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Abstract. Gelfand—Tsetlin polytopes are classical objects in algebraic combinatorics arising
in the representation theory of gl,,(C). The integer point transform of the Gelfand-Tsetlin
polytope GT(\) projects to the Schur function sy. Schur functions form a distinguished
basis of the ring of symmetric functions; they are also special cases of Schubert polynomi-
als &,, corresponding to Grassmannian permutations.

For any permutation w € .S;, with column-convex Rothe diagram, we construct a poly-
tope P,, whose integer point transform projects to the Schubert polynomial &,,. Such a con-
struction has been sought after at least since the construction of twisted cubes by Grossberg
and Karshon in 1994, whose integer point transforms project to Schubert polynomials G,,
for all w € S,,. However, twisted cubes are not honest polytopes; rather one can think of
them as signed polytopal complexes. Our polytope P, is a convex polytope, namely it is
a Minkowski sum of Gelfand-Tsetlin polytopes of varying sizes. When the permutation w
is Grassmannian, the Gelfand—Tsetlin polytope is recovered. We conclude by showing that
the Gelfand—Tsetlin polytope is a flow polytope.

Keywords. Schubert polynomials, Gelfand—Tsetlin polytopes, flow polytopes
Mathematics Subject Classifications. 05E05

1. Introduction

Schubert polynomials, introduced by Lascoux and Schiitzenberger in 1982 [LLS82], are exten-
sively studied in algebraic combinatorics [BJS93, FK96, BB93, FS94, LLS21, WY 18, Len04,
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ManO1, KMO05, KM04, BS98]. They represent cohomology classes of Schubert cycles in flag
varieties, and they generalize Schur functions, a distinguished basis of the ring of symmetric
functions.

A well-known property of the Schur function s, is that it is a projection of the integer point
transform of the Gelfand—Tsetlin polytope GT(\). This has inspired the following natural ques-
tion for Schubert polynomials:

Question 1. For w € S, is there a natural polytope P, and a projection map w,, such that the
projection of the integer point transform of ‘P,, under the map m,, equals the Schubert polyno-
mial &,,7?

The construction of twisted cubes by Grossberg and Karshon in 1994 [GK94] is the first at-
tempt at an answer to the above question. The integer point transforms of twisted cubes project
to any Schubert polynomial. Indeed, Grossberg and Karshon show that for both flag and Schu-
bert varieties, their (virtual) characters are projections of integer point transforms of twisted
cubes. The one catch with twisted cubes is that they are not always honest polytopes; intuitively
one can think of them as signed polytopal complexes due to self-intersection (see [Kirl6] for
some discussion). For the Grassmannian case they do not yield the Gelfand—Tsetlin polytope.
Kiritchenko’s beautiful work [Kirl6] explains how to make certain corrections to the Grossberg—
Karshon twisted cubes in order to obtain the Gelfand—Tsetlin polytope for Grassmannian per-
mutations.

Recall that given a partition A = (A1, ..., \,) € Z%, the Gelfand-Tsetlin polytope GT()\)
is the set of all nonnegative triangular arrays

T T12 T Tin
T22 L23 T Lon
(1)
xnfl,nfl xnfl,n
Tnn
such that

xli:/\i forall 1 <Z <n, (11)
Ti—1,j-1 = Tij = Ti—1,5 for all 1 <1 < ] < n. (12)

To state our main result, which is a partial answer to Question 1, we need to consider the
Minkowski sums of Gelfand—Tsetlin polytopes of partitions with different lengths.

Fix n, and for each k € [n], let \(*) be a partition with k parts (with empty parts allowed).
We wish to study the Minkowski sum

CTOAM) + GTOA@) + ..+ CT(AM).

To make this Minkowski sum well-defined, we embed R(kgl) into ]R(ny) for each k. To do
k+1 n+1
this, let y;; be coordinates of ]R< 2 and x;; be coordinates of R( :') as in the definition of the

Gelfand—Tsetlin polytope. The embedding is given by

Yij = Tijen—p forall s +j <k 4+ 1.
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Figure 1.1: The permutation w = 256413 is column-convex and has Rothe diagram
D(w) = {(1,1),(2,1),(3,1),(4,1),(2,3),(3,3),(4,3),(2,4),(3,4)}. We also have Parp =
(2,9,(1,1,0),(2,2,2,1),9,9).

In other words, when computing the Minkowski sum, we align the upper right corners of each
array and sum coordinatewise.

To any permutation w € S,,, we associate its Rothe diagram D(w), which is the subset of
N x N given by

D(w) ={(i,4) | 1 < 4,5 < n, w(i) > j, w(j) > i}

We can visualize D(w) as the set of boxes remaining in the n x n grid after crossing out all
boxes below or to the right of (i, w(i)) for each i € [n]. We say D(w) is column-convex if, for
each j, the set {i | (¢,7) € D(w)} is an interval in N. (This will occur whenever w avoids the
patterns 3142 and 4132.)

In the case when D = D(w) is column-convex, we associate to w a family of partitions
Parp = {\W, ..., A"} in the following way. The shape A"}, i € [n], has i parts and is obtained
from D by ordering the columns of D whose lowest box is in the ith row in decreasing fashion
and reading off \(¥) according to the French notation. In other words, A() = ()\gi), e ,)\Z@),
where )\g-i) is the number of columns c of D such that

(t—j+1,¢),...,(i,¢) € D, (i+1,¢) ¢ D.
Our main result can then be stated as follows.

Theorem 1.1. Let w € S, be a (3142 and 4132-avoiding) permutation with column-convex
Rothe diagram D, and let Parp = {\V ... A"} be defined as above. Then the Schubert
polynomial G, is a projection of the integer point transform of

Pp = GTAD) + GTA?) + - - + GT(A™)

(using the embedding specified above). We obtain &, (x;) from the integer point transform
op,, (xi;) via the specialization

1

1 when © =1,
Tij —> B .
x;_x; when i > 1.
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For instance, it follows immediately in this case that S,,(1, 1, ..., 1) is the number of lattice
points in Pp.

In the special case when w is a Grassmannian permutation, G,, is a Schur polynomial
sx(1,...,x). All of the A are empty except for \(¥) = ), so we recover that s (z1, ..., zy)
is a projection of the integer point transform of the Gelfand-Tsetlin polytope GT(\).

In fact, we will prove in Theorem 2.7 that for any column-convex diagram D, the character sp
of the flagged Schur module associated to D can be obtained as a projection of the integer
point transform of a Minkowski sum of Gelfand—Tsetlin polytopes. This will immediately imply
Theorem 1.1 since &,, is the character of the flagged Schur module associated to D(w).

As a corollary, we deduce a combinatorial interpretation for G, or s in the column-convex
case in terms of column-strict, row-flagged fillings of D up to rearranging entries within rows—
see Corollary 3.10.

It is interesting to note that the Newton polytope of a Schubert polynomial is a general-
ized permutahedron [FMSD18, MTY 19]; thus, the affine projection specified in Theorem 2.7
maps Pp,) to a generalized permutahedron for column-convex D(w).

