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Abstract

INTRODUCTION—Comparative transcriptome analyses in Alzheimer’s disease (AD) and other
neurodegenerative proteinopathies can uncover both shared and distinct disease pathways.

METHOD—We analyzed 940 brain transcriptomes including patients with AD, progressive
supranuclear palsy (PSP)-a primary tauopathy and controls.
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RESULTS—We identified transcriptional co-expression networks implicated in myelination,
which were /owerin PSP temporal cortex (TCX) compared to AD. Some of these associations
were retained even after adjustments for brain cell population changes. These TCX myelination
network structures were preserved in cerebellum (CER) but they were not differentially expressed
in CER between AD and PSP. Myelination networks were down-regulatedin both AD and PSP,
when compared to control TCX samples.

DISCUSSION—Down-regulation of myelination networks may underlie both PSP and AD
pathophysiology, but may be more pronounced in PSP. These data also highlight conservation of
transcriptional networks across brain regions and the influence of cell- type changes on these
networks.

Keywords

Proteinopathies; Alzheimer’s disease; progressive supranuclear palsy; myelination; co- expression
networks; transcriptome; temporal cortex; cerebellum

1. Introduction

Many neurodegenerative diseases, including Alzheimer’s disease (AD), are proteinopathies
with common features including abnormal deposits of endogenous proteins, which
propagate through the central nervous system (CNS) and culminate in cellular dysfunction
and death, leading to clinical syndromes of dementia and/or movement disorders
(reviewed[1]). Despite their commonalities, key differences are thought to exist in the events
that trigger one proteinopathy vs. another; as well as in the downstream pathophysiologic
pathways that distinguish these neurodegenerative diseases. Gene expression profiling
studies may discover genes implicated in neurodegenerative diseases and uncover the
complex molecular pathways leading to these disorders[2, 3]. With few exceptions[4-8],
previous studies have investigated differential gene expression (DGE) in relatively small
cohorts and were limited to comparison of individual gene transcripts rather than systems-
level analysis. Further, most studies assessed one disease group against controls, rather than
pursuing comparison between different diseases.

We postulate that comparison of brain gene expression levels in different neurodegenerative
proteinopathies can uncover molecular pathways that are common to as well as those that
are distinct for these diseases. Discovery of brain transcriptional networks with differential
expression between different proteinopathies may uncover molecular pathways that may
differentially influence these conditions. In contrast, networks that have similar expression
changes in different diseases in comparison to controls may point to common dysregulated
molecular pathways.

To test this hypothesis, we focused on two distinct proteinopathies, AD[9, 10] and
progressive supranuclear palsy (PSP)[11, 12]. Although brain tau protein accumulation is a
neuropathologic hallmark in both, these conditions are distinguished by different
predominant tau isoform aggregates[13], and the unique presence in AD[9] of senile plaques
composed predominantly of amyloid B (Ap). They also have distinct clinical presentations.
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AD is the most common type of dementia[10], whereas PSP is a relatively rare parkinsonian
movement disorder[12].

To identify genes and networks that are differentially altered in these conditions, we
performed DGE and co-expression network analysis[14] in brain transcriptome[15-17] of
subjects with AD or PSP. To determine whether observed network differences are driven by
changes in AD vs. PSP or different extent of change in both, we also compared each
diagnostic group with elderly control samples without any neurodegenerative diagnoses. All
co-expression modules (CEM) were tested for enrichment of CNS cell-types[18], to identify
altered networks that may be indicative of selectively vulnerable cell populations.
Furthermore, to determine the contribution of cell-population changes to our findings[19],
we performed all network analyses using two models: Comprehensive Model which adjusted
for levels of 5 CNS cell-specific transcripts and Simple Model which was not thus adjusted.
Finally, we validated these results by protein analysis in brain tissue.

Our findings reveal conserved brain myelination networks that are altered in both AD and
PSP, but to a greater extent in the latter. These results have implications for the role of
myelin metabolism in the pathophysiology of these distinct neurodegenerative
proteinopathies, and ultimately for identification of novel therapeutic targets and biomarkers.
Further, our large-scale transcriptome data, which we made available to the research
community[16], provides information regarding brain region conservation and CNS cell-
enrichment of transcriptional networks, as well as the influence of cell-population changes
on their expression patterns.

2. Methods

Please also refer to Supplementary Methods for details.

