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Abstract of the Dissertation

A Probability Based Framework for Testing the

Missing Data Mechanism

by

Johnny Cheng-Han Lin

Doctor of Philosophy in Psychology

University of California, Los Angeles, 2013

Professor Peter M. Bentler, Chair

Many methods exist for imputing missing data but fewer methods have been pro-

posed to test the missing data mechanism. Little (1988) introduced a multivariate

chi-square test for the missing completely at random data mechanism (MCAR)

that compares observed means for each pattern with expectation-maximization

(EM) estimated means. As an alternative, this manuscript proposed two new

ways of testing MCAR that use estimated parameters from missingness indica-

tors rather than moment information from observed scores. The first statistic in

the probability-based (PBB) family, PBB-MCAR I, is a chi-square test of inde-

pendence that tests the assumption that missingness indicators are independent

among all grouping patterns. The second statistic, PBB-MCAR II, is a chi-square

goodness of fit statistic that tests differences of observed versus expected proba-

bilities conditional on ranked values of a suspect variable that drives missingness

dependencies. A simulation study showed that although Little’s test consistently

maintained optimal Type I error rates, the empirical power of PBB-MCAR II to

detect violations of MCAR was on par with Little’s test under most conditions,

whereas PBB-MCAR I had lower power to detect aberrations of MCAR because it

tests a more restricted set of independence assumptions. These newly-developed

test statistics were demonstrated in two education-based applications, a) as a way
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of testing the missing data mechanism when creating longitudinal trajectories of

intramural sports participation among African American students, and b) as a

tool to detect departures from completely at random test-taking. Future work

will involve creating an R package to promote the use of these missing data tests

among education researchers, extending PBB-MCAR II to incorporate auxiliary

variables, and resolving the problem of sparse missing data patterns by adopting

the limited information goodness of fit test proposed by Maydeu-Olivares and Joe

(2005).
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CHAPTER 1

Introduction

1.1 Introduction to Missing Data in the Social Sciences

Researchers in the social sciences regularly encounter missing data, but many do

not take further steps to analyze or test the sources of missingness. Peugh and

Enders (2004) did a study on the use of missing data handling techniques among

researchers in education and psychology and found that 96% of randomly selected

articles used listwise deletion, pairwise deletion, or some combination of the two.

The relatively small number of studies that used more sophisticated missing data

handling techniques may be attributed to the added complexity of implementation

and unfamiliarity with tests of the missing data mechanism.

Missing data handling techniques in practice have been relegated to substan-

dard ad hoc methods such as listwise deletion, pairwise deletion and mean impu-

tation (McKnight, 2007). More advanced techniques such as the a) expectation

maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977) that take into ac-

count the missingness pattern, b) full information maximum likelihood (Anderson,

1957; Bock, Gibbons, & Muraki, 1988) for item factor analysis, and c) multiple

imputation (Rubin, 2004), offer less biased parameter estimates when the data

is missing completely at random (MCAR) or missing at random (MAR), which

are the two ignorable types of missing data (Enders & Bandalos, 2001; Enders,

2001). Less work has been done on data that is not missing at random (MNAR) or

non-ignorable. Muthén, Kaplan and Hollis (1987) proposed using multiple group

1



structural equation models that are akin to pattern mixture models to handle non-

ignorable data. More generally, Greenlees, Reece and Zieschang (1982) explored

the use of non-ignorable missing models using logistic regression with covariates

to improve data imputation. For a more in depth review of various “state-of-

the-art” missing data handling techniques, see Schafer and Graham (2002) and

Allison (2003).

Despite the existence of advanced techniques to handle missing data, many

researchers continue to use simpler deletion methods. However, deletion methods

are only appropriate when the data is missing completely at random (MCAR),

which in practice requires a statistical test to help verify this assumption. Little

(1988) proposed a multivariate test for the MCAR missingness mechanism. Cur-

rently, major software packages that implement this technique include the IBM

SPSS Missing ValuesTM20 module (IBM Corporation, 2011) and EQS 6.2 (Bentler,

2006). This manuscript will explore Little’s test in detail, providing computational

examples and a set of simulation studies to evaluate its performance.

1.1.1 Defining Missing Data Mechanisms

Suppose you have a random variable that is the set of two random variables,

Y = {Yobs, Ymis} where Yobs is the variable that is observed in the data and

Ymis is the unobserved random variable. Typically, Y depends on parameter

θ. Then define M as the pattern of missing responses where mij = 1 if yij is

missing and mij = 0 if yij is observed, with M conditional on another parameter

called ψ. Conditions on either observed or unobserved variables determine the

type of missing data. Little and Rubin (1976; 2002) define three main types of

mechanisms: a) missing completely at random, b) missing at random, and c)

missing not at random.

For the case of missing completely at random (MCAR):

2



Pr(M |Yobs, Ymis, ψ) = Pr(M |ψ) (1.1)

which means that the probability of missingness does not depend on either ob-

served or unobserved variables but only on the parameter ψ, which is distinct

from θ. This is the case of ignorability (Little & Rubin, 2002). See Figure 1.1 for

a diagrammatic representation of the MCAR mechanism. In this example, MS,

defined as the missing indicator of a student’s math score, does not depend on

the student’s observed or unobserved GPA, (represented by the green and white

boxes labeled GPA, respectively).

Figure 1.1: Diagram of the MCAR Missingness Mechanism

For the case of missing at random (MAR):

Pr(M |Yobs, Ymis, ψ) = Pr(M |Yobs, ψ) (1.2)

Figure 1.2: Diagram of the MAR Missingness Mechanism

3



which means that in addition to the dependency on ψ, the probability of missing-

ness depends on observed variables (see Figure 1.2). In this case, the probability

of a student’s math score being missing depends on her GPA, but not on unob-

served GPA. When the data is not missing at random (MNAR, see Figure 1.3), the

probability mechanism cannot be simplified as in the previous two cases because

either the data is not MAR or the θ and ψ parameters are not distinct (Little

& Rubin, 2002), and so M is conditional on both θ and ψ. This means that the

missingness indicators may depend on either observed or unobserved variables. In

this case, a student’s missing math score depends on his GPA whether or not the

school has his transcript available.

Pattern mixture models and sensitivity analysis have been the two primary

methods of handling MAR and MNAR data, especially in the context of longitu-

dinal data [see Enders (2011) for a review]. The existence of MAR data is less

problematic for the researcher because maximum likelihood methods can produce

sound parameter estimates under this case. For MNAR data, auxiliary informa-

tion is required and since the missing data is not available to the researcher, a

sensitivity analysis is recommended. For example, Jamshidian and Mata (2008)

examined the sensitivity of a given model to the missing data mechanism in the

area of structural equation models.

Figure 1.3: Diagram of the MNAR Missingness Mechanism
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1.1.2 Review of Tests of the Missing Data Mechanism

A simple way to test for MCAR is to compare the means of observed values be-

tween a pair of missing and non-missing groups using pairwise t-tests, however this

can result in multiple comparison problems. To avoid issues with Type I error,

Little (1988) proposed a global chi-square statistic that uses all of the available

data. Park and Davis (1993) extended Little’s test for longitudinal missing data

using a Wald test, an improvement over prior studies that used a weighted least

squares estimation. They explored a wide variety of methods such as weighted

GEE’s, non-parametric estimation of conditional scores, and modeling conditional

distributions. Chen and Little (1999) extended Little’s test to generalized esti-

mating equations (GEEs) which forgoes distributional assumptions. This method

reduced bias when data was MAR but increased variance when data was MCAR.

Kim and Bentler (2002) extended Little’s test to structural equation models by

assessing homogeneity of means and covariances (HMC) using generalized least

squares estimation. The rejection of HMC implies rejection of MCAR but not

vice-versa. In structural equation modeling, a single mean and covariance struc-

ture is modeled, but if HMC is not true, then a single set of mean and covariance

parameters will not represent the population mean and covariance. Jamshidian

and Schott (2007) also tested the equality of means and covariances in structural

equation models but allowed for the partition of cases that belong to more than

one pattern of missingness. Not dividing groups by missing patterns means that

the researcher needs to manually define the groupings a priori. Jamshidian and

Jalal (2010) imputed the missing data for each group and then applied F -tests

based on the Hawkins test as well as on a non-parametric test of homoscedastic-

ity. The authors’ method involves imputing the missing data for each group and

then applying a complete data method to the imputed data. To perform a non-

parametric test of homoscedasticity the authors use an Anderson Darling k-sample

test. The simulation results showed that when the data was normally distributed,
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the Hawkins test had optimal Type I error rates, but both Hawkins and Kim

and Bentler tests failed for non-normal data. Alternatively, the non-parametric

test worked well for normal and non-normal data. The authors suggest a se-

quence of tests, first using the Hawkins test to assess multivariate normality and

homoscedasticity. If this test is rejected and the data is non-normal, perform a

non-parametric test. Then if the non-parametric test is rejected, the researcher

can reject MCAR.

A brief overview of the literature showed that much of the work on missing

data tests derive from Little’s (1988) concept of testing equality of means or

covariances across subgroups. This manuscript offers an alternative to Little’s

test using a new framework for testing the missing data mechanism that does not

test for the equality means and covariances across groups but for the assumption

of independence using probabilities of missingness – more closely aligning with

Rubin’s (1976) theory of missingness.

1.2 Describing Little’s Test of MCAR

Since Little’s test is the foundation for all HMC MCAR tests, a brief exposition

to Little’s method is warranted. For future reference, the author denotes Little’s

test of MCAR as the D2 test statistic, and assumes that all vectors are column

vectors. Begin with an index of notation to be used throughout the paper and in

subsequent methods:

• i is the particular subject number

• j is an index of the variable

• yij is a particular subject’s response for a particular variable

• mij is the missing response for a particular subject
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• k is an index of the K = 2p missing patterns

• rk is a vector of the particular missing response pattern

• rkj is the single response within the k-th pattern for the j-th variable

• p is the number of variables

• pk is the number of observed variables for missing pattern k

• N is the total number of observations

The procedure for Little’s test of MCAR can be summarized using the following

steps:

1. Use the EM algorithm to obtain the expected estimates of the mean and

variance-covariance matrix.

2. Group cases according to the missing pattern to obtain observed means for

each group.

3. Take the difference between observed and expected means weighted by the

estimated variance-covariance matrix and the number of observations within

each group to obtain a statistic that is asymptotically chi-square and perform

a hypothesis test.

Step 1

The Expectation-Maximization (EM) algorithm takes into account missing data to

generate a maximum likelihood estimate. Given a dataset Y = [yij] that includes

the set of observed and missing variables, enter the Y : N × p matrix into the EM

algorithm. The R package norm includes the em.norm() function for multivariate

normal data. The EM maximum likelihood estimate for the population mean

vector µ and variance-covariance matrix Σ is defined as µ̃ and Σ̃ respectively.
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To calculate the chi-square statistic, the expected mean vectors and variance-

covariance matrices need to be partitioned for every response pattern to include

only the observed values. Define µ̃obs.k = µ̃TDk where Dk is a (p× pk) selection

matrix with only one 1 per column that selects the non-missing observations.

This results in a vector of pk means for every k-th response pattern. Similarly,

define Σ̃obs.k = DT
k Σ̃Dk as the (pk×pk) variance-covariance matrix for every k-th

response pattern.

Step 2

Create a set of matrices Sk for k = 1, · · · , K where each matrix is a subset of Y

consisting of all cases that are identified with particular missing pattern. Define

N (rk), which is the number of cases that belong to a particular missing response

pattern (e.g., there are 103 cases with a pattern of [1, 0, 0]′). From these K−1 sets

of matrices (since it is not possible to calculate means for the pattern [1, 1, 1]′),

calculate the observed vector of means ȳobs.k for each response pattern rk.

Step 3

Take the difference of each vector of observed means estimated in Step 2 from the

overall EM-estimated means estimated in Step 1 weighted by the EM-estimated

variance-covariance matrix to obtain the goodness of fit statistic D2:

D2 =
K∑
k=1

N (rk)(ȳobs.k − µ̃obs.k)T Σ̃−1
obs.k

(ȳobs.k − µ̃obs.k) (1.3)

where N (rk) is the number of observed samples for the k-th missing response

pattern, and the chi-square statistic has degrees of freedom
∑K

k=1 pk − p where pk

is the number of observed variables for all K patterns.

A caveat of testing MCAR is that the rejection of the null hypothesis may
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not be very informative because even under MAR, ignoring the missing data

mechanism produces valid estimates (Rubin, 1976; Chen & Little, 1999). The

practical advantage of an MCAR test is that it can empirically confirm whether

listwise deletion is plausible for the particular analysis, which research has shown

is the most widely used technique in psychology and education (Peugh & Enders,

2004).

1.3 Illustrative Example of Little’s Test

The following sections will demonstrate the performance of Little’s test of MCAR

using a simulated example. Details about the three missing data generation meth-

ods (denoted MDM-1, MDM-2, and MDM-3) are described in the Method section

of the Simulation Studies chapter. Using Little’s procedure described in the pre-

vious section, obtain the table of model-obtained (EM) means and the observed

means as summarized in Table 1.1.

