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ABSTRACT

Graph matching over two known graphs is a method for
de-anonymizing obscured node labels within an anonymous
graph, finding the corresponding nodes in a second graph. In
this paper, we consider a new case where a set of graph signals
originate from a hidden graph. We want to match their com-
ponents to a reference graph to reveal labels of asymmetric
nodes. We refer to this as the graph-signal-to-graph match-
ing (GS2GM) problem. We introduce a symmetry detection
method to pinpoint the asymmetric nodes in the reference
graph. Then, we adapt the existing blind graph matching al-
gorithm, originally designed for asymmetric graphs, to align
the detected nodes with signals generated from the target hid-
den graph. Furthermore, we establish sufficient conditions for
perfect node de-anonymization through graph signals, show-
ing that graph signals can leak substantial private information
on the concealed labels of the underlying graph.

Index Terms— Graph matching, graph de-anonymization,
network privacy, node identification, graph signal processing

1. INTRODUCTION

The emergence of expansive networks, e.g., in social media,
infrastructure systems, and the Internet of Things, has led
to an ever increasing influx of an unprecedented amount of
data. While data publishers typically anonymize or random-
ize names and other identifying labels to safeguard the private
information of local users, recent findings suggest that these
conventional methods are still prone to privacy breaches. Ad-
versaries can potentially discern a target user’s identity from
its local network connections by leveraging side information.

One notable attack method within this framework is called
seedless graph de-anonymization. The aim is to infer labels
within a wholly anonymized network by aligning the target
nodes with a labeled reference graph sourced from public
datasets, topology snapshots, etc. This de-anonymization
strategy was first introduced in [1], where IMDB data served
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as the reference to identify the anonymized Netflix dataset.
These authors further studied user de-anonymization in large
social networks in [2]. Moreover, another pioneering work
in [3] introduced an address anonymization framework for
IP networks. The authors in [4] cast the de-anonymization
challenge as a graph matching task that matches the nodes of
the target and reference graphs by edge mismatch minimiza-
tion. Maximum-a-posterior (MAP) estimators were intro-
duced as tools tailored for social network de-anonymization,
particularly with community structures [5, 6]. Sufficient
conditions ensuring perfect node de-anonymization were de-
rived for Erdös-Rényi (ER) random graphs in [4] and for
stochastic block models in [5]. Moreover, [7] established a
formula to measure the count of nodes that can possibly be
de-anonymized via graph matching.

Current research relies on the topology of the anonymous
graph for effective graph de-anonymization/matching, which
can be resource-intensive or even unattainable in many real-
world applications [8]. More commonly, attackers might di-
rectly observe interactions between nodes in an undisclosed
graph, known as graph signals. Examples include opinion
exchanges in social networks and nodal measurements in in-
frastructure systems and power grids. Recent studies have
demonstrated that graph signals carry a plethora of informa-
tion that can be leveraged for network analyses [9]. Partic-
ularly, [10] proposed a blind graph matching algorithm to
match nodes from two unknown graphs using their associ-
ated graph signals, where the underlying graphs are assumed
to have no symmetric structure.

Motivated by the above discussions, we study the privacy
leakage in graph de-anonymization/matching when the prob-
lem is matching the graph signal components, that come from
an undisclosed graph, to the nodes of a reference graph. We
refer to this as the graph-signal-to-graph matching (GS2GM)
problem. The resultant node identification can expose user
identities by associating them with the labels of the refer-
ence [4]. We first show that symmetric structures pose bar-
riers to node identification. To work around this problem, we
introduce a low-complexity approximate symmetry detection
method to distinguish symmetric nodes from the reference
graph. Then, we adapt the graph matching algorithm in [10]
to match the asymmetric nodes of the reference graph with the



graph signals. We conclude by analyzing the sufficient con-
ditions for perfect de-anonymization of all asymmetric nodes
and substantiate our analysis with experimental results.

