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ABSTRACT OF THE DISSERTATION

Essays in Security Economics

By

Colin Xavier Deurlington

Doctor of Philosophy in Economics

University of California, Irvine, 2024

Professor Stergios Skaperdas, Chair

This dissertation provides theoretical, experimental, and empirical studies of topics important

in security economics. Chapter 1 and 3 assess cybersecurity settings, in particular, and

approaches that limit the frequency of incidents experienced. Chapter 2 provides an experimental

justification of Conjectural Equilibrium, an important equilibrium concept particularly relevant

to security environments where feedback is limited.

Chapter 1 studies a model of weakest-link network defense. In this model, the defender

determines the internal accessibility of a valuable asset and allocates defensive resources

prior to an attacker’s decision to attack. In equilibrium, one of two resource allocations can

arise: (1) both the defender and attacker allocate a strictly positive level of resources, or

(2) the defender allocates a su�cient level of resources to deter attacks. As the defender’s

cost-adjusted valuation of an asset increases relative to the attacker, the defender is more

willing to increase the internal accessibility of the asset, irrespective of the marginal benefit

from increased accessibility. This model provides theoretical foundations for data breach

and other cybersecurity settings.

Chapter 2 provides an experimental test of the Conjectural Equilibrium concept in a threshold

public good game with limited feedback. Consistent with our predictions, we find evidence

that strategy profiles that are Conjectural Equilibria but not Nash Equilibria are more likely

ix



as feedback decreases, and that subjects are more likely to hold incorrect beliefs as feedback

decreases. However, the use of Conjectural Equilibrium as a predictive concept is complicated

because risk aversion interacts with the feedback treatment, belief convergence occurs at

di↵erent rates across treatments, and subjects intentionally choose to not maximize payo↵s.

Overall, our findings support a measured approach to using the Conjectural Equilibrium

concept to obtain predictions in limited-feedback settings. These results are especially useful

for understanding security settings, where agents often make decisions based on limited

feedback.

Chapter 3 empirically examines the relationship between organizations’ cybersecurity measures

and their experienced level of incident frequency. Cybersecurity is an increasingly relevant

concern for governments, businesses, and individuals. However, despite both rising investment

in cybersecurity and frequency of cyber incidents, little research has been done to assess this

relationship. Using fixed e↵ects regressions over multiple thresholds of incident frequency,

this paper identifies sta↵ cybersecurity training, data storage rules, and restrictions on

personal devices used for work as measures associated with reduced incident frequency.

Furthermore, this paper provides a foundational assessment of how cybersecurity measures

are associated di↵erently with phishing versus non-phishing incidents, providing a first step

in understanding the usefulness of measures in preventing incidents of di↵erent severities.
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Chapter 1

Defense and Connectivity of

Weakest-Link Networks

1.1 Introduction

In networks, there is a trade-o↵ between e�ciency and security (Morselli et al., 2007).

Organizations, especially in digital environments, must often determine whether to provide

employees, departments, or outside consultants with access to valuable assets, such as

databases containing personal, financial, or medical information. Increased access to data

can help an organization provide better services and operate more e�ciently. As more

access is given, however, these databases become increasingly vulnerable to outside threats.

Maintaining security is critically important, as data breaches can be quite costly, both in

terms of money and reputation.1

This paper explores a network defender’s decisions in a contest setting resembling a data

1See Toulas (2022) for a report on the California Heritage Provider Network Data Breach, which impacted
over three million patients in December 2022.
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security environment. Specifically, should a network defender increase access to a valuable

node when increasing access makes this node more vulnerable? As an illustrative example,

consider a database containing financial or medical information, which is valuable both to

a firm as well as a potential hacker. The defender must decide whether to give employees

within the firm access to this data, which provides the firm with better knowledge of its

customers’ information and needs. However, providing employees with access to this data

makes the data more vulnerable to phishing attacks – more employees with access means

more targets for the attacker to phish in an attempt to breach the data. This example

can also be applied in an infrastructure setting, where a government agency or municipality

determines access to water filtration controls, electrical grid flows, or even nuclear codes.

We can think of this setting generally as a simple star network, where the central node is

some valuable asset, undirected edges signify access to this asset, and peripheral nodes can

be individuals, departments, or consultants that o↵er value from being able to access the

valuable asset.2

I use a sequential weakest-link lottery contest framework to address the question of when

additional access to a valuable asset should be allotted in an organization.3 In this framework,

a network defender first decides whether to isolate or allow access to their valuable asset.

Additional benefit is gained for each node that is given access to the valuable asset, which

comes at the cost of increased network vulnerability. The defender then allocates defensive

resources to protect her network. I independently consider two defensive settings in this

environment – infrastructure defense and individual node defense. In the former defensive

setting, the defender contributes resources using a technology that uniformly protects all

nodes in her network.4 In the latter defensive setting, the defender contributes resources to

2As my model will be considering a simple star network structure and weakest-link objective function,
the use of directed rather than undirected edges makes no qualitative di↵erence.

3For more on lottery contests, see Tullock (1980) and Skaperdas (1996).
4To my knowledge, this is the first paper that discusses infrastructure defense in a lottery contest setting.

Kovenock and Roberson (2012) and Lizzeri and Persico (2001) examine infrastructure defense in auction
contest settings.
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defend each node individually. After observing the defender’s network connection decision

and security allocation, an attacker determines where to distribute attack resources across the

network. The probability a given node is defended is determined by the defensive resources

relative to the total resources allocated to the node. The attacker breaches the network if

she successfully attacks at least one node.

This model extends the weakest-link multiple-battlefield lottery contest framework established

in Clark and Konrad (2007) in four important ways. First, my model allows for the defender

to decide on the level of connectivity of the weakest-link network prior to determining how

to allocate defensive resources. Second, I modify the value of victory to the defender to

be increasing in the size of the network being defended. These first two extensions are

especially important for capturing the incentives of a network defender in a weakest-link

setting.5 The third extension involves using a sequential-move contest framework, where the

adversary observes the defender’s network size and security infrastructure before deciding

where and how much to concentrate attack resources. This assumption has not been applied

to a weakest-link network defense setting (Arce et al., 2012; Kovenock and Roberson, 2018;

Levitin and Hausken, 2010)6, yet is common in other network defense literature (Goyal and

Vigier, 2014; Dziubiński and Goyal, 2013; Powell, 2009). Finally, I analyze this model under

two di↵erent defensive setting – infrastructure and individual node defense.

Equilibrium analysis of my model shows two types of resource allocations can arise: (1) both

the network defender and attacker allocate a strictly positive level of resources to every node,

or (2) the network defender spends a su�cient level of resources so as to deter all attacks

on the network. In both equilibrium allocations, the defender allocates a strictly positive

level of force to protect her network, o↵ering a di↵erent result from that found in Clark and

5A defender should only be willing to take on the increased vulnerability from defending larger networks
if larger networks provide additional value when successfully defended. Furthermore, if the benefit of more
connections does not outweigh the added risk, a defender should limit the size of the space they must defend.

6Levitin and Hausken (2010) analyze a repeated contest, where the attacker needs to succeed once to win,
though both the defender and attacker allocate resources simultaneously in each iteration of the contest.
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Konrad (2007), where the defender surrenders and does not defend her network with some

positive probability. To my knowledge, the second equilibrium allocation of deterrence is

a novel finding in weakest-link lottery contest research, and provides a valuable theoretical

foundation for policies attempting to combat the rapid rise in cyber attacks over the past

few years.7

Equilibrium analysis also provides two insights into a defender’s decision for increasing the

internal accessibility of an asset. First, the defender is more likely to increase access to the

valuable node when her cost-adjusted asset value is greater than that of the attacker. Though

perhaps unsurprising, this result is consistent across both defensive settings, all network sizes,

and regardless of the marginal benefit of increasing access. Assuming that the values to the

defender and attacker from winning this contest are fairly stable over time, this indicates

that the decision to increase the accessibility in a network is highly dependent on the relative

costs of defending to attacking resources. Second, when the defender is deciding whether to

increase access to a valuable asset, the individual benefit from these additional connections

generally does not need to be as great when more connections are being added. That is

to say, the value added from granting ten moderately adept analysts access to confidential

data may be worth the additional risk of the data being stolen while the value added from

granting access to only five more skilled analysts may not.

This paper contributes primarily to research in contests involving a defender with a weakest-

link objective and an attacker with a best-shot objective. Clark and Konrad (2007) introduces

a simple multiple-battlefield lottery contest where the defender must successfully defend each

battlefield. Levitin and Hausken (2010) extends this model to allow the attacker to decide

whether to fight over the battlefields one at a time or all in one period.8 In multiple-

7Though not precisely the setting studied in this paper, ransomware and data security are similar
problems. See Financial Crimes Enforcement Network (2021) for a report on how the number and cost
of ransomware attacks tripled from 2020 to 2021.

8Klumpp et al. (2019) analyzes a similar repeated multiple-battlefield lottery contest to understand
electoral competitions.
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battlefield lottery contests, the attacker uniformly allocates resources across the battlefields

(Clark and Konrad, 2007; Kovenock and Roberson, 2012), whereas the equilibrium attack

strategy in auction contest settings involves only targeting one battlefield (Arce et al., 2012;

Kovenock and Roberson, 2018). Arce et al. (2012) considers the possibility of multiple attack

technologies to model terrorism and understand when an attacker decides to strategically

use suicide attacks. Weakest-link contests have also been studied in various experimental

settings (Kovenock et al., 2019; Deck and Sheremeta, 2012).9 For a survey of results in

other simultaneous-move multiple-battlefield conflicts, with weakest-link or other asymmetric

objective functions, see Kovenock and Roberson (2012).10

Directly related to multiple-battlefield contests, much has been done in studying two-player

simultaneous resource allocation settings in the Colonel Blotto game, originating with Borel

(1921). Roberson and Kvasov (2012) consider the players’ incentives in an all-pay auction

framework with asymmetric budget constraints. Kovenock and Roberson (2021) characterize

Nash equilibrium for both Colonel Blotto and General Lotto games where the battlefield

values are heterogeneous and asymmetric across players, finding that players benefit from

targeting battlefields where their relative valuations are lower. Chowdhury et al. (2013) and

Montero et al. (2016) o↵er experimental investigations of the theoretical results in Blotto

contests, finding evidence that players tend to allocate a higher concentration of resources

to fewer battlefields than equilibrium analysis predicts.

My model also contributes to research in sequential-move network defense – specifically,

where the attacker allocates resources after the defender establishes their network structure

and defensive allocations. Powell (2009) provides a concise equilibrium analysis of a general

lottery contest in this sequential-move setting. Goyal and Vigier (2014) aims to find the

9Kovenock et al. (2019) finds that lab participants do not follow the equilibrium behavior expected of
attackers in lottery contests. A likely reason for this is the tendency for individuals to use focal points rather
than optimal strategies when making their allocation of attack resources (Chowdhury et al., 2016).

10For a recent simultaneous move model that incorporates asymmetries and heterogeneous values across
battlefields, see also Li and Zheng (2022).
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ideal network structure and defensive allocation while Acemoglu et al. (2016) explores the

implications of decentralized defense in models of contagion. Dziubiński and Goyal (2013,

2017) add to the discussion on optimal network design in the face of an adversary, where

the former considers node-removal attacks rather than attack resource allocations and the

latter considers decentralized defense.11 Hausken (2006, 2017) and Hota et al. (2018) study

sequential-move models where successfully attacking one node in a network influences the

probability of successful attacking connected nodes.12 Hausken (2017) considers a simple

case of only two interdependent nodes, while Hausken (2006) and Hota et al. (2018) consider

settings of decentralized defense.

The remainder of this article proceeds as follows. Section 2 describes the model. Section 3

solves for the equilibrium allocations and profits in both infrastructure and individual node

defense settings. The defender’s decision to connect their network is also solved for in this

section under both defensive settings. Section 4 discusses and concludes.

1.2 Model

I consider a sequential weakest-link network defense model. Specifically, the defender initially

decides on the size of the network and the defensive allocations, and after observing these

choices, the attacker decides her attack allocations. My model is formally established below.

2.1 – Players/setting

There are two agents in this contest – a network defender, D, and an attacker, A. Define

N = {1, . . . , n} as the set of nodes D defends.13 Suppose only one of these nodes is

11For more on research investigating node-removal attacks, see Bloch et al. (2020) and McBride and
Hewitt (2013). These papers analyze settings of incomplete information, where a government organization
must remove a node to disrupt or capture a key member in a criminal network.

12The extreme case where a successful attack at one node implies successful attacks at all adjacent nodes
is analogous to a weakest-link network.

13These can also be conceptualized as “battlefields” or “targets,” but I will be using “nodes” throughout
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considered directly valuable, or “high-value,” while the remaining n � 1 nodes are only

indirectly valuable, or “low-value.” As an illustrative example, suppose the defender is a

business owner and the attacker is some hacker. The business collects consumer financial

information and compiles it in a large database – this database is a “high-value” node, as

both the business owner and the hacker value the information contained within the database.

The data becomes more valuable to the business owner, though, when she allows employees

or consultants to assess and work with the data – the individuals with access to the database

are “low-value” nodes, as they only provide value to the business owner when able to access

the data. However, as the number of connections to the database increases, the information

becomes easier for a hacker to gain access to and steal.

2.2 – Moves

Agents move sequentially. As the first mover, D makes two decisions. First, D decides

whether to connect low-value nodes to her high-value node. In this paper, I consider a

simple binary choice: D either isolates her high-value node or connects all her low-value

nodes to the high-value node. This is to provide a baseline understanding of the edge cases.

Define m as the choice variable for how many low-value nodes D connects to the high-value

node, so that m 2 {0, n�1}. More explicitly, D decides between defending a network of size

1 or of size n. Define C as the component containing the high-value node, with |C| = m+1.

D’s second decision involves how to allocate defensive resources across her network. I

consider two settings: (1) defense under an infrastructure technology, dI > 0, and (2)

individual node defense, d̄ = (d1, . . . , dn). In the former setting, D allocates resources to

an infrastructure technology, dI , that uniformly defends her entire network. In the latter

setting, D allocates resources to defend each node individually. To my knowledge, the

presence of an infrastructure technology has not been studied in a lottery contest setting.

This is a reasonable notion for a cybersecurity setting, however, as firewalls, training, or

this paper to refer to the possible points where D and A may allocate resources.
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other monitoring/scanning tools arguably protect the entire network for one overall cost to

the network defender. Individual node defense is a standard approach in network security

and multiple-battlefield contests, and therefore provides a baseline framework to compare

with the results o↵ered from including an infrastructure technology.

As the second mover, A observes D’s actions and allocates attack resources, ā = (a1, . . . , an),

across the network. This sequence of moves is shown concisely in Figure 1.1:

D

DD

m = n� 1m = 0

A

dI

ā

A

dI

ā

uD, uA uD, uA

(a) infrastructure defense, dI

D

DD

m = n� 1m = 0

A

d̄

ā

A

d̄

ā

uD, uA uD, uA

(b) individual node defense,

d̄ = (d1, . . . , dn)

Figure 1.1: The sequential game

2.3 – Contest Success Function

The winner at each node is determined by a standard Tullock contest success function

(Tullock, 1980). Define the probability that D successfully defends node j as:

pD(dj, aj) =

8
>><

>>:

dj

dj + aj
if aj > 0

1 otherwise
14

(1.1)
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Notice that dj = dI for all j under infrastructure defense.

The winner of the overall contest is determined by weakest-link and best-shot objective

functions over the component containing the high-value node for D and A, respectively.

That is, D wins the contest if she successfully defends every node within the component

containing the high-value node, and A wins the contest if she successfully attacks at least

one node within the component containing the high-value node.

2.4 – Node values

A high-value node provides a direct value of vD > 0 to D when successfully defended and

a direct value of vA > 0 to A when successfully attacked. A low-value node that is not

connected to the high-value node provides no benefit to either D or A. However, connecting

a low-value node to a high-value node provides a value of �vD, � > 0, to D. By the objective

functions (weakest-link and best-shot), the network is more vulnerable to attack when low-

value nodes are connected to the high-value node. To be precise, D receives a value of

VD = vD(1 +m�) for connecting m low-value nodes to the high-value node and successfully

defending the connected network. A, on the other hand, receives a value of VA = vA for

successfully attacking a single node in the component containing the high-value node.

2.5 – Costs

I assume linear cost functions for both agents. In the case of infrastructure defense, D’s cost

function is simply c(dI) = dI . In the case of individual node defense, D’s cost function is

c(d̄) =
P

n

j=1 dj. Under both settings, A’s cost function is c(ā) =
P

n

j=1 ↵ai, where ↵ > 0 is

the cost of attack resources relative to defensive resources. Intuitively, this ↵ captures how

costly it is for D to implement multi-factor authentication and for A to purchase technical

exploits on the dark web, for example.

14This assumption follows other network defense frameworks (Clark and Konrad, 2007; Goyal and Vigier,
2014).
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2.6 – Payo↵ functions

Compiling the above information, each agent’s expected payo↵ from the contest is simply

the product of their probability of winning the contest and their value from winning minus

the cost of their resource allocation. I present D and A’s expected payo↵ functions in the

case of a defensive infrastructure technology, dI , in equations 1.2 and 1.3.

D’s expected payo↵ function under a defensive infrastructure technology:

uD =
m+1Y

i=1

pD(dI , ā)VD � c(dI) , m 2 {0, n� 1}

=

 
m+1Y

i=1

✓
dI

dI + aj(dI)

◆!
vD(1 +m�)� dI , m 2 {0, n� 1} (1.2)

A’s expected payo↵ function under a defensive infrastructure technology:

uA =

 
1�

m+1Y

i=1

pD(dI , ā)

!
VA � c(ā) , m 2 {0, n� 1}

=

 
1�

m+1Y

i=1

✓
dI

dI + aj

◆!
vA � ↵

m+1X

i=1

ai, m 2 {0, n� 1} (1.3)

The agents’ expected payo↵ functions in the case of individual node defense, d̄ = (d1, . . . , dn),

is provided at the beginning of Section 3.2 in equations 1.4 and 1.5.

2.7 – Summary

My paper modifies the two-agent weakest-link multiple-battlefield contest framework in Clark

and Konrad (2007) in four ways. First, I allow the defender to decide between defending

a single node or a network of n nodes. Second, I modify the value to the defender of a

successful defense to be increasing in the number of battlefields. Though the value to the

defender of a successfully defense is increasing in n, the vulnerability of the weakest-link

network is also increasing in n. This captures the idea of the e�ciency versus security

10



trade-o↵ in observed in networks (Morselli et al., 2007; Krebs, 2002). Third, I consider a

sequential move framework similar to Powell (2009) and Goyal and Vigier (2014), where

the attacker allocates resources to battlefields only after observing the defender’s network

structure and defensive allocations. Finally, I solve this model for both a setting with a

defensive infrastructure technology and a setting where each node is defended individually.

In the following section, I solve for the equilibrium resource allocations in both the infrastructure

and individual node defense settings. I then analyze D’s equilibrium decision in each setting

to connect their network or isolate the high-value node (i.e. m = n� 1 or m = 0).

1.3 Equilibrium Results and Analysis

In this section, I first solve for the equilibrium allocations of the model described above and

analyzeD’s decision to connect or isolate the high-value node. I then consider the same model

with individual node defense, d̄ = (d1, . . . , dn), rather than infrastructure defense to better

understand the impact of an infrastructure technology in the lottery contest framework. The

following result in Lemma 1 arises in many network defense settings, though it is essential

to establish immediately to avoid confusion while discussing later results.

Lemma 1. If node i is not in the component containing the high-value node (i /2 C), then

A does not allocate resources to attack i (a⇤
i
= 0).

Proof. Proof in Appendix A.

Due to the result in Lemma 1 and for notational and argumentative simplicity, the remainder

of my analysis will only consider the nodes in the component containing the high-value node.

That is, all of the equilibrium allocations and analysis in this section pertain only to nodes

11



i 2 C. Furthermore, in Section 3.2, I consider the setting where D allocates resources to

individual nodes (d̄ = (d1, . . . , dn)). A similar trivial proof can be shown that d⇤
i
= 0 if i /2 C.

1.3.1 Infrastructure Defense

Equilibrium Allocations

Before solving for D and A’s equilibrium allocations, it is essential to discuss two initial

lemmas. The first of these establishes that A distributes resources symmetrically across the

weakest-link network containing the high-value node:

Lemma 2. Consider a sequential network defense contest between a defender, D, and an

attacker, A, where victory is determined by a weakest-link versus best-shot lottery contest. If

D allocates defensive resources with an infrastructure technology, dI , and A allocates attack

resources to each node individually, ā = (a1, . . . , an)), A will optimally distribute resources

uniformly across all nodes in the component containing the high-value node (a⇤
i
= a

⇤
j
=

a
⇤ 8 i, j 2 C).

Proof. Proof in Appendix A.

A successful attack only requires that A is victorious at one of the nodes in C. Furthermore,

because there do not exist asymmetries across nodes, the marginal benefit from attacking

each node is equivalent.

The second important initial lemma establishes that A is deterred from attacking if D has

a su�cient level of resources defending the network:

Lemma 3. Consider a sequential network defense contest between a defender, D, and an

attacker, A, where victory is determined by a weakest-link versus best-shot lottery contest. Let

12



D allocate defensive resources with an infrastructure technology, dI , and A allocate attack

resources to each node individually, ā = (a1, . . . , an)). A does not attack if D allocates

su�ciently high defensive infrastructure
⇣
a
⇤ = 0 if d

⇤
I
� vA

↵

⌘
. D does not allocate defensive

resources beyond the point at which A does not attack
⇣
d
⇤
I
 vA

↵
if a

⇤ = 0
⌘
.

Proof. Proof in Appendix A.

This occurs when the risk of an unsuccessful attack, and therefore the waste of e↵ort or

resources, outweighs the potential prize to A from capturing the valuable asset. For example,

a cybercriminal should not spend time or use sophisticated tools attempting to breach the

network of a security-conscious business that does not o↵er much value to the attacker.

A would be better o↵ targeting firms with worse security or more valuable assets (banks,

hospitals, government agencies/municipalities, etc.).

Let ⌫ =
vD

vA/↵
represent the ratio of cost-adjusted values of the high-value node for D and

A. This will be used throughout the remainder of this paper for notational convenience.

In the following proposition, I introduce the equilibrium allocations for D and A. The first

equilibrium allocation corresponds to a state where D provides full security and as a result,

A does not bother attacking the network. The second equilibrium allocation corresponds to

a state where D does not allocate enough resources to deter A from attacking the network.

Proposition 1. Consider a model of sequential network defense between a defender, D,

and an attacker, A. D connects m 2 {0, n � 1} low-value nodes to a high-value node and

allocates infrastructure defense, dI , that uniformly protects the network. A observes D’s

choices and allocates attack resources ā = (a1, . . . , an) to each node. D has a weakest-link

objective, receives vD(1 +m�) from a successful defense, and has linear costs. A has a best-

shot objective, receives vA from a successful attack, and has linear costs with the relative

price of attack resources to defense resources represented by ↵. The outcome at each node is

13



determined by a lottery contest success function. Given the exogeneous parameters, there exist

two types of subgame perfect equilibrium allocations that can arise: Attack or Deterrence.

1. Attack: A uniformly allocates a positive level of attack resources across the component

containing the high-value node (a⇤
i
= a

⇤
> 0 8 i 2 C). If ⌫ <

m+ 2

(m+ 1)(1 +m�)
, D and

A’s subgame perfect equilibrium allocations, (d⇤
I
, a

⇤ 8 i), are:

d
⇤
I
= ⌫

m+1
vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2

, and

a
⇤ = ⌫

m+1
vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2 
m+ 2

⌫(m+ 1)(1 +m�)
� 1

�
.

2. Deterrence: D allocates a su�ciently high level of defensive infrastructure such that

A does not allocate resources to attacking D’s network (a⇤
i
= a

⇤ = 0 8 i). If ⌫ �
m+ 2

(m+ 1)(1 +m�)
, D and A’s subgame perfect equilibrium allocations, (d⇤

I
, a

⇤ 8 i),

are:

d
⇤
I
=

vA

↵
, and

a
⇤ = 0.

Proof. Proof in Appendix A.

Figure 1.2 below shows the regions corresponding to each type of equilibrium. Note that

I use � = 0.1 to help illustrate, however for all values of � > 0, each region exists and

⌫ =
n+ 1

n(1 + (n� 1)�)
is decreasing and convex. As � increases (decreases), the area of region

Z decreases (increases). This follows our intuition – as � increases, D receives a higher payo↵

from connecting nodes to her high-value node and therefore has more incentive to deter A

from attacking her network when it is fully connected.
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⌫ =
n+ 1

n(1 + (n� 1)�)
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X – Deterrence for m 2 {0, n� 1}
Y – Deterrence for m = n� 1, Attack for m = 0

Z – Attack for m 2 {0, n� 1}

Figure 1.2: Infrastructure Defense: Equilibrium Regions

The first point to note about Proposition 1 is that if D has a high cost-adjusted value relative

to A, she is willing to fully fund security infrastructure to disincentivize A from attacking.

In region X, D will allocate a su�cient level of defensive infrastructure to deter A from

attacking regardless of D’s decision to increase the size of her network. While ⌫ = 2 seems

like a surprisingly low threshold at which point D deters all attacks, it is possible that the

relative price of attacking resources to defensive resources, ↵, is remarkably small, making

⌫ � 2 possibly unlikely to be observed in the real world.15

A second important point is that for a moderate value of ⌫ (region Y), D fully funds security

infrastructure only when her network is connected. If she chooses to isolate the high-value

node, however, then she will not allocate su�cient defensive resources to deter A from

attacking. Notice that the area of region Y increases as � increases. This means region Y can

be thought of as a setting where D values the connectivity of her network (or alternatively,

15For example, sending phishing emails is a relatively inexpensive method of attacking an organization’s
network.
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the payo↵ gained from providing access to the high-value node) relatively more than the

high-value node itself.

Finally, region Z indicates a setting where D has a low cost-adjusted value of the high-value

node relative to A. When this is the case, it follows that D will not have a strong desire

to invest in security to the point of deterring all attacks from A. Furthermore, A is willing

to spend more resources attacking the network due to the relatively high prize she receives

from gaining access to the high-value node. The area of region Z is larger when there are

less gains from increasing access to the high-value node (small �).

In order to further explore these equilibria, it is important to find the associated equilibrium

payo↵s. I provide the payo↵s to D and A below with respect to being in the “Deterrence”

equilibrium (d⇤
I
= vA/↵) or the “Attack” equilibrium (d⇤

I
6= vA/↵).

Proposition 2. Based on the subgame perfect equilibrium allocations in Proposition 1, where

D allocates defensive resources with an infrastructure technology, dI , the subgame equilibrium

profits for D and A, respectively, are

u
⇤
D =

8
>><

>>:

(1 +m�)vD �
vA
↵

if d
⇤
I =

vA
↵✓

1 +m�

m+ 2

◆m+2

(⌫(m+ 1))m+1
vD if d

⇤
I 2

⇣
0,

vA
↵

⌘

u
⇤
A =

8
>>><

>>>:

0 if d
⇤
I =

vA
↵

vA

(
1� ⌫

m

✓
(m+ 1)(1 +m�)

m+ 2

◆m+1 
⌫ � (m+ 1) + (m+ 1)⌫2

✓
(m+ 1)(1 +m�)

m+ 2

◆�)
if d

⇤
I 2

⇣
0,

vA
↵

⌘
,

where d
⇤
I
=

vA

↵
in the “Deterrence” subgame equilibrium and d

⇤
I
2
⇣
0,

vA

↵

⌘
in the “Attack”

subgame equilibrium.

Proof. Proof in Appendix A.

A noticeable feature of these equilibrium payo↵s is that uD is increasing in the size of the

network, n, when in the “Deterrence” equilibrium. This result comes from the assumptions
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in this model that infrastructure defense allows D to defend a single node at the same cost

as n nodes and that there is no cost of maintaining connections. Additionally, it should be

pointed out that under both the “Deterrence” and “Attack” equilibria, D receives a strictly

positive payo↵. In the remainder of this section, I use these equilibrium payo↵s to analyze

D’s connection decision. That is, when should D increase the size of her network, and when

should she isolate her valuable assets?

Connection Decision

D initially decides to connect m = n� 1 nodes to a high-value node or to isolate the high-

value node (m = 0). That is, D chooses to defend a network of size n or of size 1. D should

connect if u⇤
D|m=n�1 � u

⇤
D|m=0. Below, I explore D’s choice for each of the equilibrium regions

shown in Figure 1.2.

Region X:

By Proposition 1, region X corresponds to A being deterred from attacking both connected

and isolated networks. That is,

(d⇤
I
, a

⇤ 8 i) =
⇣
vA

↵
, 0
⌘

for m 2 {0, n� 1}

Therefore, because uD is strictly increasing in n when a
⇤ = 0, D connects her network. This

can also be shown below:

u
⇤
D,X|m=n�1 � u

⇤
D,X|m=0

(1 + (n� 1)�)vD � vA

↵
� vD � vA

↵

(n� 1)� � 0

This always holds, so D always connects in region X. This is a fairly unsurprising result given
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the model framework. Because there are no additional costs for D to defend and maintain

a larger network, and because uD is increasing in �, D will want as large of a network as

possible.