2.1 Subjects and Samples

In a two-stage design, Mayo Clinic brain expression genome-wide association study
(eGWAS) was used as the Discovery Cohort and Mayo Clinic RNA sequencing (RNAseq)
samples were used as the Replication Cohort. The Discovery Cohort[15, 16] had Whole
Genome DASL array-based transcriptome measurements, whereas the Replication
Cohort[16, 17] had RNAseq data obtained with 101 base-pair (bp), paired-end sequencing
on Illumina HiSeg2000 instruments, as previously published. The Discovery Cohort had
whole genome genotypes from the Illumina HumanHap300-Duo Genotyping
BeadChips[20], and the Replication Cohort from the Illumina Infinium HumanOmni2.5-8
BeadChip, which were utilized in quality control (QC).

2.2 Analyses

2.2.1 Differential Gene Expression (DGE)—DGE analyses of brain tissue from
subjects of two diagnostic categories were conducted with multivariable linear regression
conducted in R. Discovery Cohort DGE analyses utilized normalized gene expression
measures as dependent variable, diagnosis as independent variable of primary interest and
included age at death, gender, number of APOE &4 alleles, plate, RIN, and (RIN-RINmean)?
as biological and technical covariates. Replication Cohort DGE analyses used conditional
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quantile normalized (CQN)[21] gene expression measures as dependent variable, diagnosis
as independent variable of primary interest and included age at death, gender, RIN, brain
tissue source, and flowcell as biological and technical covariates. We also included cell
specific gene levels as covariates to account for neuronal loss, gliosis and/or vascular tissue,
as previously described[22]. We did this correction by including as covariates, expression
levels of genes (Probe ID; ENCODE ID) that are specific for the main five cell types present
in the central nervous system (CNS): ENOZ for neurons (ILMN_1765796,
ENSGO00000111674), GFAPfor astrocytes (ILMN_1697176, ENSG00000131095), CD68
for microglia (ILMN_2267914, ENSG00000129226), OL/GZ2for oligodendrocytes
(ILMN_1727567, ENSG00000205927) and CD34 for endothelial cells (ILMN_1732799,
ENSG00000174059). Significance accounting for multiple testing was assigned using g
values which are based on false discovery rates (Benjamini-Hochberg FDR)[23].

Unique genes representing probes with a q value<0.05 for the Discovery Cohort temporal
cortex DGE analyses were assessed for enrichment of pathways and gene ontology (GO)
biological processes using Metacore (Thompson Reuters)[24, 25].

2.2.2 Weighted Gene Co-Expression Network Analysis (WGCNA)—WGCNA R
package[14] version 1.41 was used for both cohorts, independently. In all analyses, gene
expression residuals obtained after multiple linear regression with independent variables,
were input to WGCNA. Network analyses were run under two different models:
“Comprehensive Model”, which adjusts for all covariates described in the above section; and
“Simple Model”, which adjusts for the same covariates except for the five CNS cell-specific
gene expression levels.

Networks were built using two diagnostic groups to analyze their associations with
diagnosis. For each pairwise diagnostic group, consensus modules were identified and tested
for (GO) enrichment in WGCNA. All modules were further annotated for enrichment of
genes that are primarily expressed in one of the five major cell types that exist in the CNS,
i.e. neurons, oligodendrocytes, microglia, astrocytes and endothelia, as described in the next
section.

Eigengene, the first signed principle component, was calculated for each module. For each
gene, module membership (MM) was calculated as the correlation between the gene and the
module eigengene. Genes with MM=0.7 are considered to be “important (hub)” genes for
the network. To test the association of disease phenotype with network modules, eigengenes
of consensus modules were correlated with the binary disease phenotype. Unless otherwise
specified, “correlation” means Pearson correlation. Preservation of different networks were
assessed using WGCNA “modulePreservation” function with 100 permutations to calculate
a Zsummary score, which indicates well-preservation if >10.

2.2.3 Cell-enrichment analyses—Gene expression measures from purified cell
populations, isolated from human brain tissue, were obtained from Zhang et al[18]. We
analyzed the 21,390 genes that remained after removal of those that had expression changes
due to technical issues or duplicates. Genes with a mean gene expression level, FPKM > 5 in
the target cell and a fold change > 4 when compared with each other cell type, were deemed
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to be enriched for that target cell. All co-expression modules (CEM) were tested for
enrichment for each of the 5 human brain cell-enriched genes using a one-sided Fisher’s test.