In [EM 18], flow polytopes are connected to certain Grothendieck polynomials, a K-theoretic
analogue of Schubert polynomials. The implications of this connection for the corresponding
Schubert polynomials are explored in [MD17] (by the second and third author of the present
paper). One implication is the existence of flow polytopes whose integer point transforms project
to a family of Schubert polynomials. Analogously, we prove that Gelfand—Tsetlin polytopes can
be realized as flow polytopes.

Theorem 1.2. GT(\) is integrally equivalent to the flow polytope F, .

We then investigate some consequences of Theorem 2.7 in the context of flow polytopes.
Further discussion along these lines can be found in [LMSD19], also by the current authors.

This paper is organized as follows. After covering necessary background material, the proof
of Theorem 2.7 can be found in Section 2. Section 4 contains background material on flow
polytopes as well as the proof of Theorem 1.2, followed by some corollaries and discussion.

2. Diagrams, Schur modules, and Gelfand-Tsetlin polytopes

This section is devoted to introducing background about diagrams, flagged Schur modules and
their characters, and Gelfand—Tsetlin polytopes. We will state our main theorem (Theorem 2.7)
as well as determine the inequalities that define a Minkowski sum of Gelfand—Tsetlin polytopes.

2.1. Diagrams

A diagram is a finite subset of N x N. Its elements (i, j) € D are called boxes. We will think
of N x N as a grid of boxes in matrix notation, so (1, 1) is the topmost and leftmost box. We
will sometimes implicitly associate to D a number of rows n, where D C [n] x N. (Some rows
may be empty.)

Canonically associated to each permutation is its Rothe diagram.
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Definition 2.1. The Rothe diagram of a permutation w € S, is the collection of boxes

D(w) = {(4,7) | 1 <i4,j <n, w(i) > j, w(j) > i},

Definition 2.2. A diagram D is column-convex if, for each j, the set {i | (i,j) € D} is an
interval in N.

The Rothe diagram for any dominant or 132-avoiding permutation is the Young diagram of
a partition (in English notation), which is column-convex. Permutations with column-convex
Rothe diagrams can be characterized by a pattern avoidance condition.

Proposition 2.3. The Rothe diagram D(w) is column-convex if and only if w avoids the patterns
3142 and 4132.

Proof. If D = D(w) is not column-convex, then there exists some column /" and rows ¢, j, and k
with i < j < k such that (i,1'), (k,I") € D but (5,I') ¢ D. Letl = w=(I'), so that (k,I') € D
implies £ < [. Then from the boxes appearing in column /', we find that w(i), w(k) > U
but w(j) < I'. It follows that the subsequence w(i)w(j)w(k)w(l) of w forms either a 3142 or
4132 pattern in w. The reverse direction is similar. 0

Such permutations are counted by the (large) Schroder numbers—see [Kre00, Corollary 9].
To any column-convex diagram D with n rows, we associate a sequence of partitions

Parp = {\W, ... A}
= (), PSPl A,

where )\gi) is the number of columns ¢ of D such that
(t—j+1,¢),...,(i,c) €D, (i+1,¢c) ¢ D.

In other words, A(¥) is the partition with 7 parts (empty parts allowed) whose Young diagram in
French notation is obtained by considering only the columns of D whose lowest box is in the ith
row and ordering them according to decreasing size.

2.2. Flagged Schur modules

Given a diagram D with n rows, we can construct a G L, (C)-representation called a Schur
module as follows. (See also, for instance, [ABW82, KP87].) Denote by Y., the symmetric
group on the boxes in D. Let Col(D) be the subgroup of ¥, permuting the boxes of D within
each column, and define Row(D) similarly for rows. Let 7 denote the C-vector space with
basis indexed by fillings 7": D — [n] of D. Observe that ¥, Col(D), and Row(D) act on Tp
on the right by permuting the filled boxes.

Define idempotents ap, Sp in the group algebra C[Xp] by

1
ap = ]Row Z w, ﬁD:m Z sgn(w)w,

wERow weCol(D)
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where sgn(w) is the sign of the permutation w. Given a filling 7' € Tp, define ey € Tp to be
the linear combination
e = T. OCDBD-

Identify 7 with the tensor product V¥V, where V' = C" and N is the number of boxes
of D, in the following manner. First, fix an order on the boxes of D. Then read each fill-
ing T in this order to obtain a word i1, ...,iy on [n], and identify this word with the tensor
€, ®e€p & - Qe € VEN where ey, ... ,e, is the standard basis of C*. As G L, (C) acts
on V, it acts diagonally on VV® by acting on each component. This left action of G L,,(C) on Tp
commutes with the right action of ¥ . Thus, the subspace of T spanned by all elements ey is
a submodule, called the Schur module of D.

Call afilling T of D row-flagged if T'(¢, j) < iforalli, j. Let B, be the subgroup of GL,,(C)
consisting of upper triangular matrices.

Definition 2.4. The flagged Schur module Sy, of a diagram D is the B,-submodule of 7p
spanned by
{er | T is a row-flagged filling of D}.

The formal character char(Sp), denoted by sp, is the polynomial
sp = char(Sp)(z1,...,x,) = Trace(X: Sp — Sp),
where X is the diagonal matrix in B,, with diagonal entries x4, . .., z,.

A particularly important subclass of characters of flagged Schur modules is that of Schubert
polynomials as shown by Kraskiewicz-Pragacz [KP87] and explained in Theorem 2.6 below.
Schubert polynomials are associated to permutations, and they admit various combinatorial and
algebraic definitions. For a permutation w € S,,, we will define the Schubert polynomial &,,
via divided difference operators 0; on polynomials.

Definition 2.5. The Schubert polynomial of the long word wy € S,, (wo(i) = n — i + 1 for
1 <1< n)is defined as

w.n—1_n—2
Cu, =] x5y -

cTp_1-
For w # wy, there exists ¢ € [n — 1] such that w(i) < w(i + 1). For any such i, the Schubert
polynomial G, is defined by

6w = aiGwsia

where

8Z<f) _ f_ Sif _ f(£17...,xn) — f(ﬁl,...,xi,1,$i+17$i,...7]}”)

Ti — Tit1 Ti — Ti41

Y

and s; is the transposition swapping ¢ and ¢ + 1. The operators J; can be shown to satisfy the
braid relations, so the Schubert polynomials G,, are well-defined.

Schubert polynomials appear as the characters of flagged Schur modules of Rothe diagrams.

Theorem 2.6 ([KP87]). Let w € S, be a permutation, D(w) be the Rothe diagram of w,
and s p . be the character of the associated flagged Schur module Sp (). Then

Gw(llfl, . ,l’n) = 5D(w)($17 . ,l‘n).
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We can now state our main theorem, which relates the character s for any column-convex
diagram D with the Minkowski sum of Gelfand—Tsetlin polytopes. (See the introduction for the
definition of Gelfand-Tsetlin polytopes.)