Region Y:

Region Y is more tricky. By Proposition 1, if D decides to fully connect her network, she

will spend su�cient defensive resources to deter A from attacking. However, if D chooses

to isolate her valuable asset, she will not spend su�cient resources to deter A. That is, the

equilibrium allocations are:

(d⇤
I
, a

⇤ 8 i) =

8
>><

>>:

✓
⌫vD

4
,
(2� ⌫)vD

4

◆
for m = 0

⇣
vA

↵
, 0
⌘

for m = n� 1

Note, ⌫ < 2 in region Y of Figure 1.2, so a
⇤
> 0 when D chooses m = 0. Using these

equilibrium allocations, I find that D connects her network when:

u
⇤
D,Y|m=n�1 � u

⇤
D,Y|m=0

(1 + (n� 1)�)vD � vA

↵
� ⌫vD

4

(1 + (n� 1)�)⌫ � ⌫
2

4
+ 1

(n� 1)� � ⌫

4
+

1

⌫
� 1

� � 1

n� 1

✓
⌫
2 + 4� 4⌫

4⌫

◆

This implies the threshold, �̄:

�̄ =
1

n� 1

✓
(⌫ � 2)2

4⌫

◆

such that D connects if � � �̄. That is, if � is su�ciently large, D prefers a connected

network that is fully defended to an isolated network without full defense. Figure 1.3 shows

the connection threshold, �̄, for region Y.
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Figure 1.3: Infrastructure Defense: D’s Connection Threshold in Region Y

Notice that �̄ is decreasing in n and ⌫ (for ⌫ 2 (0, 2)). This corresponds to the comparative

statics:

@�̄

@n
= � 1

(n� 1)2

✓
(⌫ � 2)2

4⌫

◆
< 0

@�̄

@⌫
=

1

n� 1

✓
⌫
2 � 4

4⌫2

◆
< 0

Again, if this �̄ threshold is met, D prefers as large of a network as possible due to the

increasing returns of defense and no maintenance cost of connections. Furthermore, if D

has a cost-adjusted value of the high-value node that is large relative to A, she should be

willing to fund security to the point of deterring A’s attacks. This implies D is more likely

to connect for greater ⌫ because �̄ ⇡ 0. However, for lower values of ⌫, A has a much higher

relative cost-adjusted valuation of gaining access to the component containing the high-value

node. As a result, the threshold of security infrastructure required to deter all attacks is

substantial, and D will not be willing to fund this infrastructure unless n or � are su�ciently

large.

Region Z:
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By Proposition 1, A allocates a strictly positive level of resources to attack either a connected

or isolated network in region Z. The equilibrium allocations for m 2 {0, n� 1} are:

d
⇤
I
= ⌫

m+1
vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2

a
⇤
i
= a

⇤ = ⌫
m+1

vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2 
m+ 2

⌫(m+ 1)(1 +m�)
� 1

�
8 i

Using these equilibrium allocations, I find that D connects her network in region Z when:

u
⇤
D,Z|m=n�1 � u

⇤
D,Z|m=0

⌫
n
vDn

n

✓
1 + (n� 1)�

n+ 1

◆n+1

� ⌫vD

4

1 + (n� 1)� �
✓

1

4⌫n�1nn

◆1/(n+1)

(n+ 1)

� � 1

n� 1

"✓
1

4⌫n�1nn

◆1/(n+1)

(n+ 1)� 1

#

This implies the threshold, �̄:

�̄ =
1

n� 1

✓
n+ 1

(4nn⌫n�1)1/(n+1)
� 1

◆

such that D connects if � � �̄. That is, if � is su�ciently large, D prefers an imperfectly

defended connected network to an imperfectly defended isolated network. Figure 1.4 shows

the connection threshold, �̄, for region Z.
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Figure 1.4: Infrastructure Defense: D’s Connection Threshold in Region Z

Similar to region Y, �̄ is decreasing in ⌫ for ⌫ 2 (0, 2), which corresponds with the following:

@�̄

@⌫
=

n+ 1

(4nn)1/(n+1)(n� 1)

✓
�n� 1

n+ 1

◆
⌫
(n�1)/(n+1)�1

= � ⌫
�2/(n+1)

(4nn)1/(n+1)

= �
✓

1

4nn⌫2

◆1/(n+1)

< 0

An increase in ⌫ implies D has a higher relative cost-adjusted value of successfully defending

her network. Therefore, D will spend more resources on security, while A prefers not to

waste resources on a prize that is relatively less valuable for her. However, as ⌫ decreases,

A is more willing to allocate attack resources to gain access to the high-value node. This

results in D only increasing the accessibility of the high-value node (i.e., the number of nodes

connected to the high-value node) for large values of � or n. The intuition behind this is

that D observes a higher probability of a breach in her network when it is larger, yet she

only stands to benefit from increasing access if the gains o↵ered by a few connections is

substantial, or if there are many beneficial connections that can all be protected uniformly

by a single-cost security infrastructure technology.
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As n gets large, �̄ converges to zero, so there exists some n large enough where � >

limn!1 �̄ = 0:

lim
n!1

�̄ = lim
n!1

1

n� 1

✓
n+ 1

(4nn⌫n�1)1/(n+1)
� 1

◆

= lim
n!1

n+ 1

n� 1

✓
1

41/(n+1)nn/(n+1)⌫(n�1)/(n+1)

◆

=
1

⌫
lim
n!1

1

n
= 0

This means that D will provide complete access to the high-value node when she has a

su�ciently large enough number of nodes to connect. However, if D does not have a large n

(i.e., D is in charge of security at a small business), this may be a more di�cult decision, as

Figure 1.4 shows �̄ is non-monotonic in n for su�ciently small values of ⌫. This means that

when A has a much larger cost-adjusted value of the high-value node relative to D, D will

not be willing to moderately increase access unless the benefit from connecting low-value

nodes to the high-value node is substantial.

1.3.2 Individual Node Defense

Equilibrium Allocations

I now look at the setting whenD allocates defensive resources to each node individually rather

than through a defensive infrastructure technology. This removes the third modification I

originally made to the framework introduced in Clark and Konrad (2007), and allows me

to directly analyze the impacts of the existence of an infrastructure technology in a lottery

contest setting. More explicitly, let d̄ = (d1, . . . , dn) represent D’s defensive allocations across

all nodes in component C, where c(di) = di for all i. The payo↵ functions then become:

uD =
m+1Y

i=1

✓
di

di + ai

◆
vD(1 +m�)�

m+1X

i=1

di (1.4)
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uA =

 
1�

m+1Y

i=1

✓
di

di + ai

◆!
vA �

m+1X

i=1

↵ai (1.5)

Similar to Lemma 2, the following result exists:

Lemma 4. Consider a sequential network defense contest between a defender, D, and an

attacker, A, where victory is determined by a weakest-link versus best-shot lottery contest.

If both D and A allocate resources to each node individually (d̄ = (d1, . . . , dn) and ā =

(a1, . . . , an)), both D and A will optimally distribute resources uniformly across all nodes in

the component containing the high-value node (d⇤
i
= d

⇤
j
= d

⇤ and a
⇤
i
= a

⇤
j
= a

⇤ 8 i, j 2 C).

Proof. Proof in Appendix A.

This follows the same logic as before – there are no asymmetries across the nodes in C,

and A only requires a successful attack on one node to win, so the marginal benefit from

allocating resources (defensive or o↵ensive) to a given node is equivalent across the entire

network. If D does not allocate optimally and instead has more resources defending certain

nodes, then A could improve her likelihood of successfully breaching the network by shifting

all of her resources to the weakly defended nodes.

In addition to the uniform allocation lemma, there also exists a similar result to Lemma 3

in the following:

Lemma 5. Consider a sequential network defense contest between a defender, D, and an

attacker, A, where victory is determined by a weakest-link versus best-shot lottery contest.

Let both D and A allocate resources to each node individually (d̄ = (d1, . . . , dn) and ā =

(a1, . . . , an)). A will not attack a node if D allocates su�ciently high defensive resources to

that node
⇣
a
⇤
i
= 0 if d

⇤
i
� vA

↵

⌘
. D does not allocate defensive resources beyond the point at

which A does not attack a node
⇣
d
⇤
i
 vA

↵
if a

⇤
i
= 0
⌘
.

Proof. Proof in Appendix A.
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The threshold of defensive resources at a given node needed to deter A from attacking that

node is the same in Lemma 3 and Lemma 5. However, in this case, D must individually

allocate this level of resources to each node in the high-value component if she wishes to

deter A from attacking. As D no longer has an infrastructure technology, and therefore

must pay a cost for resources allocated to each individual node, complete deterrence will be

substantially more expensive in this setting.

Below, I provide the equilibrium allocations for D and A across all nodes in the component

containing the high-value node. Again, the first equilibrium allocation corresponds to a

state where D provides high security at each node and A is deterred from attacking. The

second equilibrium allocation corresponds to the state where both D and A provide a strictly

positive level of resources to the defense and attack, respectively, of the network.

Proposition 3. Consider a model of sequential network defense between a defender, D, and

an attacker, A. D connects m 2 {0, n�1} low-value nodes to a high-value node and allocates

defensive resources d̄ = (d1, . . . , dn) to each node. A observes D’s choices and allocates attack

resources ā = (a1, . . . , an) to each node. D has a weakest-link objective, receives vD(1 +m�)

from a successful defense, and has linear costs. A has a best-shot objective, receives vA from

a successful attack, and has linear costs with the relative price of attack resources to defense

resources represented by ↵. The outcome at each node is determined by a lottery contest

success function. Given the exogeneous parameters, there exist two types of subgame perfect

equilibrium allocations that can arise: Attack or Deterrence.

1. Attack: D and A each allocate a uniform and positive level of resources to nodes in

the component containing the high-value node (d⇤
i
= d

⇤ 8 i 2 C and a
⇤
i
= a

⇤ 8 i 2 C).

If ⌫ <
m+ 2

1 +m�
, D and A’s subgame perfect equilibrium allocations, (d⇤ 8 i , a

⇤ 8 i),
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are:

d
⇤ = ⌫

m+1
vD

✓
1 +m�

m+ 2

◆m+2

, and

a
⇤ = ⌫

m+1
vD

✓
1 +m�

m+ 2

◆m+2 
m+ 2

⌫(1 +m�)
� 1

�

2. Deterrence: D allocates a su�ciently high level of defensive resources to each node in

the component containing the high-value node such that A does not allocate resources

to attacking D’s network

(a⇤
i
= a

⇤ = 0 8 i). If ⌫ � m+ 2

1 +m�
, D and A’s subgame perfect equilibrium allocations,

(d⇤ 8 i , a
⇤ 8 i), are:

d
⇤ =

vA

↵
, and

a
⇤ = 0

Proof. Proof in Appendix A.

Figure 1.5 shows the regions corresponding to both types of equilibrium. Note that
n+ 1

1 + (n� 1)�
=

2 when � = 0.5. Therefore, region Y only exists for � > 0.5 and region Y0 only exists for

� 2 (0, 0.5). It is intuitive that for small �, D has a higher relative valuation from isolating

the high-value node than from connecting the network. As a result, she will continue to

fully defend the isolated high-value node even after she stops fully defending the connected

network. The converse is true when � is large, and the individual node defense setting with

� > 0.5 is similar to the equilibria present in the infrastructure defense setting in Section

3.1.
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Y – Deterrence for m = n� 1, Attack for m = 0
Y0 – Deterrence for m = 0, Attack for m = n� 1

Z – Attack for m 2 {0, n� 1}

Figure 1.5: Individual Node Defense: Equilibrium Regions

Individual node defense introduces region Y0, which did not exist in the infrastructure defense

setting. � is small in this region, so D receives little benefit from connecting low-value nodes

to the high-value node. As a result, isolating the high-value node o↵ers a relatively higher

marginal payo↵ than connecting, and the high value of ⌫ means D is willing to fully protect

this node when it is isolated. However, because the connected network is considerably riskier

without o↵ering much additional value compared to the isolated network, D will not allocate

enough resources to deter A from attacking when the network is connected.

Another interesting element of the equilibrium settings is that only regions X and Z exist

when � = 0.5. That is, when each additional connection provides D with a value equivalent

to half the intrinsic value of the high-value node, D will provide (less than) full defense

regardless of network size when her cost-adjusted value is at least twice (less than twice)

that of A.

Proposition 4. Based on the subgame perfect equilibrium allocations in Proposition 3, where
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D allocates defensive resources to each node individually, d̄ = (d1, . . . , dn), the subgame

equilibrium profits for D and A, respectively, are

u⇤D =

8
>><

>>:

vD(1 +m�)� (m+ 1)
vA
↵

if d⇤ =
vA
↵

⌫m+1vD

✓
1 +m�

m+ 2

◆m+2

if d⇤ 2
⇣
0,

vA
↵

⌘

u⇤A =

8
>>><

>>>:

0 if d⇤ =
vA
↵

vA

"
1� ⌫m

✓
1 +m�

m+ 2

◆m+1✓
⌫ +m+ 1� (m+ 1)⌫2

✓
1 +m�

m+ 2

◆◆#
if d⇤ 2

⇣
0,

vA
↵

⌘

where d
⇤ =

vA

↵
8 i 2 C in the “Deterrence” subgame equilibrium and d

⇤ 2
⇣
0,

vA

↵

⌘
8 i 2 C

in the “Attack” subgame equilibrium.

Proof. Proof in Appendix A.

A major di↵erence in these equilibrium payo↵s compared to the infrastructure defense setting

involves the “Deterrence” equilibrium (d⇤ = vA/↵). Here, it is not immediately clear in

the “Deterrence” equilibrium that uD is increasing in the size of the network. In fact, if

vA/↵ > vD�, D receives a lower payo↵ for a larger m. Below, I provide further analysis of

D’s connection decision when nodes are defended individually.

Connection Decision

D initially decides between connecting n � 1 nodes to a high-value node or isolating the

high-value node. That is, D decides whether to defend a network of size n or of size 1. D

should connect if u⇤
D|m=n�1 � u

⇤
D|m=0. This decision is assessed for each of the regions from

Figure 1.5.

Region X:

By Proposition 3, region X corresponds to A being deterred from attacking either the
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connected or isolated network. That is, the equilibrium allocations for m 2 {0, n � 1}

are:

(d⇤ 8 i, a
⇤ 8 i) =

⇣
vA

↵
, 0
⌘

Therefore, D should connect her network when:

u
⇤
D,X|m=n�1 � u

⇤
D,X|m=0

vD(1 + (n� 1)�))� n
vA

↵
� vD � vA

↵

⌫(1 + (n� 1)�)� n � ⌫ � 1

(n� 1)� � 1 +
n� 1

⌫
� 1

� � 1

⌫

This implies the threshold, �̄:

�̄ =
1

⌫

such that D connects if � � �̄. The first point to notice is that if � � 0.5, D will connect for

all ⌫ � 2. In words, this means that D will increase the size of her network if the additional

benefit o↵ered from a connection is at least half the intrinsic value of the high-value node

and if her relative cost-adjusted value is at least twice that of A. If � 2 (0, 2), however, the

threshold �̄ (the minimum value o↵ered from each additional connection) for D is inversely

related to ⌫ (the ratio of cost-adjusted values of the high-value node). This means that D

is more likely to increase the size of her network when A has a relatively lower prize from a

successful attack and is less likely to expend a large amount of attack resources.

Region Y:

By Proposition 3, region Y corresponds to D spending su�cient resources to deter A from

attacking only when D connects her network. If D isolates the valuable node, however, A
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will attack the isolated node. This means the equilibrium allocations are:

(d⇤ 8 i, a
⇤ 8 i) =

8
>><

>>:

✓
⌫vD

4
,
(2� ⌫)vD

4

◆
for m = 0

⇣
vA

↵
, 0
⌘

for m = n� 1

Using these equilibrium allocations, I find that D connects her network in region Y when:

u
⇤
D,Y|m=n�1 � u

⇤
D,Y|m=0

vD(1 + (n� 1)�))� n
vA

↵
� ⌫vD

4

⌫(1 + (n� 1)�) � ⌫
2

4
+ n

(n� 1)� � ⌫
2

4⌫
+

n

⌫
� 1

� � 1

n� 1

✓
⌫
2 + 4n� 4⌫

4⌫

◆

This implies the threshold, �̄:

�̄ =
1

n� 1

✓
⌫
2 + 4n� 4⌫

4⌫

◆

such that D connects if � � �̄. Region Y only exists for � > 0.5 as the upper and lower

bound of the region are equivalent at � = 0.5:

n+ 1

1 + (n� 1)0.5
=

n+ 1

0.5(n+ 1)
= 2

Furthermore, ⌫ < 2 in region Z, which ensures that �̄ is strictly positive. Figure 1.6 shows

the connection threshold for varying values of ⌫ 2 (0, 2):
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Figure 1.6: Individual Node Defense: D’s Connection Threshold in Region Y

Here again is a common result for the connection threshold, �̄, in region Y – as ⌫ increases,

�̄ decreases and D is more likely to connect her network. This can easily be shown for this

region, keeping in mind that ⌫ 2 (0, 2):

@�̄

@⌫
=

1

n� 1

✓
8⌫2 � 16⌫ � 4(⌫2 � 4⌫ + 4n)

16⌫2

◆

=
1

n� 1

✓
⌫
2 � 4n

4⌫2

◆
< 0

However, the more interesting result in this region comes from examining the connection

threshold when n is large:

lim
n!1

�̄ = lim
n!1

1

n� 1

✓
⌫
2 + 4n� 4⌫

4⌫

◆
=

1

⌫

Because ⌫ < 2 in region Y, it follows that �̄ � 0.5 for all network sizes. Therefore, if the

benefit to D from each additional connection is small (specifically less than half the intrinsic

value of the high-value node), D will always prefer to isolate the high-value node. For larger

values of �, though, D will only increase the size of the network if she has a su�ciently high
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relative cost-adjusted value of the high-value node. Furthermore, if � is restricted to the

range (0, 1) – not an unrealistic assumption if one believes the high-value node has more

value than what is o↵ered from each individual connection – then D will never connect her

network if A has a greater relative cost-adjusted value from winning the contest.

Region Y0:

By Proposition 3, region Y0 corresponds to D spending su�cient resources to deter A from

attacking only when D chooses to isolate the high-value node. If D connects her network,

however, A will attack the network. This means the equilibrium allocations are:

(d⇤ 8 i, a
⇤ 8 i) =

8
>>><

>>>:

⇣
vA

↵
, 0
⌘

for m = 0
 
⌫
n
vD

✓
1 + (n� 1)�

n+ 1

◆n+1

, d
⇤


n+ 1

⌫(1 + (n� 1)�)
� 1

�!
for m = n� 1

Using these equilibrium allocations, I find that D connects her network in region Y0 when:

u
⇤
D,Y0 |m=n�1 � u

⇤
D,Y0 |m=0

⌫
n
vD

✓
1 + (n� 1)�

n+ 1

◆n+1

� vD � vA

↵
✓
⌫(1 + (n� 1)�)

n+ 1

◆n+1

� ⌫ � 1

1 + (n� 1)� � (n+ 1)(⌫ � 1)1/(n+1)

⌫

� � 1

n� 1

✓
(n+ 1)(⌫ � 1)1/(n+1)

⌫
� 1

◆

This implies the threshold, �̄:

�̄ =
1

n� 1

✓
(n+ 1)(⌫ � 1)1/(n+1)

⌫
� 1

◆

such that D connects if � � �̄. Note that ⌫ � 2 in region Y0, so ⌫ � 1 > 0. Furthermore,

region Y0 only exists for � 2 (0, 0.5), as � > 0 by definition, and the upper and lower bounds
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of the region are equivalent at � = 0.5:

n+ 1

1 + (n� 1)0.5
=

n+ 1

0.5(n+ 1)
= 2

Figure 1.7 shows the threshold, �̄, for various values of ⌫ > 2.
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Figure 1.7: Individual Node Defense: D’s Connection Threshold in Region Y0

The most immediate result is that D will not connect if ⌫ = 2 in this region. This is because

� 2 (0, 0.5) must be true for region Y0 to exist. However, if ⌫ = 2, then �̄ = 0.5 > � for any

� in region Y0. Another important result here is that the minimum value o↵ered from each

additional connection, �̄, is decreasing as the ratio of cost-adjusted values of the high-value

node, ⌫, increases. This implies that D is more likely to connect for a higher value of ⌫,

which is consistent with the result found in region X. This can be shown by the following
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comparative static:

@�̄

@⌫
=

n+ 1

n� 1

0

BB@

⌫

✓
1

n+ 1

◆
(⌫ � 1)�n/(n+1) � (⌫ � 1)1/(n+1)

⌫2

1

CCA

=
n+ 1

n� 1

✓
⌫

⌫2(n+ 1)(⌫ � 1)n/(n+1)
� (⌫ � 1)1/(n+1)

⌫2

◆

=
1

n� 1

✓
⌫ � (n+ 1)(⌫ � 1)

⌫2(⌫ � 1)n/(n+1)

◆

=
1

n� 1

✓
n(1� ⌫) + 1

⌫2(⌫ � 1)n/(n+1)

◆
< 0

The final point to make about this region is that as n gets large, there exists a strictly

positive minimum value of � needed for D to connect.

limn!1�̄ = lim
n!1

✓
n+ 1

n� 1

✓
(⌫ � 1)1/(n+1)

⌫

◆
� 1

n� 1

◆

=
1

⌫
lim
n!1

n+ 1

n� 1

=
1

⌫

This shows that D’s decision to connect is equivalent between regions X and Y0 for large

values of n. That is, D is more likely to connect as their cost-adjusted value of the high-value

node increases relative to A.

Region Z: By Proposition 3, A allocates a strictly positive level of resources to attack

either a connected or isolated network in region Z. This means the equilibrium allocations

for m 2 {0, n� 1} are:

d
⇤ = ⌫

m+1
vD

✓
1 +m�

m+ 2

◆m+2

8 i

a
⇤ = ⌫

m+1
vD

✓
1 +m�

m+ 2

◆m+2 
m+ 2

⌫(1 +m�)
� 1

�
8 i
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Using these equilibrium allocations, I find that D connects her network in region Z when:

u
⇤
D,Z|m=n�1 � u

⇤
D,Z|m=0

⌫
n
vD

✓
1 + (n� 1)�

n+ 1

◆n+1

� ⌫vD

4

1 + (n� 1)� �
✓

1

4⌫n�1

◆1/(n+1)

� � 1

n� 1

 ✓
1

4⌫n�1

◆1/(n+1)

� 1

!

This implies the threshold, �̄:

�̄ =
1

n� 1

 ✓
1

4⌫n�1

◆1/(n+1)

� 1

!

such that D connects if � � �̄. Note that ⌫ 2 (0, 2) in region Z. This connection threshold

is expressed graphically for various values of ⌫ in Figure 1.8. For very small values of ⌫ and

small n, the connection threshold for D will be great. However, as the network size gets

large, the threshold �̄ converges toward zero.
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Figure 1.8: Individual Node Defense: D’s Connection Threshold in Region Z

34



Similar to previous analyses, �̄ is again decreasing in ⌫ in region Z:

@�̄

@⌫
=

1

(n+ 1)41/(n+1)

✓
� 1

⌫2n/(n+1)

◆
< 0

Therefore, D is more likely to connect her network when she has a higher relative cost-

adjusted value of the high-value node. The intuition for this is that A will expend few

resources attacking the network when she receives a relatively low value from a successful

attack, so D can risk the vulnerability that comes with a larger network.

Similarly to region Z in Section 3.1, as n gets large, �̄ converges to zero, so there exists some

n large enough where � > limn!1 �̄ = 0:

lim
n!1

�̄ = lim
n!1

1

n� 1

 ✓
1

4⌫n�1

◆1/(n+1)

� 1

!

= lim
n!1

1

n� 1

✓
1

41/(n+1)⌫(n�1)/(n+1)

◆

=
1

⌫
lim
n!1

1

n� 1
= 0

Therefore, at a su�ciently large n, D will provide complete access to the high-value node.

However, for small values ⌫, �̄ may be large, and increasing, for small networks. This

threshold will eventually begin decreasing at some larger value of n. When A has a far

greater cost-adjusted value of the high-value node relative to D (small ⌫), though, D will

prefer isolating the high-value node to adding a minor level of access within her network.

1.4 Conclusion

I studied a sequential weakest-link network defense contest where the defender has a choice

of how many nodes to defend. The defender receives additional benefit for each node in the

network; however, with more nodes, the weakest-link network is more vulnerable to attack.
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After the defender decides on the size of the network and allocates defensive resources, the

attacker observes the defender’s choices and allocates attack resources (or does not attack).

Each node is successfully defended with a probability proportional to the resource allocations

of each player. The defender wins the contest if she defends every node in the network

(weakest-link objective), and the attacker wins the contest if she successfully attacks at least

one node in the network (best-shot objective). I consider two settings: (1) the defender

allocates resources to an infrastructure technology which uniformly protects all nodes in the

network, and (2) the defender allocates defensive resources to each node individually. Under

both settings, I examine a defender’s decision to increase the size of their network under

threat from an adversary.

My primary results can be summarized in three main points. First, as the defender’s cost-

adjusted value of an important asset increases relative to the attacker’s value, the minimum

marginal benefit of an additional connection needed for the defender to allow access to

this asset decreases. For example, suppose the defender in this model can remove personal

identifiers from a database to make it less valuable to potential attackers, then the defender

will be able to allow greater access to this database (i.e., more employees or contracting

agents working with the data) without a substantial increase in the network’s vulnerability

(as the attacker is allocating less resources to individual nodes due to a lower valuation of

the asset). This result is ubiquitous across all equilibrium regions and both infrastructure

and individual node defense settings.

The second primary result is that the minimum marginal benefit of an additional connection

needed for the defender to connect their network generally decreases as the potential size of

the network increases. That is, the minimum marginal benefit of an additional connection

needed for the defender to connect is generally smaller when the defender is deciding to

connect twenty additional nodes than when the defender is deciding to connect ten additional

nodes. However, there are a few exceptions to this general rule in specific equilibrium regions.

36



The final primary result involves the distinction between infrastructure defense and individual

node defense. Due to the nature of infrastructure defense, it is not costly for the defender to

increase the size of the network she is protecting. This means that the defender will be able

to deter attacks completely when she has a relatively high cost-adjusted valuation of the

high-value node, and as a result, she will fully connect her network. The same result does

not apply in the individual node defense setting, as the defender may prefer isolating the

high-value node even when she would allocate enough resources to deter attacks regardless of

network size. Another distinction between these settings comes when the defender has only

a slightly larger cost-adjusted valuation of the high-value node than the attacker. Under

these circumstances, the defender will always connect a large network in the infrastructure

defense case, but will not in the individual node defense case unless the marginal benefit of

each additional connection is large. Future research should explore the limitations of this

result when relaxing the assumptions made by this model.

While this paper provides an initial analysis of a network defender’s decision between e�ciency

and security, more work needs to be done to explore this decision. For example, I consider a

simple choice for the defender to either defend an isolated network or a completely connected

network. The next step in this line of research would be to specifically examine the optimal

network size which maximizes the defender’s payo↵. Furthermore, my analysis introduces

infrastructure defense in a lottery contest setting, and I compare results from this setting to

an individual node defense setting. More should be done, however, to explore a setting that

allows for a mixture of infrastructure and individual node defense, as a mixture of these two

defensive systems is much more applicable to real-world security systems. A final potential

direction to extend the research within this paper is through the use of di↵erent functions to

represent the valuation of additional connections within the network. I use a simple linear

model to keep the mathematical analysis simple, though exploring di↵erent functional forms

would likely yield extremely interesting and practical results.
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Chapter 2

An Experimental Study of

Conjectural Equilibrium: Limited

Feedback in a Threshold Public Good

Game

Co-Authored with Michael McBride

2.1 Introduction

In many settings, individuals receive limited feedback about the actions of others. For

example, individuals learn about a macro outcome such as a price without observing the

micro decisions that generate that price, or members of a team learn whether their team

succeeded without observing the individual members’ contributions made on behalf of the

team. Because only partial information about others’ actions is obtained in such settings,

an individual may form a belief that is correct about the macro outcome but not the micro

behaviors, and those incorrect beliefs may persist over time.
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The Conjectural Equilibrium concept (Gilli, 1999) was created to study settings with limited

feedback—what is called imperfect monitoring in the game-theoretic literature. In the

standard Nash Equilibrium, each individual plays a best response to the strategies of the

other players so that each individual is implicitly assumed to have correct beliefs about

other players’ strategies. However, in a Conjectural Equilibrium, each individual chooses a

best response to their beliefs about the other players’ strategies, and their beliefs can be

incorrect as long as their beliefs are not contradicted by the limited feedback received. By

relaxing Nash Equilibrium’s correct-beliefs assumption, the Conjectural Equilibrium concept

thus identifies a richer set of strategies that may emerge in the long run in limited-feedback

settings.