2.3 Protein analysis

We investigated brain protein levels for the key genes from the oligodendroglial networks
and other genes of interest using Western blot analysis. We assessed human TCX brain
tissue from 18 controls against either 20 PSP or 20 AD cases, in addition to 2 control
samples measured for every protein on every gel to control for potential blot-to-blot
variability. Differential protein analysis was also conducted for key myelin genes from the
oligodendroglial networks using proteome data obtained from 84 AD and 83 PSP TCX
samples from the Mayo Clinic RNAseq Replication Cohort. Myelination patterns were
assessed in a subset of AD, PSP and control TCX samples (4 each) using established
immunohistochemistry methods[26, 27]. We evaluated immunocytochemical patterns for the
myelin and oligodendrocyte proteins using rat oligodendrocyte-enriched cultures[28].

3. Results

3.1 Brain Transcriptome Profiling in the Discovery Cohort identifies transcriptional
changes in neurodegenerative diseases in the temporal cortex

To determine differentially expressed (DE) genes between human brains with AD vs. PSP,
we utilized whole transcriptome data from our “Mayo eGWAS Discovery Cohort”[15, 16].
Expression levels were obtained from TCX, which is typically affected by AD
neuropathology but spared in PSP; and from the cerebellar cortex (CER), which is relatively
spared in AD[9], while the superior cerebellar peduncle and the dentate nucleus may be
affected in PSP[12]. Following QC (Supplementary Figs. 1-3)[15, 29], 359 subjects with
WG-DASL microarray expression measures from TCX (181 AD, 178 without AD pathology
i.e. nAD including 97 PSP) and 343 with CER (173 AD, 170 nAD including 96 PSP) were
retained (Supplementary Table 1). There were 17,902 WG-DASL probes (13,928 unique
genes) that were expressed in >50% of all TCX samples analyzed and 17,122 such probes
(13,440 unique genes) for CER samples (Supplementary Table 2).

We performed DGE using the “Comprehensive Model”, which includes adjustment for
levels of five genes that have cell-specific expression for the main cell types present in the
central nervous system (CNS)[18], as previously described[22, 30]. The rationale for this
cell-type adjustment was to account for brain cell population changes that can occur in CNS
diseases as a result of neuronal loss or gliosis, which can then influence transcriptome
profiling outcomes[19] (Supplementary Results). Indeed, we identified significantly lower
ENOZ, but higher GFAP, CD68and CD34 levels in the TCX, but not the CER, of AD
subjects in comparison to those without AD pathology (Supplementary Figs. 4A-B),
consistent with known cellular changes that occur in affected brain regions in AD[31, 32].

DGE results for all pairwise diagnostic comparisons are presented in Supplementary Tables
3-10 and Supplementary Text. There were 3,381 transcripts (3,094 unique genes) with
significant DE in the TCX AD vs. PSP analysis (Supplementary Table 4). In contrast, there
were only 6 significant probes in the CER AD vs. PSP DGE analyses (Supplementary Table
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6). DGE results in the Discovery Cohort suggested strong transcriptional changes in the
TCX but not CER for all diagnostic comparisons.

Pathway enrichment analysis of the most significant DEGs in the AD vs. PSP TCX analysis
(3,094 genes, g< 0.05) implicated 66 enriched GO and MetaCore pathways with an
FDR<0.05, including established pathways such oxidative phosphorylation, where a
systematic downregulation in AD TCX of genes in this pathway is observed
(Supplementary_Table.11, Supplementary_Fig.5), replicating prior observations[21, 28]. In
the smaller AD vs. nTau analysis (572 genes) “Protein folding and maturation_POMC
processing” was a significant MetaCore pathway, also detected in the AD vs. PSP analysis.
Assessment of the 745 unique genes differentially expressed in PSP vs. nTau TCX, detected
3 significant and overlapping GO processes: “axon ensheathment in central nervous
system”; “central nervous system myelination” and “oligodendrocyte development”.

3.2 Co-expression network analysis in the Discovery Cohort identifies modules that are
enriched for specific brain cell types

We constructed co-expression networks[14] under both the “Comprehensive” and “Simple
Models”, where the latter was implemented given the observed correlation of the cell
markers with one another (Supplementary Fig. 6, Supplementary Text), leading to the
possibility of over-correction under the Comprehensive Model. All co-expression modules
(CEM) were annotated for enrichment of cell-type expressed genes, which are primarily
expressed in one of five human brain cell types[18] (Supplementary Tables 12-16), and
which are sufficient to differentiate the cell populations from one another (Supplementary
Figs. 7-8).