Theorem 2.7. The character sp of the flagged Schur module associated to a column-convex di-

agram D with n rows and Parp = {)\(1), cee )\(”)} is a projection of the integer point transform
of
Pp = GTOD) + CTA®D) + ... + GT(A™). 2.1)
We obtain sp(z1, . . ., x,) from the integer point transform op, (x;;) via the specialization
1 when 1 = 1,
Tig = 4 .
x;x; when i > 1.

k+1 n+1)
2

Recall that in order to take the Minkowski sum, we embed GT(A(®)) C R(*2") into R("2
by
Yij = Tijrn—k for all ¢ —|—] <k+1.

Example 2.8. If D is the diagram in Figure 1.1, then we find that
Pp=GT(1,1,0) + GT(2,2,2,1).
These two Gelfand—Tsetlin polytopes have the following lattice points:

1 1 0
GT(1,1,0) : 1 a where 0 <a <b<1,

GT(2,2,2,1): where ] <c<d<e<2.

Summing these polytopes using the embedding described above gives the polytope Pp with
lattice points

where 0 <a<b<landl <c<d<e<2

The twelve possible choices for a through e only yield nine distinct possibilities
for (a + ¢,b+d, e):

(1,1,1), (1,2,1), (2,2,1), (1,1,2), (1,2,2), (2,2,2), (1,3,2), (2,3,2), (3,3,2).

Under the specialization given in Theorem 2.7, these triples give

3,32 3,23 2,33 3,3, .2 3,222
S5p = X1T03T4 + T{X0304 + T]X3X5304 + TITHX3X, + T]T5T3Ty

2,322 3 3,..2 2,.2,3,..2 3,.3,.2

We will prove Theorem 2.7 in Section 3.
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2.3. Minkowski sums of Gelfand-Tsetlin polytopes

As a first step towards Theorem 2.7, we will describe the inequalities defining the Minkowski
sum of Gelfand—Tsetlin polytopes.

Proposition 2.9. Ler AV ..., A" be partitions such that \?) has i (possibly empty) parts. The
Minkowski sum GT(AM) + ... + GT(A\™) is defined by the following inequalities:

e foralll <t < j<n, xi_1j-1 =y, and
* for any positive integer k and nonempty sequence I of even length 0 < i, < i1 < --- <
11 <j1<j2<"’<jk<n;

i

k k—1
§ : } : E : (n—s)

':Ejs_i.s,js - xjs+1_i57js+l 2 )\jlfs 9 (*)
s=1 s=1

s=0
with equality when k = 1 and j; = 11 + 1.
Remark 2.10. A simple calculation shows that if, for instance, 7,1 = i, for some s, then neither
side of (x) would change if we simply remove 7., and j,.; from the sequence. Likewise,
if js = 7541 for some s, then neither side would change if we remove ¢, and j, from the sequence.

Therefore we may equivalently take the inequalities (x) for sequences 0 < 7 < -+ < 11 < J1 <
K g SN

One should observe that the entries occurring on the left side of (x) lie at the corners of a path
that zigzags southeast and southwest inside the triangular array, starting at x;, _;, ; and ending
at z;, _;, ;.. where the lengths of the southeast steps are given by the differences j;;1 — js and
the lengths of the southwest steps are given by the differences i1 — is.

Example 2.11. Suppose n = 3. We first have inequalities x1; > 9o > x33 and x15 > x93 as
with ordinary Gelfand—Tsetlin patterns. Then for £ = 1, we get equalities

=AY =P P 2y =AW AP 0P,
as well as inequalities
Tog = Ag?’), Toz = )\f) + )\§,3), and T3z = )\é?’).
Finally, for £ = 2, there is one more inequality, namely
X1 — T3 + T33 = /\53)-
One direction of Proposition 2.9 is given by the following lemma.
Lemma 2.12. Let
P=POW, . AM)=GTOAW) + ... 4 GTAM),

and let Q = QAW ..., X)) be the polytope given by the inequalities in Proposition 2.9.
Then P C Q.
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(n—m

Proof. For any point (z;;)1<i<j<n € P, choose for each 0 < m < n, points (yij ))1<7j<j<m €

GT (A=) summing to it, so that z,; = >/ _} yl ' s). In particular, GT (A"~™)) will contribute
to a coordinate of the form x;_; ; if and only if m < i.

Inequalities of the form x;_; ;1 > z;; are derived by summing the respective inequalities

yf"lj) s = yz( e 8) over all 0 < s < j — 4. For inequalities of type (*), consider a sequence I,

and suppose first that 0 < m < 4. Then

N

-1

k
y]e_leﬂs y]s+l ZS:]s+l m _yjl Zl’,]l m_'_ (y]s+l Zs+1a.75+1 m y]5+1 ls,]s+1 m)
s=1

Ji—m 7

since each term in the sum is nonnegative by the defining inequalities of GT (A=), If in-
stead m > i, then let &’ < k be the minimum value such that m < ;. Then

kl
(n—m) (n—m) (n—m) (n—m)
Z y]s 745,]3 Z y]s+1 137]3+1 m Z(yjsfishjs*m - yjs«!»l*ismjs#»l*m) 2 O

s=1

since again each term in the sum is nonnegative. Summing these inequalities over all m then
gives the desired inequality. In the case that £ = 1 and j; = ¢; + 1, we get equality since

Ji—1

L1 = Zyl,]l s ZAE? :: . [

To complete the proof of Proposition 2.9, we will need the following Lemma 2.13, which is
proved in Section 4.

Lemma 2.13. If A\ has n parts, then the Gelfand-Tsetlin polytope GT(\) decomposes as a

Minkowski sum:
n

GT(A) =) (A — A1) GT(1F0"F).

k=1
Armed with this, we are now prepared to finish the proof of Proposition 2.9.

Proof of Proposition 2.9. By Lemma 2.12 (and using the notation defined there), it suffices to
show that Q C P. We induct on n and the size of A\, First suppose A(™ = @. The inequalities
involving x;; are x11 > @22 = - -+ = Tpy, and, when 45, = 0,

o

-1

(n) _
(xjs—is,js - xjs+1_7:37j5+1) + x]k,]k 2 >\]1 - 0
1

Vo)
Il

with equality if also & = 1 and j; = 1. These imply that z;; = Oforall 1 < 7 < n and
impose no additional constraints on the other entries. Removing the diagonal of entries x;; then
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yields a triangular array that satisfies the inequalities defining Q(A™),--- , A("=1). Therefore
by induction

QAW . A gy = QAW Ay = pAD L Ay = p(AD A ),

If A\ +#£ @, then let m = {¢(A™) be the number of nonzero parts. We will
prove that Q@ C CGT(1™0"™) + @', where we let @' = QD ... A1 4M) for
p™ = (A" —1,...,A% —1,0,...,0). This will prove the result by induction on the size
of \ using Lemma 2.13 since then GT(1™0"™) 4+ GT(u™) = GT(A™).