1.3.1 Little’s Test Under MDM-1

From the observed and expected means, obtain the Pearson’s goodness of fit test

statistic as:

D2 = (554)
[
−0.009 0 0.023

]
1.047 −0.062 0.008

0.062 0.994 0.006

0.008 0.006 0.951


−1 
−0.009

0

0.023


+ · · ·+ (27)

[
−0.143

] [
0.951

]−1 [
−0.143

]
= 10.05

Note that it is not possible to calculate the eighth pattern with completely un-

observed means, so only calculations up to the seventh pattern was done. For
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Table 1.1: Little’s Observed and Expected Means Under MDM-1

Response Observed Observed Expected

Pattern Frequency Means Means

1 2 3 1 2 3

0,0,0 554 0.036 0.038 -0.008 0.045 0.038 -0.031

0,0,1 110 -0.024 0.106 – 0.045 0.038 –

0,1,0 125 0.193 – -0.162 0.045 – -0.031

0,1,1 41 -0.114 – – 0.045 – –

1,0,0 103 – 0.043 0.044 – 0.038 -0.031

1,0,1 30 – -0.198 – – 0.038 –

1,1,0 27 – – -0.173 – – -0.031

1,1,1 10 – – – – – –

pattern [1, 1, 1], there are three observed variables, for patterns [1, 1, 0], [1, 0, 1],

[1, 1, 0] there are a total of six observed variables, and for patterns [1, 0, 0], [0, 1, 0],

[0, 0, 1] there are a total of three observed variables. So the degrees of freedom

is (3 + 6 + 3) − 3 = 12 − 3 = 9, and the critical chi-square value at α = 0.05 is

χ2(9) = 16.92. Since D2 < χ2(9), you fail to reject the null hypothesis that the

data is MDM-1.

1.3.2 Little’s Test Under MDM-2

The observed means from the second variable are a lot higher than expected for

the first and second patterns. From the observed and expected means, obtain the

test statistic:
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Table 1.2: Little’s Observed and Expected Means Under MDM-2

Response Observed Observed Expected

Pattern Frequency Means Means

1 2 3 1 2 3

0,0,0 554 0.021 0.810 0.015 0.127 0.039 -0.031

0,0,1 110 -0.074 0.954 – 0.127 0.039 –

0,1,0 125 0.193 – -0.162 0.127 – -0.031

0,1,1 41 -0.114 – – 0.127 – –

1,0,0 103 – -0.556 -0.011 – 0.039 -0.031

1,0,1 30 – -0.568 – – 0.039 –

1,1,0 27 – – -0.173 – – -0.031

1,1,1 10 – – – – – –

D2 = (554)
[
−0.107 0.77 0.045

]
1.042 −0.159 −0.002

−0.159 0.994 0.007

−0.002 0.007 0.951


−1 
−0.107

0.77

0.045


+ · · ·+ (27)

[
−0.143

] [
0.951

]−1 [
−0.143

]
= 387.52

In the variance-covariance matrix, all elements except those related to the first

variable are equivalent to the variance-covariance matrix as specified in the MDM-

1 case above. Since D2 > χ2(9), reject the null hypothesis that the data is MCAR.

The results show that the D2 statistic can detect the case when the missing data

mechanism is not MCAR and is generated under MDM-2.
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1.3.3 Little’s Test Under MDM-3

Generate a dataset using the generation method specified in the MDM-1 case but

add to it the condition that if y1j < 0, assign m1j = 1. For example, when the

z-score observed in the first variable y11 is less than 0, set the missing indicator

for itself to 1. As before, the population probability of missingness is 20% for each

of the three variables. The observed frequencies, observed means, and expected

means calculated from the EM algorithm are shown in Table 1.3.

Table 1.3: Little’s Observed and Expected Means Under MDM-3

Response Observed Observed Expected

Pattern Frequency Means Means

1 2 3 1 2 3

0,0,0 554 0.839 0.015 -0.013 0.815 0.039 -0.031

0,0,1 110 0.836 0.018 – 0.815 0.039 –

0,1,0 125 0.751 – -0.225 0.815 – -0.031

0,1,1 41 0.655 – – 0.815 – –

1,0,0 103 – 0.058 0.010 – 0.039 -0.031

1,0,1 30 – 0.056 – – 0.039 –

1,1,0 27 – – -0.095 – – -0.031

1,1,1 10 – – – – – –

The second and third EM-estimated means remain the same as in the MDM-1 and

MDM-2 cases above except that the first mean is a lot higher. From the observed

and expected frequencies, obtain the test statistic:
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D2 = (554)
[
0.024 −0.025 0.018

]
0.375 −0.010 0.007

−0.010 0.994 0.005

0.007 0.005 0.951


−1 

0.024

−0.025

0.018


+ · · ·+ (27)

[
−0.064

] [
0.951

]−1 [
−0.064

]
= 7.22

As before, all elements in the variance-covariance matrix relating to the first vari-

able differ from the matrices in the MDM-1 and MDM-2 cases. Since D2 < χ2(9),

you fail to reject the null hypothesis that the data is MCAR. We therefore incor-

rectly fail to reject the null hypothesis given MDM-3. See the Simulation Studies

chapter for more details about the performance of Little’s test under this case.

1.4 The Probability Based (PBB) Framework for Testing

MCAR

Let Y be the matrix of observed and missing random variables consisting of

y1, · · · , yp vectors and each yj = {yobs,j, ymis,j}, where yj ∼ N(µj, σ
2
j ) is i.i.d.

for j = 1, · · · , p. Let M be a matrix with vectors m1, · · · ,mp where mj ∼

Bernoulli(ψj) is i.i.d. for j = 1, · · · , p, and ψj is the population probability of

missingness. Assuming the data is missing completely at random (MCAR), the

overall joint density of missing data in the population can be modeled as (Rubin,

1976):

f(M |ψ, Y ) = f(m1, · · · ,mp|ψ, Y ) = f(m1, · · · ,mp|ψ) =

p∏
j=1

ψj (1.4)

where p is the number of variables and ψ is the probability of missingness in the

population.
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In practical settings, we do not have population random variables but rather

samples drawn from the population. Drawing i.i.d. samples, y1j, · · · , ynj and

m1j, · · · ,mnj, the missing indicator variable is defined as:

mij =


1 when yij is missing

0 when yij is observed

(1.5)

In succeeding sections, we describe two tests that make use of this perspective.

1.5 The MCAR Test of Independence (PBB-MCAR I)

A first test, which we call PBB-MCAR I, amounts to a chi-square test of inde-

pendence on the missing data indicators. Estimate the population parameter ψj

using the following equation:

ψ̂j =
1

N

N∑
i=1

mij (1.6)

The overall pattern of missingness can be estimated using the likelihood:

f(M |ψ̂) =

p∏
j=1

ψ̂j (1.7)

The probability of missingness for each response pattern rk is of interest rather

than the marginal probabilities. Let rk = [rk1, · · · , rkp]′ be a vector of K unique

patterns of M for k = 1, · · · , K. For example, for a three-variable scenario where

p = 3, a unique pattern is r1 = [0, 0, 0]′, r2 = [0, 0, 1]′, r3 = [0, 1, 0]′,r4 =

[0, 1, 1]′,r5 = [1, 0, 0]′,r6 = [1, 0, 1]′, r7 = [1, 1, 0]′, r8 = [1, 1, 1]′. To obtain the

expected proportion of missing for each pattern, first define

ˆψ(rkj) =


ψ̂j if rkj = 1

1− ψ̂j if rkj = 0

(1.8)
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Then obtain expected probabilities for each pattern rk for k = 1, · · · , K by

p(k)e =

p∏
j=1

ψ̂(rkj) (1.9)

The expected probabilities for each response pattern rk as defined by Equation 1.9

is distinguished from Equation 1.7, which is the overall probability of missingness

across all patterns. Let the observed probability be

p(k)o =
N (rk)

N
(1.10)

where N (rk) is the number of observations belonging to the k-th missing pattern

and N is the total sample size. Define ψ
(k)
o as the population-observed proportion

of missingness and ψ
(k)
e as the population-expected probability of missingness

for the k-th pattern respectively. Then the null hypothesis is defined as H0 :

ψ
(k)
o = ψ

(k)
e for k = 1, · · · , K. Let po be the vector of observed probabilities

(p
(1)
o , · · · , p(K)

o )′ and pe be the vector of expected probabilities (p
(1)
e , · · · , p(K)

e )′.

The Pearson’s chi-square test of independence can be written as:

X2
I = N(po − pe)

′D−1(po − pe) (1.11)

with degrees of freedom df = K − p, and D = diag(p
(1)
e , · · · , p(K)

e ). Rejection of

the null hypothesis implies that missingness indicators are independent among all

patterns of missingness.

1.5.1 PBB-MCAR I Under MDM-1

To recreate the following examples, use the same missing data generation meth-

ods as explained for the previous examples of Little’s MCAR test. To implement

PBB-MCAR I, instead of estimating the expected and observed means, use the M

matrix to calculate the expected and observed probabilities as given in Equations
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1.9 and 1.10 respectively. Defining ψ̂ = [ψ̂1, · · · , ψ̂p]
′ as the vector of estimated

expected marginal probabilities, obtain ψ̂ = [0.170, 0.203, 0.191]′ from this partic-

ular sample generated under MDM-1. Based on this estimated parameter vector,

the expected probabilities along with the observed probabilities for each pattern

are given in Table 1.4.

Table 1.4: PBB-MCAR I Observed and Expected Probabilities Under MDM-1

Response Observed Observed Expected

Pattern Frequency Probability Probability

0,0,0 554 0.554 0.535

0,0,1 110 0.110 0.126

0,1,0 125 0.125 0.136

0,1,1 41 0.041 0.032

1,0,0 103 0.103 0.110

1,0,1 30 0.030 0.026

1,1,0 27 0.027 0.028

1,1,1 10 0.010 0.007

From the observed and expected probabilities, obtain the chi-square test of inde-

pendence statistic:

X2
I = 1000[

(0.554− 0.535)2

0.535
+

(0.110− 0.126)2

0.126
+

(0.125− 0.136)2

0.136

+
(0.041− 0.032)2

0.032
+

(0.103− 0.110)2

0.110
+

(0.030− 0.026)2

0.026

+ +
(0.027− 0.028)2

0.028
+

(0.010− 0.007)2

0.007
]

= 8.46

The critical chi-square value at α = 0.05 is χ2(5) = 11.07. Since X2
I < χ2(5),

you fail to reject the null hypothesis and conclude that missingness indicators are

independent.

16



1.5.2 PBB-MCAR I Under MDM-2

To show that the proposed X2
I statistic can detect certain violations of MCAR,

generate a dataset using MDM-2 to obtain a vector of estimated probabilities of

missingness, ψ̂ = [0.492, 0.203, 0.191]′. The observed and expected probabilities

for each pattern generated under MDM-2 are shown in Table 1.5.

Table 1.5: PBB-MCAR I Observed and Expected Probabilities Under MDM-2

Response Observed Observed Expected

Pattern Frequency Probability Probability

0,0,0 286 0.286 0.328

0,0,1 56 0.056 0.077

0,1,0 125 0.125 0.083

0,1,1 41 0.041 0.020

1,0,0 371 0.371 0.317

1,0,1 84 0.084 0.075

1,1,0 27 0.027 0.081

1,1,1 10 0.010 0.019

From the observed and expected probabilities, obtain:

X2
I = 1000[

(0.286− 0.328)2

0.328
+

(0.056− 0.077)2

0.077
+

(0.125− 0.083)2

0.083

+
(0.041− 0.020)2

0.020
+

(0.371− 0.317)2

0.317
+

(0.084− 0.075)2

0.075

+
(0.027− 0.081)2

0.081
+

(0.010− 0.019)2

0.019
]

= 221.33

Since X2
I > χ2(5), reject the null hypothesis that missingness indicators are inde-

pendent.
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1.5.3 PBB-MCAR I Under MDM-3

Although PBB-MCAR I is not intended to be a test of violations of MAR, its per-

formance under MDM-3 is explored. Given the estimated ψ̂ = [0.557, 0.203, 0.191]′,

the observed and expected probabilities under MDM-3 are given in Table 1.6.

Table 1.6: PBB-MCAR I Observed and Expected Probabilities Under MDM-3

Response Observed Observed Expected

Pattern Frequency Probability Probability

0,0,0 289 0.289 0.286

0,0,1 55 0.055 0.067

0,1,0 80 0.080 0.073

0,1,1 19 0.019 0.017

1,0,0 368 0.368 0.359

1,0,1 85 0.085 0.085

1,1,0 72 0.072 0.091

1,1,1 32 0.032 0.022

From the observed and expected probabilities, obtain the the chi-square test of

independence statistic as:

X2
I = 1000[

(0.289− 0.286)2

0.286
+

(0.055− 0.067)2

0.067
+

(0.080− 0.073)2

0.073

+
(0.019− 0.017)2

0.017
+

(0.368− 0.359)2

0.359
+

(0.085− 0.085)2

0.085

+
(0.072− 0.091)2

0.091
+

(0.032− 0.022)2

0.022
]

= 14.97

Since X2
I > χ2(5), reject the null hypothesis. The results suggest that PBB-

MCAR I can discover dependencies among missing indicators even under MDM-3.
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However the relatively small chi-square value means that the power may not be

as high as detecting dependencies under MDM-2.

1.6 The Probability Based Goodness of Fit MCAR Test

(PBB-MCAR II)

The motivation for this second test statistic in the PBB family comes from the

findings that PBB-MCAR I failed to perform on-par with Little’s test under a

particular MAR generation condition where missingness depended completely on

an observed variable (see the Departures from Completely at Random Test-Taking

chapter). Rubin’s (1976) definition of MCAR is that

f(M |ψ, Y ) = f(M |ψ). (1.12)

Based on this definition, PBB-MCAR I only tests an implication of MCAR, that

the missingness indicators are independent across all K missing patterns. Equa-

tion 1.12 also assumes that missingness indicators are independent of observed Y

variables. An alternative test statistic is proposed which supposes that under an

MCAR generation model, patterns of missingness are independent given ranked

values of Yobs. The user picks one completely-observed vector in the dataset, yj,

and rank orders the dataset according to the observed values in this vector. The

dataset minus the user-chosen column is separated into q-blocks and estimated

proportions are calculated within each q-block. These proportions are then used

to calculate the observed probabilities for the K patterns of missingness. The ex-

pected probabilities are calculated collapsing across all blocks and is compared to

the q-observed probabilities across missingness patterns using a chi-square good-

ness of fit statistic. The algorithm is described more thoroughly in the following

steps:
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Step 1: Rank order the dataset by the j-th column

An implication of MCAR is that the indicator matrix M is independent of any

permutation of dataset Y . In order to test for this implication, sort the data by

the user-chosen column vector yj and assign ranked values r = 1, 2, · · · , N . The

arrangement of elements yij then becomes yrj for all r. If the first variable is

defined as the suspect variable, the command line in R is Y[order(Y[,1]),].