2. SYSTEM MODEL

Let G1 = (V1, E1) be an undirected anonymous graph in
which the labels of its nodes are concealed. Here, V1 and
E1 denote the sets of nodes and edges, respectively. The
number of nodes is |V1| = N , and we denote V1 = [N ] ≜
{1, 2, · · · , N}. The adjacency matrix of G1 is denote by
A(1) ∈ RN×N , where a(1)kl = a

(1)
lk > 0 if and only if an edge

(k, l) is present in E1. The Laplacian matrix of G1 is defined
as L(1) ≜ diag(A(1)1)−A(1), where 1 is the all-one vector.

Consider another N -node undirected and labeled graph
G2 = (V2 = [N ], E2). When using its Laplacian ma-
trix, denoted by L(2), as a reference, the goal of the de-
anonymization attack (a.k.a. node re-identification) is to
determine a permutation function σ(·) : [N ] → [N ]. This
function maps the node set V2 (or a subset of it) to V1 such
that the permutation of G2 using σ(·) leads to a graph closely
resembling G1 [4, 5]. Since the nodes of G2 possess known
labels, an attacker can use σ(·) to identify the labels of the
target nodes in G1. The node identification may then allow
the attacker to infer private information on user identities [4].

Previous research on graph de-anonymization primarily
relies on the adjacency or Laplacian matrix of Graph G1 to
find an effective node matching. Such methods necessitate
complete knowledge of the anonymous graph’s topology. In
contrast, we study a scenario where both the adjacency and
Laplacian matrices of G1 remain unknown. In this context, an
attacker seeks to de-anonymize the labels of the components
of a collection of graph signals generated on G1.
Graph signal model. Consider the eigendecompositions of
the two Laplacian matrices L(1) and L(2) as

L(i) = V(i)Γ(i)(V(i))T , i = 1, 2, (1)

where Γ(i) is a diagonal matrix containing eigenvalues ar-
ranged in descending order γ(i)

1 ≥ γ
(i)
2 ≥ · · · ≥ γ

(i)
n = 0, and

V(i) ∈ Rn×n is an orthogonal matrix containing the corre-
sponding eigenvectors. As we assume no knowledge of L(1),
its eigendecomposition in (1) is subject to unknown permuta-
tions. In contrast, we observe a set of filtered graph signals,
denoted by {ym}Mm=1, which are generated over the nodes of
G1 by an unknown graph filter. This graph filter can be ex-
pressed as a matrix polynomial of the Laplacian matrix L(1):

H(L(1)) =

T−1∑
t=0

ht(L
(1))t = V(1)

(
T−1∑
t=0

ht(Γ
(1))t

)
(V(1))T ,

(2)

where T is the order of the graph filter, and {ht} are the fil-
ter coefficients. With (2), each observed signal vector ym ∈
Rn×1,∀1 ≤ m ≤ M, is the output of H(L(1)) excited by an

input signal xm ∈ Rn×1, as
ym = H(L(1))xm +wm, (3)

where wm represents the unknown measurement noise of the
m-th sample following the Gaussian distribution N (0, ν2In).
We assume that xm satisfies E[xm] = 0 and E[xm(xm)T ] =
In,∀m. Substituting (1) into (2), the eigenvalues of H(L(i)),
often referred to as the frequency responses, are

h̃k =

T−1∑
t=0

ht(γ
(1)
k )t, k ∈ [N ]. (4)

Note that the noiseless covariance matrix of ym with wm =
0 is given by H(L(1))H(L(1))T . Its eigendecomposition is
given by

H(L(1))
(
H(L(1))

)T
= V(1)Λ(1)(V(1))T , (5)

where Λ(1) = diag([λ
(1)
1 , · · · , λ(1)

