E(G)

f(e) + ai =
∑

e=(i,k)∈E(G)

f(e).

The fact that the netflow of vertex n+ 1 is −
∑n

i=1 ai is implied by these equations.
Define the flow polytope FG(a) of a graph G with netflow a to be the set of all flows on G:

FG = FG(a) = {f ∈ RE(G)
⩾0 | MGf = a}.

Remark 4.1. When G is a flow network (G, a), we will write FG for FG(a).

4.2. The Gelfand–Tsetlin polytope as a flow polytope

In this section, we will show that the Gelfand–Tsetlin polytope can be realized as a flow polytope.
Recall that two integral polytopes P in Rd and Q in Rm are integrally equivalent if there

is an affine transformation φ : Rd → Rm whose restriction to P is a bijection φ : P → Q that
preserves the lattice, i.e., φ is a bijection between Zd ∩ aff(P) and Zm ∩ aff(Q), where aff(·)
denotes affine span. The mapφ is called an integral equivalence. Note that integrally equivalent
polytopes have the same Ehrhart polynomials and therefore the same volume.

We now define the flow network Gλ, describing the graph and its associated netflow (see
Remark 4.1). For an illustration of Gλ, see Figure 4.1.

Definition 4.2. For a partition λ ∈ Zn
⩾0 with n ⩾ 2, let Gλ be defined as follows.

If n = 1, let Gλ be a single vertex v22 defined to have flow polytope consisting of one point,
0. Otherwise, let Gλ have vertices

V (Gλ) = {vij | 2 ⩽ i ⩽ j ⩽ n} ∪ {vi,i−1 | 3 ⩽ i ⩽ n+ 2} ∪ {vi,n+1 | 3 ⩽ i ⩽ n+ 1}

and edges

E(Gλ) = {(vij, vi+1,j) | 2 ⩽ i ⩽ j ⩽ n} ∪ {(vi,n+1, vi+1,n+1) | 3 ⩽ i ⩽ n+ 1}
∪ {(vij, vi+1,j+1) | 2 ⩽ i ⩽ j ⩽ n} ∪ {(vi,i−1, vi+1,i) | 3 ⩽ i ⩽ n+ 1}.

The default netflow vector on Gλ is as follows:

• To vertex v2j for 2 ⩽ j ⩽ n, assign netflow λj−1 − λj .

• To vertex vn+2,n+1, assign netflow λn − λ1.
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Figure 4.1: The flow network Gλ with ℓ(λ) = 5.

• To all other vertices, assign netflow 0.

Given a flow on Gλ, denote the flow value on each edge (vij, vi+1,j) by aij , and denote the flow
value on each edge (vij, vi+1,j+1) by bij .

Recall from the introduction the definition of the Gelfand–Tsetlin polytope GT(λ) in terms
of triangular arrays (†) using inequalities (1.1) and (1.2). We are now ready to prove that GT(λ)
can be realized as a flow polytope.

Proof of Theorem 1.2. To map a point (xij)i,j ∈ GT(λ) to FGλ
, use the map

ai j = xi−1,j−1 − xij,

bi j = xij − xi−1,j.

Conversely, to map a flow f ∈ FGλ
to GT(λ), use either

xij = λj +
i∑

k=2

bkj or xij = λj−i+1 −
i−2∑
k=0

ai−k,j−k.

It is easily checked these two maps are inverses of each other and are both integral, completing
the proof.

Example 4.3. For n = 5, the integral equivalences between GT(λ) and FGλ
are shown in

Figure 4.2.
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Figure 4.2: Integral equivalences between GT(λ) and FGλ
when n = 5.
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4.3. Consequences of the Gelfand–Tsetlin polytope being a flow polytope

Here we provide a few corollaries to the Gelfand–Tsetlin polytopeGT(λ) being integrally equiv-
alent to the flow polytope FGλ

. In [LMSD19] further applications of this result are given, par-
ticularly about the volume and Ehrhart polynomial of Gelfand–Tsetlin polytopes. The corollar-
ies presented below are all well known; we include them here to demonstrate proofs via flow
polytopes. We begin with two well-known results about flow polytopes, and then we give their
applications to Gelfand–Tsetlin polytopes.

Lemma 4.4 ([BV08]). For a graph G on [n+ 1] and nonnegative integers a1, . . . , an,

FG(a1, . . . , an,−
n∑

i=1

ai) = a1FG(e1 − en+1) + a2FG(e2 − en+1) + · · ·+ anFG(en − en+1).

Proof. One inclusion is proven by adding flows edgewise. The other is shown by induction on
the number of nonzero ai.

