UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Dynamic Reinforcement Driven Error Propagation Networks with Application to Game
Playing

Permalink
@s://escholarshiQ.org[uc[item[4c3521kg
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 11(0)

Authors
Robinson, Tony
Fallside, Frank

Publication Date
1989

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/4c35p1kp
https://escholarship.org
http://www.cdlib.org/

Dynamic Reinforcement Driven Error Propagation
Networks with Application to Game Playing

Tony Robinson and Frank Fallside
Cambridge University Engineering Department,
Trumpington Street, Cambridge, England.
(ajr@dsl.eng.cam.ac.uk)

ABSTRACT

This paper discusses the problem of the reinforcement driven learning of a response to a
time varying sequence. The problem has three parts: the adaptation of internal
parameters to model complex mappings; the ability of the architecture to represent time
varying input; and the problem of credit assignment with unknown delays between the
input, output and reinforcement signals. The method developed in this paper is based on
a connectionist network trained using the error propagation algorithm with internal
feedback. The network is viewed both as a context dependent predictor of the
reinforcement signal and as a means of temporal credit assignment. Several architectures
for these networks are discussed and insight into the implementation problems is gained
by an application to the game of noughts and crosses.

INTRODUCTION

Of the three major types of learning: supervised; reinforcement driven; and unsupervised; it is
reinforcement driven learning which is most applicable to to the formulation of models of
animal behaviour and to the design of ‘intelligent’ machines which must operate with no a
priori knowledge of their environment. Under this scheme a model is presented with a time
varying input and it generates a time varying output. Feedback for adaptation comes from a
single scalar which measures the past performance of the model. In this paper is it assumed
that there is a maximum frequency at which these signals change and so the signals may be
sampled at a constant rate without loss of information. It is also assumed that the input and
output signals have a fixed dimensionality, and can therefore be represented by a sequence of
vectors. These are common assumptions in the field of digital signal processing.

Connectionist reinforcement driven learning of arbitrary functions has three main prerequisites:

e The computational power of the model must be sufficient to represent the desired
mapping and a suitable learning algorithm must exist. Models with restricted
computational power, such as the linear mapping of the input space to the output space,
are insufficient for learning complex tasks. However, the class of non-linear functions

836


mailto:ajr@dsl.eng.cain.ac.uk

ROBINSON & FALLSIDE

known as error propagation networks or multi-layer perceptrons [Rumelhart et al., 1986]
have the power to represent arbitrary mappings, and the parameters in these models may
be trained using the technique of gradient descent.

¢ The model must have the capacity for sequence recognition and generation, and for a
self-contained system the storage must be provided internally. Within the framework of
error propagation networks there are many candidates. The first recurrent error
propagation network was formulated by Rumelhart, Hinton and Williams [1986] and
employs full connection from all units to the next time frame using an external buffer to
store past activations during training. Partial connectivity and partial feedback of the
error signal has been presented by Jordan [1986] and Robinson and Fallside [1987a] which
has the advantage that no external buffer is needed. Full feedback of the error signal
without an external buffer but with considerably increased internal storage has been
formulated by Robinson and Fallside [1987a] and implemented by Williams and Zipser
[1988].

e Finally, a mechanism is needed for credit assignment, that is which elements of the
output vector and at what delay are to be assigned the credit for the reinforcement
signal. Sutton and Barto have provided a means for credit assignment in a single node
network by applying a first order filter to the input and defining the error signal as the
difference of successive outputs [Sutton and Barto, 1981] or as the difference of successive
predictions of future reinforcement [Sutton and Barto, 1987]. Barto, Sutton and
Anderson [1983] developed a two node network where the function of the second node is
to assign credit to the output of the first node. Sutton [1984] evaluates several of these
models for temporal credit assignment. In the case where the reinforcement signal is a
complex function of the input and output signal an error propagation network may be
used to learn the required mapping. Munro [1987] and Jordan [1988] have both trained a
network in this manner by presenting random pairs of inputs and outputs.

Whilst previous work has incorporated two of these aspects, it is the aim of this paper to
combine all three. The following description assumes familiarity with error propagation
networks, begins by describing feedback within these networks and proceeds to the joining of
two networks so that they may be trained with a reinforcement signal. Two architectures for
this type of network are given, and one of these is applied to the game of noughts and crosses.