N ]) contains the eigenval-
ues sequenced in descending order. It is worth noting that
the eigenvalues {λ(1)

n }Nn=1 in (5) is a reshuffled arrangement
of {h̃2

k}Nk=1 from (4), where the order is determined by the
characteristic of the graph filter. For example, low-pass graph
filters tend to focus their frequency responses on the lower
graph frequencies, whereas high-pass graph filters amplify
the higher graph frequencies. Interested readers can consult
[9] and [10, Sect. III-A] for detailed examples of these filters.
Here, we assume knowledge of the ordering of the frequency
responses but not their actual values. In particular, the inter-
change between {λ(i)

n }Nn=1 and {h̃2
k}Nk=1 is specified by an

index mapping ord(·) so that λ(1)
n = h̃2

ord(n),∀n. We note that
the characteristics of the graph filter, such as whether it is low-
pass or high-pass, can inform us about the order of the fre-
quency responses. This assumption is considerably less strin-
gent than that of knowing the exact values of the responses.
Graph symmetry and de-anonymizability. As shown in
[11], graphs with symmetric structures, where nodes exhibit
identical inner and outer structures, possess multiple graph
automorphisms.1 Hence, several equally optimal node per-
mutations for de-anonymization exist [11]. Accordingly, two
nodes i, j ∈ [N ] in G are symmetric (a.k.a. automorphically
equivalent) if the node-swapping function σ with σ(i) = j,
σ(j) = i, and σ(k) = k, ∀k ̸= i, j, is an automorphism of G.
We use the notation i ∼ j to denote such symmetric nodes.
For a graph G with N nodes, we denote the set of all symmet-
ric nodes as S(G) ≜ {i ∈ [N ] : ∃j ∈ [N ], j ̸= i, i ∼ j}. In
contrast, the set of asymmetric nodes is denoted by AS(G) ≜
[N ] \ S(G), where \ is the set difference operation.

Even when the graph topology of G1 is given, attackers, in
the absence of further information, are unable to conclusively
re-identify the true labels of the symmetric nodes in S(G1).
In this work, we study the problem of de-anonymizing the
asymmetric nodes of the target graph.

1An automorphism of a graph is a node permutation that yields an iso-
morphic (equivalent) graph [12].



Problem statement. We consider a general GS2GM prob-
lem where the attacker aims to infer the labels of graph sig-
nals corresponding to all the asymmetric nodes in AS(G1)
based on the observed graph signals and the reference graph
G2. Unless otherwise specified, G2 is assumed to be a graph
isomorphism to G1, i.e., G1 and G2 are identical under an un-
specified node permutation, denoted by σ⋆(·). Consequently,
the challenge of computing σ⋆ is equivalent to matching the
nodes of G2 and of the hidden G1. To formally state the ob-
jective, we define perfect de-anonymization as follows.

Definition 1 (Asymptotic perfect de-anonymization). Given
an unknown graph G1 and its isomorphic reference G2, con-
sider a matching algorithm that uses M -sample graph sig-
nals {ym}Mm=1 to produce a node permutation σ̂(·) : V2 →
V1. This algorithm is said to achieve asymptotic perfect de-
anonymization, provided that

lim
M→∞

Pr(σ̂(n) = σ⋆(n),∀n ∈ AS(G2)) = 1. (6)

Note that (6) requires the accurate alignment of the asym-
metric nodes only, as de-anonymization of the symmetric
nodes suffers from inevitable ambiguities in automorphisms.
Our work focuses on addressing the following challenges:

1. Finding a computationally efficient strategy to identify
AS(G2) for any given graph G2;

2. Developing an efficient de-anonymization algorithm to
determine the node permutation σ̂(·) : V2 → V1 using
the observed graph signals {ym} and L(2);

3. Analyzing the conditions to achieve asymptotic perfect
de-anonymization.

As a final remark, we highlight that most of the existing
work bases the de-anonymization analysis on specific prob-
abilistic graph models, such as ER random graphs [1, 4] and
stochastic block models [5, 6, 13]. Recognizing that such
models might not adequately capture the complexities in-
herent in real-world networks, our approach is applicable to
de-anonymizing an arbitrary graph G1 without the need of
assuming its statistical model.