Results are provided for the TCX CEM in the Discovery Cohort under the “Comprehensive
(Supplementary Tables 17-20) and “Simple” models (Supplementary Tables 21-24) for all
pairwise diagnostic groups. CEM naming conventions are shown in Supplementary Table
25. In the AD+PSP cohort, 44 TCX consensus CEM were identified under the
“Comprehensive Model” of which 12 had significant enrichment for one of the 5 brain-cell
enriched gene sets (Supplementary Table 18). Using the “Simple Model”, 31 such TCX
CEM were identified, of which 10 had enrichment for brain cell-enriched genes
(Supplementary Table 22). The TCX CEM generated under the Comprehensive and Simple
Models were well preserved (Supplementary Figs. 9-10). Table 1 shows those TCX CEM in
the AD+PSP Discovery Cohort that had significant brain cell-enrichment under both
analytic models (Supplementary Figs. 9-11).

We tested whether CEM are preserved between two brain regions i.e. TCX and CER
(Supplementary Text, Supplementary Tables 26-33). Similar to the TCX modules, CER
CEM built under the Simple vs. Comprehensive Models were well-preserved
(Supplementary Figs. 12-14). Further, CER vs. TCX CEM from the Comprehensive Model
were well-preserved (Supplementary Figs. 15-17).
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3.3 Myelination co-expression modules have replicable neurodegenerative disease
association in the temporal cortex

We tested the association of network modules with neuropathologic diagnoses. Under the
Simple Model, there were 17 CEM that had significant DE in the TCX of AD vs. PSP
subjects in the Discovery Cohort (Supplementary Table 22), of which 7 also had brain cell-
enrichment (Fig. 1A, Table 1). In contrast, under the Comprehensive Model, there were only
9 TCX CEM with disease association (Supplementary Table 18), of which 4 had brain cell-
enrichment (Fig. 1B, Table 1). None of the CER CEM with brain cell-enrichment had
significant association with disease (Table 2), despite being well-preserved with the TCX
modules.

Inspection of the TCX CEM with disease association and cell-enrichment under both
analytic models revealed that only the modules enriched in oligodendrocyte transcripts,
implicated in myelination, had strong preservation under the Simple (Fig. 2A-B,

AD+PsP TCX11.CSsimple, AD+psp TCX29.CSsjmpe) and Comprehensive Models (Fig. 2C-D,
AD+Psp TCX10.CS, aop+pspTCX40.CS). Hereforth, we refer to these CEM and others with
oligodendrocyte-transcript enrichment as “myelination modules”. All four myelination
modules had higher levels of expression in TCX of AD subjects compared to PSP (Table 1,
Fig. 1A4, 1Ag, 1B3, 1Bg). This remarkably consistent association of myelination networks
with disease irrespective of adjustment for five brain cell-type specific expression markers
suggested that these networks may be differentially regulated in AD vs. PSP for reasons
other than brain cell population changes. No other TCX brain cell-enriched modules had
consistent direction of association with disease under both analytic models.

For these reasons, we focused on the myelination modules in the independent “Mayo Clinic
RNAseq” Replication Cohort[16]. Following QC of this cohort (Supplementary Figs. 18—
21), expression measures were retained for 80 AD and 82 PSP subjects, as well as 76 elderly
controls. The 13,273 TCX RNAseq transcripts (13,211 unique genes) which overlapped with
those from the Discovery Cohort were utilized in all downstream analyses. In the co-
expression network AD vs. PSP analyses of the Replication Cohort, one myelination module
was identified under the Simple Model (Table 3, Fig. 2E, op+psp TCX3.CSRSsimple); and
three such modules under the Comprehensive Model (ap+psp TCX2.CSRS,
AD+PspTCXB8.CSRS, aop+pspTCX26.CSRS).

The Simple Model myelination module (ap+pspTCX3.CSRSsjmple) Was highly preserved
with the corresponding modules from the Discovery Cohort (Supplementary Fig. 22-23) and
had significantly higher transcript levels in AD subjects compared to PSP (Table 3). The
direction and effect size of disease association for myelination modules between these
independent cohorts was remarkably similar (Tables 1 and 3). In contrast, none of the 3
myelination CEM in the Replication Cohort under the Comprehensive Model showed
disease association in the AD vs. PSP analysis (Table 3), unlike the corresponding analysis
in the Discovery Cohort (Table 1).

To distinguish whether the higher levels of myelination networks in AD vs. PSP TCX are
due to an upregulation in AD or more downregulation in PSP brains, we compared the
elderly control brain tissue in the Replication Cohort against either AD or PSP TCX
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transcriptome. Under the Simple Model, we identified two myelination CEM each in the AD
+control and PSP+control analyses. Both PSP+Control (Table 3, psp+con TCX5.CSRSsjmpe,
psp+Con 1 CX12.CSRSsjmple) TCX CEM were significantly lower in PSP. Under the
Comprehensive Model, there were 4 AD+control and 2 PSP+control myelination CEM.
Interestingly all these modules showed /ower myelination network levels in both
neurodegenerative disease groups in comparison to controls, one of which achieved
statistical significance (Table 3, op+con TCX7.CSRS).