Corollary 4.5. If G is a graph on [n + 1] and a1, . . . , an, b1, . . . , bn are nonnegative integers,
then

FG(a1, . . . , an,−
n∑

i=1

ai)+FG(b1, . . . , bn,−
n∑

i=1

bi) = FG(a1 + b1, . . . , an + bn,−
n∑

i=1

ai + bi).

Proof. Induct on the number of nonzero bi and use Lemma 4.4.

As a consequence of the previous two results and the integral equivalence ofGT(λ) andFGλ
,

we obtain the following fact about Gelfand–Tsetlin polytopes.

Lemma 4.6. If λ and µ are partitions with n parts, then

GT(λ) + GT(µ) = GT(λ+ µ),

where λ+ µ = (λ1 + µ1, . . . , λn + µn).

Proof. Express each term as a flow polytope using Theorem 1.2 and apply Corollary 4.5.

We can also easily derive a proof of Lemma 2.13.

Proof of Lemma 2.13. Either apply Lemma 4.6 repeatedly, or combine Theorem 1.2 with
Lemma 4.4.

Recall that the Schur polynomial sλ can be expressed as

sλ(x1, . . . , xn) =
∑

P∈GT(λ)∩Z(
n+1
2 )

x
wt(P )1
1 x

wt(P )2
2 · · ·xwt(P )n

n
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where wt : R(
n+1
2 ) → Rn is the weight map, defined by

wt(P )i =
n∑

j=i

xij −
n∑

j=i+1

xi+1,j

for P ∈ GT(λ). We now introduce the flow polytopal analogue of wt and study it. Recall
the variables {aij}i,j ∪ {bij}i,j of Definition 4.2: in FGλ

, aij represents the flow on the edge
(vij, vi+1,j) and bij represents the flow on the edge (vij, vi+1,j+1).

Definition 4.7. Let λ be a partition with n parts. Define the graphical weight map

gwt : RE(Gλ) → Rn

by setting
gwt(x(vij ,vi+1,j)) = ei−1 and gwt(x(vij ,vi+1,j+1)) = 0,

so in particular
gwt(aij) = ei−1 and gwt(bij) = 0.

Proposition 4.8. For a partition λ with n parts, let f ∈ FGλ
correspond to Pf ∈ GT(λ). Then,

the maps gwt and wt are related by the translation

wt(Pf ) = gwt(f) + λn1n,

where 1n denotes the vector of all ones in Rn.

Proof. We have

gwt(f)i = ai+1,i+1 + · · ·+ ai+1,n + ai+1,n+1

= ai+1,i+1 + · · ·+ ai+1,n + b2n + · · ·+ bin.

Using the integral equivalence xij = λj−i+1 −
∑i−2

k=0 ai−k,j−k between GT(λ) and FGλ
,

wt(Pf )i =
n∑

j=i

xij −
n∑

j=i+1

xi+1,j

= xin +
n−1∑
j=i

(xij − xi+1,j+1) = xin +
n∑

j=i+1

ai+1,j.

Now, using the integral equivalence xij = λj +
∑i

k=2 bkj , we have

(gwt(f)− wt(Pf ))i = xin −
i∑

k=2

bkn

=

(
λn +

i∑
k=2

bkn

)
−

i∑
k=2

bkn = λn.
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Figure 4.3: GT(1, 1, 1, 0, 0) and the associated map gwt.

Using the map gwt, we now describe the polytopes GT(1k0n−k) and rederive a result of
Postnikov from [Pos09].

Proposition 4.9. If λ is of the form 1k0n−k with 1 ⩽ k ⩽ n, then gwt(FGλ
) equals the hyper-

simplex ∆k,n = Conv({x ∈ [0, 1]n | x1 + x2 + · · ·+ xn = k}).

Proof. If λ is of the form 1k0n−k, then Gλ will have a single source with netflow 1 and a single
sink with netflow −1. Ignoring all edges and vertices not lying on path from the source to sink
(which will carry zero flow), we are left with a rectangular grid as shown in Figure 4.3. A path
from source to sink in the grid requires k NW steps and n − k SW steps. Recall (cf. [Hil03],
Lemma 3.1) that the vertices of a flow polytope with a single source and sink are exactly the
flows that are nonzero only on a path from source to sink.