Though limited feedback is a salient feature of many real-world settings and many experimental

studies, the predictive accuracy of the Conjectural Equilibrium concept has not been rigorously

tested in experiments. This paper helps to fill this gap in the literature by experimentally

testing the merits of the Conjectural Equilibrium concept in a limited-feedback setting.

Our main question is: Does the Conjectural Equilibrium concept provide better predictions

of behavior than the Nash Equilibrium concept when individuals have limited feedback?

However, we also seek to examine key assumptions behind the Conjectural Equilibrium

concept to identify why it does or does not outperform Nash Equilibrium. Specifically: Do

subjects persist in holding incorrect beliefs under limited feedback? Do players get stuck in

non-Nash behaviors under limited feedback? And do players choose best responses at similar

rates across feedback settings?

For our setting, we consider a threshold public good (TPG) game in which a public good is

provided only if the combined contributions of the group exceed a known threshold. TPG

games are a natural setting in which to test Conjectural Equilibrium predictions for two

reasons. First, many real-world settings with imperfect feedback have features of TPG

games. For example, many group interactions have a well-defined sense of success (e.g., a
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group of students who want a passing grade on a group assignment or a team of attorneys

who want to win a trial) while also having limited feedback about the contributions by group

members. Second, the set of Conjectural Equilibria in a standard TPG game will di↵er in

concrete ways from the set of Nash Equilibria as feedback becomes more and more limited.

We can thus obtain clear predictions about how the set of Conjectural Equilibria di↵ers from

the set of Nash Equilibria as the amount of feedback changes, thereby allowing for a test of

usefulness of the Conjectural Equilibrium concept.

Our 3⇥ 2-factorial experiment varies the level of feedback and the value of the public good.

Feedback is provided at one of three levels: Full (feedback about the group outcome and

individual actions), Partial (feedback about the group outcome but not individual actions),

and None (no feedback about the group outcome or individual actions). The public good

values takes one of two values: High and Low. In our hybrid design, the subjects in each

experimental session keep the same public good value for forty rounds. Half of the subjects

play twenty rounds under None and then twenty rounds under Partial, and the other half

play twenty rounds under None and then twenty rounds under Full.

In addition to making a decision to contribute in each round, subjects report beliefs about

others’ actions in each round and undertake separate tasks at the end of the experimental

session to measure risk aversion, other-regardingness, and cognitive reflection. These data

allow us to examine why Conjectural Equilibrium does or does not perform well as a

predictive concept. One possibility is that subjects have idiosyncratic traits that lead to

di↵erences in behavior across the feedback conditions beyond what is captured by a standard

model. Subjects might also play dynamic (farsighted) strategies so that their decisions in any

particular round do not maximize their single-period expected payo↵s, and these strategies

may lead to di↵erences in stability across di↵erent feedback conditions.

Overall, we find moderate support for the Conjectural Equilibrium concept’s predictive

power. Strategy profiles that are not Nash Equilibria but are Conjectural Equilibria do
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generally increase in frequency as feedback becomes more limited. Moreover, beliefs are

less accurate as feedback becomes more limited, subjects are less likely to break out of

non-Nash Conjectural Equilibria under limited feedback, and other-regarding preferences do

not interact with changes in feedback. These findings provide experimental evidence that

justifies the key conceptual motivations behind using Conjectural Equilibrium instead of

Nash Equilibrium in limited-feedback settings, namely, incorrect equilibrium beliefs due to

limited feedback and the subsequent e↵ects on behavior.

However, other findings place a limit on Conjectural Equilibrium’s usefulness. For one,

the observed strategy profiles best match our hypotheses when controlling for subjects’ risk

aversion, indicating that risk aversion plays just as strong a role in a↵ecting behavior as does

limited feedback. More problematic is that subjects’ risk aversion interacts with feedback

in a way not accounted for by the theory, which makes precise Conjectural Equilibrium

predictions di�cult to obtain. Convergence in beliefs is also slower under limited feedback

when the public good value is Low, so Conjectural Equilibrium’s predictions are better tested

when actors have relatively long time horizons to reach an equilibrium. Future theoretical

and empirical studies should take these findings into account.

Our paper contributes to two specific literatures. The first is the game-theoretical literature

on non-Nash Equilibrium concepts, e.g., Battigalli et al. (1992); Rubinstein and Wolinsky

(1994); Gilli (1999); Dekel et al. (1999); Azrieli (2009); Esponda (2013); Battigalli et al.

(2015).1 This literature examines how incorrect beliefs can persist in limited-feedback

settings and proposes equilibrium concepts that are better suited to those contexts than

Nash Equilibrium. Among these non-Nash concepts is Conjectural Equilibrium which allows

players to have incorrect beliefs about actions on the equilibrium path, a plausible possibility

under imperfect monitoring (Gilli, 1999). Our paper provides the first experimental test of

1The Conjectural Equilibrium has also been used outside of economics to study limited-feedback settings,
e.g., Wellman and Hu (1998) and Kalashnykova et al. (2021). It has also inspired new equilibrium concepts
in network formation games, e.g., McBride (2006b), McBride (2006c), and McBride (2008).
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the Conjectural Equilibrium concept in any simple economic game.

The second literature is on TPG games (also called “discrete public goods” or “step-level

public goods”). Palfrey and Rosenthal (1984) provided the first game-theoretic examination

of TPG games, and their seminal work has sparked a large body of theoretical and experimental

research. Some theoretical studies include Nitzan and Romano (1990), Bagnoli and Lipman

(1992), Suleiman (1997), Menezes et al. (2001), and McBride (2006a); some experimental

studies include O↵erman et al. (1996), Marks and Croson (1998), Wit and Wilke (1999),

O↵erman et al. (2001), Au (2004), and McBride (2010). Our study is the first theoretical

and experimental examination of TPG games using the Conjectural Equilibrium concept.

Our theoretical analysis shows how the Conjectural Equilibrium concept can be applied to

TPG games with di↵erent levels of feedback, and our experimental results show that the

Conjectural Equilibrium provides mixed predictive power for those limited-feedback TPG

games.

Finally, our paper also contributes to the broader experimental economics literature as a

whole. Deciding how much feedback to provide subjects is a task for any experimental

economist in any experimental study, yet this decision is often made in accordance with

common sense and experience rather than explicit guidance from an equilibrium concept.

Our paper demonstrates not only how the Conjectural Equilibrium concept can be used to

generate predictions, but also that it can have predictive power
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2.2 Theory

2.2.1 Imperfect Monitoring

In game-theoretic notation, a standard normal-form game G is a combination

G = hI, {Si}i2I , {ui}i2Ii, (2.1)

where I = {1, 2, 3, ..., n} is the set of players, Si is the set of strategies for player i 2 I, and

ui is the utility function for player i 2 I.

We add two additional objects to account for imperfect monitoring (limited feedback). First,

we denote each player’s beliefs. Let ⇡i 2 4 (S) be a probability distribution over the set

of strategy profiles that represents i’s beliefs over the strategies being played. Second, we

denote each player’s feedback in the form of an information partition Pi over the set of

strategy profiles S = ⇥i2ISi. Let Pi (s) ✓ S denote the part of the partition that contains

s. Thus, for all i: (i) Pi (s) = Pi (s0) for any s and s
0, s 6= s

0, that are in the same part,

(ii) Pi (s) \ Pi (s0) = ? for any s and s
0, s 6= s

0, that are not in the same part, and (iii)

[sPi (s) = S.

The interpretation of the partition is that if s 2 Pi (s) for player i, then, when the true

profile of strategies played by the players is s, player i cannot distinguish whether the true

state is s or any other s0 2 Pi (s). That is, player i knows that the true state is one of the

strategy profiles in Pi (s) but cannot distinguish which state in Pi (s) is the true state.

A game with perfect monitoring must have perfectly discriminating information partitions,

i.e., for every player i 2 I, it must be that Pi (s) = s for each s 2 S so that Pi (s)\Pi (s0) = ?

when s 6= s
0. Conversely, a game with imperfect monitoring must have at least one (s, s0)

pair, s 6= s
0, with s, s

0 2 Pi (s) for at least one player i 2 I. In this scenario, player i cannot
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always discern the actions of another player.

We can now define a game of imperfect monitoring GIM to be a combination

GIM = hI, {Si}i2I , {ui}i2I , {Pi}i2I , {⇡i}i2Ii. (2.2)

This definition of a game is identical to that of a standard game but with the addition of

the information partition and the beliefs. As we see next, these additions enable a formal

analysis of incorrect beliefs in equilibrium.

2.2.2 Conjectural Equilibrium

Letting bi : 4S ! Si denote i’s (pure) best response function, a (pure) Nash Equilibrium of

game G is a strategy profile s
⇤ = (s⇤1, . . . , s

⇤
n
) such that s⇤

i
2 bi (s⇤) for all i 2 I. However,

there is an equivalent definition that reveals the correct-beliefs assumption that is implicit

in the Nash Equilibrium concept: A (pure) Nash Equilibrium is a combination (s⇤
i
, ⇡

⇤
i
) for

each i 2 I such that (i) s⇤
i
2 bi (⇡⇤

i
) and

(ii) ⇡⇤
i
(s0) =

8
><

>:

1, if s0 = s
⇤
,

0, if s0 6= s
⇤
,

(2.3)

where bi (s) = {s0
i
2 S : ui (s0i, s�i) � ui (s00i , s�i) 8s00i 2 S} is player i’s best-response

correspondence.

In words, each player in a Nash Equilibrium is (i) playing a best response to their beliefs and

(ii) their beliefs are correctly assigning probability 1 to the strategies actually played by the

other players, i.e., each player’s beliefs assign probability 1 to the “true” strategy profile.

However, one criticism of Nash Equilibrium is that the correct-beliefs assumption is too strict
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in settings with imperfect monitoring. With imperfect monitoring, players might learn only

partial information about the actions of other players, and if that feedback is su�ciently

limited, then their beliefs should not necessarily be expected to converge to the truth. The

Conjectural Equilibrium concept is argued to be more appropriate than Nash Equilibrium

when there is imperfect monitoring because it allows players to hold beliefs that are incorrect

as long as they are not violated by available evidence. Thus, the set of Conjectural Equilibria

is the set of all possible steady states that might be reached under any learning dynamic

when learning is constrained by limited feedback in the form of imperfect monitoring.

To define a Conjectural Equilibrium, condition (ii) from the Nash Equilibrium definition is

modified: A (pure) Conjectural Equilibrium is a combination (s⇤
i
, ⇡

⇤
i
) for each i 2 I such

that (i) s⇤
i
2 bi (⇡⇤

i
) and

(ii-a) For any s
0 with ⇡

⇤
i
(s0) > 0, it must be that s0 2 Pi (s⇤) ,

(ii-b) ⇡⇤
i
(s0) = 0 for any s

0
/2 Pi (s⇤) .

(2.4)

Condition (ii-a) allows players’ beliefs to have non-zero probability on a state s
0 that is not

the true state s⇤ as long as s0 and s
⇤ are in the same part of the partition, i.e., s0, s⇤ 2 Pi (s⇤).

That is, player i’s beliefs can incorrectly assign positive probability to a state s
0 that is not

the true state s as long as player i cannot distinguish state s0 from state s⇤. Condition (ii-b)

says that a player is not allowed to hold incorrect beliefs when those beliefs are contradicted

by the feedback, i.e., when the player’s information partition can distinguish the state s
0

from the true state s⇤. Keeping condition (i) unchanged means that both Nash Equilibrium

and Conjectural Equilibrium assume that players select best responses to their beliefs; the

only di↵erence between the two is that Conjectural Equilibrium allows beliefs to be incorrect

as long as they are not contradicted by available evidence, while Nash Equilibrium never

allows beliefs to be incorrect.
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There are three features of Conjectural Equilibria that follow immediately from its definition.

First, every Nash Equilibrium is a Conjectural Equilibrium in which players have correct

beliefs. That fact implies that there will always exist a Conjectural Equilibrium (because

there always exists a Nash Equilibrium, though it might be in mixed strategies). Second,

if the game has perfect monitoring, then the set of Conjectural Equilibria is identical to

the set of Nash Equilibria. Intuitively, an individual’s beliefs must be correct under perfect

feedback because their information partition is perfectly discriminating. Third, if the game

has limited feedback, then there may exist a Conjectural Equilibrium that is not a Nash

Equilibrium because one or more players have incorrect beliefs that are not contradicted

by evidence. It is this third feature that motivates the use of Conjectural Equilibrium as a

concept for settings with limited feedback.

Because the set of Conjectural Equilibria (weakly) increases as feedback becomes increasingly

limited, the equilibrium-selection problem can also worsen as feedback becomes more limited.

This means that the predictive power of Conjectural Equilibrium is not an ability to predict

a single particular strategy profile (i.e., a point prediction) but rather to identify a set of

possible equilibrium profiles. As will be demonstrated in detail below, it is this notion of

prediction that we use in this paper. Although this may seem like a flaw in the Conjectural

Equilibrium concept, the equilibrium-selection problem can exist even with Nash Equilibrium,

so it does not imply that the Conjectural Equilibrium concept is fundamentally di↵erent

from Nash Equilibrium in this regard. At the same time, the relaxation of the correct-beliefs

assumption is both realistic and practical when studying limited feedback. It is our view

that the worsening of the equilibrium-selection problem is merely the cost to be paid for the

added realism of allowing for incorrect beliefs in equilibrium.
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2.2.3 The Threshold Public Good Game

In the standard threshold public good (TPG) game, each i 2 {1, ..., n} chooses si 2 {0, 1}

to maximize utility

ui (s) =

8
><

>:

v � si, if
P

j2I sj � t,

�si, otherwise.
(2.5)

The interpretation is that si = 1 means player i contributed to the public good at cost 1,

while si = 0 means player i did not contribute. If t or more players contribute, then the public

good worth value v is provided to everybody, regardless of whether or not they contributed.

Otherwise, the public good is not provided, and the players do not receive a refund for

their contributions. The no-refund property is appropriate for settings in which the player’s

contribution is an expended e↵ort or resource, and it creates an additional strategic element

to contributing as will be shown below.

Our experiment uses n = 3, t = 2, and v > 1, in which case the game has two types of

pure Nash Equilibria (note that there are also mixed Nash Equilibria). The first is the no-

contribution Nash Equilibrium in which s
i
= 0 for all i. The second is a perfect-provision

Nash Equilibrium with exactly t = 2 contributors.

Proposition 5. In the threshold public good game with n = 3, t = 2, and v > 1:

(a) The set of pure Nash Equilibria includes the no-contribution and perfect-provision

strategy profiles.

(b) The set of pure Nash Equilibria is the same for all levels of feedback.

The proofs of both propositions are in Appendix B, but the intuition is straightforward.

Perfect provision is an equilibrium because both of the two contributors are pivotal while

a third contributor would be redundant. Perfect provision is also e�cient and maximizes
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the sum of players’ utilities. There are
�
n

t

�
=
�
3
2

�
= 3 of these perfect-provision, pure

Nash Equilibria, each with a di↵erent combination of contributors. Each perfect-provision

equilibrium yields inequality in payo↵s because the one non-contributor is a free rider who

benefits from the two contributors’ e↵orts without paying the cost of contributing. The

no-contribution profile is also an equilibrium because contributing alone is worse than not

contributing at all. The no-contribution equilibrium yields equal payo↵s, but it is ine�cient

because each individual’s payo↵ is strictly higher if the threshold is met. Having just a

single contributor cannot be a Nash Equilibrium because the sole contributor is better o↵

not contributing and because one of the non-contributors can become a pivotal contributor

by contributing. Similarly, three contributors is not a Nash Equilibrium because any of the

contributors would be better o↵ becoming a free rider.

2.2.4 Limited Feedback in the Threshold Public Good Game

We consider three feedback settings in the TPG game. Perfect monitoring consists of

perfectly-discriminating information partitions, i.e., P PERFECT

i
(s) = {s} for each s 2 S.

We will consider three limited-feedback settings that progressively reduce the feedback from

this perfect monitoring benchmark.

The first is what we call Full feedback. Our Full feedback is not perfect monitoring, but we

call it Full because it is su�cient feedback so that the set of Conjectural Equilibria equals

the set of Nash Equilibria. Specifically, Full feedback is when the subject knows their own

contribution choice and learns the exact number of other contributors in their group but

does not learn the identities of other contributors. Letting the players be denoted as i, j,

and k, with s = (si, sj, sk) so that i’s strategy is listed first in s, then player i’s Full feedback
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information partition is:

P
FULL

i
(s) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

{(0, 0, 0)} , if s = (0, 0, 0) ,

{(0, 1, 0) , (0, 0, 1)} , if s 2 {(0, 1, 0) , (0, 0, 1)} ,

{(0, 1, 1)} , if s = (0, 1, 1) ,

{(1, 0, 0)} , if s = (1, 0, 0) ,

{(1, 1, 0) , (1, 0, 1)} , if s 2 {(1, 1, 0) , (1, 0, 1)} ,

{(1, 1, 1)} , if s = (1, 1, 1) .

(2.6)

Observe how the number of other contributors is the same for each strategy profile within

the same part of the partition.

With Partial feedback, each player knows their own contribution and learns whether the

good is provided or not but not the exact number of contributions. The Partial feedback

information partition is

P
PARTIAL

i
(s) =

8
>>>>>>><

>>>>>>>:

{(0, 0, 0) , (0, 1, 0) , (0, 0, 1)} , if s 2 {(0, 0, 0) , (0, 1, 0) , (0, 0, 1)} ,

{(0, 1, 1)} , if s = (0, 1, 1) ,

{(1, 0, 0)} , if s = (1, 0, 0) ,

{(1, 1, 0) , (1, 0, 1) , (1, 1, 1)} , if s 2 {(1, 1, 0) , (1, 0, 1) , (1, 1, 1)} .
(2.7)

Observe that the strategy profile can be perfectly discerned by i if i is the only non-

contributor or if i is the only contributor, but it cannot be perfectly discerned if the good is

not provided and i does not contribute or if the good is provided and i contributes.

In the None feedback setting, the player knows their own contribution but learns nothing

about the contributions of other players and whether or not the good is provided. The None
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feedback information partition is

P
NONE

i
(s) =

8
><

>:

{(0, 0, 0) , (0, 1, 0) , (0, 0, 1) , (0, 1, 1)} , if s 2 {(0, 0, 0) , (0, 1, 0) , (0, 0, 1) , (0, 1, 1)} ,

{(1, 0, 0) , (1, 1, 0) , (1, 0, 1) , (1, 1, 1)} , if s 2 {(1, 0, 0) , (1, 1, 0) , (1, 0, 1) , (1, 1, 1)} .
(2.8)

Now player i can only discern whether they contribute or not, so there are only two parts of

the information partition—one for when i contributes and one for when i does not contribute.

Unlike for Nash Equilibirum, the set of Conjectural Equilibria changes as feedback changes.

Proposition 6. In the threshold public good game with n = 3, t = 2, and v > 1:

(a) Under Full feedback, the set of pure Conjectural Equilibria is equivalent to the set

of pure Nash Equilibria, i.e., it consists of the no-contribution and perfect-provision

strategy profiles.

(b) Under Partial feedback, the set of pure Conjectural Equilibria includes the pure Nash

Equilibria and the three-contributor strategy profile.

(c) Under None feedback, the set of pure Conjectural Equilibria includes the pure Nash

Equilibria, the three-contributor strategy profile, and the one-contributor strategy profile.

Figure 2.1 summarizes the pure Conjectural Equilibria for the three feedback settings. Each

number corresponds to the number of contributors in a strategy profile. For each feedback

setting, the dark gray for 2 signifies an e�cient, perfect-provision equilibrium with two

contributors, and the light gray denotes an ine�cient equilibrium. Under Full feedback, there

is only the e�cient, perfect-provision (two-contributor) equilibrium and the ine�cient, no-

contributor equilibrium. These are the two Nash Equilibria, which correspond to Conjectural

Equilibria that happen to have correct beliefs. That 1 and 3 are not shaded in the top row

indicates there is no equilibrium with one or three contributors under Full feedback.
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Figure 2.1: Summary of Conjectural Equilibria in the Threshold Public Good Game
Dark gray denotes e�cient equilibrium, light gray denotes ine�cient equilibrium, and

white denotes not equilibrium.

The light gray for 3 under Partial feedback indicates that there exists a Conjectural Equilibrium

where subjects have incorrect beliefs. Such can be the case, for example, if each player

believes that they are one of two contributors, not realizing that there is a third contributor.

However, having one contributor cannot be a Conjectural Equilibrium strategy profile because

a player who contributes but learns that the public good was not provided will be able to infer

that they were the only contributor, and thus know they are better o↵ by not contributing.

Any pure strategy profile can be sustained as a Conjectural Equilibrium under None feedback.

If the player believes that they are pivotal, a belief that is not violated when there is None

feedback, then contributing is a best response. If the player believes that they are not pivotal,

which is another belief that is not violated, then not contributing is best response.

That the set of equilibria increases as feedback decreases is a direct consequence of having

more beliefs possible in equilibrium, yet the structure of the information partitions places

constraints on how the set of equilibria increases. If we assume that individuals reach a

Conjectural Equilibrium but do not know which Conjectural Equilibrium they will reach, we

can at least say that when feedback decreases from Full to Partial, then we may expect to

observe an increase in three-contributor profiles but not one-contributor profiles. Continuing

the logic, we may expect to see an increase in one-contributor profiles when feedback

decreases from Partial to None. The changes in the set of Conjectural Equilibria caused
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by changes in feedback thus provide testable predictions to take to the laboratory.

2.3 Experimental Design

The experiment was conducted at the Experimental Social Science Laboratory (ESSL) at the

University of California, Irvine. Subjects were recruited from the ESSL subject pool using

ESSL’s standard recruiting procedures. UC Irvine students register to be in the ESSL subject

pool via an online registration system after learning of ESSL from fellow students or email

announcements. Members of the ESSL Subject Pool then receive emails about upcoming

experimental sessions, and they are invited to sign up for particular sessions. They can sign

up for at most one session for each experimental study. Subjects who have signed up receive

a reminder email before the session.

Each participant received a $10 show-up payment as well as additional earnings based on

their decisions made during the experiment. Each experimental session lasted about 55

minutes, and subjects earned about $20 on average for participating in one session. All

payments were made electronically using Zelle, Paypal, or Venmo.

The experiment took place remotely, with subjects entering the experiment at the scheduled

time using a special URL that brought them to our oTree experimental software (Chen

et al., 2016). This experiment involved no deception, and all decision tasks and payment

information were clearly explained via on-screen instructions. These general procedures

conform to the standard practice in experimental economics and the protocol narrative

approved by our Institutional Review Board (HS #2011-8378). This study was pre-registered

with the Open Science Foundation in October 2023 before we conducted our experimental

sessions.2 All experimental sessions were conducted in accordance with our pre-registration.

2See “Testing Conjectural Equilibrium Predictions: The E↵ect of Feedback in Threshold Public Good
Games,” DOI 10.17605/OSF.IO/PBK6W.
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The experiment featured a 3⇥ 2 hybrid design with: the three levels of feedback examined

above, i.e., Full, Partial, and None; and two values of the public good, i.e., High (v = 4) and

Low (v = 1.6). Each subject was treated with a single value of the public good (either high

or low) and two levels of feedback (either None and Partial or None and Full). We use a

within-subject design for None/Partial and None/Full to conserve subjects. Additionally, we

are not concerned about information spillover between the two feedback settings a subject

is treated with because they do not receive any feedback under None that might a↵ect their

decisions in the Partial or Full feedback setting.

Each experimental session consisted of four decision-making parts and a questionnaire. The

full details of the experimental design (including screenshots of the experimental software)

are available in a supplemental appendix available from the authors.

2.3.1 Part I: TPG Game with None Feedback (20 Rounds)

Part I consisted of twenty rounds of the TPG game with None feedback. Each subject

was randomly assigned into a group of three and then participated in twenty rounds with

those same subjects for the entire twenty rounds. During each round, each subject made

two decisions. The primary decision is to contribute or not contribute to the TPG. As is

standard in experimental economics, we used neutral language to describe the decision, i.e.,

we used “IN” and “OUT” in place of “contributing” and “not contributing,” respectively.

If two of more subjects chose IN, then each group member received a “prize;” otherwise,

no prize is received. We did not mention a “public good.” The subject made this IN-OUT

decision by selecting either the IN radio button or the OUT radio button.

The secondary decision is to report their belief about the contributions of the other two

subjects in their three-subject group. Each participant assigned a percentage likelihood

to each of the following possible outcomes: zero other contributors, one other contributor,
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and two other contributors. Truthful reporting is incentivized via a prediction payo↵ with

a larger payo↵ received for reporting beliefs that are closer to the realized contributions.

The elicited-beliefs data enable us to test whether subjects are playing single-period best

responses as is assumed by the theory. Their decisions are made o�cial by clicking a “Next”

button that is activated after inputting beliefs that sum to 100% and choosing either IN or

OUT.

The IN-OUT and belief-reporting decisions for a single round were made on a single decision

screen. Figure 2.2 shows the decision screen for a Part II round with High value (v = 4) and

Full feedback. In Part I with None feedback, the “Outcomes” columns in the right part of

the history box were entirely removed, so the history box only reported the subject’s own

selections.

At the conclusion of the entire experimental session, one of these twenty rounds was randomly

selected for payment based on a subject’s contribution decision and overall group’s public

good provision, and another round was randomly selected for payment based on the correctness

of a subject’s beliefs. We randomly choose two rounds to mitigate subjects hedging on their

reported beliefs and contribution decision.

Each subject was given a fixed amount of time to complete their decisions. This timer

lasted 60 seconds for rounds one through five, 50 seconds for rounds six through ten, and

40 seconds for the remaining ten rounds. If a subject did not submit their decisions before

the timer expired, then the computer randomly selected IN or OUT for their contribution

decision with equal likelihood (and their beliefs were set at 0% for each of the three possible

outcomes). If such a round was selected for the belief payment, then a belief payment of $0

was given. If such a round was selected for the IN-OUT decision payment, then the payment

was determined by the random IN-OUT computer selection and the overall group outcome.
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Figure 2.2: Decision Screen with High Value, v = 4, and Full Feedback
The Partial feedback condition is identical except the “# Others In” and “Prediction

Payment” columns are entirely removed. The None feedback condition has all “Outcomes”
columns removed.

2.3.2 Part II: TPG Game with Partial/Full Feedback (20 Rounds)

Part II was identical to Part I except for the change in feedback provided in the on-

screen history table. Two of the twenty rounds were randomly selected from Part II (with

replacement) at the end of the experimental session for the prediction and IN-OUT payments,

as in Part I.

Approximately half of the subjects completed twenty rounds with Partial feedback, in which
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the decision-screen history box only reported “Prize received” and “IN-OUT Payment” for

the “Outcomes” columns. The other half of subjects completed twenty rounds with Full

feedback which consisted of all columns shown in Figure 2.2. The twenty rounds of Part II

were done without knowledge of the earnings from Part I (because those are not revealed

until the end of the session).

2.3.3 Part III: The Risk-elicitation Task

Part III is a risk-elicitation task. Following a similar framework for measuring risk aversion

as established in Binswanger (1980), we had the subjects choose one of five risky lotteries.

• Option 1: A 50% chance of earning $2.00 and a 50% chance of earning $2.00

(the sure-thing).

• Option 2: A 50% chance of earning $3.00 and a 50% chance of earning $1.50.

• Option 3: A 50% chance of earning $4.00 and a 50% chance of earning $1.00.

• Option 4: A 50% chance of earning $5.00 and a 50% chance of earning $0.50.

• Option 5: A 50% chance of earning $6.00 and a 50% chance of earning $0.00

(the highest expected payo↵).

This task is done without knowing the payments from Parts I and II of the experiment to

prevent payo↵ spillover. It is also incentivized, i.e., after the subject selected their lottery,

then the computer randomly selected one outcome based on the probabilities given, and the

subject is paid the respective outcome.
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2.3.4 Part IV: The Charity-dictator Task

Part IV is a dictator game with a charity of the subject’s choice. The subject is presented

with information about four di↵erent charities: Amnesty International, the United Nations

Childrens Fund (Unicef), Doctors without Borders, and the American Cancer Society. The

subject selected one of these four charities and then decided how much of $3 to give to that

charity, keeping the remainder for themselves.

This task is done without knowing the payments from Parts I, II, and III of the experiment

to prevent payo↵ spillover. The amount a subject gave to the charity they selected was

donated to the corresponding charity after we ran all our experimental sessions.