Together with the results from the Discovery Cohort, these findings suggest that myelination
networks are downregulated in both AD and PSP compared to controls, but are more
downregulated in PSP. For the Replication Cohort, the network associations with PSP are
more pronounced in the Simple Model, whereas those for AD are more pronounced in the
Comprehensive Model. Nevertheless, levels of the oligodendrocyte marker OL/GZ2 are not
significantly different between diagnostic groups (Supplementary Fig. 4C). Therefore
downregulation of myelination networks in these diseases cannot be entirely explained by
oligodendrocyte cell population changes (Supplementary Text).

3.4 Myelination co-expression modules harbor neurodegenerative disease risk genes with
replicable differential expression

To investigate the genes from the myelination modules further, we focused on a subset that
have the highest module membership (MM); in addition to genes that are implicated in the
pathophysiology of AD[33, 34], PSP[35], or in myelin biology[36] (Supplementary Results,
Table 4). We evaluated the AD vs. PSP differential expression of these individual transcripts
in the Discovery and Replication Cohorts, under the Simple and Comprehensive Models. We
also performed DGE analyses for all other pairwise diagnostic comparisons (Supplementary
Table 34).

MM values close to 1 reflect high connectivity of the gene to the module[14]. The MM
values of these genes were generally high (>0.70) and similar in all analyses (Table 4).
Under the Simple Model, all 20 genes had higher levels in AD compared to PSP TCX in
both cohorts, with remarkably consistent effect estimates. All 20 transcript associations were
significant in the Discovery and 8 in the Replication Cohort, including disease implicated
genes PSENI1, S CO1AZand CR1. Under the Comprehensive Model, in the Discovery
Cohort, all 20 genes had higher TCX level estimates in AD subjects vs. PSP, 14 of which
were statistically significant. In the Replication Cohort, none of the associations were
retained under the Comprehensive Model, suggesting that cell-type adjustment may be
accounting for a larger portion of the diagnostic differences for these genes in this cohort.

To determine whether the transcriptional changes observed in the TCX was also reflected in
protein levels, we sought to validate these findings by performing western blot analyses in
TCX samples (Supplementary Table 35, Supplementary Fig. 24). Given the limited dynamic
range for quantitation of blots labeled with HRP-tagged antibodies, as in our study, these
western blots should be considered as semi-quantitative. Despite significant variability, all
myelin proteins had /owerlevels in PSP TCX (Supplementary Fig. 24. A-F) consistent with
the transcript results, although these trends did not reach statistical significance, likely due to
the relatively small sample size of this protein analysis cohort. All myelin proteins except
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MOG and PLLP had /owerlevel estimates in AD TCX (Supplementary Fig. 24. G-L), but
not statistically significant, highlighting the need to evaluate much larger cohorts for protein
validations.

Using proteome data from a larger cohort of 84 AD and 83 PSP TCX samples, obtained with
Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS) analysis, we
identified significantly lower protein levels for myelin proteins MBP and CNP in PSP
compared with AD TCX; and lower estimates that did not reach statistical significance for
MOG, PLP1 and BIN1 (Supplementary Table.36). As expected, GFAP, APP and MAPT
protein levels were lower in PSP compared to AD TCX.

We assessed myelination patterns, as well as microgliosis and astrogliosis in a subset of AD,
PSP and control TCX samples (Supplementary Table 37, Supplementary Fig. 25). As
expected, there is variability in the level of pathology. Given this and the small number of
samples assessed, statistical differences in quantitative neuropathology cannot be detected.
Nevertheless, the pattern of reduced myelination can be appreciated in select AD and PSP
vs. control TCX samples. We evaluated immunocytochemical patterns for the myelin and
oligodendrocyte proteins in rat primary oligodendrocyte-enriched cultures and demonstrated
high cell type selectivity and regional specificity of selected antibodies for their cellular
targets (Supplementary Table 38, Supplementary Fig.26-27, Supplementary Text).

4. Discussion

In this study, we identified highly conserved myelination networks that are altered in both
PSP and AD brains but to a greater extent in the former. This study is distinct from prior
transcriptome studies in neurodegenerative diseases[3, 5, 6, 37] in several ways. We provide
comparison of multiple neurodegenerative conditions, in addition to controls; use two
independent cohorts; study two brain regions; use two different approaches for measuring
gene expression; assess cell population variability; and perform protein validations
(Supplementary Discussion). The underlying premise of our approach is that comparative
analyses of different neurodegenerative diseases can uncover transcripts and molecular
networks that are disease-specific as well as those that underlie shared aspects of disease
pathology. To our knowledge, this is the first study, which has performed a systematic
comparison of brain transcriptomes from AD vs. a primary tauopathy, PSP. Our conclusions
are based on a collective dataset of 940 brain transcriptomes.