3. GRAPH SIGNAL TO GRAPH MATCHING

3.1. Proposed Method
We present a graph de-anonymization algorithm adapted from
the method in [10] to compute the node permutation σ̂(·) us-
ing {ym}Mm=1 and L(2). For ease of notation, we represent
the node permutation interchangeably by σ(·) and its equiv-
alent permutation matrix P ∈ {0, 1}N×N , where pkl = 1 if
σ(k) = l and pkl = 0 otherwise. It is noteworthy that the
graph matching algorithm from [10] was initially designed
under the assumption that the two graphs do not have sym-
metric nodes. To align with our requirements, we incorporate
a symmetry detection mechanism as follows.
Approximate Symmetry detection: We first estimate the
symmetric nodes S(G2). Given that a graph with n nodes

can have as many as n! node permutations, the complexity
of the exhaustive search for symmetric nodes, known as the
graph automorphism problem, becomes prohibitively large
complexity for large n. Here, we consider a polynomial-time
method to find a subset of S(G2). For any i, j, let P(i,j) be
the swapping matrix that swaps the i-th and j-th columns of
the identity matrix IN . For the graph G2, i ∼ j if L(2) =
(P(i,j))TL(2)P(i,j). We determine symmetry by this condi-
tion. If L(2) = (P(i,j))TL(2)P(i,j), nodes i and j are added
to the estimated symmetric node set S̃(G2). This requires to
evaluate a total of N(N+1)/2 pairs. Subsequently, the asym-
metric node set is determined by ÃS(G2) = [N ] \ S̃(G2).
As this method only identifies single-swap symmetric nodes,
ÃS(G2) is an overestimation (i.e., a superset) of AS(G2).
Eigenvector computation: We compute the eigenmatrices
V(1) and V(2), which will be used for the subsequent node
matching step. While V(2) can be readily obtained from (1),
we estimate the eigenmatrix V(1) from the sample covariance
of the graph signals in (3). Specifically, the sample covariance
of {ym}m and its eigendecomposition are

Ĉy =
1

M

M∑
m=1

ym(ym)T = U(1)Λ̂(1)(U(1))T , (7)

where U(1) is orthogonal containing the sample eigenvec-
tors, and Λ̂(1) = diag([λ̂

(1)
1 , · · · , λ̂(1)

N ]) positions the sample
eigenvalues in descending order. As M increases, we antici-
pate that U(1) and {λ̂(1)

n } provide an approximation close to
V(1) and {λ(1)

n } in (5), respectively. To ensure correspon-
dence, we align the eigenvectors in V(2) to match the order
of their frequency responses with respect to H(·). To this
end, we shuffle the columns of V(2) based on the indices de-
lineated by the sequence [ord(1), · · · , ord(N)]. The resulting
reordered eigenmatrix is denoted by Ṽ(2).
Node matching: Following [10], we compute the node per-
mutation matrix P̂ by aligning the first K eigenvectors in
U(1) and Ṽ(2). The hyper-parameter K is determined by
keeping the minimum spectral gap of the associated sample
eigenvalues large [10, Sect. IV-D]. Denote by U

(1)
K and Ṽ

(2)
K

the submatrices consisting of the left K columns of U(1) and
Ṽ(2), respectively. To tackle the sign ambiguities inherent to
eigendecompositions, we compute the permutation by taking
the magnitudes of these eigenvectors: (cf. [10, Eq. (14)])

P̂ = argmax
P is a permutation

tr

(
U

(1)

K (Ṽ
(2)

K )TP

)
, (8)

where U
(1)

K and Ṽ
(2)

K are the matrices with absolute values
from U(1) and Ṽ(2), respectively. The problem in (8) can
be solved by off-the-shelf algorithms, such as the Hungarian
method [14] or the greedy method in [10, Algorithm 2].

3.2. Condition for Asymptotic Perfect De-anonymization
We introduce a sufficient condition under which the proposed
algorithm ensures asymptotic perfect de-anonymization de-
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Fig. 1: De-anonymization accuracy for the ER graph.

fined in Definition 1. Due to space constraints, the detailed
proof is reserved for the extended version of this work.

Theorem 1. The node mapping σ̂(·) or equivalently P̂ in (8)
satisfies (6) if the following conditions are met:

1. The symmetry detection is accurate: ÃS(G2) = AS(G2);
2. {y(i)

m }Mm=1 are independent, identically distributed (i.i.d.)
and uniformly bounded almost surely.