Step 2: Create a new indicator matrix excluding the ranked j-th column

Since estimating probabilities including the ranked j-th column can generate non-

sensical proportion estimates such as ψ̂j = 0 or ψ̂j = 1, exclude the j-th column

from analysis, leaving p− 1 columns in the remaining dataset, Y−j. The resulting

indicator matrix is the same as Equation 1.5, except it is ranked by r with the

j-th column excluded, denoted by M−j, for r = 1, 2, · · · , N .

Note for the special case of p = 2, using the M−j matrix would result in an

m-vector which would be unsuitable for analysis. A more in depth discussion of

the problems associated with this is discussed in the Simulation Studies chapter.

Step 3: Separate the new indicator matrix into q-blocks

Another implication of MCAR is that no matter how the indicator matrix is par-

titioned, the estimated proportions within each column will be roughly equivalent

across the q-blocks given sufficiently large sample size. For each column vector

mj in the M−j matrix, calculate

ψ̂j.q =
1

N

N∑
i=1

mij.q (1.13)

where j = 1, · · · , (p− 1) is the range of variables not excluded from the analysis

in Step 2, and q = 1, · · · , Q is the range of blocks. In the default case, Q = 2.
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Step 4: Calculate observed versus expected probabilities

After obtaining ψ̂j.q observed proportions of missingness, calculate the overall

probabilities of missingness for each pattern rk for k = 1, · · · , K just as in Equa-

tion 1.8. The overall probabilities of missingness by pattern are calculated for

each q-block

p(k)o.q =

p−1∏
j=1

ψ̂(rkj.q) (1.14)

where k = 1, · · · , K across all patterns of missingness on the M−j matrix and

q = 1, · · · , Q across all blocks. The expected probabilities of missingness by

pattern is calculated as

p(k)e =

p−1∏
j=1

ψ̂(rkj) (1.15)

where k = 1, · · · , K across all patterns of missingness on M−j.

Step 5: Calculate the goodness of fit chi-square statistic

From the estimated parameters, calculate the chi-square test statistic as

XII
2 =

K∑
k=1

Q∑
q=1

N.q(rk)(po.q
(k) − pe

(k))D−1(po.q
(k) − pe

(k)) (1.16)

where N.q(rk) is the number of observed samples for the k-th missing response

pattern within each q-th block, and D = diag(p
(1)
e , · · · , p(K)

e ) is the denominator

term in the chi-square goodness-of-fit test. The reference degrees of freedom

is K − 1 where K is the number of observed missing patterns. Rejection of

the null hypothesis indicates that the missing data generation mechanism is not

independent across all patterns of missingness conditional on the new ranked

dataset, Y−j.
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CHAPTER 2

Simulation Studies

2.1 Pilot Simulation Study

PBB-MCAR I has not been studied in terms of its Type I error rate and empirical

power relative to Little’s test. The purpose of this pilot simulation study is to

assess these properties in detail (as of the pilot study, PBB-MCAR II had not

been developed and was therefore not assessed).

2.1.1 Method

The MDM-1 generation technique described below was developed by Jamshidian,

Yuan, and Le (in press). A total of n = 500 replications were run using N = 1000

students under the three missing data mechanism conditions assessed at an α =

0.05. The null hypothesis was deemed to be rejected if p < 0.05.

1. Generate a random vector of three standard normal variables yj ∼ N(0, 1)

for j = 1, 2, 3 using rnorm() in R software.

2. Generate three independent vectors of random uniform variables vj ∼ U(0, 1)

for j = 1, 2, 3 using runif() in R software. Let qj be the proportion of miss-

ing data for variable j.

3. If vij < qj, then assign mij = 1. Otherwise, assign mij = 0.

4. Combine the three univariate vectors using cbind() to get the M (N × p)

matrix.
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5. Calculate the observed and expected means using the procedures described

previously.

Equal probabilities were assumed across the three variables, q1 = q2 = q3 = 0.2.

To ensure that the random number generation gave consistent results across tests,

a seed was set for each univariate normal generate, with a seed of 100 set for y1,

101 for y2, and 111 for y3 using the set.seed() function. Three data mechanisms

were generated for this simulation study: a) Missing Data Mechanism 1 (MDM-1),

b) Missing Data Mechanism 2 (MDM-2), and Missing Data Mechanism 3 (MDM-

3). MDM-1 corresponds to the MCAR procedure, described above. To generate

MDM-2, add to the MDM-1 condition that if yi,j < 0, then assign mi,j−1 = 1.

In other words, generate the same missing indicator pattern as before, but for

example if the z-score observed in the second variable is less than 0, set the missing

indicator for the first variable to 1. The population probability of missingness is

20% for each of the three variables, but the inclusion of the MDM-2 condition

changes the observed probability of the first variable. For MDM-3, add to MDM-

1 the condition that if yij < 0, then assign mij = 1. This is the case when the

z-score observed in the first variable y1 is less than 0, set the missing indicator for

itself to 1.

2.1.2 Results

The results of this pilot simulation study showed that both Little’s test and PBB-

MCAR I performed relatively well under MDM-1, with Little’s test showing slight

over-rejection and PBB-MCAR I showing slight under-rejection given α = 0.05

(see Table 2.1 and Figure 2.1). Both statistics also adequately rejected the null

hypothesis under MDM-2 at 100%. Under the MDM-3, Little’s test rejected the

MCAR probability model only 4% of the time. PBB-MCAR I was slightly more

powerful than Little’s test, but both tests were not adequately powerful. More
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Table 2.1: Results of the Pilot Simulation Study (N = 500 Replications)

Generating Mechanism Little PBB-MCAR I

MDM-1 6.5 3.8

MDM-2 100 100

MDM-3 3.8 17.8

work needs to be done to incorporate the MNAR probability mechanism directly

into the PBB framework to adequately detect aberrations of MAR (Molenberghs,

Beunckens, Sotto, & Kenward, 2008).

Figure 2.1: Plot of Results From the Pilot Simulation Study (Red Line Indicates

5% Rejection)

2.1.3 Discussion

The pilot simulation study showed that Little’s test and PBB-MCAR I performed

on par under MDM-1 and MDM-2. Both tests correctly failed to reject the null

hypothesis under MDM-1 and had sufficient power to detect aberrations of MCAR

under MDM-2, having rejected the incorrect model at 100% when the sample size

was large (N = 1000). Under MDM-3 however, both tests under-rejected the null
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hypothesis: PBB-MCAR I rejected 17.8% of the time, and Little’s test rejected

3.8% of the time. In this pilot simulation study, PBB-MCAR I detected aber-

rations under MDM-3 more frequently than Little’s test, although the empirical

power for both statistics was much lower than expected (below 25%). This is

not surprising, given that the purpose of these tests is not to explicitly detect

violations of MAR. The pilot simulation study demonstrated the promising large

sample characteristics of PBB-MCAR I. However, this study was limited in its

scope of simulation. The next section will describe a more comprehensive simula-

tion study that varies in its range of sample sizes, number of variables, and cor-

relations among observed variables. In addition, the performance of PBB-MCAR

II will be assessed along with PBB-MCAR I and Little’s test.

2.2 Full Simulation Study

The pilot simulation study showed that PBB-MCAR I performed on par with

Little’s test in Type I error rate and empirical power, despite being derived from

different theoretical perspectives. Whereas Little’s test uses differences among

observed and expected means, PBB-MCAR I tests an implication of MCAR that

missingness indicators are independent of each other. Anecdotal evidence from

the Departures from Completely at Random Test-Taking chapter showed that al-

though PBB-MCAR I failed to reject the null hypothesis adequately under a

particular MCAR generation model, it did not adequately reject MCAR when

the missing data generation mechanism depended strictly on the observed values

of another variable. Therefore, a more thorough simulation study is warranted to

assess the performance of PBB-MCAR I under a broader range of conditions, as

well as to assess the viability of the second test in the PBB family, PBB-MCAR

II, as an alternative to PBB-MCAR I. The hypothesis is that PBB-MCAR II will

have higher empirical power than PBB-MCAR I when missingness depends on an
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observed variable.

The pilot simulation study was limited in its scope and applicability to the

field of education. Improvements made to the current simulation study include i)

setting realistic ranges of simulated values that reflect education testing outcomes,

ii) generating sample sizes that mimic those found in classrooms and schools, iii)

generating a range in the number of variables, iv) varying the proportions of

missingness, and v) generating correlations among observed variables that mimic

longitudinal outcomes in testing.

2.2.1 Method

Table 2.2 describes the variables and parameters tested in this full simulation

study. Little’s test, PBB-MCAR I, and PBB-MCAR II were each assessed for

their Type I error rates and empirical power under MDM-1, MDM-2 and MDM-

3. All parameters were held constant across the Number of Variables, including

Probability of Missingness and Correlation Among Variables. A range of three

MDM generation conditions, six sample sizes, three variable sizes, two probabili-

ties of missingness and two correlations (fixed across variables) generated a total

of 216 conditions. Due to computing constraints, 500 replications were run across

each condition to balance computation speed and statistical efficiency. Each con-

dition was then plotted with sample size on the x-axis and percentage of rejection

on the y-axis (see Appendix A for non-collapsed plots of each of the 216 condi-

tions). Preliminary simulation runs showed that PBB-MCAR II is problematic

for variables of size two (see Figures 2.5, 2.8, and 2.11), as it over-inflates the Type

I error rate and generates artificially high power as a result. More discussion is

mentioned under the Number of Variables section. Other limitations are discussed

in the Discussion and Limitations section of this chapter.
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Table 2.2: Table of Parameters Tested in the Full Simulation Study (Total of 216

Conditions)

Variable Parameters

Missingness mechanism MCAR, MAR, MNAR

Sample size 35, 50, 100, 250, 500, 1000

Number of variables 2, 3, 5

Probability of missingness 0.2, 0.6

Correlation among variables 0, 0.9

2.2.2 Missing Data Generation Method

1. Generate a matrix of p-multivariate normal variables where yj ∼ N(350, 150)

for j = 1, · · · , p using mvrnorm() in the R library MASS.

2. Determine real world cut-off ranges. If yij < L, then assign yij = L, and

if yij > U then assign yij = U . Since this study focuses on applicability to

educational outcomes, a minimum score of L = 0 and a maximum score of

U = 600 were assigned to reflect realistic scores on the California Standards

Test (CST).

3. Generate p-independent vectors of random uniform variables vj ∼ U(0, 1)

for j = 1, · · · , p using runif() in R and combine into a matrix V .

4. For MDM-1, if vij < qj, then assign mij = 1. Otherwise, assign mij = 0,

where qj are probabilities of missingness. This corresponds to the MCAR

generation mechanism.

5. For MDM-2, add to the MDM-1 condition that if yi,(j−1) < C and vij <

qj, then assign mij = 1. For this particular study, a cut-off of C = 350

corresponds to the cut-off for basic proficiency on the CST. For example, if

Student 28’s first year CST score is less than 350 and the random number
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generated for v(28,2) < 0.2, then set the missing indicator m(28,2) = 1. For

the special case of m1 (i.e., the first column in the M -matrix), assign the

missingness to be MDM-1 as in Step 4. Note that under this generation

condition, there may be a special case where missingness on mij depends on

a missing yij that is generated by the MCAR condition, making the condition

MNAR (although it is expected that this would be for the minority of cases).

For this reason, the MDM-2 condition is not technically an MAR generation

condition but can be said to be predominately MAR.

6. For MDM-3, add to MDM-1 that if yij < C and vij < qj, then assign

mij = 1. For example, if Student 130’s second year CST score is less than

350 and the random number generated for v(130,2) < 0.2, then set the missing

indicator m(130,2) = 1. For the special case of mi1, assign the missingness to

be MDM-1. This condition corresponds to the MNAR generation condition.

2.2.3 Results

For ease of interpretation, rejection percentages for variables were collapsed to

generate plots of main effects. The main effects were plotted for the Missingness

Mechanism, Number of Variables, Probability of Missingness, and Correlation

Among Variables for Little’s test, PBB-MCAR I and PBB-MCAR II. Due to the

problematic nature of PBB-MCAR II’s performance with two variables, all main

effects except for the Number of Variables section excluded data with two variables

for the three tests considered in this simulation study.

2.2.4 Describing Main Effects: Missingness Mechanism

Figures 2.2, 2.3, and 2.4 depict rejection rates for the three statistics, plotted

against sample size under MDM-1, MDM-2 and MDM-3 respectively, collapsing

across all variables including Number of Variables (e.g., 3 and 5), Probability of
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Missingness (e.g., 0.2 and 0.6), and Correlation Among Variables (e.g., 0, and

0.9). Under MDM-1, sample size did not affect the Type I error performance of

the three tests, although Little’s test had the best Type I error rates at N = 1000

compared to the PBB-MCAR tests.
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Figure 2.2: Full Simulation Study: MDM-1 Collapsed Across All Other Variables

Under MDM-2, Little’s test continued to have the highest empirical power,

which was inconsistent with results from the pilot simulation study. PBB-MCAR

II showed an improvement over PBB-MCAR I in empirical power, especially at

samples below 250. At sample sizes greater than 250, PBB-MCAR II performed

on par with Little’s test, given that two blocks were used for the analysis and only

one variable was chosen as the sorting index.

Under MDM-3, PBB-MCAR I outperformed PBB-MCAR II at all levels and

performed slightly better than Little’s test at the smallest sample size (N ≤ 50).