Our study yields insights into the role of myelination in the pathophysiology of two
neurodegenerative diseases. To our knowledge oligodendrocyte/myelination pathways have
not been studied comparatively in AD vs. PSP at a systems-biology level. There is evidence
from neuropathology that oligodendrocyte/myelination dysfunction could contribute to both
AD and PSP. Oligodendroglial tau deposits are a key aspect of PSP neuropathology[12].
Myelin loss was demonstrated in AD white matter (WM)[38], and focal intracortical
demyelination associated with Ap plaques was observed in AD gray matter (GM)[39].
Further, human brain myelination has distinct aspects that may predispose it to
vulnerabilities resulting in neuropsychiatric illness[36, 40]. Myelination in humans an
evolutionarily late event, which is distinguished from that of other species by its extent in
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both gray and white matter (GM, WM) and by developmental myelination extending well
into middle ages[36].

We find that brain gene expression networks enriched in oligodendrocyte transcripts
involved in myelination are downregulatedin PSP compared to AD. This downregulation is
observed in two independent cohorts and is retained in the Discovery Cohort, even after
adjusting for cell-specific markers (Comprehensive Model) to account for any cell-
population changes. The similarity in the findings in the Discovery Cohort under both the
Simple and Comprehensive Models suggest that the transcriptional changes are unlikely to
be solely due to cell-population changes. This is further corroborated by the fact that TCX,
where these transcriptional changes are observed, is a region typically unaffected by PSP
pathology[12]. Myelination networks are also downregulatedin PSP TCX in comparison to
controls, providing further support that these transcriptional changes are unlikely to be due
to gross changes in pathology.

The depression of these findings under the Comprehensive Model in the Replication, but not
the Discovery Cohort, may be multifactorial. First, the latter has >50% greater sample size.
Second, RNAseq measures in the Replication Cohort may provide a more precise
measurement of gene levels that may have led to better adjustment for cell-type changes or
over-correction due to their stronger inter-correlation.

Importantly, there is downregulation of myelin proteins in PSP TCX in protein data from
167 brain samples assessed by LC-MS/MS, as well as a smaller cohort evaluated by semi-
quantitative western blots analysis. Myelination patterns and cellular specificity of the
antibodies used to assess myelination proteins are demonstrated by immunohistochemistry
and immunocytochemistry in human brains and rat primary oligodendrocyte-enriched
cultures. Thus, our transcriptome findings are also corroborated by protein data.

Our study paradigm allowed us to distinguish that myelination networks may also be
downregulatedin AD, but to a lesser extent than in PSP, rather than simply being
upregulated in AD vs. PSP. This lesser alteration in AD TCX is intriguing, especially given
that AD, unlike PSP, has significant pathology in TCX[9]. This finding further implies that
the myelination network changes are unlikely to be a mere consequence of pathology. The
enhanced vulnerability of myelination networks in PSP, in comparison to AD, leads to a
number of compelling hypotheses. Both AD and PSP are characterized by aggregates of tau,
which is a microtubule associated protein (MAP) and a constituent of both neurons and
oligodendrocytes[13, 40]. Microtubules (MT) and tau are integral to oligodendroglial
function and myelination, which are disrupted when tau is either overexpressed or
downregulated. Hence, alteration of myelination networks in both AD and PSP is consistent
with these data.

A key question is why this alteration is more enhanced in PSP in a brain region far less
affected than in AD. One explanation may be the difference in the type of tau aggregate,
with PSP harboring 4R-tau aggregates, composed of a tau isoform with 4 MT-binding
domains, whereas AD has both 3R- and 4R-tau aggregates. In cultured oligodendrocytes,
4R-tau becomes increased and 3R-tau decreased with development[40]. We can therefore
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postulate that myelination pathways may be more vulnerable to 4R-tauopathies, such as PSP.
Another reason may be the presence of genetic risk factors in PSP with a role in
myelination. Indeed, variants in/near MOBP are implicated in risk of PSP[35], and
CBD[41], another 4R-tauopathy. MOBP encodes the CNS-expressed myelin-associated
oligodendrocytic basic protein, which is a member of the myelination networks identified
herein.