Recall that Gelfand—Tsetlin polytopes are integral polytopes. Given any integer point
(xij) €@, sett; = 1forl < j < m, while form < j < n, set t; to be the minimum
value such that t; > ¢;_; and xy, 1,;-1 = x4, ; (if such an index exists, otherwise set ¢; = 00).
Then define the point (2;;)1<i<j<n € GT(1™0™ ™) by 2;; = 1if i > t;, otherwise z;; = 0.

We claim that (77;) = (z;; — 2;;) € Q'. Our choice of t; guarantees that ;1 ; 1 — 7;; > 1
whenever z;_1 j_1 — 2; ; = 1, which ensures that x;,l,j,l > xgj forall 1 < i < j < n. Therefore
it suffices to show inequalities of type (x) for (7).

Given any sequence I, suppose that for some s, z;, ;. _, ;. = 0 but 2;,_; ;. = 1. Consider
what happens to the left hand side of (x) if we insert j/ = j; — 1 between j,_; and j,, and we
insert ¢/ = j; — t;, between ¢, and i,_ to get a new sequence I’. (Note that j,_; < j' < j, and
is < 1’ < i,_1.) This reduces the left hand side of (x) by

/

(), ! ) — (2 o1t tjo—1 ~ Thomip_1,3.)

/ —
J'=is—1,§" T Tjs—is—1,Js gl 'rjs*i/vjs) o (.f(}'
/ /
- (xtjsflyjs*l - xtjs,js)
/ _ (L,/
_]'37177:5,1,]'571 js*isflajs

20,

=T

while the right hand side of (x) is unchanged. Thus (x) for the sequence [ is implied by (x) for
the new sequence I'. Since zj, g j, = 2, j, = 1, by iteratively applying this procedure to the
new sequence, we will eventually arrive at a sequence for which such an s does not exist.

It therefore suffices to prove inequality (x) for (z;) in the case that there exists some s’ such
that z; _; ;. = land z;,_; ,;, = 1 exactly when s < s". If j; < m, then the left hand side of

(x) is

k k—1 k k—1
: :Ijs—is,js - : :xj5+1—7:s;js+1 - : :x]s_zsvﬂs § z :x]5+1_ZSaJs+1 S + 1
s=1 s=1 s=1 s=1
k k—1
- E :':L‘js_isz - xjs+1—i57js+1 - ]'7
s=1 s=1

while the right hand side is

ik ik
(n) (n—s) _ (n—s)
’ujl +Z>\j1*8 _ZAjlfs _17
s=1 s=0
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so this inequality follows from the corresponding inequality for (z;;) € Q. If j; > m,
then consider the sequence obtained by inserting m,m + 1,...,57 — 1 before j,
and j; — t;,,51 — 1 —t;,—1,...,m + 1 — t,,4 after 4; in the sequence. For (z;;) € (), this
yields the inequality

Jji—1 k j1—1 k—1 i

§ : § : § : § : § : (n—s)
Ttjp1-1,j + Ljs—isgs | — Ttjq,5+1 + Tjoi1—is,jer1 = )‘m—s .

j=m s=1 j=m s=1

But x4, 1, Ty, j+1, and the right side is strictly greater than )
A > 0= AM). Thus

ik )\(”*3)

sm0 Nj,—s (since

i

k k—1

§ : § : § : (n—s)
xjs_is,js - Ijs+1_i57js+l > )\jl—s + 17

s=1 s=1

s=0
or equivalently,

i

k k—1 g3
(n—s) _ (n) (n—s)
(Z xjs*iszjs - 8,> - (Z xjs-%l*isJS-‘rl - S, + 1) 2 Z )\jlfs - lujl + Z )\jlfs ’
s=1 s=1 s=1

s=0
which is the inequality (x) for (z};) € Q'. This completes the proof. O

We can give the following combinatorial interpretation for the integer points in
Pp=GTAD) + ...+ CGT\™).

Call a filling T: D — [n| column-strict if the entries in each column increase from top to
bottom. Call two fillings 7" and 7" row equivalent if one can be obtained from the other by
permuting elements within each row. (In other words, the number of occurrences of ¢ in row j
is the same for 7" and 7" for all 7 and j.)

Corollary 2.14. Let D be a column-convex diagram and Parp = {\), ... A1}, The lattice
points of Pp = GT(AV) + --- + GT(A™) are in bijection with column-strict, row-flagged
fillings of D up to row equivalence. Specifically, a point (x;;) € Pp corresponds to a filling in
which x;; is the number of entries in row n + 1 — j that are at least 1.

Proof. Let D have columns C1, (s, . ... Our inductive proof of Proposition 2.9 actually showed
that any integer point of Pp, is a sum of integer points, each lying in some Pg, = GT(1™0k~™),
where C'; has m boxes, the lowest of which lies in row k.

The standard bijection between Gelfand—Tsetlin patterns and (reverse) semistandard Young

tableaux sends each integer point (y;;) € GT(1™0*™) C R("2") to the column-strict filling of
Cs such that y;; is the number of entries in row k 4 ¢ — j that are at least . After embedding
R(*2") into R(ngl), the image (z;;) € R("2") then has x;; equal to the number of entries in row
n + ¢ — j that are at least 7. Combining the fillings for each column C’; therefore has the effect

of adding the corresponding coordinates x;;, so the result follows. [
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Example 2.15. Using the diagram D from Figure 1.1, the twelve column-strict, row-flagged fill-
ings are given below with row equivalences indicated. The nine equivalence classes correspond
to the lattice points in Pp as well as the terms in s as found in Example 2.8.

1] (1] (1] (1] (1] 1]
211 211 212 211 211 211
312[2 3]2 312[3 312[2 31231~ [3]3
13 73 13 P 12 14
(1] (1] 1] (1] (1] (1]
212 221 211 212 2121 2122
312131~ [3[3]2 33 3131317 [313(3 313(3
14 14 14 14 P 14

In the next section, we will show how the facet description of Pp, is related to the characters
of flagged Schur modules.

3. Demazure operators and parapolytopes

To prove Theorem 2.7, we will need a formula for the character sp. The following formula
is essentially a particular case of one due to Magyar [Mag98]. (See also Reiner-Shimozono
[RS98].) We first define the isobaric divided difference operator (or Demazure operator) 7;
acting on polynomials f(z1,...,x,) by

rif — xS f
7Tif<x17 s e 73311) = az(xlf) = ,I"——.I—:l_l’

where s; f is the polynomial obtained from f by switching x; and x;, ;. Note that w; f = f if f
is symmetric in x; and x;41.

Proposition 3.1. Let D be a column-convex diagram with n rows with Parp = {\() ... AW},
Define D to be the diagram with n — 1 rows such that Parg = (A, ... A""D) where
)\g.’) = )\5.”1) — )\gfll). (Here, D is obtained from D by removing any column with a box in

the first row and then shifting all remaining boxes up by one row.) Also let
=W AP A AD A )y,
the partition formed from all columns of D with a box in the first row. Then

H1

sp=ah' - abrmmy - m_1(s5).