2.3.5 Questionnaire

After the end of Part IV, each subject answered a six-page questionnaire. The first page asked

the subject to report their age, gender, race, first language, and college major. The second

page showed their selections from their history box in Part I (None feedback treatment) and

presented a list of strategy descriptions. They then selected at least one strategy description

from the list that best matched the actions they made. A third page gave the subject a

free-response text box so they can o↵er a description of their choices in Part I in their own

words. The fourth and fifth pages were the same as the second and third pages, respectively,

except they were for Part II decisions (Partial or Full feedback treatment). The sixth page

asked subjects to complete three Cognitive Reflection Task questions (Frederick, 2005).

After completing the questionnaire, the subject was shown a summary results screen that

reported and explained the payments received for each part of the experiment.
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2.4 Hypotheses and Moderating Factors

The following hypotheses were provided in our pre-registration. Our main hypothesis predicts

that strategy profiles that are Conjectural Equilibria in one experimental feedback condition

but not another will be more likely to occur in the former.

Hypothesis 1. For each value of the public good:

(a) The three-contributor Conjectural Equilibrium will occur with higher frequency under

Partial than under Full feedback.

(b) The one-contributor Conjectural Equilibrium will occur with higher frequency under

None than under Partial or Full feedback.

Evidence in support of Hypothesis 1 supports an argument in favor of using Conjectural

Equilibrium to generate predictions for settings with limited feedback. However, there

are various moderating factors that might reduce the chances of finding strong support for

Hypothesis 1, and various features of our experimental design are intended to help us better

understand the reasons we find support or reject Hypothesis 1. The remaining hypotheses

examine these possibilities in more detail.

Our next three hypotheses test three key underlying assumptions of Conjectural Equilibrium.

One assumption is that beliefs decrease in accuracy as the feedback decreases. If this is not

the case, then an equilibrium concept that explicitly considers how beliefs depend on feedback

will not be very useful. Another assumption is that individuals play best responses to their

beliefs no matter their feedback level. If this is not the case, then an equilibrium concept

that assumes that players play best responses to their beliefs will not be useful. A third

assumption is that subjects are more likely to stay in a strategy profile when that profile is

a Conjectural Equilibrium than when it is not a Conjectural Equilibrium. If this is not the
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case, then the Conjectural Equilibrium concept is not useful as a predictor of steady states

for di↵erent levels of feedback.

Hypothesis 2. For each value of the public good, the accuracy of subjects’ beliefs decreases

as feedback decreases from Full to Partial to None.

Hypothesis 3. For each value of the public good and feedback condition, the frequency of

payo↵-maximizing behavior given reported beliefs is the same.

Hypothesis 4. For each feedback condition and value of the public good, the frequency with

which a subject changes their contribution decision from round t � 1 to round t is lower if

their group played a Conjectural Equilibrium profile for that feedback setting in round t� 1.

Observe that Hypotheses 3 and 4 may be rejected because of an important moderating

factor, namely, the use of dynamic strategies by the subjects. In a learning environment,

both the Conjectural Equilibrium and Nash Equilibrium concepts are interpreted as long-run

steady states after learning and experimentation has occurred, i.e., after several periods of

interaction. However, during Part I or Part II of the experiment, subjects might continue

to try out di↵erent strategies to learn about others actions (i.e., experimentation) or play

history-dependent strategies (e.g., conditionally cooperate) in an attempt to influence the

future decisions of other subjects. Such dynamic strategies involve choosing an action that

is not a single-period best response as is assumed by both Conjectural Equilibrium and Nash

Equilibrium, so Conjectural Equilibrium predictions may fail because a steady state has not

been reached. Our analysis will consider this possibility, and we will also ask subjects about

their use of dynamic strategies.

Our final two hypotheses are concerned with other possible moderating factors. The first

of these is attitudes towards risk. The Conjectural Equilibrium concept assumes that

individuals’ risk attitudes are constant across feedback settings, but it may be that subjects’
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risk attitudes are specific to the feedback condition.3 If so, then we may find di↵erences

in behavior across feedback conditions for a reason other than what is suggested by the

Conjectural Equilibrium concept, namely, inaccurate beliefs. Our fifth hypothesis tests

whether risk preferences cause behavioral changes across feedback conditions.

Hypothesis 5. The impact of risk preferences on contribution rates does not di↵er by

feedback condition.

Risk attitudes may have other moderating e↵ects on behavior. For example, a highly risk

averse individual may be willing to contribute even if they believe it highly likely that there

are two other contributors because their contribution reduces the risk of not providing the

public good. If all group members are highly risk averse, then three-contributor profiles

may be common even under Full feedback, and they might be common under Partial or

None because of the risk aversion and not the limited information. To control for these

possibilities, we will control for subjects’ risk aversion in our regression analysis.

Our last moderating factor is the presence of social preferences. Like risk aversion, social

preferences may lead to behavior that is not expected-payo↵ maximizing, and the social

preferences may interact with the feedback treatment. For example, fairness concerns may

be highly salient to subjects under Full feedback but less salient when they do not learn

as detailed of information about others’ contributions under Partial or None feedback. Our

sixth hypothesis tests whether social preferences a↵ect behavior di↵erentially across feedback

conditions.

Hypothesis 6. The impact of other-regarding preferences on contribution rates does not

di↵er by feedback condition.

Social preferences may also a↵ect contributions similarly across all treatments (e.g., an other-

3We focus here on risk aversion, but there is some theoretical work on the impact of ambiguity aversion
on learning and belief formation in limited-feedback settings, e.g., Battigalli et al. (2019) and Battigalli et al.
(2019).
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Table 2.1: Session-by-session Breakdown

Session# Feedback Treatment Value Treatment # Subjects Average Payo↵

Session 1 None / Full Low 24 $17.95
Session 2 None / Partial Low 21 $19.06
Session 3 None / Full High 21 $21.11
Session 4 None / Partial High 15 $25.39
Session 5 None / Partial High 15 $22.04
Session 6 None / Full Low 18 $17.55
Session 7 None / Partial Low 18 $17.45
Session 8 None / Partial High 15 $21.51
Session 9 None / Full High 9 $22.29
Session 10 None / Full High 15 $18.65

regarding subject might always contribute regardless of their beliefs), so we will control for

social preferences in our regression analysis.

2.5 Results

2.5.1 Descriptive Statistics

Table 2.1 summarizes the di↵erent sessions, including the di↵erent treatments, number of

subjects, and average payo↵s. As expected, the average payo↵s are lower in the Low public

good value sessions than in the High public good value sessions. Table 2.2 provides summary

statistics for the demographics and characteristics of the subjects in our experiment, e.g.,

the majority of our subjects are Female, Asian, and native English speakers, and many

subjects are in a STEM field. As every session involved a None feedback treatment, the

corresponding columns provide the aggregate summary statistics for subjects that were in

the Low or High public good value treatment. Average risk aversion and charity donation are

greater in the High public good value treatment than in the Low, though these di↵erences

are not statistically significant.
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Table 2.2: Demographics and Characteristics

Feedback Treatment None Partial Full
Value Treatment Low High Low High Low High

Total Subjects 81 90 39 45 42 45
Demographics

Female 77.8% 74.4% 74.4% 80.0% 81.0% 68.9%
White 19.8% 20.0% 12.8% 20.0% 26.2% 20.0%
Asian 56.8% 56.7% 53.8% 53.3% 59.5% 60.0%

Latinx Ethnicity 25.9% 26.7% 25.6% 33.3% 26.2% 20.0%
English as 1st Language 58.0% 65.6% 59.0% 62.2% 57.1% 68.9%

Avg Age 21.19 20.58 20.95 20.09 21.40 21.07
(2.52) (3.06) (2.08) (2.21) (2.87) (3.69)

Education
STEM 45.7% 45.6% 41.0% 28.9% 50.0% 62.2%

Math-involved 43.2% 33.3% 33.3% 37.8% 52.4% 28.9%
Economics/Business 25.9% 22.2% 20.5% 31.1% 31.0% 13.3%

Characteristics
Avg Risk-Aversion 2.65 2.92 2.69 3.02 2.62 2.82

(1.48) (1.50) (1.45) (1.47) (1.51) (1.54)
Avg Charity Donation 1.63 1.89 1.62 1.94 1.63 1.84

(1.19) (1.07) (1.22) (1.09) (1.18) (1.07)
Avg CRT Score 1.70 1.71 1.62 1.42 1.79 2.00

(1.24) (1.20) (1.29) (1.12) (1.20) (1.22)

Table 2.3: Rates of Cooperation and Good Provision

Value Treatment Feedback Treatment Contribution Rate Provision Rate

None 0.47 0.45
(0.01) (0.02)

Low Partial 0.46 0.46
(0.02) (0.03)

Full 0.47 0.50
(0.02) (0.03)

None 0.64 0.71
(0.01) (0.02)

High Partial 0.69 0.85
(0.02) (0.02)

Full 0.66 0.76
(0.02) (0.02)

Table 2.3 shows the individual contribution rate and public good provision rate (i.e., the rate

of meeting or exceeding the threshold) for each treatment. The contribution and provision

rates are higher in the High public good value treatment for each feedback condition. The

provision rate is also higher under Partial feedback than Full for the High public good value,

but it is lower for the Low public good value.
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(a) Percent of outcomes with 3 contributors (b) Percent of outcomes with 1 contributors

Figure 2.3: Percent of Outcomes with Over and Under Contributions

2.5.2 Hypothesis 1

Evidence in support of Hypothesis 1 is mixed. Hypothesis 1(a) predicted that three contributions

should occur more frequently under Partial and None than under Full, but this is rejected by a

simple examination of means in Figure 2.3(a). Contrary to the prediction, three-contributor

profiles occur more frequently under Full feedback than under Partial or None when the

value is High, and they occur at the same rate when the value is Low. However, consistent

with the prediction in Hypotheses 1(b), we see in Figure 2.3(b) that one-contributor profiles

occur more often under None than Partial or Full for both Low and High public good values.

The regression analysis in Table 2.4 adds some nuance in favor of supporting Hypothesis 1.

By the simple test proposed in our pre-registration, we find that three-contributor profiles

occur more frequently under None relative to Full feedback in the Low public good value

treatment (Regression 2), but when we interact the average risk aversion within a group

with the feedback treatment (not in the pre-registration), we find that three contributors

occurs more frequently for risk neutral groups under both None and Partial with a Low

public good value (Regressions 5-6). For a High public good value, three-contributor profiles

never occur more frequently for None and Partial than Full. Thus, by adding additional

controls, we confirm Hypothesis 1(a) for Low but still reject it for High. We do note that
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Table 2.4: Feedback Conditions on Over and Under-contribution

Dependent variable:

(a) Three contributors
Interacting Group Risk Aversion

Low High Low High

(1) (2) (3) (4) (5) (6) (7) (8)

None 0.043 0.062⇤⇤ �0.060 �0.064 0.154⇤ 0.220⇤⇤ �0.024 �0.008
(0.028) (0.028) (0.043) (0.042) (0.088) (0.095) (0.116) (0.121)

Partial 0.005 0.044 �0.053 �0.061 0.235⇤ 0.580⇤⇤⇤ 0.090 0.149
(0.031) (0.034) (0.049) (0.054) (0.124) (0.166) (0.144) (0.179)

Avg group charity 0.009 0.028 0.013 0.028
donation (0.018) (0.031) (0.020) (0.031)

Avg group CRT �0.020 �0.014 �0.035⇤ �0.009
score (0.018) (0.029) (0.019) (0.030)

Avg group risk 0.027⇤ 0.053⇤⇤⇤ 0.068⇤⇤ 0.087⇤⇤⇤ 0.082⇤⇤ 0.079⇤⇤

aversion (0.016) (0.020) (0.027) (0.029) (0.033) (0.036)

None ⇥ Avg group �0.043 �0.059 �0.015 �0.019
risk aversion (0.037) (0.038) (0.042) (0.043)

Partial ⇥ Avg group �0.087⇤ �0.199⇤⇤⇤ �0.053 �0.070
risk aversion (0.047) (0.062) (0.050) (0.061)

Constant 0.064⇤⇤⇤ �0.371 0.267⇤⇤⇤ 0.319 �0.115⇤⇤ �0.498⇤⇤ 0.035 0.119
(0.021) (0.248) (0.036) (0.273) (0.058) (0.250) (0.090) (0.323)

Controls No Yes No Yes No Yes No Yes
Observations 540 540 600 600 540 540 600 600
Adjusted R2 0.002 0.039 0.0003 0.048 0.013 0.058 0.016 0.047

(b) One contributor
Interacting Group Risk Aversion

Low High Low High

(1) (2) (3) (4) (5) (6) (7) (8)

Partial �0.023 �0.050 �0.170⇤⇤⇤ �0.175⇤⇤⇤ �0.509⇤⇤ �0.718⇤⇤⇤ 0.022 0.131
(0.054) (0.057) (0.039) (0.043) (0.224) (0.253) (0.145) (0.164)

Full �0.200⇤⇤⇤ �0.178⇤⇤⇤ �0.147⇤⇤⇤ �0.140⇤⇤⇤ �0.261⇤ �0.131 �0.177 �0.269⇤

(0.048) (0.049) (0.040) (0.041) (0.154) (0.166) (0.134) (0.141)

Avg group charity �0.023 0.025 �0.030 0.027
donation (0.040) (0.034) (0.039) (0.034)

Avg group CRT �0.059⇤ �0.006 �0.039 0.002
score (0.034) (0.032) (0.034) (0.032)

Avg group risk 0.012 �0.013 �0.023 �0.022 �0.019 �0.003
aversion (0.029) (0.021) (0.042) (0.044) (0.030) (0.032)

Partial ⇥ Avg group 0.182⇤⇤ 0.247⇤⇤⇤ �0.062 �0.100⇤⇤

risk aversion (0.083) (0.092) (0.043) (0.050)

Full ⇥ Avg group 0.023 �0.017 0.010 0.045
risk aversion (0.055) (0.061) (0.044) (0.047)

Constant 0.410⇤⇤⇤ 0.135 0.290⇤⇤⇤ 0.268 0.471⇤⇤⇤ 0.221 0.344⇤⇤⇤ �0.007
(0.032) (0.339) (0.027) (0.270) (0.117) (0.367) (0.091) (0.320)

Controls No Yes No Yes No Yes No Yes
Observations 496 496 565 565 496 496 565 565
Adjusted R2 0.028 0.053 0.035 0.043 0.033 0.066 0.037 0.050

Notes: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Controls are group averages/proportions of age, male, white, asian, latinx, native
English speakers, STEM, econ/business, and math-involved majors. Results are robust to grouping Non-binary/Prefer
not to answer with female rather than with male observations. Heteroskedasticity robust standard errors are used.
Results in this table use only the last ten rounds of data for each treatment to capture steady states.
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average risk aversion within a group has a pronounced impact on the likelihood of a three-

contributors outcome, and including the extra controls (e.g, Regression 8 vs Regression 4)

shifts the coe�cients on None and Partial in the direction supporting our hypothesis, despite

not being significantly di↵erent from zero.

The regression results in Panel (b) of Table 2.4 provide further evidence largely in support

of Hypothesis 1(b). By the tests proposed in our pre-registration (Regressions 1-4), we find

that one contribution occurs less frequently under Full feedback than None regardless of the

public good value. It also occurs less frequently under Partial feedback than None for a

High public good value, but there is no di↵erence in frequency across feedback settings for a

Low public good value. When including the interaction of average group risk aversion with

feedback treatment (Regressions 5-8), we find that one contribution occurs less frequently in

Full feedback than None for a High public good value and less frequently in Partial feedback

than None for a Low public good value.

Our regressions use the last ten rounds because the Conjectural Equilibrium concept is

meant to capture steady states after actors have finished learning and experimenting with

strategies. Our results are still mixed but slightly more supportive of Hypothesis 1 when

including the last fifteen rounds or all rounds. Additionally, we drop group-level observations

where at least one subject had their contribution decision made randomly by the computer

due to the enforcement of a hard timer. As Hypothesis 1 measures a group-level outcome,

we only include distinct observations for each group (i.e., the group outcome is not included

for each subject within a group). Results are robust to using a logistic regression (see our

supplemental appendix).
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(a) Average percent predicted on actual
outcome

(b) Average absolute di↵erence between
expected and actual outcome

Figure 2.4: Accuracy of Subjects’ Beliefs

Table 2.5: Feedback Conditions on Belief Accuracy

Dependent variable:

Percent on Actual Outcome Absolute Di↵erence in Expected
and Actual Outcome

Low High Low High

(1) (2) (3) (4) (5) (6) (7) (8)

Partial 3.650⇤⇤⇤ 3.802⇤⇤⇤ 8.230⇤⇤⇤ 8.296⇤⇤⇤ �0.041⇤ �0.039⇤ �0.094⇤⇤⇤ �0.090⇤⇤⇤

(1.258) (1.270) (1.353) (1.386) (0.023) (0.023) (0.020) (0.021)

Full 18.268⇤⇤⇤ 18.075⇤⇤⇤ 10.507⇤⇤⇤ 10.525⇤⇤⇤ �0.180⇤⇤⇤ �0.182⇤⇤⇤ �0.113⇤⇤⇤ �0.119⇤⇤⇤

(1.463) (1.453) (1.289) (1.302) (0.023) (0.023) (0.021) (0.021)

Risk aversion �0.029 �2.076⇤⇤⇤ 0.008 0.017⇤⇤⇤

(0.406) (0.373) (0.007) (0.006)

Charity donation �0.439 �0.499 0.005 0.0002
(0.456) (0.533) (0.008) (0.009)

CRT questions 3.100⇤⇤⇤ �0.817⇤ �0.037⇤⇤⇤ 0.014⇤

correct (0.465) (0.488) (0.008) (0.008)

Constant 34.867⇤⇤⇤ 40.227⇤⇤⇤ 37.380⇤⇤⇤ 45.251⇤⇤⇤ 0.694⇤⇤⇤ 0.471⇤⇤⇤ 0.673⇤⇤⇤ 0.654⇤⇤⇤

(0.678) (5.389) (0.642) (4.741) (0.013) (0.094) (0.012) (0.086)

Controls No Yes No Yes No Yes No Yes
Observations 3,145 3,145 3,503 3,503 3,145 3,145 3,503 3,503
Adjusted R2 0.059 0.072 0.023 0.034 0.020 0.031 0.011 0.020

Notes: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Controls are age, female, white, asian, latinx, native English speaker, STEM,
econ/business, and math-involved major. Results are robust to grouping Non-binary/Prefer not to answer with
female rather than with male observations. We drop observations where subjects’ decision to contribute was made
randomly by the computer due to the enforcement of a hard timer, as these subjects did not have beliefs recorded.
Heteroskedasticity robust standard errors are used.
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2.5.3 Hypothesis 2

Visual confirmation of Hypothesis 2 is seen in Figure 2.4. Figure 2.4(a) displays the average

percent that subjects predicted on the outcome that actually occurred. This percent is

increasing from None to Partial to Full, indicating an increase in belief accuracy as feedback

increases. Figure 2.4(b) displays the absolute di↵erence between subjects’ belief of the

expected number of other contributors in their group and the actual number of other

contributors. This di↵erence is decreasing from None to Partial to Full, again revealing

that subjects’ expected outcomes are closer to actual outcomes as feedback increases.

Table 2.5 presents regression results proposed in our pre-registration that formally test and

confirm Hypothesis 2. Relative to None, the percent subjects predict on the actual outcome is

greater under Partial feedback regardless of public good value, and this percent is higher still

under Full feedback for both public good values (Regressions 1-4). The absolute di↵erence

between subjects’ expected and actual outcome also decreases from None to Partial to Full

feedback (Regressions 5-8). The coe�cients on Full are also significantly di↵erent from the

coe�cients on Partial in most regressions indicating that beliefs are most accurate under the

most feedback. Overall, Hypothesis 2 is strongly confirmed.

2.5.4 Hypothesis 3

We reject Hypothesis 3 that subjects played best responses at equal rates across the three

feedback conditions. Figure 2.5 breaks downs the percent of risk-neutral best responses by

the first 10 rounds, last 10 rounds, and all rounds. Subjects clearly best respond at higher

rates under Full than Partial and None for both values of the public good. However, there

is an increase in best responding as the rounds progress, and the last 10 rounds are driving

the significant di↵erence in the frequency of payo↵-maximizing behavior across feedback

conditions. Our regression results in Table 2.6 tell the same story. After controlling for
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Figure 2.5: Percent of Best Responses Based on Round Number

subjects’ characteristics, the rate of payo↵-maximization is still statistically higher under

Full feedback than None for a Low public good value. Hypothesis 3 is strongly rejected.4

2.5.5 Hypothesis 4

Figure 2.6 shows the frequency with which subjects changed their contribution decision when

in a Conjectural Equilibrium strategy profile and when not in a Conjectural Equilibrium

strategy profile in the prior round. As Hypothesis 4 predicts, subjects change their decision

more frequently when not in a Conjectural Equilibrium profile. Note that every outcome

in the None feedback treatment is a Conjectural Equilibrium, so this provides a baseline

proclivity for how often subjects change their contribution decision. Further evidence supporting

Hypothesis 4 is given in Table 2.7. Regardless of feedback condition and public good value,

being in a Conjectural Equilibrium strategy profile has a strongly significant negative e↵ect

on the likelihood a subject changes their contribution decision in the following round.5

4The results in Table 2.6 are robust to logistic regressions (see our supplemental appendix). We drop
observations for subjects who had their contribution decision made randomly by the computer (i.e., we
dropped a group’s observation if at least one member had a computer-generated random contribution
decision).

5The results provided in Table 2.7 use all but the last round in each treatment, as we care about the
overall stability of subjects’ contribution decisions relative to the outcome experienced. Results are robust
to a logistic regression (see our supplemental appendix). Results are robust to dropping the observations for
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Table 2.6: Feedback Condition on Best Response Rate

Dependent variable:

Best response

Low High

(1) (2) (3) (4)

Partial 0.068⇤⇤ 0.062⇤⇤ �0.002 0.001
(0.030) (0.030) (0.029) (0.029)

Full 0.143⇤⇤⇤ 0.146⇤⇤⇤ 0.126⇤⇤⇤ 0.123⇤⇤⇤

(0.028) (0.028) (0.027) (0.027)

Risk aversion 0.003 �0.028⇤⇤⇤

(0.008) (0.008)

Charity donation �0.029⇤⇤⇤ �0.007
(0.010) (0.011)

CRT questions 0.046⇤⇤⇤ �0.003
correct (0.011) (0.011)

Constant 0.589⇤⇤⇤ 0.726⇤⇤⇤ 0.604⇤⇤⇤ 0.691⇤⇤⇤

(0.018) (0.122) (0.017) (0.100)

Controls No Yes No Yes
Observations 1,575 1,575 1,762 1,762
Adjusted R2 0.014 0.053 0.012 0.028

Notes: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Controls are age, female, white,
asian, latinx, native English speaker, STEM, econ/business, and
math-involved majors. Results are robust to grouping Non-binary/
Prefer not to answer with female rather than with male observations.
Heteroskedasticity robust standard errors are used. Results in this
table use only the last ten rounds of data for each treatment.

Figure 2.6: Percent of Changed Contribution Decisions

That we rejected Hypothesis 3 but confirmed Hypothesis 4 warrants closer investigation,

subjects whose decision to contribute was made randomly by the computer.
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Table 2.7: Conjectural Equilibrium and Changed Contribution Decision

Dependent variable:

Changed contribution decision

Partial Full

Low High Low High

(1) (2) (3) (4) (5) (6) (7) (8)

Conjectural equilibrium �0.181⇤⇤⇤ �0.192⇤⇤⇤ �0.265⇤⇤⇤ �0.231⇤⇤⇤ �0.234⇤⇤⇤ �0.200⇤⇤⇤ �0.135⇤⇤⇤ �0.143⇤⇤⇤

(0.037) (0.036) (0.051) (0.052) (0.031) (0.033) (0.031) (0.030)

Risk aversion 0.003 �0.017 �0.015 �0.002
(0.015) (0.011) (0.011) (0.012)

Charity donation 0.021 0.074⇤⇤⇤ �0.017 0.099⇤⇤⇤

(0.017) (0.016) (0.014) (0.015)

CRT questions �0.002 �0.008 �0.023⇤ 0.002
correct (0.017) (0.017) (0.013) (0.015)

Constant 0.487⇤⇤⇤ 1.332⇤⇤⇤ 0.514⇤⇤⇤ 0.134 0.365⇤⇤⇤ �0.151 0.361⇤⇤⇤ 0.160
(0.031) (0.195) (0.049) (0.189) (0.027) (0.177) (0.024) (0.164)

Controls No Yes No Yes No Yes No Yes
Observations 741 741 855 855 798 798 855 855
Adjusted R2 0.031 0.074 0.036 0.108 0.074 0.106 0.021 0.099

Notes: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Controls are group averages/proportions of age, male, white, asian, latinx, native English
speakers, STEM, econ/business, and math-involved majors. Results are robust to grouping Non-binary/Prefer not to answer
with female rather than with male observations. Heteroskedasticity robust standard errors are used. Results in this table use
all but the last round of data, as subjects cannot change their contribution decision after the last round.

and one explanation is di↵erent rates of convergence to equilibrium under Partial than Full

feedback. Because the Partial-feedback subjects have less information on which to update

their beliefs than the Full-feedback subjects, they cannot accurately update their beliefs

as quickly as the Full subjects, and this may delay their convergence to a steady state.

As a result, subjects may actually be playing best responses less frequently under Partial

than Full, not because their behavior is fundamentally di↵erent under Partial than Full, but

instead because under Partial they are taking longer to experiment and learn before settling

into a steady state.

Table 2.8 provides some evidence in support of this explanation. The negative coe�cient

on round number in Regression 1 indicates that subjects are changing their beliefs less

as the rounds progress under the Low public good value, indicating that their beliefs are

converging. When round number is interacted with feedback in Regressions 2 and 3, we see

that convergence is happening most strongly under Full feedback. Consistent with that belief
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convergence, for a Low public good value, groups are initially less likely to have an individual

change their contribution decision under Full (Regressions 7-9), and this likelihood of at

least one individual changing their contribution decreases faster under Full as the rounds

progress (Regressions 8-9) even when holding fixed whether the group members played a

Conjectural Equilibrium profile in the prior round. All of this evidence supports the story

that convergence to a steady state is slower under Partial than Full when the public good

value is Low. At face value, these findings suggest that we might eventually observe a higher

rate of best responding behavior under Partial-Low if subjects were allowed to play more

rounds.