Another finding from our study is the remarkable conservation of brain transcriptional
networks that are independently constructed in two brain regions, TCX and CER. This
finding is consistent with the prior observations in healthy control brains[42], and suggest
that the broad architecture of the brain transcriptional networks is unlikely to be driven by
cell population differences in disease-affected vs. —unaffected tissue. Additionally, although
we focused on myelination networks in this study, we identified modules enriched in
astrocytic, microglial and neuronal transcripts, which show consistencies with prior
transcriptome studies[6, 37, 43]. The detailed findings from our analyses that we present
here, as well as the accessibility of our large-scale data[16] should establish this study as a
highly useful resource.

In summary, our study identifies downregulation of myelination networks as a potential
pathophysiologic component of both PSP and AD. Our findings are based on postmortem
brain tissue which reflects a “snapshot” of gene expression networks for end-stage disease.
Nevertheless, this work can be instrumental in launching future biomarker or therapeutic
discovery efforts. Neuroimaging studies in living patients support white matter[44, 45] and
specifically myelin alterations[46] in preclinical AD. Key molecules within myelination
networks identified in our study can serve to develop novel molecular imaging tools for
tracking myelin neuropathology in longitudinal cohorts followed for incident AD and other
neurodegenerative diseases. Such cohorts should also enable detection of longitudinal
changes in gene and protein expression levels for these molecules, which can help establish
their temporal relationship with cognitive and other clinical outcomes. These future studies
can provide fundamental new insight into the role of myelin dysregulation in the cascade of
pathophysiological processes in AD[47] and other neurodegenerative conditions.
Additionally, the specific expression network alterations uncovered in our study can be
tested in model systems for their potential as therapeutic targets. There are known
interactions between oligodendrocytes and the other CNS cell-types; including inflammatory
and astrocytic activation in myelin breakdown and remyelination[36]. We find that
established and candidate AD genes[34], such as PSENI, BINIand CRZ, reside in
myelination modules. Given these and the effects of both tau[12, 40] and AB[38, 39] on
myelination, we posit that myelin may indeed be the “glue” that holds together key
biological functions in the adult brain, the disruption of which results in neuropsychiatric
conditions such as AD and PSP.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

. Brain myelination transcriptional networks are downregulated in PSP and
AD.

. Myelination networks are higher in AD vs. PSP but lower compared to
controls.

. Network structures, but not expression changes, are preserved between TCX
and CER.

. Brain cell type changes can influence and need adjustment in transcriptome
studies.
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RESEARCH IN CONTEXT
Systemic review

Reviewing the literature for gene expression profiling publications of neuro-
proteinopathies, showed that most studies are limited to small cohorts and individual
gene transcript rather than systems-level analysis. Further, most studies assess one
disease group against controls, rather than comparative transcriptome analyses of
different diseases.

Interpretation

Comparative transcriptome analyses in Alzheimer’s disease (AD) and other
neurodegenerative proteinopathies can uncover both shared and distinct disease
pathways. Our analysis of 940 brain transcriptomes including patients with AD,
progressive supranuclear palsy (PSP) and controls identified down-regulation of
myelination networks in both AD and PSP, but more pronounced in the latter.

Future directions

Future studies should investigate in ante-mortem cohorts, longitudinal changes in
myelination network molecules to determine their role in the pathophysiological
processes in AD and other neurodegenerative diseases with a goal to establish them as

novel biomarkers. The myelination network molecules should be tested in model systems

for their potential as therapeutic targets.