Proof. Note that D can be obtained from D by switching the ith and (¢ + 1)st row for

i =n—1,n—2,...,1, and then adding y; columns with boxes in rows {1,...,i} for each
1 = 1,...,n. The result then follows immediately from [Mag98] (see, for instance, Proposi-
tion 15). ]

We now show that the polytope for D can be constructed iteratively in a way that mimics the
application of the operator 7;. This geometric operation is the same as the operator D; given by
Kiritchenko in [Kirl6] specialized for our current situation.

The key lemma is the following calculation.
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Lemma 3.2. Choose nonnegative integers N1, Ny and 11 < 14, ..., li < Vg Such that

k
Z(,Ui +v;) < Ny + N.

i=1

Define the polynomial

Z Z N codcp—N:
wl,ZEQ 7 1—C1— Ckxgﬁr +ck 2

c1=p1 Ch=lk
Then
Vi+1
N1 c1——Cp— Ck+1 CH— +Ck+Ck+1_N2
7T1f IE1,$2 E E g
c1=p1 cp=p Ck+1=0

where vy1 = N1 + Ny — Zle(,ui + ).

Proof. Note that reversing the order of each of the summations in the expression for f gives

V1 Vi
Vgr1—No+ci1+-+cp Ni—vgi1—c1—-—c
f: § : § : x1k+1 2t+c kaI k+1—C1 k:(£;>uk+1 Slf

Cc1=p1 Ch=Hk
Hence
x Vg1+1
1 — (22 Vi1
1 f — w81 f 1 —Ckt1,.Ch+1
mf = =f- T2 =f- E Ty Ty
1 — T2 11—
1 cr+1=0
as desired. O]

Consider R<n;1> with coordinates x;; for 1 < ¢ < j < n. Let ¢y : RO;I) — R(ngl)_"_l““

be the projection onto the coordinates x;; for all 7 # k.

Definition 3.3 ([Kir16]). A parapolytope P C R(":") is a convex polytope such that, for all £,
every fiber of the projection ¢, on P is a coordinate parallelepiped.

In other words, for every k and every set of constants ¢;; (i # k), there exist constants j;
and v; (depending on the ¢;;) such that (z;;) € P with x;; = ¢;; for i # k if and only
lf/,bj < Ly < vj.

We denote this parallelepiped (which depends on £ and c¢;; for 7 # k) by

H(Mkv sy My Vi e 7Vn) = ]'_‘[(ILL’ V) = {<x/€])?:k | My < Tkj < Vj} C Rn+1_k‘

Given a polytope P C R(ngl), let op be its integer point transform

op(zij) = Z H %Cj],

( +1) 1<i<j<n
(cij)€PNZN 2
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and define sp(z;) to be the image of op(z;;) under the specialization sending

1 when i =1,
Tij = 1 )
x;,qx; when > 1.

n+1
In other words, the point (¢;;) € PN z("3) corresponds to the monomial in which the exponent
of €T; is Cl - Ci+1, where Cl = Z;’L:Z Cij.

Lemma 34. Fix 2 < k < n, and let P,(Q C R("S") pe parapolytopes. Suppose that for
any fixed integer point ¢ = (c;;)izk, the fiber over c of the projection @y, on P is the (integer)
parallelepiped

p =gk, oy fon—1,0; gy« oo, V1, 0),

while the fiber over c of vy on @) is
HQ = H(:uka ceey Mn—1; Uns Vigy - - -5 Un—1, Vn)>

where 1, = 0 and

n n n—1
Vn = E Ck—1,5 T E Ckt1,j — E (1j +v5) 2 0.
j=k—1 j=k+1 j=k

Then sqg = mj_15p.

Proof. For fixed c, the contribution to sp of the fiber over ¢ has the form

§ Cr—1—22;¢kj 2 cki—Cht1
M * .I’k_l J ]Ik J ! 3

(CkkysCh,n—1)Ellp

where M is a monomial that does not contain x;_; nor x, and C; = Z;L:l c;; only depends on ¢
for ¢ # k. This summation has the same form as the one in Lemma 3.2, so applying 7,_; as per
the lemma immediately gives the result. 0

Remark 3.5. The operator that produces () from P is denoted by D,._; in [Kirl6]. However,
it is important to note that the operator D;,_; will not in general yield a parapolytope (or even
necessarily a polytope) from a general parapolytope P. Indeed, the inequality xy,, < v, satisfied
by () can cause ¢;_1(Q) and g 1(Q) to have fibers that are not parallelepipeds due to the sums
> k-1, and Y cp41 ; appearing in v,,. In the application below, we will see that this issue does
not occur since most of the terms in ) | ¢,y ; + > ¢x+1,; Will be canceled out by — > (1 + ;).

We are now ready to prove our main theorem.

Proof of Theorem 2.7. Let D be a column-convex diagram with n rows with

Parp = {\W, ... A™Y
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and let
Pp =GTAD) + - + GT(A™).

We first claim that we can reduce to the case when D does not contain any boxes in the first
row. Indeed, adding a column with boxes in rows 1,2,...,k to D serves to add 1 to each part
of A*), which, by Lemma 2.13, translates GT (\®)) by the single point GT(1*) and hence does
the same to Pp. This translation adds £ 4+ 1 — ¢ to the sum of row i fori = 1,.. ., k, so it multi-
plies sp,, by x125 - - - 1. Since Proposition 3.1 shows that adding this column also multiplies sp
by x1x5 - - - 2, the claim follows.

Therefore, we may assume that D has no boxes in the first row, so that )\,(f) = (0 for all k,
which implies that Pp, is contained in the hyperplane z,,, = 0. Denote by P,(jm) the intersection
of Pp with the subspace =1, = z9, = -+ = Ty, = 0. In fact, P(Dm) is also the orthogo-
nal projection of Pp onto this subspace. To see this, note that for any Gelfand—Tsetlin pattern
(yij)1<icj<k € GT(A®), setting y;,, = 0 for any i < m again yields a valid Gelfand-Tsetlin
pattern. Thus for any (x;;) € Pp, setting x;, = 0 for all ¢ < m will again yield an element
of PD. "

Note also that 73,(:?) is just a translate of Py where D is the diagram obtained from D by
shifting each box up by one row. (Any Gelfand—Tsetlin pattern for A*) in which the last entry in
each row is 0 is just a Gelfand—Tsetlin pattern for A(*), thought of as a partition of length k — 1.)