However, the fact that changes in beliefs were smaller under Partial than under Full (Regressions

4-6) when the public good value is High runs counter to this story. We believe that there

are two reasons for this. First, Partial-feedback subjects had higher provision rates than

Full-feedback subjects (see Table 2.3). Second, many subjects appear to be maximizing the

likelihood of provision rather than maximizing their expected payo↵. Figure 2.7 reports the

percent of subjects who selected di↵erent strategy descriptions to explain their contribution

decisions (subjects could select more than one option). A large majority of subjects selected

“I tried to maximize the chance that the prize will be received” (s1), which is much more than

the two options that corresponded to single-period best responding (s3 and s4). Maximizing

provision (rather than expected payo↵) is an understandable goal under Partial because

feedback only describes provision and not others’ contributions. We suspect that the Partial-

High subjects who focus on provision are frequently in groups with two and three-contributor

profiles for which they—unlike Full-feedback subjects—cannot update their beliefs due to the

Partial feedback that cannot separately distinguish between those profiles. In this instance,

the beliefs stop changing sooner in Partial-High than Full-High, not because they are closer

to the truth but rather because they are not able to discern how to change them. This is

also consistent with what we find in Regressions 10-12, where groups are initially less likely

to have an individual change their contribution decision under Full or Partial feedback than
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Table 2.8: Convergence in Beliefs and Decisions across Feedback Conditions

Dependent variable:

(a) Absolute change in mean beliefs (b) At least one subject in group changed
contribution decision

Low High Low High

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Partial 0.046⇤⇤⇤ �0.024 �0.031 �0.068⇤⇤⇤ 0.006 0.014 �0.157⇤⇤⇤ �0.121 �0.111 �0.189⇤⇤⇤ �0.164⇤⇤ �0.126⇤

(0.016) (0.035) (0.034) (0.015) (0.032) (0.032) (0.042) (0.081) (0.083) (0.037) (0.076) (0.075)

Full �0.015 0.060 0.063⇤ �0.017 0.002 �0.005 �0.374⇤⇤⇤ �0.289⇤⇤⇤ �0.280⇤⇤⇤ �0.247⇤⇤⇤ �0.166⇤⇤ �0.180⇤⇤

(0.016) (0.038) (0.038) (0.014) (0.030) (0.030) (0.040) (0.084) (0.084) (0.042) (0.078) (0.078)

Absolute di↵erence in 0.135⇤⇤⇤ 0.133⇤⇤⇤ 0.131⇤⇤⇤ 0.101⇤⇤⇤ 0.101⇤⇤⇤ 0.104⇤⇤⇤

prior round expected (0.017) (0.017) (0.016) (0.016) (0.016) (0.015)
and actual outcome

Conjectural equilibrium �0.352⇤⇤⇤ �0.346⇤⇤⇤ �0.323⇤⇤⇤ �0.253⇤⇤⇤ �0.250⇤⇤⇤ �0.247⇤⇤⇤

in prior round (0.040) (0.041) (0.042) (0.045) (0.045) (0.044)

Round number �0.005⇤⇤⇤ �0.002 �0.007⇤⇤⇤ �0.007⇤⇤

(0.001) (0.001) (0.003) (0.003)

None ⇥ Round �0.005⇤⇤⇤ �0.005⇤⇤⇤ 0.001 0.001 �0.004 �0.004 �0.004 �0.004
number (0.002) (0.002) (0.002) (0.002) (0.004) (0.004) (0.004) (0.004)

Partial ⇥ Round 0.002 0.002 �0.006⇤⇤⇤ �0.006⇤⇤⇤ �0.007 �0.007 �0.006 �0.006
number (0.002) (0.002) (0.002) (0.002) (0.005) (0.005) (0.005) (0.005)

Full ⇥ Round �0.012⇤⇤⇤ �0.012⇤⇤⇤ �0.001 �0.001 �0.012⇤⇤ �0.012⇤⇤ �0.012⇤⇤ �0.012⇤⇤

number (0.002) (0.002) (0.002) (0.002) (0.005) (0.005) (0.005) (0.005)

Risk aversion �0.005 �0.016⇤⇤⇤

(0.005) (0.004)

Charity donation 0.024⇤⇤⇤ 0.035⇤⇤⇤

(0.005) (0.005)

CRT score 0.005 �0.014⇤⇤⇤

(0.005) (0.005)

Avg group risk 0.018 �0.006
aversion (0.021) (0.017)

Avg group charity �0.002 0.097⇤⇤⇤

donation (0.029) (0.024)

Avg group CRT �0.041⇤ 0.034
score (0.022) (0.026)

Constant 0.235⇤⇤⇤ 0.234⇤⇤⇤ 0.032 0.236⇤⇤⇤ 0.213⇤⇤⇤ 0.250⇤⇤⇤ 1.158⇤⇤⇤ 1.117⇤⇤⇤ 0.706⇤⇤⇤ 1.054⇤⇤⇤ 1.022⇤⇤⇤ 0.401⇤

(0.020) (0.024) (0.068) (0.017) (0.020) (0.053) (0.054) (0.065) (0.249) (0.057) (0.062) (0.224)

Controls No No Yes No No Yes No No Yes No No Yes
Observations 2,911 2,911 2,911 3,286 3,286 3,286 870 870 870 1,024 1,024 1,024
Adjusted R2 0.052 0.056 0.086 0.030 0.031 0.067 0.120 0.120 0.133 0.051 0.051 0.100

Notes: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Controls are age, female, white, asian, latinx, native English speaker, STEM, econ/business, and math-involved majors in Panel (a) and
group averages/proportions of the same variable in Panel (b). Results are robust to grouping Non-binary/Prefer not to answer with female rather than with male observations.
Heteroskedasticity robust standard errors are used. We drop observations a↵ected by a subjects’ decision to contribute being made randomly by the computer. Results in
Panel (b) are robust to logistic regressions.

None, but only under Full is the likelihood of at least one individual in a group changing

their contribution decision decreasing faster as the rounds progress (Regressions 11-12).

2.5.6 Hypothesis 5

The regression results in Table 2.9 lead us to reject Hypothesis 5 that risk preferences do

not impact contribution rates di↵erently across treatments. To test this, we interact risk
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Figure 2.7: Percent of Subjects Reporting Using Strategy
Notes: s1 =“I tried to maximize the chance that the prize will be received.”
s2 = “I tried to get others to pay for the prize without having to pay for it.”

s3 = “I wanted to get my highest payo↵ in each round, not being concerned with future
rounds.”

s4 = “I tried to only select In if I thought there was a high chance of exactly one other
subject going In.”

s5 = “I tried to minimize the chance that I was the only group member who selected In.”
s6 = “My decisions in some rounds were intended to a↵ect my group members’ selections

in future rounds.
A seventh option “Other” is not shown because it was only selected by four subjects.”

preferences on the Partial and Full feedback treatments. If Hypothesis 5 were true, we would

expect these interaction terms to be statistically insignificant, but we instead find that this

is the case for only Partial feedback relative to None under the Low public good value.

Under the High public good value after controlling for subjects’ beliefs and characteristics,

greater risk aversion had a larger impact on the likelihood a subject contributes to the public

good under Partial feedback relative to None. Regardless of public good value or regression

controls, we find that the impact of risk aversion under Full feedback is greater relative to

None.6
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Table 2.9: Risk Aversion and Contribution Decision

Dependent variable:

Contributed
Low High

(1) (2) (3) (4) (5) (6)

Partial �0.060 �0.036 �0.024 0.023 �0.137⇤⇤ �0.159⇤⇤⇤

(0.064) (0.059) (0.058) (0.063) (0.059) (0.059)

Full �0.167⇤⇤⇤ �0.114⇤⇤ �0.125⇤⇤⇤ �0.131⇤⇤ �0.164⇤⇤⇤ �0.135⇤⇤⇤

(0.060) (0.048) (0.048) (0.060) (0.053) (0.049)

Risk aversion 0.004 0.007 �0.014 0.014 0.015 0.011
(0.012) (0.011) (0.011) (0.011) (0.010) (0.010)

Partial ⇥ Risk 0.007 �0.003 �0.010 0.016 0.043⇤⇤ 0.053⇤⇤⇤

aversion (0.021) (0.019) (0.019) (0.019) (0.017) (0.017)

Full ⇥ Risk 0.055⇤⇤⇤ 0.030⇤ 0.038⇤⇤ 0.062⇤⇤⇤ 0.053⇤⇤⇤ 0.043⇤⇤⇤

aversion (0.020) (0.016) (0.016) (0.018) (0.016) (0.016)

Prediction on 1 0.008⇤⇤⇤ 0.008⇤⇤⇤ 0.009⇤⇤⇤ 0.008⇤⇤⇤

other contributing (0.0003) (0.0004) (0.0004) (0.0004)

Prediction on 2 0.003⇤⇤⇤ 0.003⇤⇤⇤ 0.006⇤⇤⇤ 0.005⇤⇤⇤

others contributing (0.0004) (0.0004) (0.0004) (0.0004)

Charity donation 0.052⇤⇤⇤ �0.024⇤⇤

(0.010) (0.010)

CRT questions �0.035⇤⇤⇤ 0.025⇤⇤

correct (0.010) (0.011)

Constant 0.451⇤⇤⇤ 0.037 0.161 0.572⇤⇤⇤ 0.005 0.218⇤⇤

(0.037) (0.038) (0.116) (0.036) (0.042) (0.101)

Controls No No Yes No No Yes
Observations 1,575 1,575 1,575 1,762 1,762 1,762
Adjusted R2 0.007 0.192 0.232 0.019 0.152 0.189

Notes: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Controls are age, female, white, asian, latinx, native
English speaker, STEM, econ/business, and math-involved major. Results are robust to
grouping Non-binary/Prefer not to answer with female rather than with male observations.
Heteroskedasticity robust standard errors used. Results in this table use only the last ten
rounds of data for each treatment.
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Table 2.10: Other-regarding Preferences and Contribution Decision

Dependent variable:

Contributed
Low High

(1) (2) (3) (4) (5) (6)

Partial 0.003 �0.025 �0.025 0.046 �0.044 �0.071
(0.051) (0.047) (0.048) (0.052) (0.050) (0.049)

Full 0.173⇤⇤⇤ 0.023 0.034 �0.091⇤ �0.075 �0.047
(0.052) (0.046) (0.045) (0.055) (0.047) (0.043)

Charity donation 0.060⇤⇤⇤ 0.054⇤⇤⇤ 0.064⇤⇤⇤ �0.062⇤⇤⇤ �0.037⇤⇤⇤ �0.038⇤⇤⇤

(0.015) (0.014) (0.014) (0.015) (0.014) (0.014)

Partial ⇥ Charity �0.026 �0.011 �0.016 0.015 0.021 0.037
donation (0.026) (0.024) (0.024) (0.025) (0.023) (0.023)

Full ⇥ Charity �0.119⇤⇤⇤ �0.036 �0.036⇤ 0.071⇤⇤⇤ 0.032 0.019
donation (0.026) (0.022) (0.021) (0.026) (0.023) (0.022)

Prediction on 1 0.008⇤⇤⇤ 0.008⇤⇤⇤ 0.008⇤⇤⇤ 0.008⇤⇤⇤

other contributing (0.0004) (0.0004) (0.0004) (0.0004)

Prediction on 2 0.004⇤⇤⇤ 0.003⇤⇤⇤ 0.006⇤⇤⇤ 0.006⇤⇤⇤

others contributing (0.0004) (0.0004) (0.0004) (0.0004)

Risk aversion �0.006 0.035⇤⇤⇤

(0.008) (0.007)

CRT questions �0.032⇤⇤⇤ 0.026⇤⇤

correct (0.010) (0.011)

Constant 0.361⇤⇤⇤ �0.040 0.101 0.730⇤⇤⇤ 0.138⇤⇤⇤ 0.163
(0.030) (0.031) (0.114) (0.031) (0.042) (0.100)

Controls No No Yes No No Yes
Observations 1,575 1,575 1,575 1,762 1,762 1,762
Adjusted R2 0.015 0.200 0.230 0.014 0.135 0.185

Notes: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Controls are age, female, white, asian, latinx, native
English speaker, STEM, econ/business, and math-involved major. Results are robust to
grouping Non-binary/Prefer not to answer with female rather than with male observations.
Heteroskedasticity robust standard errors are used. Results in this table use only the last
ten rounds of data for each treatment.

2.5.7 Hypothesis 6

Hypothesis 6 predicts that other-regarding preferences should not impact how often a subject

contributes di↵erently across the feedback conditions. Using donations to charity as a proxy
6The results in Table 2.9 use the last ten rounds of each treatment to test the equilibrium prediction

of Hypothesis 5. We also drop observations where subjects’ decision to contribute was made randomly by
the computer due to the enforcement of a hard timer. Results are robust to a logistic regression (see our
supplemental appendix).
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for other-regarding preferences, the regression results in Table 2.10 provide moderate support

for Hypothesis 6. If Hypothesis 6 is true, we expect to see the interaction between charity

donation and feedback treatment to be statistically insignificant. We find this to be the case

under the High public good value treatment after controlling for subjects’ beliefs. We further

find that the impact of other-regarding preferences on contribution rates is not di↵erent

under the Low public good value treatment for Partial feedback relative to None. The only

exception is that under the Low public good value there is evidence at the ten percent

significance level that higher other-regarding preferences decreases the likelihood a subject

contributes under Full feedback relative to None.7

2.6 Discussion

Our goal was to test the predictive power of Conjectural Equilibrium in a limited-feedback

setting. To this end, we have found a variety of support in favor of using the Conjectural

Equilibrium concept but with some notable evidence that also recommends some caution.

Here, we summarize and comment on our key findings.

Foremost, we find evidence that supports the two main motivating justifications for Conjectural

Equilibrium. First, limited feedback hinders individuals’ ability to form accurate beliefs as

evidenced by reported beliefs becoming less accurate as feedback decreases (Hypothesis 2

confirmed). Second, these inaccurate beliefs can lead individuals to persist in choosing

actions that are Conjectural Equilibria even if they are not Nash Equilibria (Hypothesis 4

confirmed). These two findings provide immediate justification for choosing the Conjectural

Equilibrium concept instead of the Nash Equilibrium concept when making predictions for

limited-feedback settings. The Conjectural Equilibrium allows for less accurate beliefs in

7The regression results in Table 2.10 use the last ten rounds of each treatment to test the equilibrium
prediction of Hypothesis 6. We again drop observations where subjects’ decision was made randomly by the
computer. Results are robust to a logistic regression (see our supplemental appendix).
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equilibrium when there is limited feedback, which in turn can lead to steady states in which

individuals are playing non-Nash Equilibrium strategies.

However, there are three moderating factors that complicate the use of Conjectural Equilibrium

for predictions. The first is that outcomes are very sensitive to risk aversion, which implies

that making precise predictions using the Conjectural Equilibrium Concept requires a knowledge

of the subjects’ risk preferences (see Hypothesis 1 discussion). More problematically, risk

aversion interacts positively with feedback (Hypothesis 5 rejected) such that more risk averse

subjects are more willing to contribute as feedback goes from None to Full. This interactive

e↵ect is su�ciently strong that we had only mixed success in predicting outcomes under

limited feedback (see Hypothesis 1 discussion).

The second moderating factor is a slower convergence to steady state under limited feedback

(see Hypothesis 3-4 discussion). Our results for the Low public good value are consistent

with individuals being less likely to play single-period best responses in early rounds as they

experiment in their contribution decisions and learn about their group members’ contributions,

but then more frequently playing single-period best responses in later rounds after their

beliefs about others’ behavior approaches a steady state. If this assessment is correct and it

takes longer to reach a steady state under limited feedback, then Conjectural Equilibrium

predictions for limited-feedback settings might not be valid until after many rounds of

learning, perhaps more than we had our subjects play.

The third factor is that individuals might have as their objective a goal that is not maximizing

their expected payo↵s. In our TPG experiment, more subjects claim to be maximizing

the likelihood of provision than claim to be maximizing their payo↵s (see Hypothesis 4

discussion), and if true then we would expect a high rate of three-contributor outcomes even

when it is not a Conjectural Equilibrium (or Nash Equilibrium) because three-contributor

outcomes have provision. As a result, we would not see an increase in three-contributor

outcomes when switching from Full to Partial because the rate of three-contributor outcomes
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was already high. The Conjectural Equilibrium concept that assumes expected-payo↵maximization

will be less useful when subjects are not attempting to maximize their payo↵s. Of course,

this shortcoming of Conjectural Equilibrium applies equally to Nash Equilibrium.

These findings reveal both promise and limitations when applying the Conjectural Equilibrium

concept. Theorists are correct when they assert that the persistence of incorrect beliefs is

an important equilibrium phenomenon when individuals have limited feedback, but their

theory should account for how feedback interacts with individual preferences over risk.

Experimentalists should use Conjectural Equilibrium rather than Nash Equilbrium to obtain

predictions in limited-feedback settings, but they should allow subjects more time to converge

to a steady state when there is limited feedback for sharper predictions.

Our findings also suggest some fruitful directions for future research. Our experimental

study is limited to a TPG game, so future work should test whether our findings from the

TPG game are consistent with what is found in other games. While we study a TPG game

where subjects only decide to contribute or not, allowing subjects to decide how much of

an endowment to contribute might o↵er further insight into the impacts of risk aversion

and limited feedback. Additional work is also needed to measure how much extra time is

needed for convergence to steady state when individuals have limited feedback. While we

test for subjects’ risk and other-regarding preferences, incorporating a measure for ambiguity

aversion may also yield useful results. Future studies along these lines will provide additional

clarity on the value of Conjectural Equilibrium as a predictive equilibrium concept.
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Chapter 3

Cybersecurity measures and incident

frequency: Evidence from the UK

3.1 Introduction

With most of the world today having an online presence, cybersecurity is an increasingly

relevant concern for governments, businesses, and individuals. Total losses from cybercrime

reached record highs in 2023 at $12.5 billion, with an average of over 50,000 data breaches

and over 300,000 phishing incidents reported each year since 2021 (FBI, 2023). As a result,

investment in security and risk management has continued to sharply rise (FBI, 2023;

Moore, 2022) in an e↵ort to combat cybersecurity attacks. While cybersecurity investment

is important for protecting against attacks, there is not much understanding about what

cybersecurity measures are most e↵ective in reducing the likelihood and frequency of cybersecurity

incidents. Understanding which measures are the most beneficial in reducing incident frequencies

is important for all organizations that choose to invest in cybersecurity.

In this paper, I assess the impact of various cybersecurity measures on the frequency of
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cybersecurity incident.1 Employing a new panel dataset from the Cybersecurity Longitudinal

Survey (CSLS), I am able to analyze these relationships using a fixed e↵ects regression

approach. The CSLS is a survey of randomly sampled organizations across the United

Kingdom that collects information on cybersecurity measures adopted and incidents experienced.

As this paper is the first exploration of the CSLS, the analysis focuses on developing an

understanding of the relationships between cybersecurity measures and incident frequency.

In presenting descriptive statistics of incident frequency, I provide new firm-level stylized

facts regarding the persistence of cybersecurity incidents. Notably, I show that there is

some degree of persistence in an organization’s experienced incident frequency. While this

persistence is still largely apparent for restricted samples that consider non-phishing incidents

or only phishing incidents, a higher proportion of organizations transition to experiencing

no incidents after previously experiencing some number of incidents. This is suggestive that

organizations may be adopting cybersecurity measures that both deter potential attackers

and reduce the number of serious incidents.

Specifically regarding the e↵ectiveness of cybersecurity measures, I find that rules for moving

and storing data, restricting work-related personal device usage, and sta↵ cybersecurity

training are all associated with large decreases in incident frequency, especially for relatively

more serious incidents (i.e., non-phishing). In practice, this means an organization may

experience more favorable cybersecurity outcomes by password-protecting sensitive data,

providing devices to employees for o↵site work, and requiring annual cybersecurity training

(or phishing detection exercises), respectively.2 To my knowledge, the relevance of data rules

and personal devices are novel empirical findings, though they are consistent with theoretical

predictions in Deurlington (2024), which presents a model exploring organizational connectivity

1Namely, I consider how measures are related to experiencing incidents in the following categorical
frequencies: ever, more than once, and monthly or more. Additionally, to understand how these relationships
change depending on the relative severity of incidents, I consider outcomes for the frequency of the following
incident categories: all types, all types excluding phishing, and only phishing.

2Note that these are a few examples, and there are many more possible avenues an organization could
take instead.
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and attacker and defender behavior. Further, my results corroborate the findings in Buil-

Gil et al. (2022), Celeny et al. (2024), and McCrohan et al. (2010) that training sta↵ in

cybersecurity is important.

I additionally find that monitoring user activity and formally assessing the cybersecurity

risks posed by suppliers and partners is associated with reductions in the likelihood and

frequency of phishing incidents. These are novel findings on how cybersecurity measures are

related to phishing incident frequency. These results begin paving the way for understanding

what deters attackers from targeting an organization in the first place.3

The results I find are especially beneficial for organizations and policymakers interested in

mitigating pertinent cybersecurity threats for a few reasons. First, I identify cybersecurity

measures that are associated with lower incident frequencies. Also, I outline possible avenues

for deterring potential attackers in the first place. Given my novel findings on the e�cacy of

implementing data storage rules, restrictions on work-related personal device usage, monitoring

user activity, and auditing business partners’ cybersecurity, organizations and policymakers

should seek to find methods of promoting the implementation of these measures.4

This paper primarily contributes to two literatures. The first of these is the literature

estimating the e↵ectiveness of cybersecurity measures (Gandal et al., 2023; Buil-Gil et al.,

2022; Dambra et al., 2020; Aldasoro et al., 2022). These papers explore how implementing

specific measures reduce the likelihood of experiencing a cybersecurity incident. My contribution

to this literature is three-fold. First, my paper considers three di↵erent thresholds of incident

frequency when estimating the e↵ectiveness of cybersecurity measures, rather than only

considering whether or not an organization experienced incidents. It is often unrealistic

for organizations to expect no incidents altogether, so there is value to understanding what

3Related to Deurlington (2024), these results are suggestive that monitoring access points to digital assets
raises the relative cost of attacking and may deter some attackers from targeting organizations with these
defensive measures.

4While the importance of sta↵ cybersecurity training is not a novel result, it is also an e↵ective measure
that should be promoted by organizations and policymakers.
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measures reduce the overall frequency with which incidents occur. Second, I consider three

groups of incident classification to assess how cybersecurity measures are related to the

likelihood of experiencing di↵erent severities of incidents rather than only considering all

incident classifications together. Measures may a↵ect the likelihood of non-phishing and

phishing incidents di↵erently, yet this di↵erence has not been explored in this literature.

Finally, I will be using a panel dataset, allowing me to capture time and firm-level fixed

e↵ects. To my knowledge, mine is the first paper to use organization-level panel data to

determine the relationship between cybersecurity measures and incident frequency.5

The second literature I contribute to is regarding cybersecurity in the United Kingdom.

There have been a handful of papers exploring a government-run cross-sectional survey

known as the Cybersecurity Breaches Survey (CSBS)6 (De Arroyabe et al., 2023; Kemp et al.,

2023; Heitzenrater and Simpson, 2016; Buil-Gil et al., 2022). These papers study an array of

topics, which include the e↵ectiveness of cybersecurity measures as well as what factors into

organizations’ decisions to report incidents or invest in cybersecurity. My paper is the first

to utilize panel data from the CSLS. Panel data for a random sample of organizations across

a nation’s economy is rare in cybersecurity surveys, so the CSLS o↵ers a unique opportunity

to explore cybersecurity in the UK.

My paper also generally contributes to the quickly growing field of economics and cybersecurity.

Literature in this field aims to understand and measure costs in the context of cybersecurity

(Anderson et al., 2013, 2019; Moore, 2010; Agrafiotis et al., 2018) as well as explain specific

aspects of cyber risk and how organizations are a↵ected by an evolving threat space (Edwards

et al., 2016; Chidukwani et al., 2022; Alawida et al., 2022). Despite an understanding of the

5Hawdon et al. (2020) considers rates of cyber victimization using survey panel data for individuals, so
their analysis is not relevant at the firm-level. Other papers have analyzed time series data of cybercrime,
but do not assess the e↵ectiveness of cybersecurity measures in reducing cybercrime (Buil-Gil et al., 2021;
Kemp et al., 2021). In exploring whether organizations should invest more in cybersecurity, Dinkova et al.
(2023) points out the need for panel data to identify the e↵ectiveness of cybersecurity measures.

6The CSBS collects cross-sectional data on cybersecurity decisions and experiences for randomly sampled
organizations across the UK.
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prevalence of phishing and its e↵ectiveness as an initial vector for cyberattacks (Chiew et al.,

2018; FBI, 2023), none of these papers have added to our understanding of how organizations

are a↵ected by phishing incidents and what they can do to mitigate risks posed by phishing.

Using data from the CSLS, I am able to fill in this gap in the literature.

The rest of this paper is structured as follows. Section 2 introduces the CSLS data and

provides summary statistics. Section 3 outlines the empirical strategy. Section 4 presents

and discusses results. Section 5 concludes and discusses paths for future research.

3.2 Data Description

In this paper, I analyze data from the first two waves (2021-2022) of the Cybersecurity

Longitudinal Survey (CSLS).7 The CSLS is a survey of medium and large businesses and

high-income charities in the United Kingdom.8 This survey is commissioned by the Department

for Science, Innovation and Technology (DSIT) and the Department for Digital, Culture,

Media and Sport (DCMS) and developed in conjunction with Ipsos. Survey administrators

collect information on a wide range of organizations’ cybersecurity measures and experiences

with cyber incidents.

The CSLS o↵ers many strengths compared to other surveys on cybersecurity in organizations.

A random probability sampling approach is used to avoid selection bias, and Random

Iterative Method (RIM) weighting is used to account for non-response bias and skewed

sampling on business size and sector. The CSLS includes both online and telephone data

collection to include organizations with a smaller online presence and reduce self-selection

bias. While most cybersecurity surveys are cross-sectional, the longitudinal nature of the

7Data from the third and final wave of the CSLS has yet to be made publicly accessible.
8Researchers interested in cybersecurity in small businesses, low-income charities, and educational

institutions should refer to the CSBS (Department for Science, Innovation and Technology and Department
for Digital, Culture, Media and Sport, 2017).
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CSLS allows researchers to study how organizations’ cybersecurity posture and incident

experiences change over time. Additionally, the CSLS distinguishes between phishing and

non-phishing incidents, allowing researchers to consider outcomes of varying degrees of

severity.

While the survey collects data on an array of cybersecurity aspects, there is minimal data on

general firm-level characteristics (i.e., revenue) and other relevant data (i.e., IT expenditures).

Furthermore, as with any survey, there are limitations in the data that should be mentioned.

Because organizations are self-reporting statistics, there will likely be under-reporting in

both the scope and severity of any incidents experienced for several reasons. Organizations

can only report cyber incidents they have identified, may not track costs associated with

incidents, or may wish to look more favorable in their responses (even though answers are

assured to remain confidential and anonymous). Therefore, results in this paper should be

considered lower-bounds for frequency and severity.

In 2021, the CSLS surveyed 1205 businesses and 536 charities. Of these, 435 businesses and

239 charities were surveyed again in 2022 (along with a new set of 253 businesses and 134

charities added to refresh the sample). The remainder of this paper will focus only on these

674 organizations that were surveyed in both years. Table 3.1 provides additional firm-level

descriptive statistics. As this paper is focused on the organizations surveyed in both 2021

and 2022, much is the same between these years. However, there are some changes in firm

sizes, and three organizations in the “Education” or “Service or membership” sectors in 2021

became registered charities in 2022. To see more details regarding the survey methodology

and sampling, the reader is referred to Department for Digital, Culture, Media and Sport

(2022) and Department for Digital, Culture, Media and Sport (2023).

Table 3.2 presents a summary of cybersecurity measures taken by organizations in 2021 and

2022.9 The first column identifies a measure within one of five categories: General Protection,

9To conserve space and improve readability, Table 3.2 presents descriptive statistics for only the most
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Table 3.1: Organization-level Characteristics

2021 2022
Classification

Business 438 65.0% 435 64.5%
Charity 236 35.0% 239 35.5%

Size
Under 50 0 0.0% 11 1.6%
50 to 249 305 45.3% 299 44.4%
250 to 499 63 9.3% 56 8.3%
500 to 999 43 6.4% 41 6.1%
1,000 or more 27 4.0% 27 4.0%
Unknown 0 0.0% 1 0.1%
Charity (no size given) 236 35.0% 239 35.5%

Sector
Administration 49 11.2% 49 11.3%
Arts or recreation 11 2.5% 11 2.5%
Construction 20 4.6% 20 4.6%
Education 18 4.1% 16 3.7%
Finance or insurance 19 4.3% 19 4.4%
Food or hospitality 36 8.2% 36 8.3%
Health, social care or social work 35 8.0% 35 8.0%
Information or communication 35 8.0% 35 8.0%
Manurfacturing 86 19.6% 86 19.8%
Profession, scientific or technical 34 7.8% 34 7.8%
Real estate 3 0.7% 3 0.7%
Retail or wholesale 60 13.7% 60 13.8%
Service or membership 6 1.4% 5 1.1%
Transport or storage 22 5.0% 22 5.1%
Utilities or production 4 0.9% 4 0.9%
Charity 236 53.9% 239 54.9%

Rules and Policies, Incident Management, Vulnerability Identification, and Visibility.10 The

next four columns illustrate how organizations changed their cybersecurity measures from

2021 to 2022 (i.e., 184 organizations did not have sta↵ training in 2021 and in 2022).

The third of these four columns shows that a non-negligible number of organizations stop

implementing a cybersecurity measure in 2022 that they had in 2021. Though it is not

immediately intuitive why an organization would drop a cybersecurity measure, there could

be several reasons for doing so. Namely, the organization’s management may have found

empirically relevant cybersecurity measures. For a more complete descriptive statistics table of cybersecurity
measures taken by organizations, see Table C.1 in Appendix C.

10These groupings are similar to those discussed in Buil-Gil et al. (2022), which analyzes the cross-sectional
CSBS dataset.
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Table 3.2: Cybersecurity Measures Summary

Has measure in 2021 No No Yes Yes Other
Has measure in 2022 No Yes No Yes Other 2021 2022

General Protection
Training in past 12 months 184 108 50 314 18 54.5% 63.2%
AI or ML tools 314 51 40 82 187 20.2% 22.7%

Rules and Policies
Any monitoring of user activity 119 77 81 349 48 65.6% 66.3%
Rules for storing and moving files containing personal data 22 45 57 513 37 87.2% 85.0%
All five Cyber Essentials1 157 112 101 304 0 60.1% 61.7%

Incident Management
Business Continuity Plan 72 53 42 436 71 74.3% 75.5%
Risk register 121 61 61 323 108 61.3% 61.3%
Written list of IT estate and vulnerabilities 103 82 83 290 116 59.8% 59.5%
Incident Response Plan 164 90 54 298 68 54.2% 60.2%

Vulnerability Identification
Formally assessed risks presented by any partners 326 70 56 106 116 26.0% 29.5%

Visibility
Sta↵ can access network/files through personal devices 259 84 114 207 10 48.2% 43.3%
Sta↵ can connect to network/files outside workplace 127 47 62 388 50 68.5% 67.1%
Has a VPN for sta↵ connecting remotely 119 45 72 420 18 73.9% 69.7%
Uses a cloud server that stores data/files 93 84 69 410 18 71.8% 74.2%
Uses a physical server that stores data/files 104 27 52 479 12 79.5% 75.5%
1Firewalls, secure configurations, access controls, malware protection, and patch management

the measure too expensive to implement (with respect to finances or time) or believed that

the measure was simply not useful. The sixth column captures the number of organizations

that did not provide a definitive “No” or “Yes” in both 2021 and 2022 to having adopted

a measure. For example, a firm that reports “No” for training in 2021 and “Don’t know”

in 2022. Analysis of these cybersecurity measures later in the paper will largely ignore

organizations that do not report a “No” or a “Yes” in both 2021 and 2022. Finally, the last

two columns provide an aggregate summary of the proportion of firms in the respective year

that adopted a cybersecurity measure. There generally seems to be higher rates of adoption

in 2022 with the exception of Visibility. Some definitions of terms found in Table 3.2 and in

later tables can be found in Table C.4 in Appendix C.