Alzheimers Dement. Author manuscript; available in PMC 2019 March 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Allen etal. Page 19
A, ap+psp TCX All Consensus Modulesg;mge A, AD+psp TCX1.CSqmpe A AD+psp TCX5.CSimpie A;  ap+pspTCX10.CSgimpie
— 204 i 20
2 ] ]
g 15- § 154
% 10- % 10-
° 2 s 2 s Module
T of T QFT====7255385 57522221 (o] 4oupssTOXI Cumpe
40 05 00 05 10 1 05 00 05 0 -0 05 00 5 1.0 ®  20:p5pTCX5.CSgimpio
15 logz(FoldChange) log,(FoldChange) loga(FoldChange) #0s#55TCX10.CS it
1+pse TOX11.CS g0
Ap+psp TCX11 »Cssnmp\e A5 Ap+pspTCX1 4‘CSSImple AG Ap+pspTCX1 7-Csslmv\e - F’meu cs, ‘
404255 TCX14.CS iy o
204 204
- - + 101255 TCXT7.CSimgis
‘_E ‘_E 15- § 154 ® | a0wspTCX21.CSympie
EN s Er 0+985TCX26.CS e
s 2 5] © 405 TCX29.CS e
8 2 5- 8 5.
T kzssscozczllRc=zaEs T ofz===TRQggE======= T 0f* Module .
40 05 00 05 10 40 05 00 05 10 40 05 00 05 10
log,(FoldChange) log,(FoldChange) log,(FoldChange) o<07
® 207
5 a0+pspTCX21.C8Gmpie Mg ap+pspTCX26.CSgmpe Ay Ap+psp T CX29.CS;imple
Significance
7.2720- §20' --q<005
3 154 3 151 --q<001
> 2
< 10- < 104
0 = 8 5 K
________ %'ﬁz__._,_ T leccco-MB-Socccozbzd 1
,,,,,,,,,,,,,,, of === WYgfzzncace
-1 05 0.0 05 1.0 1 0.5 0.0 05 10 -1.0 05 0.0 05 1.0
logz(FoldChange) log,(FoldChange) logz(FoldChange)
B, Ap+psp TCX All Consensus Modulescomprenensive B, ap«wspTCX2.CS B, apwpspTCX8.CS Bz apwpspTCX10.CS By apspspTCX12.CS
— 64 —C —~ 6+ —~ 6+ ~ 6
o o ) Al ol @ ) ()
3 o 3 3 3
S 4. ) S 4d O S 44 S 4
o A 3 A o
55 B 3, T, %50 0| E, 3, Module
2 > 2= Oy 2 +0- =8 « ey - P 2 === P 24 == = - -
L TT -8 -| 2T I - ol L |1+ ® LowpsTOX2CS
X od T od T 0 T 0 ®  owssTCXBCS

—log1o(g.value)

-06-03 00 03 06
log,(FoldChange)

Bs ap:pspTCX14.CS

64

IS

—log1o(q.value)

0-

06 -03 00 03 06
log,(FoldChange)

Bs a0spsrTCX16.CS

—log1o(q.value)

0.6 -03 00 0.3 06
logz(FoldChange)

B, apwspTCX26.CS
S N
E
£
S
6) Ssichaics:
O |t--d-----
P

0

[oe)
@

—log1o(q.value)

06 -03 00 03 06
logz(FoldChange)

ApwpspTCX27.CS

06 -03 0.0 03 06
log,(FoldChange)

B, apwpspTCX40.CS

Ed

—log1o(q.value)
)
o

5 SEEE S .
_____ g
0

-06 0.3 00 03 06
log,(FoldChange)

Bio apspspTCX41.CS

£

—log1o(q.value)
s

oy

-06 0.3 00 03 06
log,(FoldChange)

By ap+pspTCX42.CS

6

—log1o(q.value)
IS

i

-0.8

-0.4 0.0

Iogz(FoldCHange)

log,(FoldChange)

06 0.3 00 03 06
log,(FoldChange)

-06 0.3 00 03 06
log,(FoldChange)

0.6 0.3 00 03 06
log,(FoldChange)

Fig. 1. Volcano plots of fold change vs. significance for differential gene expression (DGE) in the

temporal cortex (TCX)

Results are shown for the primary analysis of AD vs. PSP TCX DGE in the Discovery
Cohort, under the Simple (Ap—Ag) and Comprehensive (By—B11) models. Each circle
represents a transcript, which are colored differently according to the CEM they pertain to.

Transcripts with strong module membership (MM) values=0.7 are shown as filled circles; or

empty circles if MM<0.7. Results are shown for all transcripts analyzed (Ag, Bg) and also
separately for those CEM with consistent brain cell-enrichment across both models. DGE
results that are significant at q<0.05 or g<0.01 are shown above the green and red dotted

lines, respectively.
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Fig. 2. Oligodendrocyte networks in the Discovery and Replication Cohorts with disease
association

Temporal cortex (TCX) oligodendrocyte-specific gene enriched networks in the Discovery
Cohort under the Simple (A, B) and Comprehensive Models (C, D); and in the Replication
Cohort under the Simple Model are shown for the primary AD vs. PSP analysis. These
CEM s have significantly different levels between AD and PSP. None of the corresponding
modules in the Replication Cohort under the Comprehensive Model were significantly
associated with disease. The circles or squares represent the nodes for the genes within the
CEM. For each module, the top 150 connections according to TOM weight are shown for
genes with a MM > 0.7. The size of a node correlates with the number of connections for
that node with others within the network. Gene transcripts that are enriched within
oligodendrocytes are shown in orange. Transcripts with significant differential expression at
0<0.05 are shown as a square. Thickness of the connection lines is determined by the weight
of the connection.
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