Thus, the vertices of FGλ
are exactly the flows with support a path from source to sink in the

grid. These paths are in bijection with length n words on {N,S} having k N ’s (corresponding
to NW steps in the path) and n− k S’s (corresponding to SW steps in the path). By definition,
the map gwt takes a vertex of FGλ

to the vector with ones in the positions of the N ’s in the
corresponding string, and zero elsewhere. Thus,

gwt(V (FGλ
)) = {x ∈ {0, 1}n | x1 + · · ·+ xn = k} = V (∆k,n),

so gwt(FGλ
) = ∆k,n.

Corollary 4.10 ([Pos09]). The permutahedron Pλ = Conv(Sn · λ) of λ equals the Minkowski
sum of hypersimplices

Pλ = (λ1 − λ2)∆1,n + (λ2 − λ3)∆2,n + · · ·+ (λn−1 − λn)∆n−1,n + λn∆n,n.
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Proof. Since wt(GT(λ)) = Pλ, applying gwt to both sides of

FGλ
=

n−1∑
k=1

(λk − λk+1)FG
(1k0n−k)

and using Propositions 4.9 and 4.8 yields

Pλ − λn1n = (λ1 − λ2)∆1,n + (λ2 − λ3)∆2,n + · · ·+ (λn−1 − λn)∆n−1,n.

4.4. The Minkowski sum of Gelfand–Tsetlin polytopes

In this section we observe that the Minkowski sum of Gelfand–Tsetlin polytopes PD appearing
in Theorem 2.7 can be viewed naturally as a subset of a larger Gelfand–Tsetlin polytope.

Recall the embedding of the Gelfand–Tsetlin polytopes in the sum

PD = GT(λ(1)) + GT(λ(2)) + · · ·+GT(λ(n))

from Section 1. In light of Theorem 1.2, PD should be integrally equivalent to a sum of flow
polytopes

FG
λ(1)

+ · · ·+ FG
λ(n)

.

Just like for the Gelfand–Tsetlin polytope sum, we must specify how the graphs Gλ(i) , i ∈ [n],
are embedded. Let us embed Gλ(k) , k ∈ [n], into Gλ(n) by identifying vij (see Definition 4.2) in
Gλ(k) with vi,j+n−k in Gλ(k) . Note that the trivial case Gλ(1) is just a single vertex with netflow 0
and flow polytope defined to be the single point 0.

Lemmas 4.11 and 4.13 below follow readily by the definitions and the integral equivalence
given in Theorem 1.2:

Lemma 4.11. The Minkowski sum

GT(λ(1)) + · · ·+GT(λ(n))

is integrally equivalent to
FG

λ(1)
+ · · ·+ FG

λ(n)

with the embedding specified above.

Definition 4.12. Given partitions λ(k) of size k for k ∈ [n], let G(λ(1), . . . , λ(n)) denote the
flow network obtained by overlaying the flow networks Gλ(1) , . . . , Gλ(n) according to the em-
bedding specified above and adding the corresponding netflows. Let Ĝ(λ(1), . . . , λ(n)) denote
the flow network obtained from Gλ(1) , . . . , Gλ(n) by moving all negative netflows to vn+2,n+1 and
replacing them by zero netflows. The case n = 4 is demonstrated in Figure 4.4.

Lemma 4.13. The following polytope inclusions hold:

FG
λ(n)

+ · · ·+ FG
λ(1)

⊂ FG(λ(1),...,λ(n)) ⊂ FĜ(λ(1),...,λ(n)),
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Figure 4.4: The flow networks G(λ(1), λ(2), λ(3), λ(4)) (left) and Ĝ(λ(1), λ(2), λ(3), λ(4)) (right).
Vertices without netflow indicated have netflow 0.

the latter being true up to an integral translation of FG(λ(1),...,λ(n)).
In general, none of the above inclusions is an equality. The polytope FĜ(λ(1),...,λ(n)) is inte-

grally equivalent to the Gelfand–Tsetlin polytope GT(µ) where µn is arbitrary, and for k < n,

µk = µk+1 +
k−1∑
j=0

(λ
(n−j)
k−j − λ

(n−j)
k−j+1).

Thus, we conclude that for a column-convex diagram D the polytope PD can be thought
of as obtained from GT(µ) specified in Lemma 4.13 via further hyperplane cuts. (Recall also
Proposition 2.9, which gives another view on PD.)

Example 4.14. In Example 2.8, a description of the lattice points of PD was found. By adding
1 to each entry xii, we arrive at a translation of PD with lattice points

3 3 3 1
3 3 a+ c

3 b+ d
e+ 1

where 0 ⩽ a ⩽ b ⩽ 1 and 1 ⩽ c ⩽ d ⩽ e ⩽ 2,

which form a proper subset of the lattice points in GT(µ) for µ = (3, 3, 3, 1).
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