Details on the types of incidents organizations faced is presented in Table 3.3. Relatively

few organization experienced the same type of incident in both 2021 and 2022, aside from

phishing and being impersonated. The last two columns present the proportion of organizations
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that reported the corresponding incident type in 2021 and 2022, respectively. Note that

the same organization could report multiple types of incidents, and each organization that

reports an incident type is only counted once even if they experienced this type of incident

many times.11 Especially noteworthy is that over 70 percent of organizations experienced

at least one phishing incident in each year. No other types of incidents were experienced

by a majority of organizations. Furthermore, aside from incidents involving an organization

being impersonated, no other types of incidents were experienced by more than 12 percent

of organizations. As a result of the commonality of phishing, my analysis will distinguish

what cybersecurity measures are associated with specifically phishing incident frequency in

addition to overall incident frequency.

Table 3.3: Types of Incidents Experienced

Occurred in 2021 No No Yes Yes
Occurred in 2022 No Yes No Yes 2021 2022

Ransomware 607 25 15 2 2.5% 4.2%
Malware/viruses 523 51 42 23 10.1% 11.4%
Unauthorised internal use (sta↵) 582 26 17 10 4.2% 5.9%
Unauthorised external use 588 24 29 2 4.7% 4.2%
Denial of service attacks 568 24 25 12 5.8% 5.6%
Attempted hacking - online bank accounts 595 15 10 5 2.2% 3.6%
Attempted hacking - website, social media, or accounts 506 42 25 33 11.7% 11.4%
Impersonating organization 274 91 84 184 40.8% 41.8%
Phishing 89 88 63 411 71.1% 75.4%
Unauthorised listening into video conferences 622 2 6 1 1.0% 0.4%
Other 550 34 31 11 7.0% 7.0%

Table 3.4 provides transition matrices for how frequently organizations experienced cybersecurity

incidents. In other words, the row is the frequency of incident experienced in 2021 and

the column is the frequency experienced in 2022. Panel (a) presents the transition matrix

of reported incident frequency for all types of incidents, Panel (b) presents the transition

matrix when excluding phishing incidents, and Panel (c) presents the transition matrix for

only phishing incidents. As the frequency in Panel (c) is not directly reported in the data,

11It is also worthwhile to point out that two incidents may typically be reported in conjunction. For
example, it is possible that each ransomware incident in this sample started from a phishing incident. This
is not explored, nor does it take away from the results, in this paper.
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Table 3.4: Changes to Incident Frequency

(a) Including Phishing

None Once
More
than
once

MonthlyWeekly
Daily
or

more
Total

None 48% 12% 21% 11% 5% 4% 164
Once 13% 11% 32% 19% 11% 13% 62

More than once 14% 12% 38% 18% 11% 7% 141
Monthly 10% 9% 25% 35% 11% 10% 145
Weekly 12% 4% 22% 21% 24% 18% 78

Daily or more 5% 8% 10% 8% 19% 50% 62
Total 133 65 167 127 78 82 652

(b) Excluding Phishing

None Once
More
than
once

MonthlyWeekly
Daily
or

more
Total

None 69% 7% 10% 6% 5% 3% 312
Once 34% 10% 24% 16% 6 10% 50

More than once 38% 7% 26% 14% 9% 6% 103
Monthly 22% 6% 21% 31% 9% 10% 88
Weekly 20% 2% 18% 22% 18% 22% 54

Daily or more 9% 9% 9% 9% 17% 49% 65
Total 307 47 103 88 54 65 664

(c) Only Phishing

None Once
More
than
once

MonthlyWeekly
Daily
or

more
Total

None 64% 5% 17% 9% 3% 2% 150
Once 38% 0% 38% 12% 12% 0% 8

More than once 33% 5% 29% 14% 14% 5% 21
Monthly 29% 11% 25% 25% 7% 4% 28
Weekly 41% 0% 18% 12% 18% 12% 17

Daily or more 20% 0% 40% 0% 20% 20% 5
Total 122 12 46 27 14 8 229

I create this using the reported incident frequency (found in Panel (a)) for the subset of

organizations that reported no phishing incidents or only phishing incidents in Table 3.3.

This excludes organizations that experienced both ransomware and phishing incidents, for

example, as it would be unclear how frequently the organization experienced each type of

incident based on the reported value given in Panel (a). Doing this allows me to infer that

the frequency reported is for specifically phishing incidents if this was the only incident an
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organization experienced. Note that this does substantially reduce the sample size in Panel

(c) relative to Panels (a) and (b).

As can be seen in Panel (a), the modal rate for each column is on, or near, the diagonal of

the transition matrix. This shows there is some degree of persistence in an organization’s

experienced incident frequency. However, many organizations in the sample experience a

change in their incident frequency, showing this persistence is imperfect. While any change in

incident frequency is possible – as each entry in the transition matrix has nonzero probability

– most organizations experience within a one step change of their original frequency. Considering

Panel (b), this pattern of persistence generally holds, though a higher proportion of organizations

transition to no incidents in 2022 after experiencing some number of incidents in 2021. As

Panel (b) excludes phishing incidents, this suggests either that (1) some organizations do a

better job of preventing non-phishing incidents or (2) that cybercriminals are less interested

in breaching the same organization across years. Panel (c) present similar patterns as those

in Panel (b), but with more noise due to the smaller sample size. Many organizations in

the sample transition to no phishing incidents in 2022, which could be explained by (1)

these organizations adopting better cybersecurity measures that deters potential attackers

or (2) cybercriminals taking more interest in new targets. However, the lack of large values

in the upper triangle of the Panel (c) matrix does not lend much support to the idea that

cybercriminals prefer new targets, as relatively few organizations experience increased rates

of phishing.12

3.3 Empirical Strategy

The goal of this paper is to identify what cybersecurity measures reduce the likelihood and

overall frequency of cyber incidents experienced by an organization. My preferred fixed

12To be clear, I am not dismissing this explanation, as I am using a relatively small random sample and
attackers could simply be targeting new organizations outside of this sample.
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e↵ects regression specification is:

incidenti,t = �posturei,t + ↵i + �t + ✏i,t

where posturei,t is a general term for dummy variables that capture whether an organization

implements various cybersecurity measures within five overarching categories: general protection,

rules and policies, incident management, vulnerability identification, and visibility. ↵i and

�t respectively represent firm and year fixed e↵ects. The outcome of interest, incidenti,t,

is a binary outcome variable capturing whether or not an organization experienced cyber

incidents above a specified frequency threshold. Due to limited data, especially at higher

frequencies of incidents, my analysis focuses on the following three thresholds: no incidents

versus at least one incident (0 vs 1-6), at most one incident versus more than one incident

(0-1 vs 2-6), and incidents less than monthly versus at least monthly (0-2 vs 3-6). These

thresholds can be visualized in Table 3.5.

Table 3.5: Tiered Incident Thresholds

0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6
(1) (2) (3)

Several times a day (6)
Roughly once a day (5)
Roughly once a week (4) incidenti = 1
Roughly once a month (3)
More than once (2)
Once only (1)

incidenti = 0
No attack (0)

The reader should note that the first threshold (0 vs 1-6) is similar to existing literature

that estimates the impact of cybersecurity measures on the likelihood of experiencing any

breaches, whereas my primary contribution comes in providing the second and third thresholds

to identify whether certain cybersecurity measures reduce the frequency of incidents irrespective

of their e↵ect on the preventing incidents entirely. That is, if the coe�cient on some measure

is insignificant for the first threshold but significant for thresholds two or three, the measure
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is e↵ective in reducing the overall frequency of incidents an organization experiences but is

not likely to help in preventing all incidents.

To establish the importance of including firm-level fixed e↵ects and justify my model specification,

I present an example in Table 3.6 regressing only sta↵ training on the incident frequency

outcomes. Not accounting for firm fixed e↵ects in Regressions 1-9 shows that sta↵ cybersecurity

training is associated with an increased likelihood of high incident frequencies. However,

while size and sector fixed e↵ects may generally capture what types of organizations are

valuable to cybercriminals, they do not provide any critical information in terms of how

likely an organization is to be targeted that would not be captured with firm-level fixed

e↵ects. For example, a large (size) manufacturing (sector) firm may be more or less valuable

to attackers depending on the specific product it manufactures (i.e., semiconductors). This

detail is addressed when including firm fixed e↵ects, but not when only accounting for size

and sector fixed e↵ects. Regressions 10-12 take include firm fixed e↵ects, and the results are

consistent with my preferred model specification, which includes firm and year fixed e↵ects.13

After accounting for firm fixed e↵ects, we observe that sta↵ cybersecurity training is instead

associated with a decreased likelihood of high frequencies of incidents.

Table 3.6: Di↵ering Fixed E↵ects Regressions

Dependent variable: Any incidents

0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Sta↵ training 0.096⇤⇤⇤ 0.103⇤⇤⇤ 0.077⇤⇤ 0.092⇤⇤ 0.098⇤⇤⇤ 0.078⇤⇤⇤ 0.071⇤ 0.079⇤⇤⇤ 0.052⇤⇤ -0.026 -0.123⇤⇤ -0.122⇤⇤

(0.019) (0.025) (0.031) (0.024) (0.010) (0.012) (0.034) (0.016) (0.016) (0.047) (0.036) (0.041)

Size FEs No No No Yes Yes Yes Yes Yes Yes Yes Yes Yes
Sector FEs No No No No No No Yes Yes Yes Yes Yes Yes
Firm FEs No No No No No No No No No Yes Yes Yes

Observations 1,147 1,147 1,147 1,147 1,147 1,147 1,147 1,147 1,147 1,147 1,147 1,147
Adjusted R2 0.020 0.013 0.005 0.028 0.023 0.016 0.064 0.046 0.046 0.439 0.224 0.213

⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. All results are robust to including year fixed e↵ects. Regressions 10-12 are robust to dropping size and sector fixed e↵ects.

Furthermore, to assess the impact of a cybersecurity measure on reducing the frequency of

more or less serious incidents, I assess three related outcome variables. First, the reported

frequency of all types of incidents, which includes phishing. Second, the reported frequency

13Year fixed e↵ects should be included in the model specification to account for annual changes in
cybersecurity investments and threats (FBI, 2023; Moore, 2022).

91



of incidents when organizations exclude phishing. And third, the reported frequency of only

phishing incidents. As discussed earlier, the frequency of phishing incidents was derived

using an organization’s reported frequency of incident combined with their reported types

of incidents experienced. For threshold (1) in Table 3.5, the outcome is simply a one if

an organization reported experiencing phishing incidents in the past 12 months and a zero

otherwise. This corresponds to an organization reporting phishing in Table 3.3. However,

for thresholds (2) and (3), the outcome is a one if an organization reported experiencing

incidents more frequently than the corresponding threshold and did not report incidents

other than phishing. This means I will be using the smaller sample shown in Panel (c) of

Table 3.4 for thresholds (2) and (3).

There are two primary assumptions to consider with this empirical approach. First is

the assumption of strict exogeneity. I consider the e↵ect of cybersecurity measures within

broad categories – general protection, rules and policies, incident managment, vulnerability

identification, and visibility – so as to reduce time-variant omitted variable bias (as including

firm fixed e↵ects addresses time-invariant omitted variable bias).14 However, organizations

report both cybersecurity measures and experiences at the same time in the CSLS, meaning

they may have adopted new measures after experiencing one or more incidents earlier in

the year. As a result, causal interpretation of a cybersecurity measure’s e↵ect on incident

frequency will be limited and instead, analysis will focus on the association of these variables.

The second assumption is regarding rank deficiency. As seen in Table 3.2, there is a moderate

degree of heterogeneity and change across most cybersecurity measures. Therefore, the main

concerns of rank deficiency will come from too small of sample sizes. I attempt to mitigate

this by only including small groups of cybersecurity measures in the regressions together to

limit the number of observations dropped due to null responses.

Despite the potential limitations arising from this empirical strategy – specifically those

14There is minimal correlation between cybersecurity measures that are not in the same category.

92



related to the timing and nature of survey data collection – the fixed e↵ects regression

approach o↵ers a distinct advantage. Namely, controlling for firm fixed e↵ects, I am able

to control for time-invariant omitted variables that other papers in this literature have been

unable to do as a result of their using cross-sectional data. An especially important feature

of this strategy is the ability to capture organizations’ inherent value to cybercriminals. An

organization’s inherent value to attackers is arguably time-invariant, as organizations tend

to have a fixed nature and mission, and changes to their digital presence tend to be slow.

For example, a bank will continue to be valuable to cybercriminals year-to-year due to the

value of the financial information they hold.

3.4 Results

In this section, I present results expressing the relationship between organizations’ cybersecurity

measures and incident frequency. Specifically, each subsection corresponds to the groupings

of measures presented in areas of general protection, rules and policies, incident management,

vulnerability identification, and visibility. Note that each cybersecurity measure examined

is a binary variable that captures whether or not an organization responded to the CSLS

that they have the corresponding measure. Additionally, results explore the impact of

implementing cybersecurity measures on incident frequency for varying degrees of incident

severity. The primary contributions of the following results are twofold: (1) understanding

how cybersecurity measures are related to incident frequency in addition to incident likelihood,

and (2) understanding how cybersecurity measures are related to phishing incidents in

addition to all types of incidents.
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3.4.1 General Protection

Table 3.7 provides results considering the relationship between general cybersecurity measures

taken and incident frequency. These measures include cybersecurity training, the use of

cybersecurity tools that use AI or ML, compliance with standards and accreditations, and

cyber insurance protection. None of these measures are strongly correlated with or clearly fit

in the other groupings of cybersecurity measures (rules and policies, incident management,

vulnerability identification, and visibility).

Table 3.7: General Protection Measures and Incident Frequency

Dependent variable: incident

Including phishing Excluding phishing Only phishing

0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Sta↵ training 0.008 -0.144⇤⇤ -0.218⇤⇤⇤ 0.061 -0.068 -0.177⇤⇤ 0.000 -0.103 -0.148
(0.045) (0.070) (0.072) (0.070) (0.079) (0.082) (0.061) (0.135) (0.115)

AI or ML tools 0.012 -0.068 -0.035 -0.018 -0.083 -0.134 0.017 0.173 0.356⇤⇤

(0.034) (0.069) (0.079) (0.062) (0.090) (0.083) (0.057) (0.177) (0.137)

Adheres to at least one -0.015 -0.039 -0.067 -0.053 -0.088 -0.047 -0.038 -0.013 -0.042
standard/accreditation (0.054) (0.073) (0.083) (0.083) (0.092) (0.105) (0.063) (0.127) (0.107)

Cyber Insurance (rel. to “specific CS insurance policy”)
CS covered as part of 0.021 0.019 -0.057 0.030 0.025 -0.072 0.020 0.171 0.115
general policy (0.038) (0.055) (0.074) (0.056) (0.064) (0.086) (0.050) (0.169) (0.119)

Not insured against 0.013 0.034 -0.024 -0.070 -0.139 -0.101 -0.007 0.181 0.056
CS incidents (0.063) (0.115) (0.111) (0.100) (0.131) (0.116) (0.067) (0.144) (0.104)

Firm FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 779 779 779 696 696 696 883 289 289
Adjusted R2 0.463 0.226 0.273 0.544 0.348 0.262 0.348 0.250 0.247

⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Standard errors are clustered at the organization level. The significance level, direction, and magnitude
of the coe�cients are robust to including type (i.e., business or charity), sector, or size fixed e↵ects.

Carrying out training sessions for sta↵ not involved in cybersecurity is associated with lower

frequencies of incidents, both when including and excluding phishing (regressions 2, 3, and

6). However, organizations that trained non-IT sta↵ still have roughly the same likelihood

of experiencing no incidents relative to those that did no training. Regressions 8 and 9 also

provide some suggestive evidence that employee training may be associated with lower rates

of phishing incidents, though these e↵ects are insignificant and the respective sample sizes
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are relatively small. This provides evidence that organizations requiring sta↵ training in

cybersecurity experience lower incident frequencies than organizations with no cybersecurity

training. Furthermore, these reductions in incident frequency are seen when assessing all

incident types and when excluding phishing incidents, which suggests that sta↵ cybersecurity

training is important in reducing the incident frequency of relatively more serious incidents.

Having artificial intelligence (AI) or machine learning (ML) cybersecurity tools does not

seem to matter for the frequency of non-phishing incidents experienced. With a larger

sample, a researcher might detect a significant result as the direction of this relationship is

primarily negative across Regressions 1-6. This implies that AI or ML tools may be related

to an organization experiencing lower frequencies of more serious (i.e., non-phishing) cyber

incidents. However, the results in regressions 7-9 are suggestive (and strongly significant in

9) that having AI or ML tools is associated with a greater frequency of phishing incidents.

This is likely because AI or ML tools are useful for detecting phishing or because they are

more likely to label certain incidents as phishing, both of which would make an organization

more likely to report higher phishing frequencies.

The e↵ect of complying to certain cybersecurity standards or obtaining accreditations is

insignificant for any type or tier of incident frequency. However, the results in Table 3.7

could be suggestive of a larger pattern for compliance to cybersecurity standards, as the

direction of this e↵ect is negative across each regression. In other words, with more data,

it may be possible to show that adhering to cybersecurity standards is associated with

lower frequencies of incidents. There are no significant e↵ects or easily discernible patterns,

however, for the relationship between cyber insurance and incident frequency. This could

suggest there is no systemic moral hazard problem arising in the UK cyber insurance market,

as organizations with more specific cyber insurance policies do not experience higher rates

of incidents than firms without cyber insurance.
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3.4.2 Rules and Policies

The relationship between cybersecurity rules and policies with incident frequency is shown

in Table 3.8. Controls for whether organizations have policies related to malware protection,

firewalls, restricted access rights, or security controls on devices are not included, as the

vast majority of organizations have these in place. However, the e↵ectiveness of these

measures is captured to some extent in whether or not an organization has all five Cyber

Essentials (firewalls, secure configurations, access controls, malware protection, and patch

management).

Table 3.8: Cybersecurity Policies and Incident Frequency

Dependent variable: incident

Including phishing Excluding phishing Only phishing

0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Apply software updates 0.035 -0.095 -0.147 0.070 -0.044 -0.102 -0.076 0.016 -0.076
within 14 days (0.039) (0.080) (0.095) (0.095) (0.112) (0.116) (0.064) (0.109) (0.116)

Monitoring of user 0.006 -0.021 -0.002 0.002 0.018 0.008 -0.054 -0.153⇤ -0.028
activity (0.030) (0.047) (0.064) (0.053) (0.067) (0.070) (0.048) (0.086) (0.092)

Rules for storing or -0.018 -0.024 -0.144⇤⇤ -0.029 -0.048 -0.130⇤ -0.014 -0.003 -0.091
moving data (0.045) (0.068) (0.066) (0.060) (0.079) (0.072) (0.057) (0.110) (0.115)

Backing up data securely -0.017 0.005 -0.012 0.070 0.072 0.029 -0.009 -0.096 -0.039
via cloud service (0.046) (0.071) (0.079) (0.070) (0.082) (0.077) (0.058) (0.102) (0.095)

Backing up data securely -0.012 -0.081 -0.072 -0.028 -0.026 -0.059 -0.052 -0.118 -0.008
via NOT cloud service (0.043) (0.066) (0.070) (0.067) (0.075) (0.076) (0.058) (0.108) (0.086)

All five Cyber -0.038 0.109 0.160⇤ -0.114 0.077 0.183⇤ -0.003 -0.046 0.080
Essentials (0.037) (0.077) (0.085) (0.096) (0.110) (0.108) (0.063) (0.098) (0.112)

Firm FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 1002 1002 1002 890 890 890 1128 359 359
Adjusted R2 0.490 0.222 0.226 0.539 0.353 0.260 0.351 0.274 0.163

⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Standard errors are clustered at the organization level. The significance level, direction, and magnitude
of the coe�cients are robust to including type (i.e., business or charity), sector, or size fixed e↵ects.

There is not a significant relationship between monitoring user activity and the likelihood of

experiencing cyber incidents when including or excluding phishing. However, user monitoring

is weakly associated with a lower likelihood of experiencing more than one phishing incident

(Regression 8). Additionally, the direction of the coe�cients on user monitoring in Regressions
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7 and 9 provide further suggestive evidence that this measure may be associated with lower

frequencies of phishing incidents. This would be a promising result supporting the idea of

deterrence, as it suggests attackers avoid organizations that monitor their users so as to

avoid detection. More research should be done to explore this e↵ect.

Regressions 3 and 6 provide moderate evidence that having specific rules for moving and

storing data is associated with a roughly 14 percent decrease in the likelihood of experiencing

incidents monthly or more. While this e↵ect is insignificant across the other regressions in

Table 3.8, the direction of this relationship is maintained. Furthermore, the magnitude of

the e↵ect in Regression 9 being larger than in Regressions 7 and 8 is consistent with the

pattern we observe in Regressions 1-3 and 4-6, indicating that data storage rules may be

important in reducing high rates of incidents, but not in preventing incidents altogether.

There is a weakly significant and large positive relationship between an organization having

all five of the Cyber Essentials – firewalls, secure configurations, access controls, malware

protection, and patch management – and an increased likelihood of experiencing all and non-

phishing incidents monthly or more (Regressions 3 and 6). While not significant, however,

the direction of this relationship is reversed when the threshold for the outcome variable is

any incidents (Regressions 1 and 4). Together, this might suggest the presence of two types of

organizations that incorporate all five Cyber Essentials. The first of these are organizations

frequently targeted by cybercriminals due to o↵ering high potential value (rich personal or

financial data, a government a�liation, etc.). These organizations adopt the five Cyber

Essentials, as they are likely to be more aware of their cybersecurity risks due to the value

of their digital assets, but these measures will likely be insu�cient to deter attackers. The

second class of organizations are those that are conscious of cybersecurity, but o↵er lower

potential value to cybercriminals. When the value of these digital assets are low, it is possible

that the five Cyber Essentials may deter some attackers and prevent incidents.
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3.4.3 Incident Management

Table 3.9 gives the relationship between an organization’s incident management procedures

and its experienced incident level. Note that incident management has to do with how an

organization is prepared to respond in the case of a breach, and it is not immediately obvious

that these measures should have an e↵ect on the likelihood of an incident. However, it is

possible they are helpful in deterring continuous or repeated incidents and in preventing

incidents from snowballing into larger breaches.

Table 3.9: Incident Management Measures and Incident Frequency

Dependent variable: incident

Including phishing Excluding phishing Only phishing

0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Business continuity 0.053 0.020 -0.010 0.025 0.019 -0.045 0.116⇤ 0.093 0.261⇤⇤⇤

plan (0.048) (0.087) (0.086) (0.066) (0.087) (0.087) (0.061) (0.125) (0.097)

Risk register 0.044 -0.041 -0.002 0.044 -0.042 0.024 -0.039 -0.125 -0.185⇤⇤

covering CS (0.039) (0.071) (0.081) (0.061) (0.090) (0.086) (0.048) (0.104) (0.084)

Defines acceptable -0.006 0.044 0.007 -0.042 0.008 0.034 -0.027 0.088 0.022
risk level (0.026) (0.049) (0.064) (0.050) (0.066) (0.070) (0.046) (0.108) (0.122)

Identifies most -0.047 -0.007 0.020 0.009 0.040 0.057 -0.055 0.050 0.033
critical assets (0.034) (0.050) (0.066) (0.058) (0.073) (0.076) (0.050) (0.105) (0.088)

Written list of IT estate -0.093⇤⇤ -0.136⇤⇤⇤ 0.008 -0.055 -0.067 0.041 -0.039 -0.126 -0.053
and vulnerabilities (0.038) (0.050) (0.066) (0.050) (0.063) (0.076) (0.049) (0.111) (0.107)

Incident response -0.037 0.085 -0.014 -0.144⇤⇤ -0.052 -0.043 -0.035 0.154 0.053
plan (0.032) (0.060) (0.068) (0.057) (0.079) (0.082) (0.053) (0.129) (0.116)

Firm FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 910 910 910 805 805 805 1014 315 315
Adjusted R2 0.532 0.233 0.265 0.536 0.319 0.290 0.345 0.263 0.145

⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Standard errors are clustered at the organization level. The significance level, direction, and magnitude
of the coe�cients are robust to including type (i.e., business or charity), sector, or size fixed e↵ects.

Regressions 7-9 in Table 3.9 provide moderate evidence that having a business continuity

plan is associated with a higher likelihood of experiencing more phishing incidents. The

fact that this relationship is insignificant for all and non-phishing incidents (Regressions 1-6)

could suggest that organizations with business continuity plans tend to o↵er more apparent

value to cybercriminals, which is why they tend to experience more phishing. Because these
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organizations experience higher rates of phishing incidents, they may be more likely to plan

for worst-case scenarios (i.e., create a business continuity plan).

Though no large pattern emerges, an organization maintaining a risk register covering

cybersecurity is associated with a nearly 20% decrease in the likelihood of monthly or more

phishing incidents (Regressions 9). This could be due to the organization being relatively

more aware of the specific risks they face, leading to them filtering out more phishing (i.e.,

through better spam filters) or raising awareness in sta↵ more e↵ectively. However, due to

the small sample size in creating a variable for phishing incident frequency, minimal weight

should be placed on this result. The fact that the direction of this relationship remains

negative in Regressions 7 and 8, though, suggests more research could be done in parsing

out the usefulness of a risk register in reducing phishing incidents.

Organizations with a written list of their IT estate and vulnerabilities appear less likely

to experience more that one cyber incident (Regressions 1 and 2). Though insignificant,

the direction of this relationship seems to be consistent for both non-phishing and phishing

incidents. Two plausible reasons could explain this. One, it is easier for an organization

to have a written list of their IT estate and digital vulnerabilities if their estate is smaller

and they have fewer vulnerabilities. Having less IT and vulnerabilities may suggest an

organization has less to protect from cybercriminals, meaning they get attacked less frequently

and therefore su↵er fewer incidents. Or two, organizations with a written list of their IT

estate and vulnerabilities are better organized and understand how to monitor and protect

their network more e↵ectively. A dataset that includes the size of an organization’s IT

department (sta↵ size and/or expenditures) and number of computers across the entire

organization, for example, would help in assessing these explanations.

Having an Incident Response Plan (IRP) is associated with nearly a 15 percent decrease in the

likelihood of experiencing any non-phishing incidents (Regression 4). Though insignificant,

the direction of this e↵ect is still negative in Regressions 5 and 6, suggesting an IRP could
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be helpful in reducing the frequency of more serious (i.e., non-phishing) incidents. This

relationship might be explained by accepting that IRPs indicate an organization that is

more responsive and prepared for threats. If this is true, organizations with IRPs may

detect and stop issues sooner, preventing more incidents. This explanation fits with the

fact that having an IRP is not – or potentially even positively – related to the frequency

of experienced phishing incidents (Regressions 8-9). Implementing an IRP appears to be

among the most e↵ective measures for organizations looking to improve their cybersecurity

posture. In addition to potentially reducing the likelihood of non-phishing incidents, an IRP

is likely to reduce the overall time and resources when dealing with incidents that do occur

because a response plan has been predefined.

3.4.4 Vulnerability Identification

Table 3.10 assesses the impacts of measures an organization takes with respect to identifying

vulnerabilities in its network on incident likelihood and frequency. The expected e↵ect of

identification measures is not immediately clear. On the one hand, better identification

means an organization is likely to detect more threats and breaches, resulting in more

recorded incidents. On the other hand, cybercriminals generally wish to go unnoticed –

especially when they are first entering and exploring an organization’s network – and as

a result, may prefer attacking organizations with worse identification. In addition to this,

adopting more vulnerability identification measures could mean an organization is better at

getting ahead of potential issues and quickly patches holes in their network, leading to lower

incidents in general.