ARCHITECTURES

There are many approaches to the architecture and training of error propagation networks with
feedback. Common to all of these is that three distinct vectors can be identified: the input
vector, u(t); a state vector, z(¢); and an output vector, y(t). The vectors u(t — 1) and z(t — 1)
are used as input to an error propagation net whose output is y(¢) and z(t), as in figure 1. In
some models the state vector has common elements with the output vector or the vector of
hidden unit activations, but this paper will consider the general case where the only necessary
relationship is though the mapping made by the network.

837



ROBINSON & FALLSIDE

u(t- Error y(t)
——/ Propag-

ation
x(t-1) \ Net

K x(t)
Unit

time
delay F

Figure 1: The Dynamic Net

The error propagation network is deliberately shown as a ‘black box’. All that is required of
the non-linear function contained within it is that given the partial derivative of the cost
function (or ‘energy’) with respect to the value of each element of the vectors y(¢) and z(t), it
is possible to calculate the same derivative with respect to each element of the vectors u(t — 1)
and z(t — 1) and also with respect to every parameter (or ‘weight’) within the network. Whilst
it is most common to populate the network with nodes which compute a weighted sum of their
input vector and pass this through a sigmoidal non-linearity, many other node types are also

possible [Robinson, 1989].

A reinforcement driven dynamic net can be formed from two such dynamic nets and this
architecture is given in figure 2. The first dynamic net (net Y) computes the overall output of
the system from the sequence of input vectors. This net corresponds to the ‘Associative Search
Element’ of Sutton and Barto. After training the complete behaviour of the network is
specified by this network alone. However, during training a second dynamic net (net Z) is used
for credit assignment of the reinforcement signal. This network corresponds to the ‘Adaptive
Critic Element’ of Sutton and Barto. The function of the second net is to compute the
expected reinforcement by modelling the behaviour of the environment in which the first net is
placed (including of course the effect of the first net on the environment).

Unlike the two phase training schemes presented by Munro and Jordan, in this architecture
both networks are trained at the same time. This is done by formulating the problem in terms
of a single cost function which is a linear combination of two quantities: the expected squared
difference between the prediced reinforcement signal and the observed reinforcement signal; and
the expected squared difference between the prediced reinforcement signal and the desired
reinforcement signal. Thus the cost function is minimised if the model can accurately predict
the reinforcement signal, and that this reinforcement signal is close to the desired reinforcement
(assumed to be the ‘high’ state).

838



ROBINSON & FALLSIDE

\
input(t) }
l\ ( Error
Propag- ——
Error output(t) ) ation rﬁé’;ﬁgflt
Propag- 7 Net
ation \ Z
\ Net \
Y I:
Unit Unit
time time
delay |\ delay

Figure 2: The Reinforcement Driven Dynamic Net

The training may be achieved in two passes for each input vector. In one pass the prediced
reinforcement signal is compared with the observed reinforcement signal to calculate the
derivative of the cost function with respect to the observed reinforcement output. This
derivative signal is propagated back through net Z for all previous times that have influence on
the observed reinforcement output and the corresponding derivative of the weights in this net is
calculated. In the other pass the prediced reinforcement signal is compared with the desired
reinforcement signal and this signal is propagated back through both nets and the derivative
with respect to the weights in net Y is calculated. As with standard error propagation networks
the derivatives may be used immediately to update the weights in a stochastic gradient descent,
or alternatively the weights maybe changed after every pass through the complete training set.

In practice the two nets may be combined to achieve a more compact net, as in figure 3. This is
desirable as the back-propagation of errors is a linear process and so the two error signals may
be combined and propagated back as a single signal, so reducing the computation. A simple
example of this network has previously been presented [Robinson and Fallside, 1987b] in which
the net received a high reinforcement if the output had the same sign as the previous input,
otherwise the reinforcement was low. Thus it has already been demonstrated that these
networks can model a unit time delay.

A GENERAL GAME PLAYING PROGRAM

A subclass of the general net outlined above can be used for game playing, in which case the
reinforcement signal is defined only at the end of the game. The technique adopted here is to
play a game using the network of figure 2, storing the intermediate activations of all units. At
the end of the game two separate computations are performed, one to make a more accurate

839



ROBINSON & FALLSIDE

input(t) ) output(t+1)

Error
4\ Pr(:,-pag- reinfor-
output(t) } ation |cement(t+1
——| Net |

|i Unit
time
delay \—

Figure 3: A Compact Reinforcement Driven Dynamic Net

prediction of the reinforcement signal the end of the game, and the second to bias this signal to
the high reinforcement state.