Theoretically, there is little justification for this performance advantage, which

warrants further investigation as to why Little’s test would still offer optimal

empirical power rates under MDM-3.
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Figure 2.3: Full Simulation Study: MDM-2 Collapsed Across All Other Variables
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Figure 2.4: Full Simulation Study: MDM-3 Collapsed Across All Other Variables
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2.2.5 Describing Main Effects: Number of Variables

Figures 2.5 through 2.7, Figures 2.8 through 2.10, and Figures 2.11 through 2.13

depict rejection rates by the number of variables under MDM-1, MDM-2 and

MDM-3 respectively.

As noted previously, the Type I error rates of PBB-MCAR II under the two-

variable condition is especially problematic. Although Little’s test and PBB-

MCAR I performed on par under MDM-1, PBB-MCAR II over-rejected the null

hypothesis, nearing 100% rejection for N > 100. This problem may be due to a

weakness in the PBB-MCAR II algorithm, which discarded the j-th variable from

the analysis, leaving a single m-vector which gave inaccurate marginal estimates

of ψ. The problem was remedied when there were at least p = 3 variables in the

dataset, leaving two variables in the M−j matrix for subsequent analysis. Under

this case, PBB-MCAR II’s performance matched the patterns seen previously,

although PBB-MCAR II tended to under-reject as sample size increased.
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Figure 2.5: Full Simulation Study: MDM-1, Number of Variables = 2, Collapsed

Across All Other Variables
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Figure 2.6: Full Simulation Study: MDM-1, Number of Variables = 3, Collapsed

Across All Other Variables
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Figure 2.7: Full Simulation Study: MDM-1, Number of Variables = 5, Collapsed

Across All Other Variables
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Under MDM-2, PBB-MCAR II slightly out-performed Little’s test under the

two-variable condition, although the author suspects this may be due to the arti-

ficially raised rates of rejection. Under three variables, PBB-MCAR II performed

slightly better than Little’s test, and II performed on par with Little’s test at

five variables. Compared to both Little’s test and PBB-MCAR II, PBB-MCAR I

under-performed under MDM-2 for the two-, three- and five-variable conditions.
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Figure 2.8: Full Simulation Study: MDM-2, Number of Variables = 2, Collapsed

Across All Other Variables
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Figure 2.9: Full Simulation Study: MDM-2, Number of Variables = 3, Collapsed

Across All Other Variables
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Figure 2.10: Full Simulation Study: MDM-2, Number of Variables = 5, Collapsed

Across All Other Variables
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Under MDM-3, PBB-MCAR II continued to over-reject the null hypothesis

relative to the other statistics under the two-variable case.
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Figure 2.11: Full Simulation Study: MDM-3, Number of Variables = 2, Collapsed

Across All Other Variables

For the three-variable case, Little’s test rejected the null hypothesis more fre-

quently than both PBB-MCAR I and II, which was consistent with the main effect

trends described in the Missingness Mechanism section of this chapter. For the

five-variable condition at N = 35, PBB-MCAR I rejected the null hypothesis at

32%, Little’s test at 11% and PBB-MCAR II by 1%, with I having shown the

best performance compared to the other two statistics. However, these benefits

disappeared at large sample sizes. It is not clear why increasing the number of

variables had a positive effect on PBB-MCAR I under MDM-3 even though these

advantages did not arise under MDM-2.
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Figure 2.12: Full Simulation Study: MDM-3, Number of Variables = 3, Collapsed

Across All Other Variables
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Figure 2.13: Full Simulation Study: MDM-3, Number of Variables = 5, Collapsed

Across All Other Variables
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2.2.6 Describing Main Effects: Probability of Missingness

Figures 2.14 & 2.15, Figures 2.16 & 2.17, and Figures 2.18 & 2.19 depict rejection

rates for 0.2 and 0.6 probabilities of missing under MDM-1, MDM-2 and MDM-3

respectively. The results show that the probabilities of missingness appear to have

little effect on the Type I error rate.
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Figure 2.14: Full Simulation Study: MDM-1, Probability of Missingness = 0.2,

Collapsed Across All Other Variables

However, there were striking differences in empirical power among tests under

MDM-2. For Probability of Missingness = 0.2, PBB-MCAR II slightly outper-

formed Little’s test and greatly outperformed PBB-MCAR I. In particular at

N = 50, PBB-MCAR II rejected the null hypothesis at 24%, Little’s test at 16%

and PBB-MCAR I at 1%. However, when the probability of missingness was

0.6, PBB-MCAR I performed better than II. For example, at N = 50, Little’s

test rejected the null hypothesis 74% of the time, PBB-MCAR I rejected 63% of

the time, and PBB-MCAR II rejected 35% of the time. The results suggest a

relationship between the probability of missingness and the independence among

indicator variables.
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Figure 2.15: Full Simulation Study: MDM-1, Probability of Missingness = 0.6,

Collapsed Across All Other Variables
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Figure 2.16: Full Simulation Study: MDM-2, Probability of Missingness = 0.2,

Collapsed Across All Other Variables

38



35 100 250 500 1000

0
10

20
30

40
50

60
70

80
90

10
0

Sample Size

P
er

ce
nt

 R
ej

ec
tio

n

Little
PBB1
PBB2

Figure 2.17: Full Simulation Study: MDM-2, Probability of Missingness = 0.6,

Collapsed Across All Other Variables
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Under MDM-3, the probability of missingness made no difference in rejection

rates among the three tests when the probability was low, but made a big difference

when the probability was high. PBB-MCAR II under-rejected the null hypothesis

for an average 3.8% of the time, when it should have rejected the null hypothesis

100% of the time.
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Figure 2.18: Full Simulation Study: MDM-3, Probability of Missingness = 0.2,

Collapsed Across All Other Variables
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Figure 2.19: Full Simulation Study: MDM-3, Probability of Missingness = 0.6,

Collapsed Across All Other Variables
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2.2.7 Describing Main Effects: Correlation Among Variables

Figures 2.20 and 2.21, Figures 2.22 and 2.23, and Figures 2.24 through 2.25 depict

rejection rates for correlations among observed variables of 0 and 0.9 under MDM-

1, MDM-2, and MDM-3 respectively. The purpose was to assess the performance

of the three test statistics under longitudinal outcomes where scores in the current

year may be correlated with scores from the prior year. For this study, only

compound symmetry was assumed where all off-diagonal correlations are the same.

Under MDM-1, the correlation structure did not affect the correct failure to reject

the null hypothesis for any of the three tests.
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Figure 2.20: Full Simulation Study: MDM-1, Correlation Among Variables = 0,

Collapsed Across All Other Variables
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Figure 2.21: Full Simulation Study: MDM-1, Correlation Among Variables = 0.9,

Collapsed Across All Other Variables
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Under MDM-2 and at smaller sample sizes, a high correlation among observed

variables in general had a positive effect on the correct rejection of the null hy-

pothesis. At N = 50, Little’s test rejected the null hypothesis 52% of the time,

PBB-MCAR I rejected 45% of the time, and PBB-MCAR II rejected 32% of the

time. At N = 100, Little’s test rejected 81% of the time, PBB-MCAR II rejected

78% of the time, and PBB-MCAR I rejected 50% of the time. Therefore, in-

creased sample size gave a smaller net increase in rejection rates for PBB-MCAR

I compared to II. There was some benefit for the PBB-MCAR II test when there

was a high compound symmetric relationship among variables.
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Figure 2.22: Full Simulation Study: MDM-2, Correlation Among Variables = 0,

Collapsed Across All Other Variables
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Figure 2.23: Full Simulation Study: MDM-2, Correlation Among Variables = 0.9,

Collapsed Across All Other Variables
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The compound symmetry among variables had a huge effect on the perfor-

mance of the three test statistics when the data was generated under MDM-3.

With complete independence among observed variables, all three tests under-

rejected the null hypothesis under MDM-3. This pattern was consistent with the

pilot simulation study, except that PBB-MCAR I performed slightly better than

Little’s test in small samples under MDM-3. However, when the compound sym-

metry structure was defined, Little’s test, PBB-MCAR I and II rejected the null

hypothesis an average of 79%, 74% and 32% of the time, respectively across all

sample sizes.
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Figure 2.24: Full Simulation Study: MDM-3, Correlation Among Variables = 0,

Collapsed Across All Other Variables
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Figure 2.25: Full Simulation Study: MDM-3, Correlation Among Variables = 0.9,

Collapsed Across All Other Variables
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2.2.8 Discussion and Limitations

Table 2.3 summarizes the comparisons among the three tests for each of the main

effects plotted. Each cell represents the ranked performance for each of the three

tests (e.g., {L / I / II} indicates that Little’s test outperformed PBB-MCAR

I, which outperformed PBB-MCAR II). Overall across main effects, Little’s test

maintained optimal Type I error rates. Both PBB-MCAR I and II under-rejected

the null hypothesis, with II under-rejecting more frequently than I. Although

PBB-MCAR II rejection rates were inflated due to the problematic over-rejection

of the null hypothesis under MDM-1 for the two-variable cases, II showed en-

hanced performance under the three-variable case and with low probabilities of

missingness. Even in instances of {L / II / I}, Little’s test had only a slight per-

formance advantage over II, which suggests PBB-MCAR II may be a viable alter-

native to Little’s test. Under MDM-2, PBB-MCAR II outperformed PBB-MCAR

I, suggesting that taking into account ranked values of the observed variable is

an important characteristic of testing for aberrations from MDM-1. The picture

was not as clear under MDM-3: although Little’s test outperformed the other two

tests, II outperformed I only when the probability of missingness was low, and I

outperformed II when the correlation among variables was high (i.e., under high

compound symmetry). There is no theoretical justification why any of the three

tests would reject the null hypothesis under MDM-3. Just as in the pilot simula-

tion study, the author hypothesized that there would be severe under-rejection of

the null hypothesis because there may be instances when an MNAR generation

mechanism produces the same observed means as those under MCAR (Enders,

2010), although this hypothesis was not confirmed in this study.

Restrictions set on the parameters of the full simulation study prevents the

generalization of the current findings to real world situations. For example, cor-

relation values of independence and compound symmetry at ρ = 0.9 may not be

realistic, but was chosen to magnify potential main effects. The number of vari-
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ables were limited in its range, and chosen so that zero-cell counts of missingness

in each category would be minimized (this is discussed further in the Future Re-

search chapter). Additionally, the computational expense of running a condition

even with five variables is costly. On a computer equipped with an AMD A6-3500

2.1 Ghz Triple Core processor running Windows 8, even a single run under the

five-variable condition took 40 to 60 minutes at 500 replications. Simulating a run

with more than 10 variables, although more realistic to education research, would

be prohibitively slow with current computing technology.

Despite the inherent limitations in the design of the simulation study, PBB-

MCAR II in particular showed great promise as an alternative to Little’s test,

especially as a test to detect the aberrations of MCAR under MDM-2. However

in order for PBB-MCAR II to become a viable alternative to Little’s test, the

algorithm must be improved in order to give optimal Type I error rates and higher

empirical power. For the two-variable case, there seems to be a direct relationship

between improving Type I error under MDM-1 and increasing empirical power

under MDM-2. Nevertheless, the empirical power of PBB-MCAR II is already

quite promising given the stated limitations. One foreseeable enhancement to

PBB-MCAR II is to change the number of blocks from which the various ψ’s are

estimated and to use as the suspect-rank variable the observed variable with the

highest dependencies on missingness.
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CHAPTER 3

Education Application 1: Creating Longitudinal

Profiles of Sports Participation

3.1 Introduction

Prior research shows that sports participation has positive effects on students’

academic attitudes and achievement by increasing their interest in school and

their need to maintain good grades (Snyder & Spreitzer, 1990). Extracurricular

activities reinforce educational goals (Hanks & Eckland, 1976) while increasing

students’ attitudes and commitment toward school and their contact with teach-

ers (Crain, 1981; Trent & Braddock, 1992; Jordan, 1999). Sports participation has

also been positively associated with academic self-esteem, curriculum placement,

grades, and college plans, with Black male athletes receiving social rewards both

at school and among their peers (Braddock et al., 1981). Braddock et al. (1991)

found that interscholastic and intramural sports participation leads to academic

resilience and that athletes had higher educational aspirations than non-athletes.

While Melnick et al. (1992) found no relationship between sports participation

and academic achievement among a sample of 3,686 Black and Latino students,

sports participation was associated with lower dropout rates (Trudeau & Shep-

hard, 2008). This chapter studies the link between intramural sports participation

and academic achievement among African American students by creating longitu-

dinal profiles of sports participation and using tests of the missing data mechanism

to determine whether these profiles are generalizable to the population of both
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respondents and non-respondents.

3.2 Method

3.2.1 Education Longitudinal Study of 2002

The data to be analyzed comes from the Education Longitudinal Study of 2002

(ELS:2002) public use dataset, which is a longitudinal and multilevel survey of

high school sophomores, teachers, parents and administrators starting from spring

of 2002 (Base Year), and assessed again in 2004 when most of the students were

high school seniors (Followup 1). A total of 750 schools were sampled nationwide,

with questionnaires administered to principals, head librarians, teachers, parents

and students. For the purposes of this study, only the 2,020 students who self-

reported ‘Black or African American, non-Hispanic’ on the BYRACE variable

were selected for the analysis.