No significant results or overarching patterns emerge for the relationships between the

majority of vulnerability identification approaches and incident frequency. This could be

due to the presence of competing e↵ects as outlined above. The fact that we do not clearly
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Table 3.10: Vulnerability Identification Measures and Incident Frequency

Dependent variable: incident

Including phishing Excluding phishing Only phishing

0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Vulnerability audit 0.008 0.015 -0.025 0.019 -0.015 -0.030 0.018 0.121 -0.027
(0.033) (0.056) (0.056) (0.052) (0.060) (0.061) (0.045) (0.120) (0.106)

Risk assessment 0.006 0.012 0.093 -0.041 -0.010 0.082 -0.011 -0.033 0.063
(0.039) (0.053) (0.068) (0.060) (0.070) (0.081) (0.048) (0.089) (0.112)

Threat intelligence -0.023 -0.026 -0.010 0.065 0.046 0.047 0.002 0.026 0.017
(0.029) (0.049) (0.060) (0.044) (0.061) (0.064) (0.044) (0.123) (0.133)

Security monitoring tools 0.012 -0.032 0.035 -0.038 -0.085 -0.050 0.025 -0.052 0.110
(0.040) (0.065) (0.070) (0.061) (0.080) (0.078) (0.055) (0.102) (0.104)

Formally assessed/managed -0.008 -0.110⇤⇤ -0.003 0.038 -0.047 0.023 -0.102⇤⇤ -0.141 -0.079
partners’ CS risks (0.033) (0.055) (0.067) (0.058) (0.074) (0.077) (0.050) (0.134) (0.118)

Firm FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 916 916 916 815 815 815 1023 322 322
Adjusted R2 0.517 0.214 0.280 0.537 0.340 0.301 0.375 0.285 0.106

⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Standard errors are clustered at the organization level. The significance level, direction, and magnitude
of the coe�cients are robust to including type (i.e., business or charity), sector, or size fixed e↵ects.

see positive relationships between the outcome variable and these identification measures

suggests the possibility that identification could be useful in deterring attacks. Much more

granular data on attacker and defender behaviors and incentives would be needed, however,

to establish this deterrence e↵ect.

However, there does appear to be a negative relationship between incident frequency and

whether or not an organization audits or manages suppliers’ and partners’ cybersecurity

(Regressions 2 and 7). Specifically, it seems that auditing partners tends to be associated

with a reduction in phishing incidents, as the direction and magnitude of the relationships

in Regression 7-9 are more noteworthy than in Regression 4-6. This could be related to the

high proportion of organizations that report being impersonated in Table 3.3. Organizations

that audit the cybersecurity of their suppliers and partners are more likely to identify

organizations in their network that have been infiltrated or are being impersonated. As a

result, they may be able to detect and prevent phishing attempts from seemingly trustworth

sources in addition to helping their partners achieve secure networks again.
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3.4.5 Visibility

Visibility refers to measures that could limit or expand the number of vulnerabilities within

an organization’s network. Rather than technical cybersecurity policies or tools, the measures

that I assess in this section highlight organizational practices that influence the number of

vulnerabilities present within an organization that could be exploitable. The relationship

between the visibility of an organization and incident frequency is shown in Table 3.11. Data

in the CSLS on organizational visibility (i.e., websites and social media) is relatively limited,

though a few important variables can be assessed. Namely, an organization’s personal device

restrictions, choice of server for data and file storage, and requirements for remote working

(if applicable).

Table 3.11: Visibility Measures and Incident Frequency

Dependent variable: incident

Including phishing Excluding phishing Only phishing

0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Sta↵ can access network/files 0.004 -0.050 0.061 0.077⇤ 0.041 0.132⇤⇤ 0.017 -0.003 -0.018
with personal device (0.023) (0.045) (0.058) (0.041) (0.056) (0.064) (0.030) (0.081) (0.074)

Uses a cloud server that -0.018 -0.006 0.004 0.098⇤ 0.156⇤⇤ 0.049 0.026 -0.033 0.084
stores data/files (0.035) (0.053) (0.068) (0.053) (0.065) (0.077) (0.039) (0.070) (0.067)

Has a physical server that -0.059 -0.019 -0.083 -0.185⇤⇤⇤ 0.016 -0.047 -0.092 -0.012 -0.080
stores data/files (0.049) (0.076) (0.084) (0.054) (0.086) (0.102) (0.056) (0.114) (0.076)

VPN and Remote Work (rel. to “Sta↵ can connect without a VPN”)
No remote work 0.005 -0.035 -0.042 0.007 -0.066 0.003 -0.051 0.003 -0.114

(0.052) (0.070) (0.094) (0.078) (0.085) (0.104) (0.058) (0.111) (0.094)

Sta↵ forced to connect -0.027 -0.164⇤⇤⇤ -0.030 -0.051 -0.198⇤⇤⇤ -0.046 -0.002 0.004 -0.084
with a VPN (0.028) (0.052) (0.074) (0.056) (0.075) (0.081) (0.040) (0.107) (0.104)

Firm FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 1119 1119 1119 986 986 986 1273 427 427
Adjusted R2 0.537 0.243 0.254 0.557 0.349 0.267 0.417 0.265 0.202

⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Standard errors are clustered at the organization level. The significance level, direction, and magnitude
of the coe�cients are robust to including type (i.e., business or charity), sector, or size fixed e↵ects.

Allowing sta↵ to access an organization’s network and files through personal devices is

associated with a 7.7% increase in the likelihood of any non-phishing incidents (Regression 4)

and a 13.2% increase in the likelihood of monthly or more non-phishing incidents (Regression
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6). Furthermore, the direction of this relationship in Regression 5 is suggestive that not

allowing employees to access sensitive materials from personal devices is important for

reducing the frequency of more serious incidents.

An organization’s choice of server for data and file storage appears to have an important

relationship with the frequency of non-phishing incidents experienced. Notably, using a

cloud server is associated with a 15.6% increase in the likelihood of experiencing more than

one non-phishing incident (Regression 5), while using a physical server is associated with

an 18.5% decrease in the likelihood of experiencing any non-phishing incidents (Regression

4). The direction of coe�cients on using a physical server are mostly negative, suggesting

physical server use is related to lower incident frequencies. It is worth considering that

smaller organizations and those with less need for data storage due to limited data collection

(and hence, less potential value to attackers) may be both more likely to use a local physical

server and less valuable targets to cybercriminals.

Interestingly, the likelihood and frequency of any type of incident does not seem to be

statistically di↵erent for organizations with no remote work relative to organizations with

remote work where sta↵ are allowed to connect to the organization’s network without using

a virtual private network (VPN). However, organizations that require remote workers to

connect with a VPN have lower likelihoods of experiencing more than one incident relative

to organizations where remote workers can connect without a VPN (Regressions 2 and 5).

Notably, the direction of the e↵ect of requiring VPN connections in Regressions 1-6 is

suggestive that requiring a VPN is associated with lower rates of non-phishing incidents

relative to allowing sta↵ to connect without a VPN. These results could indicate that

non-security-conscious individuals reside in organizations regardless of whether or not the

organization has remote work, but forcing all individuals to use a VPN while remote working

might limit the risks posed by at least some of the non-security-conscious employees. Alternatively,

these results could be indicative that organizations that force remote workers to connect to
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the company network with a VPN are generally more security-conscious, and therefore better

at preventing frequent incidents.

As an extension, I explore the relationship between the involvement of organizations’ board

(of directors) in cybersecurity and incident frequency. Descriptive statistics, empirical results,

and a corresponding discussion are provided in Appendix C.

3.5 Discussion and Conclusion

This paper had three overarching objectives. The first of these was to assess the relationship

between cybersecurity measures and incident frequency. The second objective was to distinguish

these relationships for phishing incidents from all types of incidents. Finally, this paper

showcased a panel dataset not yet analyzed by researchers despite the lack of available

cybersecurity panel data. Here I summarize my findings, highlight limitations of my results,

and discuss promising directions for future research.

I add to findings in other papers that training is important in reducing incident frequency.

I also present new results showing that rules for data storage and restrictions on work-

related personal device usage are associated with decreases in incident frequency. With

respect to only phishing, I find that assessing supply chain risks and monitoring user activity

are associated with lower likelihoods and frequencies of incidents. These are the first

results showing a negative relationship between cybersecurity measures and phishing incident

frequency. This provides a possible path for future research interested in estimating the

deterrence e↵ect of cybersecurity.

While I control for firm and year fixed e↵ects in my analysis, the fact that organizations

report both cybersecurity measures and experiences at the same time in the survey data

lead to endogeneity concerns. Organizations may have adopted new measures after having
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experienced one or more incidents early in the year, yet this timeline is not captured within

the survey data. Generally, this would likely imply that not having a measure may be

related to higher frequencies of incidents, meaning the results I find are lower bounds on

the e↵ectiveness of measures in reducing incident frequency. However, causal interpretation

of the results in this paper should be limited without introducing an e↵ective instrumental

variable.15

Due to a relatively small sample size of only 674 organizations in the panel, there are generally

high standard errors associated with many results. Several measures show consistent directional

patterns, however, and their e↵ectiveness in reducing incident frequency should be further

explored in larger panel datasets. The measures that I believe should be further explored in

larger panels are: complying with cybersecurity standards or accreditations, applying timely

software updates, backing up data via cloud versus non-cloud services, writing a list of IT

estate and vulnerabilities, and using a physical versus cloud server for data storage. The

third wave of CSLS data will be published later in 2024, at which point the analysis in this

paper should be extended and the e↵ectiveness of the above measures should be revisited.

There are several possibilities for future research stemming from this paper and the CSLS.

One, the CSLS collects data on what, and how many, resources an organization uses for

cybersecurity guidance and information. This could possibly be an e↵ective instrument

for understanding the causal implications of cybersecurity measures. Two, other empirical

strategies may provide useful results for measuring the e↵ectiveness of cybersecurity. For

example, a first di↵erences approach could explore the impact of introducing or dropping

a measure on cybersecurity outcomes.16 Additionally, using principal component analysis

may be interesting for determining the bundles of cybersecurity measures that are most

e↵ective when implemented together, or what types of firms opt for certain bundles of

15What, or how many, resources an organization uses for guidance and information on cybersecurity is
collected in the CSLS. This could possibly be converted into an e↵ective instrument.

16The concern of correlated errors across time periods would need to be resolved in using this approach.
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measures. Finally, this paper focused on incident frequency as the outcome variable, though

the CSLS also provides comprehensive data on a number of costs and damages experienced by

organizations. This could be leveraged to understand the e↵ectiveness of incident management

procedures in reducing costs or to measure the costs of certain types of incidents, for

example.17

17Anderson et al. (2013) suggests that there is under-investment in incident management and over-
investment in attack prevention. Therefore, it would be valuable to know what measures, especially related
to incident management, reduce the expected damages and impacts of breaches. Pursuing this research path
could provide even stronger support in favor of organizations adopting an IRP.
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Appendix A

Supplementary material for Chapter 1

Lemma 1. If node i is not in the component containing the high-value node (i /2 C), then

A does not allocate resources to attack i (a⇤
i
= 0).

Proof. Let i /2 C. That is, battlefield i is not in the component containing the high-value

node (and therefore is also not the high-value node). Then VA,i = 0, so A’s payo↵ function

in equation 1.3 is strictly decreasing in ai. Therefore, in equilibrium, A does not allocate

resources attacking battlefield i (a⇤
i
= 0).

Lemma 2. Consider a sequential network defense contest between a defender, D, and an

attacker, A, where victory is determined by a weakest-link versus best-shot lottery contest. If

D allocates defensive resources with an infrastructure technology, dI , and A allocates attack

resources to each node individually, ā = (a1, . . . , an)), A will optimally distribute resources

uniformly across all nodes in the component containing the high-value node (a⇤
i
= a

⇤
j
=

a
⇤ 8 i, j 2 C).

Proof. For arbitrary battlefields i and j, such that i 6= j, the first order conditions of equation
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1.3 are:

@uA

@ai
:

dI

(dI + a
⇤
i
)2

 
Y

k 6=i

dI

dI + ak

!
vA � ↵  0

@uA

@aj
:

dI

(dI + a
⇤
j
)2

 
Y

k 6=j

dI

dI + ak

!
vA � ↵  0

=) ↵

vA
=

dI

(dI + a
⇤
i
)2

dI

dI + a
⇤
j

Y

k/2{i,j}

dI

dI + ak
=

dI

(dI + a
⇤
j
)2

dI

dI + a
⇤
i

Y

k/2{i,j}

dI

dI + ak

=) dI + a
⇤
j
= dI + a

⇤
i

=) a
⇤
i
= a

⇤
j

8 i, j

Thus, regardless of D’s defensive allocation, dI , A allocates attack resources to arbitrary

nodes i and j in the component containing the high-value node such that a
⇤
i
= a

⇤
j
. This

implies A will uniformly distribute some level of attack resources, a⇤, across all nodes in the

component containing the high-value node.

Lemma 3. Consider a sequential network defense contest between a defender, D, and an

attacker, A, where victory is determined by a weakest-link versus best-shot lottery contest. Let

D allocate defensive resources with an infrastructure technology, dI , and A allocate attack

resources to each node individually, ā = (a1, . . . , an)). A does not attack if D allocates

su�ciently high defensive infrastructure
⇣
a
⇤ = 0 if d

⇤
I
� vA

↵

⌘
. D does not allocate defensive

resources beyond the point at which A does not attack
⇣
d
⇤
I
 vA

↵
if a

⇤ = 0
⌘
.

Proof. From Lemma 2, it follows that

@uA

@ai
:

d
m+1
I

(dI + a⇤)m+2
vA � ↵  0

Solving for a⇤(dI):

a
⇤(dI) �

✓
vAd

m+1
I

↵

◆1/(m+2)

� dI
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However, because A cannot allocate a
⇤
< 0, set a⇤ = 0 when:

✓
vAd

m+1
I

↵

◆1/(m+2)

 dI

vA

↵
 dI

If a
⇤ = 0, uD is strictly decreasing in dI . Therefore, it follows that D will never have

d
⇤
I
>

vA

↵
.

Proposition 1. Consider a model of sequential network defense between a defender, D,

and an attacker, A. D connects m 2 {0, n � 1} low-value nodes to a high-value node and

allocates infrastructure defense, dI , that uniformly protects the network. A observes D’s

choices and allocates attack resources ā = (a1, . . . , an) to each node. D has a weakest-link

objective, receives vD(1 +m�) from a successful defense, and has linear costs. A has a best-

shot objective, receives vA from a successful attack, and has linear costs with the relative

price of attack resources to defense resources represented by ↵. The outcome at each node is

determined by a lottery contest success function. Given the exogeneous parameters, there exist

two types of subgame perfect equilibrium allocations that can arise: Attack or Deterrence.

1. Attack: A uniformly allocates a positive level of attack resources across the component

containing the high-value node (a⇤
i
= a

⇤
> 0 8 i 2 C). If ⌫ <

m+ 2

(m+ 1)(1 +m�)
, D and

A’s subgame perfect equilibrium allocations, (d⇤
I
, a

⇤ 8 i), are:

d
⇤
I
= ⌫

m+1
vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2

, and

a
⇤ = ⌫

m+1
vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2 
m+ 2

⌫(m+ 1)(1 +m�)
� 1

�
.

2. Deterrence: D allocates a su�ciently high level of defensive infrastructure such that

A does not allocate resources to attacking D’s network (a⇤
i
= a

⇤ = 0 8 i). If ⌫ �
m+ 2

(m+ 1)(1 +m�)
, D and A’s subgame perfect equilibrium allocations, (d⇤

I
, a

⇤ 8 i),
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are:

d
⇤
I
=

vA

↵
, and

a
⇤ = 0.

Proof. From Lemma 3, A’s optimal allocation of attack resources at battlefield i given D’s

security infrastructure, dI , is

a
⇤(dI) = a

⇤
i
(dI) =

✓
vAd

m+1
I

↵

◆1/(m+2)

� dI

Therefore, D’s expected payo↵ as a function of A’s best-response is:

uD(a
⇤(dI)) =

 
m+1Y

i=1

✓
dI

dI + a⇤(dI)

◆!
vD(1 +m�)� dI

=

0

BBB@
dI

✓
vAd

m+1
I

↵

◆1/(m+2)

1

CCCA

m+1

vD(1 +m�)� dI

=

✓
dI

vA/↵

◆(m+1)/(m+2)

vD(1 +m�)� dI .

Solving for d⇤
I

✓
letting ⌫ =

vD

vA/↵

◆
gives us:

@uD(a⇤(dI))

@dI
:

✓
↵

vA

◆(m+1)/(m+2)✓
m+ 1

m+ 2

◆
(d⇤

I
)�1/(m+2)

vD(1 +m�)� 1 = 0

=) d
⇤
I
=

"✓
↵

vA
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m+ 1
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◆
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✓
↵
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v
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D

✓
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◆m+2
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m+1

vD

✓
(m+ 1)(1 +m�)

m+ 2
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, for m 2 {0, n� 1}
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Substituting d
⇤
I
into a

⇤(d⇤
I
) to solve for a⇤ as a function of exogenous parameters:

a
⇤(d⇤

I
) = a

⇤ =

✓
(vA)(d⇤I)

m+1

↵

◆1/(m+2)

� d
⇤
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� 1

#
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66664
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1
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� 1

3

77775
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vD

✓
(m+ 1)(1 +m�)

m+ 2
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m+ 2

⌫(m+ 1)(1 +m�)
� 1

�
.

By Lemma 3, if d⇤
I
� vA

↵
, then A sets a⇤ = 0 for all i. Conversely, if a⇤ = 0, D must have

d
⇤
I
 vA

↵
. This implies the subgame perfect equilibrium allocations are (d⇤

I
, a

⇤ 8 i) =
⇣
vA

↵
, 0
⌘

if

⌫
m+1

vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2

� vA

↵
✓
⌫

✓
(m+ 1)(1 +m�)

m+ 2

◆◆m+2

� 1

⌫ � m+ 2

(m+ 1)(1 +m�)
for m 2 {0, n� 1}.

To see more explicitly that (d⇤
I
, a

⇤ 8 i) =
⇣
vA

↵
, 0
⌘

is the subgame perfect equilibrium

allocation if ⌫ � m+ 2

(m+ 1)(1 +m�)
, I show that D’s payo↵ for dI =

vA

↵
is greater than

for dI <
vA

↵
:

uD
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> uD
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.
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Note that the inequality in the last line must hold because dI <
vA

↵
implies

dI

vA/↵
< 1.

Therefore D receives a higher payo↵ from deterring A’s attack by allocating d
⇤
I
=

vA

↵
when

⌫ � m+ 2

(m+ 1)(1 +m�)
for m 2 {0, n� 1}.

On the other hand, if ⌫ <
m+ 2

(m+ 1)(1 +m�)
, the subgame perfect equilibrium allocation is

(d⇤
I
, a

⇤ 8 i) such that

d
⇤
I
= ⌫

m+1
vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2

a
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✓
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m+ 2
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⌫(m+ 1)(1 +m�)
� 1

�
,

as solved for earlier in this proof.

Proposition 2. Based on the subgame perfect equilibrium allocations in Proposition 1, where

D allocates defensive resources with an infrastructure technology, dI , the subgame equilibrium

profits for D and A, respectively, are

u
⇤
D =

8
>><

>>:

(1 +m�)vD �
vA
↵

if d
⇤
I =

vA
↵✓
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vD if d

⇤
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⇣
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⌘
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1� ⌫

m
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I 2
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0,
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⌘
,

where d
⇤
I
=

vA

↵
in the “Deterrence” subgame equilibrium and d

⇤
I
2
⇣
0,

vA

↵

⌘
in the “Attack”

subgame equilibrium.

Proof. From Lemma 3, if d⇤
I
= vA/↵ (“Deterrence” equilibrium), then a

⇤ = 0 for all i 2 C.
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In this case, D deters A from attacking and receives a payo↵ of

u
⇤
D =

 
m+1Y

i=1

d
⇤
I

d
⇤
I
+ a⇤

!
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!
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↵
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↵

such that m 2 {0, n� 1}. u⇤
A = 0 because A neither wins the contest nor spends resources.

From Proposition 1, if d⇤
I
2
⇣
0,

vA

↵

⌘
(“Attack” equilibrium), then it follows the equilibrium

allocations are:

d
⇤
I
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(m+ 1)(1 +m�)

m+ 2

◆m+2

a
⇤ = ⌫

m+1
vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2 
m+ 2

⌫(m+ 1)(1 +m�)
� 1

�
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Using these equilibrium allocations, I now calculate D’s equilibrium payo↵ as:

u
⇤
D =

 
m+1Y

i=1

d
⇤
I

d
⇤
I
+ a⇤(d⇤

I
)

!
vD(1 +m�)� d

⇤
I

=

0

BBB@

m+1Y

i=1

d
⇤
I

d
⇤
I
+

✓
vAd

m+1
I

↵

◆1/(m+2)

� d
⇤
I

1

CCCA
vD(1 +m�)� ⌫

m+1
vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2

=

 
m+1Y

i=1

✓
d
⇤
I

vA/↵

◆1/(m+2)
!
vD(1 +m�)� ⌫

m+1
vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2

=

0

BBB@

⌫
m+1

vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2

vA/↵

1

CCCA

(m+1)/(m+2)

vD(1 +m�)� ⌫
m+1

vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2

=

✓
⌫

✓
(m+ 1)(1 +m�)

m+ 2

◆◆m+1

vD(1 +m�)� ⌫
m+1

vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+2

= ⌫
m+1

vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+1 
(1 +m�)� (m+ 1)(1 +m�)

m+ 2

�

= ⌫
m+1

vD(m+ 1)m+1

✓
1 +m�

m+ 2

◆m+2

and A’s equilibrium payo↵ as:

u
⇤
A =

 
1�

m+1Y

i=1

d
⇤
I

d
⇤
I
+ a⇤(d⇤

I
)

!
vA �

m+1X

i=1

↵a
⇤

=

 
1�

✓
⌫

✓
(m+ 1)(1 +m�)

m+ 2

◆◆m+1
!
vA

� (m+ 1)↵⌫m+1
vD

✓
(m+ 1)(1 +m�)

m+ 2

◆m+1 
⌫
m/(m+2) � (m+ 1)(1 +m�)

m+ 2

�

= vA

(
1�

✓
⌫

✓
(m+ 1)(1 +m�)

m+ 2

◆◆m+1

� (m+ 1)⌫m

✓
(m+ 1)(1 +m�)

m+ 2

◆m+1

+ (m+ 1)

✓
⌫

✓
(m+ 1)(1 +m�)

m+ 2

◆◆m+2
)

= vA

(
1� ⌫

m

✓
(m+ 1)(1 +m�)

m+ 2

◆m+1 
⌫ � (m+ 1) + (m+ 1)⌫2

✓
(m+ 1)(1 +m�)

m+ 2

◆�)
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Thus, I have found the subgame equilibrium payo↵s for D and A in both the “Deterrence”

and “Attack” equilibria.

Lemma 4. Consider a sequential network defense contest between a defender, D, and an

attacker, A, where victory is determined by a weakest-link versus best-shot lottery contest.

If both D and A allocate resources to each node individually (d̄ = (d1, . . . , dn) and ā =

(a1, . . . , an)), both D and A will optimally distribute resources uniformly across all nodes in

the component containing the high-value node (d⇤
i
= d

⇤
j
= d

⇤ and a
⇤
i
= a

⇤
j
= a

⇤ 8 i, j 2 C).

Proof. First, solving for a⇤
i
(d̄) and finding the relationship with a

⇤
j
(d̄):

@uA

@ai
:

di

(di + a
⇤
i
(d̄))2

 
Y

k 6=i

dk

dk + ak

!
vA � ↵ = 0

(di + a
⇤
i
(d̄))2 =

di

↵

 
Y

k 6=i

dk

dk + ak

!
vA

a
⇤
i
(d̄) =

 
divA

↵

Y

k 6=i

dk

dk + ak

!0.5

� di

@uA

@aj
:

dj

(dj + a
⇤
j
(d̄))2

 
Y

k 6=j

dk

dk + ak

!
vA � ↵ = 0

↵

vA
=

di

(di + a
⇤
i
(d̄))2

dj

dj + a
⇤
j
(d̄)

Y

k/2{i,j}

dk

dk + ak
=

di

di + a
⇤
i
(d̄)

dj

(dj + a
⇤
j
(d̄))2

Y

k/2{i,j}

dk

dk + ak

di + a
⇤
i
(d̄) = dj + a

⇤
j
(d̄)

a
⇤
j
(d̄) = di + a

⇤
i
(d̄)� dj 8 j 6= i

=) di

(di + a
⇤
i
(d̄))2

 
Y

k 6=i

dk

dk + di + a
⇤
i
(d̄)� dk

!
vA � ↵ = 0

divA

↵(di + a
⇤
i
(d̄))m+2

Y

k 6=i

dk = 1

a
⇤
i
(d̄) =

 
vA

↵

m+1Y

i=1

di

!1/(m+2)

� di 8 i
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Substituting ā
⇤ = (a⇤1(d̄), . . . , a

⇤
n
(d̄)) into uD reduces to the following function:

uD(ā
⇤) =

 
m+1Y

i=1

di

di + a
⇤
i
(d̄)

!
vD(1 +m�)�

m+1X

i+1

di

=

0

B@
m+1Y

i=1

di
⇣
vA

↵

Q
m+1
i=1 di

⌘1/(m+2)

1

CA vD(1 +m�)�
m+1X

i+1

di

=

✓
1

vA/↵

◆(m+1)/(m+2)

0

B@
m+1Y

i=1

d
(m+1)/(m+2)
i⇣Q
j 6=i

dj

⌘1/(m+2)

1

CA vD(1 +m�)�
m+1X

i+1

di

=

 Q
m+1
i=1 d

(m+1)/(m+2)
iQ

m+1
i=1 d

m/(m+2)
i

!
(⌫m+1

vD)
1/(m+2)(1 +m�)�

m+1X

i+1

di

=

 
m+1Y

i=1

d
1/(m+2)
i

!
(⌫m+1

vD)
1/(m+2)(1 +m�)�

m+1X

i+1

di.

From this, we can solve for D’s optimal defensive allocation at nodes d⇤
i
and d

⇤
j
to see that

d
⇤
i
= d

⇤
j
for arbitrary i and j such that i 6= j.

@uD(ā⇤)

@di
:

 
Y

k 6=i

d
1/(m+2)
k

!
d
�(m+1)/(m+2)
i

(⌫m+1
vD)

1/(m+2) (1 +m�)

m+ 2
� 1 = 0

@uD(ā⇤)

@dj
:

 
Y

k 6=j

d
1/(m+2)
k

!
d
�(m+1)/(m+2)
j

(⌫m+1
vD)

1/(m+2) (1 +m�)

m+ 2
� 1 = 0

=) d
(m+1)/(m+2)
i

d
1/(m+2)
j

=
d
(m+1)/(m+2)
j

d
1/(m+2)
i

d
m/(m+2)
i

= d
m/(m+2)
j

di = dj 8 i, j s.t. i 6= j

From before, A’s optimal best-response attack allocation at arbitrary nodes i and j to D’s

defensive allocation is a⇤
j
(d̄) = di+a

⇤
i
(d̄)�dj. Because D has di = dj at equilibrium, though,

this implies aj = i
⇤(d̄) = a

⇤
j
(d̄) for arbitrary nodes i and j. Therefore, both D and A will

uniformly distribute some level of resources, d⇤ and a
⇤ respectively, across all nodes in the

component containing the high-value node.
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Lemma 5. Consider a sequential network defense contest between a defender, D, and an

attacker, A, where victory is determined by a weakest-link versus best-shot lottery contest.

Let both D and A allocate resources to each node individually (d̄ = (d1, . . . , dn) and ā =

(a1, . . . , an)). A will not attack a node if D allocates su�ciently high defensive resources to

that node
⇣
a
⇤
i
= 0 if d

⇤
i
� vA

↵

⌘
. D does not allocate defensive resources beyond the point at

which A does not attack a node
⇣
d
⇤
i
 vA

↵
if a

⇤
i
= 0
⌘
.

Proof. Solving first for a⇤
i
(d̄) for all i:

@uA

@ai
:

di

(di + a
⇤
i
(d̄))2

Y

j 6=i

dj

dj + aj
vA � ↵ = 0

Lemma 4 =) d
m+1
i

(di + a
⇤
i
(d̄))m+2

vA = ↵

=) a
⇤
i
(d̄) =

✓
vAd

m+1
i

↵

◆1/(m+2)

� di 8 i

However, because A cannot allocate a
⇤
i
< 0, set a⇤

i
= 0 when:

✓
vAd

m+1
i

↵

◆1/(m+2)

 di

vA

↵
 di 8 i.

If a
⇤
i
= 0, uD is strictly decreasing in di. Therefore, it follows that D will never have

d
⇤
i
>

vA

↵
.

Proposition 3. Consider a model of sequential network defense between a defender, D, and

an attacker, A. D connects m 2 {0, n�1} low-value nodes to a high-value node and allocates

defensive resources d̄ = (d1, . . . , dn) to each node. A observes D’s choices and allocates attack

resources ā = (a1, . . . , an) to each node. D has a weakest-link objective, receives vD(1 +m�)

from a successful defense, and has linear costs. A has a best-shot objective, receives vA from

a successful attack, and has linear costs with the relative price of attack resources to defense
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resources represented by ↵. The outcome at each node is determined by a lottery contest

success function. Given the exogeneous parameters, there exist two types of subgame perfect

equilibrium allocations that can arise: Attack or Deterrence.