NOUGHTS AND CROSSES

The game of ‘noughts and crosses’ or ‘tic tac toe’ was chosen for several reasons:

o It is well known and regarded as a ‘simple’ childrens game. However, it may be classified
as ‘difficult’ when judged by the current standard of connectionist learning procedures.

e The mapping of a board position onto the optimal next move is a complex non-linear
function requiring the learning of disjoint pattern classes.

e The state of the game is uniquely defined by the board position, so that net Y does not
need any state units.

e The board may be represented in relatively few bits. Each of the nine locations may be
unoccupied or occupied by either a ‘O’ or a ‘X’. Thus an upper bound on the number of
legal states is 3° = 19683, which can be represented in 15 bits.

e The game has a short duration as no player may place more than five pieces on the
board. Thus as far as assigning credit or blame for the outcome of the game, the error
signal must be propagated back through a maximum of five states.

The ‘opponent’ to the net was a simple algorithm that would win by completing a line of two if
possible, otherwise a piece would be placed randomly. If the net places pieces randomly, as is

840



ROBINSON & FALLSIDE

the case before any learning, then the net wins about 30% of the games which are not drawn.
A suitably experienced player would never loose and only occasionally draw against this
algorithm.

IMPLEMENTATION

Two 3x3 matrices were used to represent the board position. One has each element set high if
the corresponding board position is occupied, the other is used to record the owner of the piece
placed on the occupied site. The output representation was another 3x3 matrix, the legal move
with the largest value in this matrix (after the addition of noise as discussed later) was taken as
the move to be made. No attempt was made to take advantage of the symmetry of the game.

The machine was trained a 65 processor array of T800 transputers running at about 50 Mflops.
Forty games were played per processor per update, so the weights were updated on gradient
information collected over 2600 games. Each net had 144 hidden units with a sigmoidal
activation function ranging from —1 to +1. The target values for the outputs were chosen to be
in the linear region of the activation function, 40.1 for positive reinforcement and —0.1 for
negative reinforcement.

PROBLEMS

Reinforcement driven learning is a harder task than supervised learning for the simple reason
that less information is provided about the desired output. For the game playing program
presented here there is the additional problem that changes to the weights change the response
given to early moves, so the whole style of the game can change. For example, the initial moves
are random, so the prediction and maximisation of the reinforcement signal is carried out for
nearly fully populated boards of randomly placed pieces. However, towards the end of the
learning period the game length has become shorter and there are correspondingly fewer pieces
on the board. Thus the prediction and maximisation functions must relearn for this new set of
training data. Because the form of the training set is dependent on the current performance,
the net does not perform a gradient descent in a single function throughout the training, but
performs a gradient descent in a continually changing function. Thus there is no guarantee of
convergence or stability.

The algorithm used as an opponent to the net employed a random number generator to pick a
legal move if it could not place a piece to win the game. This randomness means that some
responses would be given more often than others in an unpredictable way and this hinders the
learning by the introduction of noise into the error signal.

A strict pick-the-biggest rule to convert the output of the net into a symbolic form was found
to lead to unstable behaviour during training. This is because the magnitude of the difference
between the largest and second largest element is unimportant which results in a discontinuity
in the weight space. For example, a small difference of activity in an output unit might change
the move made during a game, and change the outcome of the game. So, for the same reason as
step activation functions can not be used within a network, a step response in interpreting the

841



ROBINSON & FALLSIDE

output must be avoided. A probabilistic representation of the the output vector was used to
improve the stability. This was implemented by adding random noise to the output vector
before choosing the largest element. The noise was generated by the difference of two random
numbers with range 0.1. Thus if one output was more than 0.2 above all the others this noise
has no effect, otherwise the noise results in random decisions which, when averaged, blur out
the discontinuities in the weight space. An alternative deterministic solution to this problem
has been proposed by Boothroyd [1989, personal communication] in which a connectionist net
is used to warp the output space closer to the form expected by the pick-the-biggest rule. Some
preliminary investigations have been reported by Robinson [Robinson, 1989]. In a ‘real world’
environment, such as that of autonomous robot control, an analogue output may be
appropriate and this would avoid the problem.