3.2.2 Variables Used to Assess Intramural Sports Participation

Among students who self-identified as African American, students were assessed

for their participation in intramural sports at Base Year (BY) and Followup 1

(F1). Intramural sports are defined as participation in any type of sport that is

not classified under the junior or varsity league. In the BY Student Questionnaire,

variables BYS39A-G asked students whether they participated in intramural base-

ball, softball, basketball, football, soccer, another type of intramural team sport,

or an individual intramural sport. These seven variables were then combined to

create a new variable (BY IM Sport) that indicates a count of the student’s in-

volvement in intramural sports as high school sophomores. Student responses clas-

sified as ‘Missing’,‘Nonrespondent’,‘Survey component legitimate skip/NA’ were

coded as NA, ‘School doesn’t have intramural team’ was coded as 0, and ‘Mul-
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tiple response’ was coded as 1. At F1, a single question assessed the student’s

overall participation in intramural sports (F1S26A, renamed F1 IM Sport). Re-

sponses considered missing in BY were also coded as NA, except that ‘Don’t know’

was coded 0 and ‘Participated as officer/leader/captain ’ was coded 1. From these

variables, four distinct longitudinal profiles of intramural sports participation were

created: 1) Never Participants, 2) Persisters, 3) Late-Joiners and 4) Fallouts. Ad-

ditionally, students who did not respond to the intramural sports questions were

counted at each time point (see Table 3.1). This table in conjunction with Ta-

ble 3.2 show the importance of considering non-responses in the analysis, as 23%

of students had missing data. Excluding the missing responses, Persisters com-

prised the largest group (779/1561), followed by Late-Joiners (390/1561), Never-

Participants (248/1561) and Fallouts (144/1561). In this sample, 84% of students

who responded reported some form of intramural sports participation from their

sophomore to senior years in high school. To be able to generalize these findings

to the entire population of African-American students, it is important to assess

whether the 23% of non-respondents consist of students that differ significantly

from respondents.

Table 3.1: Profiles of Intramural Sports Participation
F1 (Yes) F1 (No) F1 (NA) Total

BY(Yes)
Persisters Fallouts

779 144 193 1116

BY (No)
Late Joiners Never Participants

390 248 109 747

BY (NA) 91 29 37 157

Total 1260 421 339 2020

3.2.3 Variables Used to Assess Academic Outcomes

The academic outcomes used for this analysis were grade point average (F1RGPP2,

renamed F1 GPA), and the math standardized T-score (F1TXMSTD, renamed
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F1 Score). The students’ self-reported grade point average for all courses from 9th

to 12th grade was collected at F1 and categorized into seven bins, ranging from

a GPA of 0.0 to 4.0. The majority (61.1%) of Black males scored between 1.51

and 3.00 (Ingels, Pratt, Rogers, Siegel, & Stutts, 2004). The math standardized

score is the score obtained from a low stakes examination given to students at

both BY and F1, which is calculated as the T score transformation of the IRT

theta (ability) estimate, and has a mean of 50 and standard deviation of 10 for

the weighted subset of 12th graders in the sample.

3.3 Results and Conclusions

The purpose of this analysis is to demonstrate the viability of testing for the

missing data mechanism in an education research context and to show that it

can play an integral part in the analysis of outcomes such as test scores and

extracurricular activities. The results showed that missingness patterns in sports

participation trajectories were related to academic outcomes (GPA and math

scores). You can see the correspondence between Table 3.2 and Figure 3.1. For

example, most of the data block (in dark blue) is completely observed (i.e., [0, 0]).

The next block starting from the left consists of blue on top and red on bottom,

which corresponds to the [1, 0] pattern making up 6% of the entire block. The final

observed block consists of the red on top and blue on bottom, which corresponds

to the [0, 1] pattern, making up 15% of the entire block.

The omnibus tests described (which includes Little’s test and PBB-MCAR I)

may not lead to accurate conclusions because missingness may depend on certain

variables but not others. The advantage of PBB-MCAR II is its ability to detect

particular suspect variables driving the MAR mechanism. For convenience, let

the j-th suspect variable be the first column in the data matrix. If you suspect for

example that the second variable is driving the missingness dependencies, switch
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Table 3.2: Patterns of Missingness for Base Year and Followup 1 Sports Partici-

pation Variables

Pattern BY F1 Count %

1 0 0 1561 77

2 0 1 302 15

3 1 0 120 6

4 1 1 37 2

Figure 3.1: Missing Patterns for Base Year and Followup 1 Intramural Sports

Variables; Red = 1 (Missing), Blue = 0 (Observed)
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its column position in the dataset with the first variable. In this case, GPA was

the first suspect variable and was switched with the second variable, math score.

Note in Table 3.3 that PBB-MCAR II’s conclusion of rejecting MCAR was the

same as Little’s test and PBB-MCAR I only when math score was used as the

suspect ranking variable (the first 30 participants are presented in the table for

demonstration purposes only). However, when GPA was used as the ranking

variable, PBB-MCAR II failed to reject the null hypothesis. Further analysis

using Little’s test excluding the math score resulted in non-significance, χ2(9) =

16.92, p = 0.79 which would have led to the failure to reject MCAR. Additionally,

the listwise correlation between math score and GPA was only r = 0.46, which

may explain the discrepant hypothesis test results. Although it is not obvious

why missingness on the math score would have an influence on missingness in

sports participation, a closer inspection of Students 18 and 30, and an analysis of

missingness patterns for the F1 math score and the F1 sports participation variable

revealed that 16% of students had missing scores on both. The results demonstrate

the utility of PBB-MCAR II and highlight the importance of considering non-

respondents in your analysis, as non-response in one variable may be related to

non-response in other variables. This finding would not have been discovered if

we did not use PBB-MCAR II, and if we only considered the completely observed

subset of students. There is also an implication that the MCAR assumption is a

function of the subset of variables you consider in your model. As you increase the

number of variables under consideration, the chance that one of the missingness

indicators is correlated with another variable becomes greater. This suggests that

any dataset could become MAR if enough variables are entered into consideration.
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Table 3.3: First 30 African American Students in ELS:2002 Presented With Miss-

ing Data Tests

SID F1 GPA F1 Score BY IM Sport F1 IM Sport

1 2.51-3.00 45.59 1 1

2 1.01-1.50 42.77 0 0

3 3.01-3.5 57.5 0 0

4 1.51-2.00 42.02 1 0

5 1.01-1.50 32.69 1 0

6 1.51-2.00 29.93 0 0

7 2.51-3.00 44.84 1 1

8 2.01-2.50 41.43 0 0

9 1.51-2.00 40.11 0 0

10 2.51-3.00 43.23 NA 0

11 2.01-2.50 43.4 1 1

12 2.01-2.50 NA 0 NA

13 2.51-3.00 NA NA 0

14 1.01-1.50 30.93 0 0

15 1.01-1.50 NA 0 NA

16 1.51-2.00 34.44 1 0

17 2.51-3.00 33.59 0 0

18 2.51-3.00 NA 0 NA

19 2.01-2.50 NA 0 0

20 1.51-2.00 34.05 0 0

21 2.01-2.50 35.07 0 0

22 1.01-1.50 47.29 1 0

23 1.01-1.50 32.16 NA 0

24 3.01-3.5 41.6 0 1

25 1.51-2.00 30.1 NA 0

26 1.51-2.00 36.8 0 0

27 1.51-2.00 26.13 0 0

28 2.51-3.00 35.24 0 0

29 1.51-2.00 39.12 0 0

30 0.00-1.00 NA 0 NA

Little χ2(25) = 220.79, p < 0.01

PBB1 χ2(12) = 21.03, p < 0.01

PBB2 (y1 = Math score) χ2(7) = 322.96, p < 0.01

PBB2 (y1 = GPA) χ2(7) = 5.81, p = 0.562

*Analysis was done on full set of n=2020 particpants
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CHAPTER 4

Education Application 2: Departures from

Completely at Random Test-Taking

4.1 Introduction

Given educational policy reforms such as the No Child Left Behind Act, Race

to the Top, and merit pay, teachers are faced with increasing pressure to im-

prove student achievement on high stakes tests. In the minority of classrooms,

teachers may resort to cheating as a way of artificially raising average test scores.

It has been reported that 4 to 5% of classrooms cheat (Jacob & Levitt, 2003).

A recent news article in USA Today (Upton, Amos, & Ryman, 2011) describes

Johanna Munoz, a teacher assistant who helped her fourth-grade students cheat

on a statewide achievement test by erasing wrong answers and whispering cor-

rections into the student’s ears. Amrein-Beardsley et al. (2010) define three

degrees of cheating. The third degree is more benign and is not premeditated,

and can involve teaching to the test or selecting questions from previous year’s

examination as practice problems. The second degree of cheating is subtle but

premeditated, and can involve leaving the multiplication table on the board to

help fourth graders solve fraction problems. The first degree of cheating is willful

and premeditated, and can arise from deleting certain poor performing students

from rosters or from teachers telling students to stay home sick on test day. This

is what Amrein-Beardsley termed “illusions arising from exclusions”. Using a hy-

pothetical case study, the author demonstrates in this chapter how it is possible
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to detect departures from completely at random test-taking using the three tests

of the missing data mechanism.

4.2 Hypothetical Case Study: Mr. A and Mr. B

As a case in point, consider the classrooms of Mr. A and Mr. B, each with 30

students perfectly matched by their math score and GPA across the two classrooms

(the complete hypothetical dataset is shown in Table 4.1). The mean GPA is 2.39

(SD=0.81) and mean math score is 326.8 points (SD=139.36) for both teachers. In

the real world, student records may be incomplete – either the student somehow

missed the math exam on test day or there is no record of his GPA (see the

Creating Longitudinal Profiles of Sports Participation chapter for an example in

ELS:2002). Under completely random missingness (MCAR), you would expect

that missingness on GPA is independent of missingness on math score. In Table

4.2, the MCAR missing data mechanism was separately generated for each teacher

in the same manner as in the Simulation Studies chapter. As expected, Mr. A’s

classroom mean GPA is 2.26 (SD=0.71) and classroom mean math score is 322.3

(SD=143), not unlike Mr. B’s mean GPA and math score of 2.26 (SD=0.80) and

330 (SD=139) respectively. Using tests of the missing data mechanism, Little’s

test and PBB-MCAR I both failed to reject the null hypothesis that the data

was generated from an MCAR generation mechanism for both Mr. A and Mr.

B (p > 0.05 in all cases). However, PBB-MCAR II rejected the null hypothesis

of MCAR, a problem that is consistent with the over-rejection results for the

two-variable case discussed in the Simulation Studies chapter.

Suppose that the missingness patterns are not generated completely randomly

but from an informative missingness mechanism (MAR or MNAR). In the real

world, there may be many forms of informative missingness, but as a case in

point, suppose that Mr. A committed the first degree of teacher-assisted cheating
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Table 4.1: Mr. A and Mr. B’s Classroom: Complete Case Scenario
Mr. A Mr. B

SID GPA Score SID GPA Score

1 3.18 447 31 3.18 447

2 2.08 234 32 2.08 234

3 3.30 476 33 3.30 476

4 1.31 121 34 1.31 121

5 2.39 385 35 2.39 385

6 4.00 600 36 4.00 600

7 2.94 401 37 2.94 401

8 3.23 422 38 3.23 422

9 2.69 390 39 2.69 390

10 2.52 357 40 2.52 357

11 1.99 223 41 1.99 223

12 2.05 216 42 2.05 216

13 2.63 387 43 2.63 387

14 2.80 417 44 2.80 417

15 1.06 124 45 1.06 124

16 3.46 460 46 3.46 460

17 3.25 459 47 3.25 459

18 1.46 194 48 1.46 194

19 1.46 225 49 1.46 225

20 3.53 522 50 3.53 522

21 1.21 129 51 1.21 129

22 1.61 191 52 1.61 191

23 2.91 491 53 2.91 491

24 1.53 145 54 1.53 145

25 3.17 457 55 3.17 457

26 2.22 296 56 2.22 296

27 2.38 404 57 2.38 404

28 2.34 290 58 2.34 290

29 1.88 238 59 1.88 238

30 1.21 103 60 1.21 103

Mean 2.39 326.80 Mean 2.39 326.80

SD 0.81 139.36 SD 0.81 139.36
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Table 4.2: Mr. A and Mr. B’s Classroom: MCAR Scenario
Mr. A Mr. B

SID GPA Score SID GPA Score

1 3.18 447 31 3.18 447

2 2.08 234 32 NA 234

3 NA NA 33 3.3 476

4 NA NA 34 1.31 NA

5 2.39 385 35 NA 385

6 NA 600 36 NA 600

7 2.94 401 37 NA NA

8 NA 422 38 NA 422

9 NA 390 39 2.69 390

10 NA NA 40 NA 357

11 1.99 NA 41 1.99 NA

12 2.05 216 42 NA 216

13 2.63 387 43 2.63 387

14 NA 417 44 2.8 417

15 NA 124 45 1.06 124

16 NA NA 46 3.46 NA

17 3.25 NA 47 3.25 459

18 1.46 194 48 1.46 194

19 1.46 225 49 1.46 225

20 3.53 522 50 NA 522

21 1.21 129 51 1.21 129

22 1.61 191 52 NA NA

23 NA 491 53 2.91 NA

24 NA 145 54 1.53 145

25 3.17 457 55 3.17 457

26 2.22 NA 56 2.22 296

27 2.38 404 57 2.38 404

28 2.34 290 58 2.34 290

29 1.88 238 59 1.88 238

30 1.21 103 60 1.21 103

Mean 2.26 322.26 Mean 2.26 329.88

SD 0.71 143.06 SD 0.80 138.50

Little χ2(2) = 1.30, p = 0.52 Little χ2(2) = 1.30, p = 0.38

PBB1 χ2(2) = 1.65, p = 0.44 PBB1 χ2(2) = 0.04, p = 0.98

PBB2 χ2(3) = 28.30, p < 0.01 PBB2 χ2(3) = 19.83, p < 0.01
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by telling his lower performing students not to take the test during exam day.

This effect is mimicked in Table 4.3 where ‘NA’ appears for students with GPA

less than 2.9. Rank ordering the students by their complete GPA records reveals

the pattern that students with GPA’s between 1.06 – 2.8 are missing their math

scores, but doing the same for Mr. B’s students revealed no such pattern. Looking

at the means in Table 4.3, Mr. A’s mean math score is 474 (SD=55), which is

above the threshold of Basic Proficiency on the California Standards Test, whereas

Mr. B’s mean math score of 330 (SD=139) falls slightly below the 350 cutoff. As

a way to test for departures from completely at random test-taking, Little’s test,

PBB-MCAR I, and PBB-MCAR II were conducted on both Mr. A and Mr. B’s

classrooms. The analysis showed some discrepancies between the conclusions de-

rived from the three tests. Although Little’s test and PBB-MCAR II rejected the

null hypothesis of MCAR, PBB-MCAR I did not. This example highlights a flaw

in PBB-MCAR I that the test of independence among missingness indicators does

not capture the case when missingness indicators depend completely on observed

scores (MAR). The conclusion of PBB-MCAR II and Little’s test is that the miss-

ingness pattern from Mr. A’s class was not generated from an MCAR mechanism,

signaling a departure from completely at random test-taking. Mr. B’s classroom

on the other hand, showed such departures based on the confluence of Little’s test

and PBB-MCAR I results.