3. Let Xi,j be the (i, j)-th entry of V
(1)

K (Ṽ
(2)

K )T , where

V
(1)

K is obtained from the error-free eigenvectors in (2)

as [V
(1)

K ]kl = |v(1)kl |. It should be satisfied that

ρ ≜ min
n∈AS(G2)

(
Xn,σ⋆(n) − max

ℓ ̸=σ⋆(n)
Xn,ℓ

)
> 0. (9)

4. The signal noise variance ν2 <
√
2ρ

8
√∑K

k=1 1/δ2k
, where

δk ≜ min{λ(1)
k − λ

(1)
k+1, λ

(1)
k−1 − λ

(1)
k } is the k-th spectral

gap of the covariance matrix in (5).

Condition 2 can typically be met with i.i.d. and sub-
Gaussian excitations. Condition 3 underscores the scenario
where, in an error-free environment with L(1) known, the true
permutation σ⋆(·) maximizes the objective in (8). Motivated
by this, we adopt ρ in (9) as a measure for assessing the graph
de-anonymizability in the noiseless environment. The study
in [15] reports that (9) asymptotically holds with large Gaus-
sian models or large ER graphs. For a general case involving
an arbitrary and unknown graph G1, ρ can be approximated
using the sample eigenvectors in (7). Finally, Condition 4
guarantees accurate eigenvector estimation using the sample
covariance given an adequate number of signal samples. This
condition highlights the sensitivity of eigenvector estimation
to signal noise, which is determined by the spectral gaps of
the covariance matrix.

4. EXPERIMENTAL RESULTS

We evaluate the graph de-anonymization performance using
two kinds of graphs: 1) the ER graph model and 2) the social
network graph constructed from the Facebook dataset [16].

We begin by de-anonymizing a graph G1 generated by
the ER model, consisting of N = 50 nodes with an edge
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Fig. 2: De-anonymization over the Facebook network.

probability of 0.4. The reference graph G2 is created by ran-
domly shuffling the nodes of G1. We employ the opinion-
dynamic model in [9] to design a low-pass graph filter as
H(L(1)) = (IN + 0.1L(1))−1. We generate {ym} by (3)
with xm drawn from N (0, IN ) and the noise variance set to
0.01. Fig. 1 plots the fraction of correctly de-anonymized
nodes, with values ranging from [0, 1]. Here, the proposed
method in (8) is solved by the Hungarian method [14] and
the greedy method in [10, Algorithm 2] with K set to 20.
The ideal approach with a known Laplacian matrix L(1) is in-
cluded for comparison. As the number of signal samples M
rises, the de-anonymization accuracy of our algorithm con-
verges to one. This trend corroborates our analytical findings.

Next, we evaluate the de-anonymization performance
on the Facebook network, representing friendships among
anonymous 348 users with 2, 866 edges. Applying the sym-
metry detection technique in Section 3.1, we identify that
45 out of 348 nodes are symmetric. Fig. 2 plots the de-
anonymization accuracy over the remaining 303 nodes. Note
that the condition in (9) is not met as ρ ≈ −0.45. There-
fore, even for the ideal case with an error-free Laplacian
matrix L(1), achieving asymptotic perfect de-anonymization
is infeasible in this experiment. It shows that our proposed
method successfully de-anonymizes 80% of the asymmetric
nodes even though this network exhibits symmetry.

5. CONCLUSION

This paper studied graph de-anonymization of matching
asymmetric nodes from graph signals to a reference graph.
We proposed a method to approximately detect symmetric
nodes and then employed the blind graph matching algorithm
to match asymmetric nodes. Furthermore, the theoretical
analysis delineates sufficient conditions to ensure asymptotic
perfect de-anonymization. Simulation results validate our
analysis and demonstrate the efficiency of the proposed algo-
rithm. While our current method hinges on i.i.d. excitation
signals to achieve perfect de-anonymization, a compelling
direction for future research would be to examine how corre-
lated signals, that are present in many real-world applications,
influence de-anonymization accuracy.
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