It follows that s 5 = sp_ = Spin-

We first show that the inequalities defining P,(:,m) are precisely the inequalities for Pp de-
scribed in Proposition 2.9 that do not involve any z;, for ¢ < m (together with
Tip = Top = -+ = Ty, = 0). Clearly any inequality of the form x;_1 ,,—1 > x;, fori < mis
redundant since it is implied by inequality (x) for iy = n — ¢ and j; = n — 1. Then consider any
inequality (x) for a sequence [ with j, =nand i1 > n —m:

k—1 k—2 ik

(n—s)
E Ljs—is,js — E Tjop1—isgssr T Tn—ign = Tn—ip_yn = E :)\jﬁs :
s=1 s=1 s=0

Let I’ be the sequence obtained from I by removing i, and j;. The corresponding inequality is

ik—1

k—1 k—2

§ : § : § : (n—s)
:'Ujs_isJS - Ijs+1_i57js+l 2 Ajl_s .

s=1 s=1 s=0

Since i, n = 0, Tp—i,_,»n = 0, and 7,_; > 175, we see that the inequality for I follows
immediately from that for I’.

Since none of the inequalities defining 731(;“’ involve two coordinates in the same row, P,(jm)
is a parapolytope. It therefore suffices to show that P,(jm) and P,(Dm_l) are related as in Lemma 3.4,

for it will then follow that Spm-1) = Tp—15p(m), which combined with s5 = Sp(n)
D D D
and sp, = Sp() will imply that sp,, = my75 - - - m,_1(S5) = sp by Proposition 3.1, as desired.
Therefore, fix c;; for i # m, with ¢;,, = 0 for « < m, and define i, . . ., ftn, Vi, . . ., Uy @S in

Definition 3.3 for P,(jm_l). We claim that v; + p1;_1 = ¢y—1,j—1 + Cm1,5. It will then follow by
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summing over all j that

n—1 n n—1
Vo= D Catjt Y Cmirg— (1 + ).
j=m—1 Jj=m+1 j=m

Together with noting that the only lower bound on z,,, is 0, this will complete the proof by
Lemma 3.4.

Consider the upper bounds on z,,; in P(qu). We need to show that if z,,,; < C' (where C
is some function of ¢;; for ¢ # m), then x,, ;1 = ¢p—1,-1 + Cmy1,; — C. This is immediate
for the inequality x,,; < ¢—1,j—1 SinCe Tp, j—1 = Cm41,;. Then consider a sequence I such that
Js+1 — iy = mand jy4q = j for some s', so that —z,,; appears on the left side of (x). Thus
C — x,; = 0, where

ik
_ E § (n—s)
C = Cjs—is,js — st+1—is,js+1 - § :)‘j1—s :
s=0

s=1 1<s<k—1

s#s’
Inserting js11 — 1 = j — 1 before jy,1 = jaswellasiy —1 = j —m — 1before iy = j —min
the sequence [ yields a new sequence I’. The left side of (x) for I’ differs from the left side of
(x) for I by @y, j_1 + T j — Cm—1,j-1 — Cm+1,;. Therefore the inequality (x) for I” is equivalent
to
CH+ Zmj-1— Cm-1j-1— Cmy1,; = 0,

OF Tpyj1 2 Cm—1,j-1 + Cmi1; — C, as desired. A similar argument shows that any lower
bound ,, j_; > C"yields an upper bound x,,; < ¢p—1j—1 + Cmt1,; — C', which completes the
proof. ]

Example 3.6. Let n = 3, and let D be the column-convex diagram shown below with AB) =
(a+b,a,0), \® = (c,0), and AV = (0).

1

> [ (1]

a b c

Using the notation in the proof of Theorem 2.7, all the polytopes Pl()m) for m = 1,2,3 have
T11 :a—i—b,x12 :a—l—c,andazlg =0.

e Form = 3, 73,(33) is a segment since we have a < 799 < a + b.

e Form = 2, the fiber of 79,(32) above a point of Pg’) isdefined by 0 < z33 < 299, making 73,(32)
a trapezoid. Note that for fixed 33, the condition on x, is that max{a, x33} < w29 < a+b.
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Py

3)
Pp | "
P

Figure 3.1: Pp = 73,(31) with faces 771(72) and 731(73) as in Example 3.6. See also Example 2.11. Note
that 73,(31) is a parapolytope (as are 73,(32) and 731()3)): for instance, it intersects any plane z33 = ¢
(which is parallel to the leftmost face) in a coordinate rectangle.

* For m = 1, the fiber of Pp = P(Dl ) above a point of 771()2) is defined by

0 < w3 < 11 + 12 + 13 + 33 — (2 + 12)
=(a+b)+ (a+c)+0+ 33 — (max{a,x33} + a +b)

= ¢+ min{a, x33}.
This is equivalent to the inequalities on z3 given in Example 2.11:

A A =0 < wa <
<

(3)
To3 < €+ T33 = T12 — Ay + T33.

See Figure 3.1 for a depiction of P](jm) form = 3,2, 1.

Note that in the special case when w is a Grassmannian permutation, we recover the fact that
the integer point transforms of Gelfand—Tsetlin polytopes project to Schur polynomials.

Corollary 3.7. For any partition X\ = (A1, ..., ), the Schur polynomial sy(x1,...,x) is a
projection of the integer point transform of GT()).

Proof. Tf w is the Grassmannian permutation (with descent at k) such that S, = s, (x1, ..., Zg),
then in Parp, A*) = X and all other A\(¥) are empty. Theorem 2.7 then gives Pp = GT(\),
implying the result. O

In this case, the construction of P, = GT(A) from the proof of Theorem 2.7 in terms of the
operators D); specializes to the description given by Kiritchenko [Kir16, Theorem 3.4].

Remark 3.8. The results of Magyar [Mag98] allow one to compute the character of the flagged
Schur module for any diagram whose columns form a so-called strongly separated family (or
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equivalently, for any percentage-avoiding diagram [RS98]), which includes all Rothe diagrams
of permutations. The technique above can be used to find suitable polytopes for a somewhat
more general class of diagrams and permutations as Minkowski sums of faces of Gelfand-
Tsetlin polytopes (such as the intermediate steps Pl()m) in the proof of Theorem 2.7), but it does
not apply in full generality to all Schubert polynomials due to the ill behavior of general para-
polytopes. For example, attempting to use these geometric operators to mimic the calculation
T (2129 - T3ma(x129)) does not yield a parapolytope for the reason described in Remark 3.5.

Remark 3.9. It was shown in [FMSD18] (see also [MTY19]) that the Newton polytope of a
Schubert polynomial is a generalized permutahedron, so it follows that the polytopes Pp in
Theorem 2.7 project onto generalized permutahedra. One can also prove this directly from the
definition of Pp using the fact that each Minkowski summand is a Gelfand—Tsetlin polytope that
projects onto a permutahedron.

Combining Theorem 2.7 and Corollary 2.14 gives the following combinatorial interpretation
for spp. For a filling T" of D, let z7 denote the product of variables z; over all entries i appearing
inT.

Corollary 3.10. Let D be a column-convex diagram. Then
sp=) o',
T

where T ranges over all column-strict, row-flagged labelings of T up to row equivalence.