The second case of informative missingness (MNAR) is much more difficult to

assess in practice. The assumption of MNAR is that the probability of missingness

(on math score) depends on either observed or unobserved variables (GPA, see

Figure 1.3 in the Introduction chapter). Suppose that Mr. A not only told his

lower-performing students not to show up to class during exam day, but also

erased the student’s transcript information from administrative records. Although

extreme, this case is especially problematic for the data analyst because there

is no way to distinguish whether the student’s GPA is completely random or
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Table 4.3: Mr. A and Mr. B’s Classroom: MAR Scenario
Mr. A Mr. B

SID GPA Score SID GPA Score

15 1.06 NA 2 NA 234

21 1.21 NA 5 NA 385

30 1.21 NA 6 NA 600

4 1.31 NA 7 NA NA

18 1.46 NA 8 NA 422

19 1.46 NA 10 NA 357

24 1.53 NA 12 NA 216

22 1.61 NA 20 NA 522

29 1.88 NA 22 NA NA

11 1.99 NA 15 1.06 124

12 2.05 NA 21 1.21 129

2 2.08 NA 30 1.21 103

26 2.22 NA 4 1.31 NA

28 2.34 NA 18 1.46 194

27 2.38 NA 19 1.46 225

5 2.39 NA 24 1.53 145

10 2.52 NA 29 1.88 238

13 2.63 NA 11 1.99 NA

9 2.69 NA 26 2.22 296

14 2.8 NA 28 2.34 290

23 2.91 491 27 2.38 404

7 2.94 401 13 2.63 387

25 3.17 457 9 2.69 390

1 3.18 447 14 2.8 417

8 3.23 422 23 2.91 NA

17 3.25 459 25 3.17 457

3 3.3 476 1 3.18 447

16 3.46 460 17 3.25 459

20 3.53 522 3 3.3 476

6 4 600 16 3.46 NA

Mean 2.39 473.50 Mean 2.26 329.88

SD 0.81 55.72 SD 0.80 138.50

Little χ2(1) = 12.60, p < 0.01 Little χ2(2) = 1.30, p = 0.38

PBB1 χ2(2) < 0.01, p = 1.00 PBB1 χ2(2) = 0.04, p = 0.98

PBB2 χ2(1) = 22.50, p < 0.01 PBB2 χ2(3) = 19.83, p < 0.01
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Table 4.4: Mr. A and Mr. B’s Classroom: MNAR scenario
Mr. A Mr. B

SID GPA Score SID GPA Score

15 NA NA 2 NA 234

21 NA NA 5 NA 385

30 NA NA 6 NA 600

4 NA NA 7 NA NA

18 NA NA 8 NA 422

19 NA NA 10 NA 357

24 NA NA 12 NA 216

22 NA NA 20 NA 522

29 NA NA 22 NA NA

11 NA NA 15 1.06 124

12 NA NA 21 1.21 129

2 NA NA 30 1.21 103

26 NA NA 4 1.31 NA

28 NA NA 18 1.46 194

27 NA NA 19 1.46 225

5 NA NA 24 1.53 145

10 NA NA 29 1.88 238

13 NA NA 11 1.99 NA

9 NA NA 26 2.22 296

14 NA NA 28 2.34 290

23 2.91 491 27 2.38 404

7 2.94 401 13 2.63 387

25 3.17 457 9 2.69 390

1 3.18 447 14 2.8 417

8 3.23 422 23 2.91 NA

17 3.25 459 25 3.17 457

3 3.3 476 1 3.18 447

16 3.46 460 17 3.25 459

20 3.53 522 3 3.3 476

6 4 600 16 3.46 NA

Mean 3.30 473.50 Mean 2.26 329.88

SD 0.31 55.72 SD 0.80 138.50

Little NA Little χ2(2) = 1.30, p = 0.38

PBB1 NA PBB1 χ2(2) = 0.04, p = 0.98

PBB2 NA PBB2 χ2(3) = 19.83, p < 0.01
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informatively missing because there is no evidence in the data to suggest either

direction. Looking at Table 4.4, Mr. A’s subset of students that are not missing

have both GPA and math score, which renders any form of statistical testing of the

missingness inconclusive. There is no way to test for differences among missingness

patterns when the remaining subset of students is completely observed. It is also

known that means generated under MNAR may be identical to means generated

under MCAR (Enders, 2010).

4.3 Conclusion

Using the hypothetical case of Mr. A and Mr. B, the author demonstrated how a

particular type of teacher-assisted cheating can signal departures from completely

at random test-taking. In the case of Table 4.3, missingness on the math score

was a function of the student’s observed GPA. Using the tests of missing data,

there was statistical evidence that Mr. A’s classroom consisted of students who

departed from completely at random test-taking. Although not definitive, it does

raise some red flags that may be corroborated by evidence of teacher-assisted

cheating in other domains. Statistically, these examples point again to some of

the limitations of the current PBB-based tests: 1) PBB-MCAR I may not be

a comprehensive test of aberrations from MCAR (only testing for independence

among missing indicators), and 2) PBB-MCAR II over-rejects the null hypothesis

when only two variables are considered. Future research needs to address the

second limitation more thoroughly.
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CHAPTER 5

Future Research

5.1 Developing a Comprehensive R Package

Currently, major software packages that implement Little’s test include the IBM

SPSS Missing ValuesTM20 module (IBM Corporation, 2011) and EQS 6.2 (Bentler,

2006). EQS generates output for GLS tests of homogeneity in means, covari-

ances and means/covariances automatically as part of the MISSING=ML specifica-

tion (Kim & Bentler, 2002). Alternatively, an R package will be made available

that implements Little’s test as well as the PBB-MCAR tests. There is the hope

that through open source software, modifications can be made to the PBB-MCAR

tests to improve either their speed of implementation or their statistical properties.

As of the completion of this manuscript, generalized algorithms for Little’s test

and PBB-MCAR I/II have been developed and are implemented in R software (see

Appendix A for full source code). However, before being able to upload this im-

plementation to the Comprehensive R Archive Network (CRAN), documentation

should be written and bug-testing needs to be performed.

5.2 Extending the PBB-MCAR II Test Using Auxiliary

Variables

The main advantage of the PBB framework is its ability to incorporate modifica-

tions to the testing mechanism that align directly with Rubin’s (1976) theory of
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missingness. From PBB-MCAR I and II, the author shows that it is possible to

extend the probability based testing framework to a number of foreseeable mech-

anisms of missingness. Whereas PBB-MCAR I tests only the assumption of in-

dependence among missingness patterns, PBB-MCAR II takes this a step further

by assuming independence among missingness indicators given rank-ordering of a

suspect variable. These suspect variables can be generalized to what are known

as auxiliary variables. Auxiliary variables are components in the Saturated Cor-

relates Model (Figure 5.1), and are variables that are not part of your prediction

model, but assumed to be correlated with the probabilities of missingness. For

example, if the primary model is to assess the teacher effect on a student’s score,

including the student’s seventh-grade and eight-grade GPA (which are variables

assumed to be predictive of missingness on the student’s score) may increase the

accuracy of estimates.

Figure 5.1: Saturated Correlates Model

This concept can be applied to the case of testing for the missing data mecha-

nism under the PBB framework. An extension of PBB-MCAR II is to incorporate

a matrix of auxiliary variables X into the ranking algorithm. A preliminary mod-

ification of the PBB-MCAR II statistic with auxiliary variables involves sorting

the observed data Y simultaneously using the i × l matrix W = {yj, X}, where
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l = 1, · · · , L is the number of auxiliary variables plus one. The resulting rank in-

dex will be stored in an (N×1) vector r, and the arrangement of yij then becomes

yrj. More research needs to be done on the implementation of this algorithm.

5.3 Extending PBB Tests to Sparse Missing Data Patterns

A major disadvantage of working within the PBB framework (as with any con-

tingency table chi-square test) is the possible existence of small counts in the

contingency table as the number of variables increases. Table 5.1 shows that even

with a seemingly small set of eight variables, there are 28 = 256 total cells in

the contingency table. This means that only 17% of the data would be expected

to have complete cases, and almost zero percent would be expected to have com-

pletely missing cases. As such, improvements in both the computational efficiency

of the algorithm, as well as statistical solutions to the zero cell count problem can

be considered.

Table 5.1: Demonstration of Sparse Missing Pattern Counts for an Eight-Variable

Dataset

Pattern Expected Probability

1 OOOOOOOO (0.8)(0.8)(0.8)(0.8) (0.8)(0.8)(0.8)(0.8) 0.17

2 OMOOOOOO (0.8)(0.2)(0.8)(0.8) (0.8)(0.8)(0.8)(0.8) 0.04

· · · · · · · · · · · ·

256 MMMMMMMM (0.2)(0.2)(0.2)(0.2) (0.2)(0.2)(0.2)(0.2) 2.6E-06

A future extension of the PBB family of tests involves solving the problem

of sparse missing patterns by adopting a technique borrowed from item response

theory known as the M2 statistic. The M2 statistic is part of a limited-information

family of chi-square statistics described in Maydeu-Olivares and Joe (2005), which

is a weighted discrepancy between the sample and expected marginal probabilities.
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Without loss of generality, the following definitions pertain only the case when

p = 3. Define the (K − 1) dimensional column vector π̇ = [π̇1, π̇2, π̇3]
′ where

π̇1 = [P (mi1 = 1), P (mi2 = 1), P (mi3 = 1)]′, π̇2 the
(
3
2

)
dimensional column

vector of bivariate probabilities, and π̇3 = [P (mi1 = 1)P (mi2 = 1)P (mi3 = 1)]′ the

trivariate joint probability of missingness. To capture the marginal probabilities,

generate a (K − 1) × K matrix T which is a transformation matrix consisting

of zeros in the first column. If we partition this full T matrix and restrict it

only to the second order marginals, then we get the T2 matrix with dimensions

s × K, where s =
∑p

x=1

(
p
x

)
; in this case the dimension is 7 × 8. Let po be the

vector of observed probabilities (p
(1)
o , · · · , p(K)

o )′ and pe be the vector of expected

probabilities (p
(1)
e , · · · , p(K)

e )′. Then π̇e = Tpe.

Begin by calculating the residual error terms as

ê = po − pe (5.1)

If we only want the two-order marginals of the error terms, define

ê2 = T2ê (5.2)

Next, define the first order derivative with respect to the parameter vector ψ

as

∆ =
∂pe

∂ψ
(5.3)

If we are concerned with the two-order marginals of the partial derivatives,

then consider

∆2 = T2∆ (5.4)

which will generate a s×q matrix where q is the number of parameters estimated.

Maydeu-Olivares and Joe (2005) take the orthogonal complement of Equation
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5.4, which they call ∆2c. Practically, this matrix can be obtained using the QR-

decomposition method.

Finally, define the equations

Γ = diag(pe − pepe)
′ (5.5)

Ξ2 = T2ΓT2
′ (5.6)

and we can define the limited information statistic as

M2 = N(∆2c
′ê2)′(∆2c

′Ξ2∆2c)
−1(∆2c

′ê2) (5.7)

5.3.1 Calculating the M2 Statistic

For the particular example described in the Introduction chapter with three vari-

ables m1,m2,m3, the 7×1 vector of univariate, bivariate and trivariate probabili-

ties is π̇ = [π̇1, π̇2, π̇3, π̇12, π̇13, π̇23, π̇123]
′. This vector will not be used in the current

example, but is given for illustrative purposes. Given the ordering described in

the tables of observed and expected probabilities described in previous sections,

we can create the matrix

T =



0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1

0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 1


(5.8)
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As described previously, partition this full T matrix and restrict it only to the

univariate and bivariate marginal probabilities; then we get the 6× 8 T2 matrix.

This allows us to calculate the M2 statistic using the following procedure:

1. Find the residual terms by subtracting the observed and expected probabil-

ities of missingness as described in Equation 5.1 and obtain the two order

marginals using Equation 5.2.

2. Take the numerical partial derivatives with respect to ψ given in Equation

5.3 using the numericDeriv() package in R and get the two-order partial

derivatives using Equation 5.4.

3. Find its orthogonal complement using qr().

4. Obtain the two-order Ξ2 matrix using Equation 5.6.

5. Calculate the M2 statistic using Equation 5.7.
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CHAPTER 6

Conclusion

6.1 General Conclusions and Discussion

Little (1988) developed a test to distinguish between completely random (MCAR)

and informative mechanisms of missingness (MAR and MNAR) by using observed

and expected means – but there may be instances when these two categories

of missingness may generate the same observed mean patterns and lead the re-

searcher to conclude that the data is missing completely at random when it is

actually missing informatively. As an alternative, the manuscript proposed a

framework to test for the missing data mechanism that uses probabilities of miss-

ingness rather than observed means and covariances. The advantages of this

framework are that it a) directly aligns with Rubin’s (1976) theory of missing-

ness, b) does not assume multivariate normality of observed variables, and c)

allows extensions to a family of statistical tests. Currently, two statistics have

been developed within this probability based (PBB) framework, the MCAR Chi-

Square Test of Independence (PBB-MCAR I) and the MCAR Goodness of Fit

Test (PBB-MCAR II).