RESULTS

The initial performance of the net was to win about 30% of the games played. After playing
300,000 games this figure improved to 59%, and playing a further 3,000,000 games produced no
further improvement. Whilst the performance of the net is lower than the optimal performance,
the net did learn sufficiently to perform better than the opponent algorithm which it played
against.

CONCLUSION

This paper has presented a scheme for implementing reinforcement driven learning for arbitrary
sequences of input and output vectors. Three necessary conditions have been identified: the
ability to make arbitrary mappings; the ability to store contextual information; and the ability
to do credit assignment. This approach has used error propagation networks for the mappings,
feedback of state information to provide context and a new cost function to perform credit
assignment. The new cost function is a linear sum of that required to form a good predictor of
the reinforcement signal and that required to maximise the reinforcement signal.

A dynamic reinforcement driven error propagation network has been applied to the game of
noughts and crosses. The final performance was slightly better than the opponent algorithm
but lower than the optimal performance. This has raised issues related to changing
environmental conditions during training, statistical fluctuations in gradient descent techniques
and the interfacing of a distributed machine to a symbolic environment.

ACKNOWLEDGEMENTS

One of the authors, Tony Robinson, would like to acknowledge financial support from the UK
Science and Engineering Research Council, Cambridge University Engineering Department and
Trinity Hall, Cambridge. Technical support was received from the ParSiFal project IKBS/146
which developed the transputer array, and considerable academic support was received from all
members of the connectionist group in Cambridge University Engineering Department.

842



ROBINSON & FALLSIDE

REFERENCES

[Barto et al., 1983] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson.
Neuronlike adaptive elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man, and Cybernetics, 13(5):834-846, 1983.

[Boothroyd, 1989] C. B. Boothroyd. January 1989. Department of Material Science,
Cambridge University. Personal communication.

[Jordan, 1986] Micheal 1. Jordan. Serial Order: A Parallel Distributed Processing Approach.
ICS Report 8604, Institute for Cognitive Science, University of California, San Diego, May
1986.

[Jordan, 1988] Michael 1. Jordan. Supervised learning and systems with excess degrees of
freedom. COINS Technical Report 88-27, Massachusetts Institute of Technology, May 1988.

[Munro, 1987] P. W. Munro. A dual back-propagation scheme for scalar reinforcement
learning. In Proceedings of the Ninth Annual Conference of the Cognitive Science Society,
Seattle, WA, 1987.

[Robinson, 1989] A. J. Robinson. Dynamic Error Propagation Networks. PhD thesis,
Cambridge University Engineering Department, February 1989.

[Robinson and Fallside, 1987a] A. J. Robinson and F. Fallside. Static and dynamic error
propagation networks with application to speech coding. In Dana Z. Anderson, editor,
Proceedings of Neural Information Processing Systems, American Institute of Physics,

Denver, November 1987.

[Robinson and Fallside, 1987b] A. J. Robinson and F. Fallside. The Utility Driven Dynamic
Error Propagation Network. Technical Report CUED/F-INFENG/TR.1, Cambridge
University Engineering Department, 1987.

[Rumelhart et al., 1986] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal
representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Processing: Ezplorations in the Microstructure of Cognition. Vol. I:
Foundations., chapter 8, Bradford Books/MIT Press, Cambridge, MA, 1986.

[Sutton, 1984] Richard S. Sutton. Temporal Credit Assignment in Reinforcement Learning.
PhD thesis, University of Massachusetts, Department of Computer and Information
Science, February 1984.

[Sutton and Barto, 1981] Richard S. Sutton and Andrew G. Barto. An adaptive network that
constructs and uses and internal model of its world. Cognition and Brain Theory,
4(3):217-246, 1981.

[Sutton and Barto, 1987] Richard S. Sutton and Andrew G. Barto. A temporal-difference
model of classical conditioning. In Proceedings of the Ninth Annual Conference of the
Cognitive Science Society, Seattle, WA, 1987.

[Williams and Zipser, 1988] R. J. Williams and D. Zipser. A Learning Algorithm for
Continually Running Fully Recurrent Neural Networks. ICS Report 8805, Institute for
Cognitive Science, University of California, San Diego, October 1988.

843



	cogsci_1989_836-843