Proof. After specializing (as in Theorem 2.7) the monomial of the integer point transform of Pp,
corresponding to a filling 7' (as in Corollary 2.14), the exponent of z; appearing is the number of
entries at least ¢ appearing in any row of 7" minus the number of entries at least © — 1 appearing
in any row of 7', which is the number of entries equal to 7 in 7' O]

It would be interesting to investigate how this combinatorial interpretation is related to oth-
ers, such as the one given by Reiner—Shimozono [RS98] or, in the case that D = D(w) for
a permutation w, other known interpretations for Schubert polynomials (such as in [BJS93])
which are typically not polytopal in nature.

4. Gelfand-Tsetlin polytopes as flow polytopes

In this section we show that the Gelfand—Tsetlin polytope is integrally equivalent to a flow poly-
tope and give alternative proofs of several known results using flow polytopes. This will allow
us to view our earlier results from the perspective of flow polytopes. We start by defining flow
polytopes and providing the necessary background on them.

4.1. Background on flow polytopes

Let G be a loopless directed acyclic connected (multi-)graph on the vertex set [n + 1] with
m edges. An integer vector a = (a1, ...,an, — Y 1, a;) € Z""! is called a netflow vector.
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A pair (G, a) will be referred to as a flow network. To minimize notational complexity, we
will typically omit the netflow a when referring to a flow network G, describing it only when
defining G. When not explicitly stated, we will always assume vertices of GG are labeled so that
(1,7) € E(G) implies i < j.

To each edge (7, ) of G, associate the type A positive root e; — e; € R". Let Mg be
the incidence matrix of G, the matrix whose columns are the multiset of vectors e; — e; for
(i,7) € E(G). A flow on a flow network G with netflow a is a vector f = (f(e))ccr(c) in R%G)
such that M f = a. Equivalently, for all 1 < ¢ < n, we have

Yo f@ra= Y flo

e=(k,i)€E(G) e=(i,k)€E(G)

The fact that the netflow of vertex n + 1is — > a; is implied by these equations.
Define the flow polytope F(a) of a graph G with netflow a to be the set of all flows on G

Fo=Fola) = {f e RED | Mg f = a}.

Remark 4.1. When G is a flow network (G, a), we will write F¢ for Fe(a).

4.2. The Gelfand-Tsetlin polytope as a flow polytope

In this section, we will show that the Gelfand—Tsetlin polytope can be realized as a flow polytope.

Recall that two integral polytopes P in R? and Q in R™ are integrally equivalent if there
is an affine transformation : R? — R™ whose restriction to P is a bijection ¢: P — Q that
preserves the lattice, i.e., ¢ is a bijection between Z? N aff(P) and Z™ N aff(Q), where aff(-)
denotes affine span. The map ¢ is called an integral equivalence. Note that integrally equivalent
polytopes have the same Ehrhart polynomials and therefore the same volume.

We now define the flow network G, describing the graph and its associated netflow (see
Remark 4.1). For an illustration of GG, see Figure 4.1.

Definition 4.2. For a partition A\ € Z%, with n > 2, let G be defined as follows.
If n = 1, let G\ be a single vertex vy, defined to have flow polytope consisting of one point,
0. Otherwise, let GG, have vertices

and edges

E(Gy) = {(vij, vig15) | 2 <

i < J<nU{(Ving1,Vig1n41) | 3<i<n+ 1}
U {(Uijuvi+1,j+1) | 2<i<

i <j<npU{(vii1,vip1) [ 3< i< n+ 1}
The default netflow vector on Gy, is as follows:
* To vertex vy; for 2 < j < n, assign netflow \;_; — A;.

* To vertex vy, 42 ,+1, assign netflow A\, — ;.
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A — Ay

Ay — A3

As — N\

As— M

/\L*/\;

Figure 4.1: The flow network G, with /(\) = 5.

* To all other vertices, assign netflow 0.

Given a flow on GG, denote the flow value on each edge (v;;, vi+1 ;) by a;;, and denote the flow
value on each edge (v;;, Vi+1 j+1) by bij.

Recall from the introduction the definition of the Gelfand—Tsetlin polytope GT(\) in terms
of triangular arrays () using inequalities (1.1) and (1.2). We are now ready to prove that GT())
can be realized as a flow polytope.

Proof of Theorem 1.2. To map a point (z;5); ; € GT(\) to Fg,, use the map
Qi35 = Tij—1,j—1 — Lig,
bij = ®ij — Ti15.
Conversely, to map a flow f € Fg, to GT(A), use either
[ 1—2
Ilj'ij = >\j + Zbk] or [L’ij = )\j—i+1 — Zai_;w-_k.
k=2 k=0

It is easily checked these two maps are inverses of each other and are both integral, completing
the proof. [

Example 4.3. For n = 5, the integral equivalences between GT(\) and F, are shown in
Figure 4.2.
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A=A

A — A3

A=A

AL

A2

A1

As

Ao+ b A3+ bo3

Ay + bay As + bas

Ag+bog+bss | Adtbastbsa | As+bos + bss

g+ bag + b3y + by

As + bos + b5 + bys

A5+ bos + bgs + bas + bss

Figure 4.2: Integral equivalences between GT(\) and F¢, when n = 5.

21
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4.3. Consequences of the Gelfand-Tsetlin polytope being a flow polytope

Here we provide a few corollaries to the Gelfand-Tsetlin polytope GT()) being integrally equiv-
alent to the flow polytope F¢,. In [LMSD19] further applications of this result are given, par-
ticularly about the volume and Ehrhart polynomial of Gelfand—Tsetlin polytopes. The corollar-
ies presented below are all well known; we include them here to demonstrate proofs via flow
polytopes. We begin with two well-known results about flow polytopes, and then we give their
applications to Gelfand—Tsetlin polytopes.

Lemma 4.4 ([BVO08]). For a graph G on [n + 1] and nonnegative integers ay, . . ., a,,

n

‘FG(al’ oo lny Zal> = @1]:G<€1 - €n+1) + GZfG(€2 - en+1) T+t an‘FG(en - €n+1)'
=1

Proof. One inclusion is proven by adding flows edgewise. The other is shown by induction on

the number of nonzero a;. ]

Corollary 4.5. If G is a graph on [n + 1] and a4, . .., a,,by,. .., b, are nonnegative integers,

then

fG(Gl,...,CLn ZCZZ>+FG bl,..., Zb ./T"G a1+b1,...,Cln—an,—ZCLi—'—bi).
i=1 i=1

Proof. Induct on the number of nonzero b; and use Lemma 4.4. [

As a consequence of the previous two results and the integral equivalence of GT(\) and Fg,,
we obtain the following fact about Gelfand—Tsetlin polytopes.

Lemma 4.6. If \ and p are partitions with n parts, then
GT(\) + GT(n) = GT(A + p),

where A+ = (A + g, ooy Ap + fin)
Proof. Express each term as a flow polytope using Theorem 1.2 and apply Corollary 4.5. [
We can also easily derive a proof of Lemma 2.13.