This manuscript introduced the PBB framework and its family of test statis-

tics (i.e., PBB-MCAR I and II), which each targets a different aspect of the

missing data mechanism. PBB-MCAR I tests the assumption of independence

among missing pattern indicators, whereas PBB-MCAR II tests the assumption

that missing pattern indicators are independent given ranked-ordering of a suspect
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variable driving the missingness mechanism. The Departures from Completely at

Random Test-Taking chapter provided the motivation for developing an alterna-

tive to PBB-MCAR I, because PBB-MCAR I failed to detect cases of MAR when

the violations of MCAR were due to the dependency of missing indicators on an

observed variable (GPA). PBB-MCAR II achieves goals more in line with the au-

thor’s original objectives, by testing for more realistic departures from MCAR,

one that depends on ranked values of the observed variable.

Simulation results showed that under MDM-2, PBB-MCAR II was a powerful

alternative to Little’s test. In general, the empirical power of PBB-MCAR I was

lower than both Little’s test and PBB-MCAR II under MDM-2, but was on par

with Little’s test under MDM-3. More research needs to be done to understand

why Little’s test and PBB-MCAR I were able to detect these violations, and why

PBB-MCAR II did not perform as well under MDM-3. A foreseeable improvement

of PBB-MCAR II can be made as discussed in the Future Research chapter, to offer

a more comprehensive test of aberrations from MCAR by allowing researchers to

enter in more than one variable suspected to generate missingness dependencies.

As shown in the Creating Longitudinal Profiles of Sports Participation chapter,

the rejection decision of the statistical test was sensitive to the researcher’s choice

of the suspect variable.

6.1.1 Missing Data Tests in the Context of Education Research

The application of the three tests of the missing data mechanism to education were

demonstrated in Chapters 3 and 4. Chapter 3 considered the relationship between

longitudinal profiles of sports participation and academic outcomes among African

American students as part of the Education Longitudinal Study of 2002. Since

23% of the 2,020 students considered had some form of missing data across the

Base Year (BY) and Followup 1 (F1) assessment points, the three tests of missing

data were conducted to assess whether the missing patterns were informatively
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missing. When F1 Math score and GPA were entered into the analysis, Little’s

test and PBB-MCAR I rejected the assumption of MCAR. The results suggest

that whether a student persists or drops out of an intramural sports program may

be influenced either by the student’s cumulative GPA or by his or her performance

on a low-stakes math exam conducted at F1. Further analysis using PBB-MCAR

II showed that when the F1 Math Score (rather than cumulative GPA) was en-

tered as the suspect ranking variable, the assumption of MCAR was rejected.

The complete-data correlation of GPA and F1 Math score among completely ob-

served participants was only r = 0.46, suggesting that GPA may be related to

longitudinal profiles of sports participation differently from F1 Math Score. The

analysis demonstrated the practical advantage of PBB-MCAR II because it allows

specificity in detecting suspected sources of missingness dependencies. As such,

whether a student persists or drops out of intramural sports may be due his or

her achievement at a particular point in time (F1) and not on the student’s cu-

mulative GPA across all years. The rejection of the null hypothesis among these

tests tapped into three aspects of the missingness mechanism: 1) Little’s test

confirmed that observed values among GPA, Math Score and Sports Participa-

tion differ from expected values across all missingness patterns, 2) PBB-MCAR I

confirmed that dependencies exist among the missingness indicators, and 3) PBB-

MCAR II confirmed that these dependencies among missing indicators depend on

F1 Math Score but not on GPA.

Chapter 4 described how tests of the missing data mechanism were used to

detect departures from completely at random test-taking. The assumption is that

in the typical classroom, missing test scores on a statewide exam does not depend

on the student’s background characteristics such as GPA. In rare and extreme

cases of teacher-assisted cheating, teachers may intently withhold certain poor

performing students from taking the exam during test day. The chapter described

a hypothetical case study in which teacher Mr. A’s classroom test performance
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was higher than Mr. B’s. Using the three tests of the missing data mechanism,

we concluded that Mr. A’s classroom deviated from completely at random test-

taking. Caution must be given when generalizing the statistical results of these

tests. Not completely at random test-taking may be observed due to other factors,

such as the student’s own reluctance to show up during test day. Nevertheless,

these tests may help in corroborating evidence from other sources of cheating

such as the presence of systematic patterns in test responses or an unexpected

number of perfect scores. The three tests highlighted again the fact that there

may be three aspects of missingness stemming from a) differences in observed

means from expected means, b) dependencies among missingness indicators, and

c) dependencies of missing indicators on an observed variable.

The two applications described in this manuscript are not the only areas where

missing data testing may be applied in education research. For example, in large-

scale testing programs such as the National Assessment of Educational Progress

(NAEP), not every item is given to every student assessed. This design is known

as Balanced Incomplete Block spiraling (BIB-spiraling), which divides test items

within a subject area into blocks and assigned in such as a way that each block

appears in the same number of booklets and every pair of blocks of a certain

type appears together in at least one booklet, but no booklet contains all items

(Johnson, 1992). The BIB-spiraling design is an example of planned missingness,

where the missing blocks of items are intended by design and assumed to be

missing completely at random. The three tests discussed in this manuscript can

test the validity of the MCAR assumption in the BIB-spiraling design and whether

missingness is due to observed variables such as student background characteristics

or due to the missing test items themselves.
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CHAPTER 7

Appendix

7.1 Appendix A: Full Source Code

###PRESETS AND FUNCTIONS###

##define the following parameters##

#nreps (number of reps)

#N (sample size)

#pmissvec (marginal probabilities of missingness)

#meanvec (vector of variable means)

#corrvec <-(vector of correlations among variables)

#sdvec (vector standard deviations among variables)

#lowvec (lower floor for range of variable)

#highvec (upper ceiling range of variable)

#load libraries & set path

library(gregmisc)

library(norm)

library(mi)

library(MASS)

library(MBESS)

##functions##

gendat <- function(size,meanvec,corrvec,sdvec){

dat.mean <- meanvec
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dat.Sigma <- corr2Sigma(corrvec=corrvec,sdvec=sdvec,

nvars=length(dat.mean))

mvrnorm(size,mu=dat.mean,Sigma=dat.Sigma)

} #end gendat() function

identity <- function(nvars){

diag(rep(1,nvars))

} #end identity()

corr2Sigma <- function(corrvec,sdvec,nvars){

#add covariances to the offdiagonals

dat.corr <- identity(nvars)

#set upper triangle

dat.corr[upper.tri(dat.corr)] <- corrvec

#set lower triangle

dat.corr[lower.tri(dat.corr)]

<- dat.corr[upper.tri(dat.corr)]

dat.corr

dat.Sigma <- cor2cov(dat.corr,sd=sdvec)

return(dat.Sigma)

} #end corr2Sigma()

fixrange <- function(dat.Y,low,high){

dat.Y.high <- dat.Y

dat.Y.low <- dat.Y

dat.Y.fixed <- dat.Y

for (j in 1:dim(dat.Y)[2]){

#cap minimum score

77



dat.Y.high[,j] <- ifelse(dat.Y[,j] > high[j],

high[j],dat.Y[,j])

dat.Y.fixed[,j] <- dat.Y.high[,j]

# minimum score

dat.Y.low[,j] <- ifelse(dat.Y.fixed[,j] < low[j],

low[j],dat.Y.fixed[,j])

dat.Y.fixed[,j] <- dat.Y.low[,j]

} #end for loop

return(dat.Y.fixed)

} #end fixrange()

genmiss <- function(dat,size,pmiss, misstype,

misslow = misslow) {

x <- matrix(NA,nrow=size,ncol=length(pmiss))

for (j in 1:length(pmiss)){

x[,j] <- runif(size)

} #end for loop

if (misstype == "MCAR") {

print("MCAR")

for (j in 1:length(pmiss)){

dat[which(x[,j] < pmiss[j]),j] <- NA

} #end for loop

return(list(dat=dat,x=x,misstype=misstype))

} #end MCAR

else if (misstype == "MAR") {

print("MAR")

for (j in 1:dim(dat)[2]){
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if (j == 1) dat[which(x[,j] < pmiss[j]),j] <- NA

#if (j == 1) dat[which(dat[,dim(dat)[2]] < misslow),j] <- NA

both <- intersect(which(dat[,(j-1)] < misslow),

which(x[,j] < pmiss[j]))

if (j != 1) dat[both,j] <- NA

} #end for loop

return(list(dat=dat,x=x,misstype=misstype))

} #end MAR

else if (misstype == "MNAR") {

print("MNAR") #Jamshidian, Yuan and Le (in press)

for (j in 1:dim(dat)[2]){

both <- intersect(which(dat[,j] < misslow),

which(x[,j] < pmiss[j]))

dat[both,j] <- NA

} #end for loop

return(list(dat=dat,x=x,misstype=misstype))

} #end MNAR

} #end genmiss()

makeRmat <- function(Y){

R <- ifelse(is.na(Y),1,0)

return(R)

} #end makeRmat()

patterns <-function(ndim){

dat <- as.data.frame(permutations(n=2,r=ndim,v=0:1,
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repeats.allowed=TRUE))

for (i in 1:2^ndim){

row.names(dat)[i] <- paste(dat[i,],sep="",collapse="")

}

return(dat)

} #end patterns()

match.patterns <-function(R,npatt){

pattvec <- NULL

patt <- patterns(npatt)

for (j in 1:dim(patt)[1]){

for (i in 1:dim(R)[1]){

if(isTRUE( identical(as.numeric(R[i,]),

as.numeric(patt[j,])))){

pattvec[i] <- (row.names(patt[j,]))

} #end if statement

} #end for loop

} #end for loop

return(as.factor(pattvec))

} #end match.patterns()

extractSj <- function(Sj){

v <- lapply(strsplit(names(Sj),""),as.numeric)

names(v) <- names(Sj)

return(v)

} #end extractSj()

createDj <- function(ndim,mj,Sj){
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Dj.temp <- list()

vec <- NULL

howmany0s <- NULL

pattern.finder <- NULL

pattern.finder <- extractSj(Sj)

position0 <- list()

for (i in 1:length(mj)){

howmany0s[i] <- length(which(pattern.finder[[i]]

[1:ndim]==0))

position0[[i]] <- which(pattern.finder[[i]]==0)

position0[[length(mj)]] <- 0

} # end for loop

for (i in 1:length(mj)){

for (j in 1:length(ndim)){

if (howmany0s[i] > 0){

Dj.temp[[i]] <- matrix(0,

ncol=howmany0s[i],nrow=ndim)

for (k in 1:length(position0[[i]])){

Dj.temp[[i]][position0[[i]][k],k] <- 1 #end if statement

} #end for loop

} #end if statment

else if (howmany0s[i] == 0){

Dj.temp[[i]] <- matrix(0,ncol=1,nrow=ndim)

}# end else if statement

} #end inner for loop

} #end outer for loop

names(position0) <- names(pattern.finder)
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return(Dj.temp)

} #end createDj()

matrixmult <- function(x,y) {

x999 <- ifelse(is.na(as.matrix(x)),999,as.matrix(x))

y999 <- ifelse(is.na(as.matrix(y)),999,as.matrix(y))

as.matrix(x999)%*%as.matrix(y999)

} #end matrimult()

is.wholenumber <- function(x, tol = .Machine$double.eps^0.5)

{abs(x - round(x)) < tol} #end is.wholenumber()

jointpfinder <- function(Sj, mj,nvars,phij){

pattern.finder <- list()

pattern.finder <- extractSj(Sj)

outp <- matrix(NA,ncol=nvars,nrow=length(mj))

for (i in 1:length(mj)){

for (j in 1:nvars){

if( pattern.finder[[i]][j] == 0 )

outp[i,j] <- 1-phij[j]

else if( pattern.finder[[i]][j] == 1 )

outp[i,j] <- phij[j]

} #end inner for loop

} #end outer for loop

rownames(outp) <- names(mj)

return(outp)

}#end jointpfinder()
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prepwork <- function(dat){

Rdat <- makeRmat(dat)

#calc pct missing, should be equal to obs. prob.

length(which(is.na(dat)))/(dim(dat)[1]*dim(dat)[2])

#find patterns of missingness

pattern.id <- match.patterns(R=Rdat,npatt=dim(Rdat)[2])

mj <- NULL

mj <- table(pattern.id)

Sj <- list()

Sj <- split(x=as.data.frame(dat),f=pattern.id)

#create Dj matrix

N <- dim(Rdat)[1]

nvars <- dim(Rdat)[2]

Dj <- list()

Dj <- createDj(ndim=nvars,mj=mj,Sj=Sj)

names(Dj) <- names(Sj)

#create yobs matrix

J <- length(levels(pattern.id)) #distinct no. of patterns

yobs <- list()

sum(mj)== N #check that the sum is equal to n

#split Sj patterns into numeric form

nnames <- as.numeric(unlist(strsplit(names(Sj),"")))

times <- as.factor(rep(seq(1:(length(nnames)/nvars)),

each=nvars))

pj <- NULL

pj <- nvars - unlist(lapply(split(x=nnames,f=times),sum))

names(pj) <- names(Sj)

names(mj) <- names(Sj)
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return(list(Rdat=Rdat,Sj=Sj,Dj=Dj,mj=mj,pj=pj,

J=J,pj=pj,nvars=nvars))

} #prepwork()

#### B) LITTLE’S MCAR TEST####

littlemcar <- function(dat){

outprep <- prepwork(dat)

Sj <- outprep$Sj

Dj <- outprep$Dj

mj <- outprep$mj

pj <- outprep$pj

J <- outprep$J

nvars <- outprep$nvars

yobs <- list()

for (i in 1:(J-1)){

yobs[[i]] <- matrixmult(Sj[[i]],Dj[[i]])

}

ybar <- list() #get ybar

for (i in 1:((length(mj))-1)){

ybar[[i]] <- apply(yobs[[i]],2,sum)/as.vector(mj)[i]