1. Attack: D and A each allocate a uniform and positive level of resources to nodes in

the component containing the high-value node (d⇤
i
= d

⇤ 8 i 2 C and a
⇤
i
= a

⇤ 8 i 2 C).

If ⌫ <
m+ 2

1 +m�
, D and A’s subgame perfect equilibrium allocations, (d⇤ 8 i , a

⇤ 8 i),

are:

d
⇤ = ⌫

m+1
vD

✓
1 +m�

m+ 2

◆m+2

, and

a
⇤ = ⌫

m+1
vD

✓
1 +m�

m+ 2

◆m+2 
m+ 2

⌫(1 +m�)
� 1

�

2. Deterrence: D allocates a su�ciently high level of defensive resources to each node in

the component containing the high-value node such that A does not allocate resources

to attacking D’s network

(a⇤
i
= a

⇤ = 0 8 i). If ⌫ � m+ 2

1 +m�
, D and A’s subgame perfect equilibrium allocations,

(d⇤ 8 i , a
⇤ 8 i), are:

d
⇤ =

vA

↵
, and

a
⇤ = 0

Proof. I solve first for a⇤
i
(d̄) for all nodes in the component containing the high-value node

(i 2 C).

Lemma 4 =) a
⇤(d̄⇤) = a

⇤
i
(d̄⇤) =

✓
vA(d⇤i )

m+1

↵

◆1/(m+2)

� d
⇤
i

8 i
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Similarly,

@uD(ā⇤)

@di
:

 
Y

k 6=i

d
1/(m+2)
k

!
(d⇤

i
)�(m+1)/(m+2)(⌫m+1

vD)
1/(m+2) (1 +m�)

m+ 2
� 1 = 0

Lemma 4 =) (d⇤
i
)�1/(m+2)(⌫m+1

vD)
1/(m+2) (1 +m�)

m+ 2
� 1 = 0

d
⇤ = d

⇤
i
= ⌫

m+1
vD

✓
(1 +m�)

m+ 2

◆m+2

8 i.

Now I can solve for a⇤(d̄⇤) as a function of exogenous parameters.

a
⇤(d̄⇤) =

✓
(vA)(d⇤)m+1

↵

◆1/(m+2)

� d
⇤

= d
⇤
⇣

vA

↵d⇤

⌘1/(m+2)

� 1

�

= ⌫
m+1

vD

✓
1 +m�

m+ 2

◆m+2

2

66664

0

BBB@
vA

↵⌫m+1vD

✓
1 +m�

m+ 2

◆m+2

1

CCCA

1/(m+2)

� 1

3

77775

= ⌫
m+1

vD

✓
1 +m�

m+ 2

◆m+2 
m+ 2

⌫(1 +m�)
� 1

�

By Lemma 5, if d⇤ � vA

↵
, then A sets a⇤ = 0 for all i. Conversely, if a⇤ = 0, D must have

d
⇤  vA

↵
. This implies the subgame perfect equilibrium allocations are (d⇤ 8 i, a

⇤ 8 i) =
⇣
vA

↵
, 0
⌘
if:

⌫
m+1

vD

✓
1 +m�

m+ 2

◆m+2

� vA

↵
✓
⌫

✓
1 +m�

m+ 2

◆◆m+2

� 1

⌫ � m+ 2

1 +m�
for m 2 {0, n� 1}

To see more explicitly that (d⇤ 8 i, a
⇤ 8 i) =

⇣
vA

↵
, 0
⌘
is the subgame perfect equilibrium
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allocation if ⌫ � m+ 2

1 +m�
, I show that D’s payo↵ from d

⇤ =
vA

↵
is greater than for d <

vA

↵
:

uD

⇣
a
⇤
⇣
d
⇤ =

vA

↵
8 i

⌘⌘
> uD

⇣
a
⇤
⇣
d <

vA

↵
8 i

⌘⌘

 
m+1Y

i=1

1

!
vD(1 +m�)�

m+1X

i=1

vA

↵
>

 
m+1Y

i=1

✓
d

vA/↵

◆1/(m+2)
!
vD(1 +m�)�

m+1X

i=1

d

1� m+ 1

⌫(1 +m�)
>

✓
d

vA/↵

◆(m+1)/(m+2)

� m+ 1

vD(1 +m�)
d

1 >

✓
d

vA/↵

◆(m+1)/(m+2)

+
m+ 1

⌫(1 +m�)

✓
1� d

vA/↵

◆
.

Notice that the right hand side of the above inequality is increasing as ⌫ increases. Furthermore,

the deterrence equilibrium occurs if ⌫ � m+ 2

1 +m�
, so the right hand side is maximal with

respect to ⌫ when ⌫ =
m+ 2

1 +m�
. Therefore, the following inequality necessarily implies the

above inequality:

1 >

✓
d

vA/↵

◆(m+1)/(m+2)

+
m+ 1

m+ 2

✓
1� d

vA/↵

◆

1 > (m+ 2)

✓
d

vA/↵

◆(m+1)/(m+2)

� (m+ 1)

✓
d

vA/↵

◆
.

Now I can show that the right hand side is increasing as d increases:

@RHS

@d
=

✓
1

vA/↵

◆(m+1)/(m+2)

(m+ 1)d�1/(m+2) � m+ 1

vA/↵

=
m+ 1

vA/↵

"✓
vA/↵

d

◆1/(m+2)

� 1

#
> 0 because d <

vA

↵
.

Continuing to look at the right hand side of the inequality and using the open upper bound
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of d =
vA

↵
, this implies

(m+ 2) (1)(m+1)/(m+2) � (m+ 1) (1) > (m+ 2)

✓
d

vA/↵

◆(m+1)/(m+2)

� (m+ 1)

✓
d

vA/↵

◆

1 > (m+ 2)

✓
d

vA/↵

◆(m+1)/(m+2)

� (m+ 1)

✓
d

vA/↵

◆
8 d <

vA

↵
.

Thus, this showsD does indeed receive a higher payo↵ from deterringA’s attack by allocating

d
⇤ =

vA

↵
for all nodes i in the component containing the high-value node when ⌫ � m+ 2

1 +m�

for m 2 {0, n� 1}.

On the other hand, if ⌫ <
m+ 2

1 +m�
, the subgame perfect equilibrium allocation is (d⇤ 8 i, a

⇤ 8 i)

such that

d
⇤ = ⌫

m+1
vD

✓
1 +m�

m+ 2

◆m+2

a
⇤ = ⌫

m+1
vD

✓
1 +m�

m+ 2

◆m+2 
m+ 2

⌫(1 +m�)
� 1

�

as solved for earlier in the proof.

Proposition 4. Based on the subgame perfect equilibrium allocations in Proposition 3,

where D allocates defensive resources to each node individually, d̄ = (d1, . . . , dn), the subgame

equilibrium profits for D and A, respectively, are

u⇤D =

8
>><

>>:

vD(1 +m�)� (m+ 1)
vA
↵

if d⇤ =
vA
↵

⌫m+1vD

✓
1 +m�

m+ 2

◆m+2

if d⇤ 2
⇣
0,

vA
↵

⌘

u⇤A =

8
>>><

>>>:

0 if d⇤ =
vA
↵

vA

"
1� ⌫m

✓
1 +m�

m+ 2

◆m+1✓
⌫ +m+ 1� (m+ 1)⌫2

✓
1 +m�

m+ 2

◆◆#
if d⇤ 2

⇣
0,

vA
↵

⌘

where d
⇤ =

vA

↵
8 i 2 C in the “Deterrence” subgame equilibrium and d

⇤ 2
⇣
0,

vA

↵

⌘
8 i 2 C

in the “Attack” subgame equilibrium.
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Proof. From Lemma 5, if d⇤ = vA/↵ for all i 2 C (“Deterrence” equilibrium), a⇤ = 0 for all

i 2 C (where C is the network containing the high-value node). In this case, D deters A

from attacking and receives a payo↵ of

u
⇤
D =

 
m+1Y

i=1

d
⇤
i

d
⇤
i
+ a

⇤
i

!
vD(1 +m�)�

m+1X

i=1

d
⇤
i

=

 
m+1Y

i=1

1

!
vD(1 +m�)�

m+1X

i=1

vA

↵

= vD(1 +m�)� (m+ 1)
vA

↵

such that m 2 {0, n� 1}. Because A does not expend any resources attacking the network,

it is clear she has a cost of zero and receives a benefit of zero. That is, u⇤
A = 0.

From Proposition 3, if d⇤ 2
⇣
0,

vA

↵

⌘
for all i 2 C (“Attack” equilibrium), it follows that the

equilibrium allocations are:

d
⇤ = ⌫

m+1
vD

✓
1 +m�

m+ 2

◆m+2

8 i and

a
⇤ = ⌫

m+1
vD

✓
1 +m�

m+ 2

◆m+2 
m+ 2

⌫(1 +m�)
� 1

�
8 i.
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Using these equilibrium allocations, I now calculate D’s equilibrium payo↵:

u
⇤
D =

 
m+1Y

i=1

d
⇤
i

d
⇤
i
+ a

⇤
i

!
vD(1 +m�)�

m+1X

i=1

d
⇤
i

=

0

BBB@

m+1Y

i=1

d
⇤
i

d
⇤
i
+

✓
(vA)(d⇤i )

m+1

↵

◆1/(m+2)

� d
⇤
i

1

CCCA
vD(1 +m�)�

m+1X

i=1

d
⇤
i

=

 
m+1Y

i=1

✓
d
⇤
i

vA/↵

◆1/(m+2)
!
vD(1 +m�)�

m+1X

i=1

d
⇤
i

=

0

BBB@

⌫
m+1

vD

✓
1 +m�

m+ 2

◆m+2

vA/↵

1

CCCA

(m+1)/(m+2)

vD(1 +m�)� (m+ 1)⌫m+1
vD

✓
1 +m�

m+ 2

◆m+2

=

✓
⌫

✓
1 +m�

m+ 2

◆◆m+1

vD(1 +m�)� (m+ 1)⌫m+1
vD

✓
1 +m�

m+ 2

◆m+2

= ⌫
m+1

vD

✓
1 +m�

m+ 2

◆m+1 
(1 +m�)� (m+ 1)

✓
1 +m�

m+ 2

◆�

= ⌫
m+1

vD

✓
1 +m�

m+ 2

◆m+1✓(m+ 2)(1 +m�)� (m+ 1)(1 +m�)

m+ 2

◆

= ⌫
m+1

vD

✓
1 +m�

m+ 2

◆m+2

and A’s equilibrium payo↵:

u
⇤
A =

 
1�

m+1Y

i=1

✓
d
⇤
i

d
⇤
i
+ a

⇤
i

◆!
vA �

m+1X

i=1

↵a
⇤
i

=

 
1�

✓
⌫

✓
1 +m�

m+ 2

◆◆m+1
!
vA � (m+ 1)↵⌫m+1

vD

✓
1 +m�
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Thus, I have found the subgame equilibrium payo↵s for D and A in both the “Deterrence”
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and “Attack” equilibria.
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Appendix B

Supplementary material for Chapter 2

Proposition 1 In the threshold public good game with v > 1:

(a) The set of pure Nash Equilibria includes the no-contribution and perfect-provision

strategy profiles.

(b) The set of pure Nash Equilibria is the same for all levels of feedback.

Proof (a) First consider s = (0, 0, 0) so there are no contributors. With no other players

contributing, player i receives ui = 0 by not contributing and ui = �1 by contributing, so

not contributing is the unique best response. This holds for all i, so s = (0, 0, 0) is a Nash

Equilibrium.

Next, without loss of generality, consider s = (si, sj, sk) = (1, 1, 0) so there are two contributors.

Given s, player i receives ui = v � 1 > 0 by contributing and ui = 0 by not contributing,

so contributing is the unique best response. The same is true for j. Player k receives

ui = v � 1 > 0 by contributing and ui = v by not contributing, so not contributing is the

unique best response. Thus, s = (1, 1, 0) is a Nash Equilibrium.
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Now consider s = (1, 0, 0) with exactly one contributor. Player i receives ui = �1 by

contributing and ui = 0 by not contributing, so not contributing is the unique best response.

Thus, s = (1, 0, 0) with exactly one contributor is not a Nash Equilibrium.

Finally consider s = (1, 1, 1) with three contributors. Player k receives ui = v � 1 by

contributing and ui = v by not contributing, so not contributing is the unique best response.

Thus, s = (1, 1, 1) is not a Nash Equilibrium.

(b) The proof in (a) did not rely on the level of feedback, so it applies for all three feedback

conditions. ⇤

Proposition 2 In the threshold public good game with v > 1:

(a) Under Full feedback, the set of Conjectural Equilibria is equivalent to the set of Nash

Equilibria, i.e., it consists of the no-contribution and perfect-provision strategy profiles.

(b) Under Partial feedback, the set of Conjectural Equilibria includes the Nash Equilibria

and the three-contributor strategy profile.

(c) Under None feedback, the set of Conjectural Equilibria includes the Nash Equilibria, the

three-contributor strategy profile, and the one-contributor strategy profile.

Proof (a) Because any Nash Equilibrium profile is a Conjectural Equilibrium in which

individuals have correct beliefs, we prove the claim by showing that the three-contributor

and one-contributor profiles are not Conjectural Equilibria under Full feedback.

Suppose there are three contributors. By i’s information partition, i must have beliefs

⇡
⇤
i
(1, 1, 1) = 1 and ⇡

⇤
i
(s0) = 0 for all s 6= (1, 1, 1). With these beliefs, i’s unique best

response is to not contribute, but this implies that having three contributors cannot be a

Conjectural Equilibrium.
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Now suppose there is one contributor. By i’s information partition, i must have beliefs

⇡
⇤
i
(1, 0, 0) = 1 and ⇡

⇤
i
(s0) = 0 for all s 6= (1, 0, 0). With these beliefs, i’s unique best

response is to not contribute, but this implies that having one contributor cannot be a

Conjectural Equilibrium.

(b) With Partial feedback, the no-contribution and perfect-provision strategy profiles are

still correct-belief Conjectural Equilibria.

Now suppose i is the only contributor, i.e, s = (1, 0, 0). Observe that Pi ((1, 0, 0)) consists of

only one strategy profile, i.e., just (1, 0, 0). If we suppose that s = (1, 0, 0) is a Conjectural

Equilibrium strategy profile, then by conditions (ii-a) and (ii-b) in definition (2.4) it must

be the case that ⇡⇤
i
(1, 0, 0) = 1 and ⇡

⇤
i
(s0) = 0 for all s0 6= (1, 0, 0). In short, i’s beliefs must

be correct. However, with these beliefs, player i is strictly better o↵ in expectation by not

contributing, a contradiction that means there cannot be a Conjectural Equilibrium with

exactly one contributor.

Finally suppose there are three contributors, i.e., s = (1, 1, 1), and observe that Pi ((1, 1, 1))

contains three strategy profiles: (1, 1, 0), (1, 0, 1), and (1, 1, 1). According to conditions (ii-

a) and (ii-b) in definition (2.4) player i must distribute her belief probability only among

those three strategy profiles in a Conjectural Equilibrium. Notice that ⇡⇤
i
(1, 1, 0) = 1 and

⇡
⇤
i
(s) = 0 for all s 6= (1, 1, 0) satisfy these conditions for player i. Without loss of generality,

construct similar belief for j and k. Then no player’s beliefs are contradicted by their

feedback, and each player’s contribution is a best response to their belief that they are

pivotal. Thus, this over-contribution strategy profile is a Conjectural Equilibrium with

appropriately incorrect beliefs.

(c) With None feedback, for any pure strategy profile there exists a profile of beliefs that

combines with that strategy profile to constitute a Conjectural Equilibrium. For example,

if i contributes, then ⇡
⇤
i
(1, 1, 0) = 1 and ⇡

⇤
i
(s0) = 0 for all s0 6= (1, 1, 0) makes contributing
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a best response, and if i does not contribute, then ⇡
⇤
i
(0, 0, 0) = 1 and ⇡

⇤
i
(s0) = 0 for all

s
0 6= (0, 0, 0) makes not contributing a best response. ⇤
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Appendix C

Supplementary material for Chapter 3

C.1 Full Descriptive Statistics of Cybersecurity Measures
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Table C.1: Cybersecurity Measures Full

Has measure in 2021 No No Yes Yes Other
Has measure in 2022 No Yes No Yes Other 2021 2022

General Protection
Training in past 12 months 184 108 50 314 18 54.5% 63.2%
AI or ML tools 314 51 40 82 187 20.2% 22.7%
Adherence to at least one standard/accreditation1 346 88 45 192 3 35.3% 41.5%
Has some type of cyber insurance 229 59 30 117 239 63.1% 67.7%

Rules and Policies
Policy to apply software security updates 84 72 70 346 102 65.9% 67.1%
Any monitoring of user activity 119 77 81 349 48 65.6% 66.3%
Rules for storing and moving files containing personal data 22 45 57 513 37 87.2% 85.0%
Backing up data securely via a cloud service 85 61 46 453 29 74.9% 78.6%
Backing up data securely via other means 103 60 74 384 53 70.6% 67.7%
Up-to-date malware protection across all devices 0 10 8 634 22 96.7% 97.0%
Firewalls covering IT network and individual devices 8 16 21 609 20 94.5% 94.7%
Restricting IT admin and access rights 3 7 9 646 9 97.6% 97.5%
Security controls on organisation’s devices 2 25 30 592 25 94.2% 93%
All five Cyber Essentials2 157 112 101 304 0 60.1% 61.7%
Policy to not pay ransomware 68 70 56 196 284 43.3% 47.3%

Incident Management
Business Continuity Plan 72 53 42 436 71 74.3% 75.5%
Risk register 121 61 61 323 108 61.3% 61.3%
Documentation on acceptable cyber risk level 271 72 61 111 159 28.0% 31.9%
Documentation identifying most critical assets to protect 111 81 78 304 100 60.2% 61.1%
Written list of IT estate and vulnerabilities 103 82 83 290 116 59.8% 59.5%
Incident Response Plan 164 90 54 298 68 54.2% 60.2%
Held exercise to test cyber incident response 109 52 35 77 401 20.5% 23.1%

Vulnerability Identification
Vulnerability audit 157 92 79 261 85 53.0% 56.1%
Risk assessment 81 70 69 399 55 71.5% 72.3%
Invested in threat intelligence 242 74 87 123 148 34.4% 33.7%
Used tools for security monitoring 89 66 67 353 99 66.3% 67.2%
Formally assessed risks presented by any partners 326 70 56 106 116 26.0% 29.5%

Visibility
Sta↵ can access network/files through personal devices 259 84 114 207 10 48.2% 43.3%
Sta↵ can connect to network/files outside workplace 127 47 62 388 50 68.5% 67.1%
Has a VPN for sta↵ connecting remotely 119 45 72 420 18 73.9% 69.7%
Uses a cloud server that stores data/files 93 84 69 410 18 71.8% 74.2%
Uses a physical server that stores data/files 104 27 52 479 12 79.5% 75.5%
1ISO 27001, Cyber Essentials standard, and Cyber Essentials Plus standard
2Firewalls, secure configurations, access controls, malware protection, and patch management

C.2 Board Involvement

Table C.2 shows how organizations’ boards are involved in cybersecurity. Board involvement

is an important aspect of cybersecurity as it reflects an organization’s cybersecurity culture

and overall concern toward addressing relevant risks and vulnerabilities. Panel (a) highlights
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specific ways an organization’s board is involved in cybersecurity, whereas Panel (b) presents

how the board discusses and engages with cybersecurity more generally. Similar to Table

3.2, I highlight how an organization’s board changes their involvement in cybersecurity

between 2021 and 2022 and provide the overall distribution of organizations with each board

characteristic in 2021 and 2022 respectively. Organizations generally seem to have increased

board involvement in 2022 relative to 2021, as every measure in Panel (a) has increased

adoption and Panel (b) shows there is a seemingly higher degree of cybersecurity conversation

and integration in 2022.

Table C.2: Board Involvement in Cybersecurity

(a) General Board Involvement

Has measure in 2021 No No Yes Yes Other
Has measure in 2021 No Yes No Yes Other 2021 2022

At least one board member oversees CS risks 199 69 101 223 82 46.3% 51.5%
Sta↵ member responsible for CS directly reports to board 141 95 100 310 28 47.8% 62.0%
Any of board received training 190 41 76 189 178 39.3% 44.8%
CS included in most recent annual statement 233 34 45 48 314 15.9% 19.7%

(b) Board CS Discussion and Business Integration

Change from 2021 Decrease Same Increase N/A 2021 Total 2021 2022
Frequency board discussed/updated on

151 223 180 120 674
organisation’s cyber security

Never – 49 51 7 107 15.9% 13.8%
Once a year 23 37 63 6 129 19.1% 17.4%
Once every 6 months 29 23 41 4 97 14.4% 16.2%
Quarterly 50 73 23 15 161 23.9% 26.9%
Monthly 42 40 2 6 90 13.4% 14.7%
Weekly or more 7 1 – 1 9 1.3% 1.2%
N/A 81 81 12.0% 9.9%

Board integrates cyber risk considerations
142 192 129 211 674

into wider business areas
Strongly disagree – 0 14 5 19 2.8% 1.8%
Tend to disagree 3 12 31 16 62 9.2% 9.1%
Neither agree nor disagree 13 29 47 17 106 15.7% 18.5%
Tend to agree 60 95 37 15 207 30.7% 32.8%
Strongly agree 66 56 – 7 129 19.1% 19.3%
N/A 151 151 22.4% 18.5%

Table C.3 provides results showing the relationship between a board’s involvement in cybersecurity

and incident frequency. The variables in the table capture aspects of board governance,

knowledge, and interaction with cybersecurity. I do not include the control for how frequently

the board discusses cybersecurity from Table C.2, as this variable is not significant and

including it sharply reduces the sample.
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Table C.3: Board Involvement Measures and Incident Frequency

Dependent variable: incident

Including phishing Excluding phishing Only phishing

0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6 0 vs 1-6 0-1 vs 2-6 0-2 vs 3-6
(1) (2) (3) (4) (5) (6) (7) (8) (9)

� 1 board member role 0.050 0.105 -0.075 0.020 0.103 -0.060 0.084 0.184 0.018
includes CS oversight (0.052) (0.077) (0.096) (0.073) (0.105) (0.101) (0.071) (0.132) (0.140)

Sta↵ member responsible CS -0.018 0.093 0.070 -0.094 0.119 0.018 -0.048 -0.358⇤⇤⇤ -0.280⇤

reports directly to board (0.050) (0.086) (0.116) (0.078) (0.108) (0.116) (0.075) (0.131) (0.153)

Any board members 0.026 -0.097 -0.160 0.027 -0.110 -0.053 0.014 -0.092 -0.160
received training (0.043) (0.079) (0.109) (0.081) (0.105) (0.131) (0.069) (0.147) (0.150)

CS in most recent -0.039 0.024 0.085 0.003 0.052 0.020 -0.039 0.024 0.245⇤⇤

annual report (0.049) (0.067) (0.094) (0.081) (0.083) (0.114) (0.074) (0.145) (0.109)

Board integrates CS considerations (rel to “Strongly agree”)
Agree 0.020 0.087 0.087 -0.116 0.011 0.043 -0.020 0.071 0.087

(0.060) (0.076) (0.088) (0.085) (0.099) (0.099) (0.079) (0.151) (0.131)

Neither agree/disagree 0.101 0.142 0.018 -0.003 0.084 0.117 -0.074 -0.052 -0.199
(0.080) (0.105) (0.119) (0.122) (0.136) (0.131) (0.094) (0.164) (0.152)

Disagree 0.085 0.083 0.233⇤ 0.039 0.007 0.161 0.027 0.071 0.005
(0.066) (0.117) (0.126) (0.105) (0.134) (0.152) (0.094) (0.184) (0.167)

Strongly disagree 0.047 0.187 0.199 -0.205⇤ 0.071 0.429⇤ 0.224 0.277 -0.191
(0.072) (0.204) (0.203) (0.121) (0.297) (0.236) (0.152) (0.335) (0.330)

Firm FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 571 571 571 505 505 505 636 213 213
Adjusted R2 0.486 0.286 0.277 0.567 0.383 0.272 0.351 0.251 0.121

⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01. Standard errors are clustered at the organization level. The significance level, direction, and magnitude
of the coe�cients are robust to including type (i.e., business or charity), sector, or size fixed e↵ects.

Having a board member with oversight of cybersecurity does not have a significant relationship

or general directional pattern with the experienced frequency of incidents. However, having

a sta↵ member responsible for cybersecurity directly report to the board appears to have a

moderately strong negative relationship with the frequency of incidents. It is not immediately

obvious why this relationship exists. One possibility is that having someone from the IT team

report to the board may indicate an organization that is more conscious of cybersecurity. In

turn, this is likely to foster an organizational culture aware of cyber risks, leading to more

skepticism and less phishing incidents. Regardless, the large e↵ects found in Regressions 8

and 9 could simply be a product of the minimal data on phishing incident frequency.

Though insignificant across all regressions, it is worth pointing out that having cybersecurity
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training for board members seems to have a negative relationship with the likelihood of high

frequencies of incidents (Regressions 2-3, 5-6, and 8-9). This could suggest that requiring

cybersecurity training for an organization’s board is helpful in reducing the number of cyber

incidents. This does not seem to be the case for entirely preventing incidents. However,

reducing the overall number of incidents is certainly a worthwhile goal for an organization.

More data needs to be collected and assessed to determine whether board cybersecurity

training is helpful.

Including cybersecurity in an annual report is generally unrelated to the experienced frequency

of incidents. However, Regression 9 shows a strong positive relationship between doing so

and the likelihood of experiencing monthly or more phishing incidents. It is worth noting

the small sample size supporting this result, though it is fairly intuitive: organizations

with valuable digital assets are likely to experience a high degree of phishing, and it is

likely an obligation to include something regarding cybersecurity in an annual report to give

stakeholders a sense of the risks faced by the organization.

Generally, it seems that more disagreement that an organization’s board integrates cyber

concerns across business areas is associated with a higher likelihood and frequency of incident.

The exception to this is in Regression 4, where the large negative coe�cient on “Strongly

disagree” is weakly significant relative to the reference group of “Strongly agree.” This

is likely due to a smaller number of organizations reporting “Strong” assessments, as the

coe�cients on “Agree” and “Disagree” are consistent with the rest of Table C.3 where lower

incident frequencies are generally associated with more agreement that the board integrates

cybersecurity considerations into wider business concerns.
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C.3 Cybersecurity Terms

Table C.4: Glossary of Cybersecurity Terms

Term Definition

Business Continuity Plan (BCP)
“A Business Continuity Plan is the plan for emergency response, backup operations, and
post-disaster recovery steps that will ensure the availability of critical resources and
facilitate the continuity of operations in an emergency situation.” (SANS, 2024)

Cloud computing

“A model for enabling on-demand network access to a shared pool of configurable
computing capabilities or resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management e↵ort
or service provider interaction.” (NICCS, 2024)

Data breach
“The unauthorized movement or disclosure of sensitive information to a party, usually
outside the organization, that is not authorized to have or see the information.”
(NICCS, 2024)

Denial of Service
“A cybercrime in which the attacker floods a target with internet tra�c to prevent users
from accessing connected online services and sites.” (NICCS, 2024)

Impersonization
“An attack type targeted phishing attack where a malicious actor pretends to be someone
else or other entities to steal sensitive data.” (NICCS, 2024)

Incident

“An occurrence that actually or potentially results in adverse consequences to (adverse
e↵ects on) (poses a threat to) an information system or the information that the system
processes, stores, or transmits and that may require a response action to mitigate the
consequences.” (NICCS, 2024)

Incident Response Plan (IRP)
“A set of predetermined and documented procedures to detect and respond to a cyber
incident.” (NICCS, 2024)

Malware
“Software that compromises the operation of a system by performing an unauthorized
function or process.” (NICCS, 2024)

Phishing
“A digital form of social engineering to deceive individuals into providing sensitive
information.” (NICCS, 2024)

Ransomware
“A malware designed to deny a user or organization access to files on their computer.”
(NICCS, 2024)

Risk Register
“A repository of risk information including the data understood about risks over time.”
(NIST, 2024)

Threat Intelligence
“Threat information that has been aggregated, transformed, analyzed, interpreted, or
enriched to provide the necessary context for decision-making processes.” (NIST, 2024)

Virtual Private Network (VPN)

“A restricted-use, logical (i.e., artificial or simulated) computer network that is
constructed from the system resources of a relatively public, physical (i.e., real) network
(such as the Internet), often by using encryption (located at hosts or gateways), and
often by tunneling links of the virtual network across the real network.” (SANS, 2024)

Virus
“A computer program that can replicate itself, infect a computer without permission
or knowledge of the user, and then spread or propagate to another computer.”
(NICCS, 2024)
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