Proof of Lemma 2.13. Either apply Lemma 4.6 repeatedly, or combine Theorem 1.2 with
Lemma 4.4. U

Recall that the Schur polynomial s, can be expressed as

sy, ..., 1,) = Z I”;Ut(Pha;;vt(P)z e WP

n

PEGT(A)OZ(MQJ)



COMBINATORIAL THEORY 2 (3) (2022), #4 23

where wt: R("2") - R" is the weight map, defined by
U)t(P)Z = Zl’i]’ — Z $i+1’j
j=i j=i+1

for P € GT(\). We now introduce the flow polytopal analogue of wt and study it. Recall
the variables {a;;};; U {b;;};; of Definition 4.2: in F¢,, a;; represents the flow on the edge
(vi5, viy1,;) and b;; represents the flow on the edge (v;j, Vit1,j+1)-

Definition 4.7. Let ) be a partition with n parts. Define the graphical weight map
guwt: RF(G) 5 R"

by setting
gwt(x(vij,vi+1,j)) = €i-1 and gwt(x(vij,vi+1,j+1)> = 07

so in particular
gwt(aij) =€;—1 and gwt(b”) =0.

Proposition 4.8. For a partition \ with n parts, let f € Fg, correspond to Py € GT (). Then,
the maps gwt and wt are related by the translation

wt(Pf) = gwt(f) + Anly,
where 1,, denotes the vector of all ones in R".

Proof. We have

qwt(f)i = Giy1i41 + - + Qi1 + Git1,041
= Qit1,i41 + -+ Qg 0o + o+ i

Using the integral equivalence z;; = A\j_;11 — 22;20 a;—r j—i between GT(\) and Fg,,

n n
wt(Pf)l = inj — Z Tit1,5
Jj=i

j=it1
n—1 n
= Tijp + E (Tij — Tiv1,j+1) = Tin + E (ESWE
j=i j=it1

Now, using the integral equivalence x;; = \; + 22:2 by;, we have
(gut(f) — wt(Py))i = Tin — Z bn
k=2

— ()\nqtib;m) —ibkn:)\n. O
k=2 k=2
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Figure 4.3: GT(1,1,1,0,0) and the associated map gwt.

Using the map gwt, we now describe the polytopes GT(1*0"*) and rederive a result of
Postnikov from [Pos09].

Proposition 4.9. If )\ is of the form 150" % with 1 < k < n, then gwt(Fg, ) equals the hyper-
simplex A, = Conv({z € [0,1]" | &1 + 22 + -+ + x,, = k}).

Proof. If ) is of the form 1%0"~*, then G, will have a single source with netflow 1 and a single
sink with netflow —1. Ignoring all edges and vertices not lying on path from the source to sink
(which will carry zero flow), we are left with a rectangular grid as shown in Figure 4.3. A path
from source to sink in the grid requires £ NW steps and n — k& SW steps. Recall (cf. [Hil03],
Lemma 3.1) that the vertices of a flow polytope with a single source and sink are exactly the
flows that are nonzero only on a path from source to sink.

Thus, the vertices of F, are exactly the flows with support a path from source to sink in the
grid. These paths are in bijection with length n words on { N, S} having k& N’s (corresponding
to NW steps in the path) and n — &k S’s (corresponding to SW steps in the path). By definition,
the map gwt takes a vertex of F¢, to the vector with ones in the positions of the N’s in the
corresponding string, and zero elsewhere. Thus,

gut(V(Fg,)) ={x € {0,1}" |21 + - + 2, =k} = V(Apn),
SO gwt(fg)\) = Ak,n- ]
Corollary 4.10 ([Pos09]). The permutahedron Py = Conv(S,, - \) of A equals the Minkowski
sum of hypersimplices

73/\ = ()\1 - )\Z)Al,n + ()\2 - /\3)A2,n + -+ ()\n—l - )\n)An—l,n + AnAn,n
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Proof. Since wt(GT()\)) = Py, applying gwt to both sides of

n—1

For = D (k= Mer1)Fé gugn s,

k=1

and using Propositions 4.9 and 4.8 yields

P)\ - /\n]-n = (/\l - >\2)Al,n + ()\2 - )\S)Aln + -+ ()\n—l - )\n)An—l,n- [

4.4. The Minkowski sum of Gelfand-Tsetlin polytopes

In this section we observe that the Minkowski sum of Gelfand—Tsetlin polytopes Pp appearing
in Theorem 2.7 can be viewed naturally as a subset of a larger Gelfand—Tsetlin polytope.
Recall the embedding of the Gelfand—Tsetlin polytopes in the sum

Pp = GTAD) + GT(A\?) 4+ -+ + GT(A™)

from Section 1. In light of Theorem 1.2, Pp should be integrally equivalent to a sum of flow
polytopes
‘FGA(U +---+Fa

NON
Just like for the Gelfand—Tsetlin polytope sum, we must specify how the graphs G, i € [n],
are embedded. Let us embed Gy, k € [n], into G ) by identifying v;; (see Definition 4.2) in
G\ with v; j4,,—1 in Gy . Note that the trivial case Gy is just a single vertex with netflow 0
and flow polytope defined to be the single point 0.

Lemmas 4.11 and 4.13 below follow readily by the definitions and the integral equivalence
given in Theorem 1.2:

Lemma 4.11. The Minkowski sum
GT(AW) + -+ GT(A™)

is integrally equivalent to

Fa
with the embedding specified above.

+o TG

A1) Aln)

Definition 4.12. Given partitions A*) of size k for & € [n], let G(A(M), ..., A\(™) denote the
flow network obtained by overlaying the flow networks Gy, ..., G\@ according to the em-
bedding specified above and adding the corresponding netflows. Let G(A(M), ... A() denote
the flow network obtained from Gy (1), . . . , G\(») by moving all negative netflows to v;, 12 ,,+1 and
replacing them by zero netflows. The case n = 4 is demonstrated in Figure 4.4.

Lemma 4.13. The following polytope inclusions hold:

----------
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/\‘1“*)\‘11“

)\i‘li)\\‘lw : )\:I‘
A=A A A )
AT AP ’

Figure 4.4: The flow networks G(A(M, A@ A3 AD) (left) and GAD, A@ AB) XD (right).
Vertices without netflow indicated have netflow 0.

the latter being true up to an integral translation of Fg) . ztm)-
In general, none of the above inclusions is an equality. The polytope .7-"@( A, \(m)y IS Inte-
grally equivalent to the Gelfand-Tsetlin polytope GT (1) where ., is arbitrary, and for k < n,

k—1
M = Hk+1 + Z()‘gl—?) - )‘1(671321)
=0

Thus, we conclude that for a column-convex diagram D the polytope Pp can be thought
of as obtained from GT(u) specified in Lemma 4.13 via further hyperplane cuts. (Recall also
Proposition 2.9, which gives another view on Pp.)

Example 4.14. In Example 2.8, a description of the lattice points of Pp was found. By adding
1 to each entry x;;, we arrive at a translation of Pp with lattice points

3 3 3 1
3 3 a—+c
3 b+d
e+1

where 0 <a<b<landl <c<d<e<?2,

which form a proper subset of the lattice points in GT(u) for 1 = (3,3, 3, 1).
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