} # end for loop

names(ybar) <- names(Sj)[1:(length(mj)-1)]

s <- prelim.norm(as.matrix(dat)) #EM algorithm

thetahat <- em.norm(s,showits=FALSE)

out <- getparam.norm(s,thetahat,corr=FALSE)

mu.mle <- out$mu

sigma.mle <- out$sigma
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sigma.tilde <- (N/(N-1))*sigma.mle

muobsj <- list() #find muobsj sigmaobsj

sigmaobsj <- list()

sigmatildeobsj <- list()

for (i in 1:(J-1)){

muobsj[[i]] <- mu.mle%*%Dj[[i]]

sigmaobsj[[i]] <- t(Dj[[i]])%*%sigma.mle%*%Dj[[i]]

sigmatildeobsj[[i]] <- t(Dj[[i]])%*%sigma.tilde

%*% Dj[[i]]

}

#find d0sq

d0sq <- list()

for (i in 1:(J-1)){

d0sq[[i]] <- mj[i]*(ybar[[i]] - muobsj[[i]])

%*%solve(sigmaobsj[[i]])%*%t(ybar[[i]]

- muobsj[[i]])

}

d0sqsum <- sum(unlist(d0sq))

dsq <- list() #p.1200 in Little (1988) sigma unknown

for (i in 1:(J-1)){

dsq[[i]] <- mj[i]*(ybar[[i]] - muobsj[[i]])

%*%solve(sigmatildeobsj[[i]])%*%t(ybar[[i]] - muobsj[[i]])

}

little.dsqsum <- sum(unlist(dsq))

little.df <- sum(pj)-nvars #df p.1200 in Little (1988)

little.chicrit <- qchisq(.95,little.df)
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little.pval <- 1-pchisq(little.dsqsum,little.df)

print(c("little.pval", little.pval),quote=FALSE)

print(c("little.dsqsum", little.dsqsum),quote=FALSE)

print(c("little.df", little.df),quote=FALSE)

if(little.dsqsum < little.chicrit){

little.rejectH0 <- 0 else little.rejectH0 <- 1

} #end if statement

return(list(little.dsqsum=little.dsqsum,little.df=little.df,

little.chicrit=little.chicrit,little.pval=little.pval,

little.rejectH0=little.rejectH0))

} #end littlemcar()

### C)PBB-MCAR 1 ###

pbb1mcar <- function(dat){

outprep <- prepwork(dat)

Rdat <- outprep$Rdat

Sj <- outprep$Sj

Dj <- outprep$Dj

mj <- outprep$mj

pj <- outprep$pj

J <- outprep$J

nvars <- outprep$nvars

N <- dim(dat)[1]

phi.j <- apply(Rdat,2,sum)/dim(Rdat)[1]

expected.phi.j <- jointpfinder(Sj=Sj,mj=mj,

nvars=nvars,phij = phi.j)
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expected.phi.j

expected.phi.j.vec <- apply(expected.phi.j,1,prod)

expected.phi.j.vec

phi.j.vec <- expected.phi.j.vec

observed.p.vec <- NULL

observed.p.vec <- mj/N

p0a.j.vec <- observed.p.vec

D <- diag(c(expected.phi.j.vec))

pbb1.csqsum <- list()

pbb1.csqsum <- N*t(p0a.j.vec - phi.j.vec)

%*%solve(D)%*%(p0a.j.vec - phi.j.vec)

pbb1.df <- 2^nvars - nvars #this may be incorrect

pbb1.crit <- qchisq(.95,pbb1.df)

pbb1.pval <- 1-pchisq(pbb1.csqsum,pbb1.df)

print(c("PBB1 pvalue",pbb1.pval))

if(pbb1.csqsum < pbb1.crit) pbb1.rejectH0 <- 0

else pbb1.rejectH0 <- 1

return(list(phi.j=phi.j,expected.phi.j=expected.phi.j,

observed.p.vec=observed.p.vec,pbb1.csqsum=pbb1.csqsum,

pbb1.df=pbb1.df,pbb1.crit=pbb1.crit,pbb1.pval=pbb1.pval,

pbb1.rejectH0=pbb1.rejectH0))

} #end pbb1mcar()

### D) PBB-MCAR 2 ###

pbb2mcar <- function(dat,nq=2){

Rdat <- makeRmat(dat)
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Rdat.r <- Rdat[order(dat[,1]),]

if(dim(Rdat.r)[2] >= 3) Rdat.rcut <- Rdat.r[,2:dim(dat)[2]]

if(dim(Rdat.r)[2] < 3) Rdat.rcut <- Rdat.r

if (is.wholenumber(N/nq)==TRUE) quads

<- rep(1:nq,each=N/nq)

if (is.wholenumber(N/nq)==FALSE) quads

<- cut(1:N,nq)

Rdat.rcut.split <- split(x=as.data.frame(Rdat.rcut),

f=as.factor(quads))

sumeach <- t(sapply(Rdat.rcut.split,apply,2,sum))

neach <- sapply(Rdat.rcut.split,dim)[1,]

phi.j <- apply(Rdat.rcut,2,sum)/dim(Rdat.r)[1]

phi.j.split <- sumeach/neach

#the two should be equal

round(apply(phi.j.split,2,mean),3) == phi.j

if(dim(Rdat.r)[2] >= 3) outprep <- prepwork(dat[,-1])

if(dim(Rdat.r)[2] < 3) outprep <- prepwork(dat)

Sj <- outprep$Sj

Dj <- outprep$Dj

mj <- outprep$mj

pj <- outprep$pj

J <- outprep$J

nvars <- outprep$nvars

N <- dim(dat)[1]

observed.phi.j <- list()

for (i in 1:nq){

observed.phi.j[[i]] <-

jointpfinder(Sj=Sj,mj=mj,nvars=nvars,
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phij = phi.j.split[i,])

} #end for loop

observed.phi.j.vec <- t(sapply(observed.phi.j,apply,1,prod))

expected.phi.j <- jointpfinder(Sj=Sj,mj=mj,

nvars=nvars,phij = phi.j)

expected.phi.j.vec <- apply(expected.phi.j,1,prod)

phi.j.vec <- expected.phi.j.vec

p0b.j.vec <- observed.phi.j.vec

D <- diag(c(expected.phi.j.vec))

difference <- matrix(NA,nrow=nq,ncol=length(expected.phi.j.vec))

for (i in 1:nq){

difference[i,] <- p0b.j.vec[i,] - expected.phi.j.vec

} #end for loop

pbb2.csq <- c() #find chi-square for PBB MCAR

for (i in 1:nq){

pbb2.csq[i] <- neach[i]*t(difference[i,])%*%solve(D)

%*%(difference[i,])

} #end for loop

pbb2.csqsum <- sum(pbb2.csq)

pbb2.csqsum

pbb2.df <- length(mj) - 1 #goodness of fit df

pbb2.crit <- qchisq(.95,pbb2.df)

pbb2.pval <- 1-pchisq(pbb2.csqsum,pbb2.df)

if(pbb2.csqsum < pbb2.crit) pbb2.rejectH0 <- 0

else pbb2.rejectH0 <- 1

return(list(nq=nq,mj=mj,phi.j=phi.j,
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expected.phi.j=expected.phi.j,

observed.phi.j.vec=observed.phi.j.vec,

expected.phi.j.vec=expected.phi.j.vec,

pbb2.csq=pbb2.csq,pbb2.csqsum=pbb2.csqsum,

pbb2.df=pbb2.df,pbb2.crit=pbb2.crit,

pbb2.pval=pbb2.pval,pbb2.rejectH0=pbb2.rejectH0))

} #end pbb2mcar()
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7.2 Appendix B: Figures of All 36 Conditions in the Full

Simulation Study
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Figure 7.1: Full Simulation Study: MDM-1, Number of Variables = 2, Probability

of missingness = 0.2, No Correlation Among Variables
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Figure 7.2: Full Simulation Study: MDM-1, Number of Variables = 2, Probability

of missingness = 0.2, No Correlation Among Variables
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Figure 7.3: Full Simulation Study: MDM-1, Number of Variables = 2, Probability

of missingness = 0.6, No Correlation Among Variables
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Figure 7.4: Full Simulation Study: MDM-1, Number of Variables = 2, Probability

of missingness = 0.6, Correlation Among Variables = 0.9

92



35 100 250 500 1000

0
10

20
30

40
50

60
70

80
90

10
0

Sample Size

P
er

ce
nt

 R
ej

ec
tio

n

Little
PBB1
PBB2

Figure 7.5: Full Simulation Study: MDM-1, Number of Variables = 3, Probability

of Missingness = 0.2, No Correlation Among Variables
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Figure 7.6: Full Simulation Study: MDM-1, Number of Variables = 3, Probability

of Missingness = 0.2, Correlation Among Variables = 0.9
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Figure 7.7: Full Simulation Study: MDM-1, Number of Variables = 3, Probability

of Missingness = 0.6, No Correlation Among Variables

35 100 250 500 1000

0
10

20
30

40
50

60
70

80
90

10
0

Sample Size

P
er

ce
nt

 R
ej

ec
tio

n

Little
PBB1
PBB2

Figure 7.8: Full Simulation Study: MDM-1, Number of Variables = 3, Probability

of Missingness = 0.6, Correlation Among Variables = 0.9
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Figure 7.9: Full Simulation Study: MDM-1, Number of Variables = 5, Probability

of Missingness = 0.2, No Correlation Among Variables
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Figure 7.10: Full Simulation Study: MDM-1, Number of Variables = 5, Probabil-

ity of Missingness = 0.2, Correlation Among Variables = 0.9
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Figure 7.11: Full Simulation Study: MDM-1, Number of Variables = 5, Probabil-

ity of Missingness = 0.6, No Correlation Among Variables
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Figure 7.12: Full Simulation Study: MDM-1, Number of Variables = 5, Probabil-

ity of Missingness = 0.6, Correlation Among Variables = 0.9
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Figure 7.13: Full Simulation Study: MDM-2, Number of Variables = 2, Probabil-

ity of Missingness = 0.2, No Correlation Among Variables
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Figure 7.14: Full Simulation Study: MDM-2, Number of Variables = 2, Probabil-

ity of Missingness = 0.2, Correlation Among Variables = 0.9
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Figure 7.15: Full Simulation Study: MDM-2, Number of Variables = 2, Probabil-

ity of Missingness = 0.6, No Correlation Among Variables

35 100 250 500 1000

0
10

20
30

40
50

60
70

80
90

10
0

Sample Size

P
er

ce
nt

 R
ej

ec
tio

n

Little
PBB1
PBB2

Figure 7.16: Full Simulation Study: MDM-2, Number of Variables = 2, Probabil-

ity of Missingness = 0.6, Correlation Among Variables = 0.9
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Figure 7.17: Full Simulation Study: MDM-2, Number of Variables = 3, Probabil-

ity of Missingness = 0.2, No Correlation Among Variables
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Figure 7.18: Full Simulation Study: MDM-2, Number of Variables = 3, Probabil-

ity of Missingness = 0.2, Correlation Among Variables = 0.9
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Figure 7.19: Full Simulation Study: MDM-2, Number of Variables = 3, Probabil-

ity of Missingness = 0.6, No Correlation Among Variables

35 100 250 500 1000

0
10

20
30

40
50

60
70

80
90

10
0

Sample Size

P
er

ce
nt

 R
ej

ec
tio

n

Little
PBB1
PBB2

Figure 7.20: Full Simulation Study: MDM-2, Number of Variables = 3, Probabil-

ity of Missingness = 0.6, Correlation Among Variables = 0.9
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Figure 7.21: Full Simulation Study: MDM-2, Number of Variables = 5, Probabil-

ity of Missingness = 0.2, No Correlation Among Variables
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Figure 7.22: Full Simulation Study: MDM-2, Number of Variables = 5, Probabil-

ity of Missingness = 0.2, Correlation Among Variables = 0.9
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Figure 7.23: Full Simulation Study: MDM-2, Number of Variables = 5, Probabil-

ity of Missingness = 0.2, No Correlation Among Variables
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Figure 7.24: Full Simulation Study: MDM-2, Number of Variables = 5, Probabil-

ity of Missingness = 0.6, Correlation Among Variables = 0.9
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Figure 7.25: Full Simulation Study: MDM-3, Number of Variables = 2, Probabil-

ity of Missingness = 0.2, No Correlation Among Variables
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Figure 7.26: Full Simulation Study: MDM-3, Number of Variables = 2, Probabil-

ity of Missingness = 0.2, Correlation Among Variables = 0.9
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Figure 7.27: Full Simulation Study: MDM-3, Number of Variables = 2, Probabil-

ity of Missingness = 0.6, No Correlation Among Variables
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Figure 7.28: Full Simulation Study: MDM-3, Number of Variables = 2, Probabil-

ity of Missingness = 0.6, Correlation Among Variables = 0.9
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Figure 7.29: Full Simulation Study: MDM-3, Number of Variables = 3, Probabil-

ity of Missingness = 0.2, No Correlation Among Variables
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Figure 7.30: Full Simulation Study: MDM-3, Number of Variables = 3, Probabil-

ity of Missingness = 0.2, Correlation Among Variables = 0.9
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Figure 7.31: Full Simulation Study: MDM-3, Number of Variables = 3, Probabil-

ity of Missingness = 0.6, No Correlation Among Variables
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Figure 7.32: Full Simulation Study: MDM-3, Number of Variables = 3, Probabil-

ity of Missingness = 0.6, Correlation Among Variables = 0.9
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Figure 7.33: Full Simulation Study: MDM-3, Number of Variables = 5, Probabil-

ity of Missingness = 0.2, No Correlation Among Variables
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Figure 7.34: Full Simulation Study: MDM-3, Number of Variables = 5, Probabil-

ity of Missingness = 0.2, Correlation Among Variables = 0.9
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Figure 7.35: Full Simulation Study: MDM-3, Number of Variables = 5, Probabil-

ity of Missingness = 0.6, No Correlation Among Variables
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Figure 7.36: Full Simulation Study: MDM-3, Number of Variables = 5, Probabil-

ity of Missingness = 0.6, Correlation Among Variables = 0.9
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