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Abstract: Single-object imaging and spectroscopy on telescopes with apertures ranging
from ∼ 4m to 40m have the potential to greatly enhance the cosmological constraints that
can be obtained from LSST. Two major cosmological probes will benefit greatly from LSST
follow-up: accurate spectrophotometry for nearby and distant Type Ia supernovae will ex-
pand the cosmological distance lever arm by unlocking the constraining power of high-z
supernovae; and cosmology with time delays of strongly-lensed supernovae and quasars will
require additional high-cadence imaging to supplement LSST, adaptive optics imaging or
spectroscopy for accurate lens and source positions, and IFU or slit spectroscopy to measure
detailed properties of lens systems. We highlight the scientific impact of these two science
drivers, and discuss how additional resources will benefit them. For both science cases,
LSST will deliver a large sample of objects over both the wide and deep fields in the LSST
survey, but additional data to characterize both individual systems and overall systematics
will be key to ensuring robust cosmological inference to high redshifts. Community access to
large amounts of natural-seeing imaging on ∼2–4m telescopes, adaptive optics imaging and
spectroscopy on 8–40m telescopes, and high-throughput single-target spectroscopy on 4–40m
telescopes will be necessary for LSST time domain cosmology to reach its full potential. In
two companion white papers we present the additional gains for LSST cosmology that will
come from deep and from wide-field multi-object spectroscopy.
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1 Introduction

As a Stage IV Dark Energy program, the Large Synoptic Survey Telescope (LSST) will
play a major role in improving our knowledge of cosmology over the years 2023–2033 via
both wide-area and deep surveys. However, obtaining measurements that extract the full
potential of LSST will require additional data from other ground-based facilities. In this
white paper, we describe the science opportunities to build on and strengthen the LSST
dataset that would be made possible by community access to telescopes and instruments
enabling detailed follow-up of individual objects. These facilities can provide single-object
imaging either in more bands, with higher spatial resolution, or with higher cadence than the
LSST observations provide, and can provide spectroscopic measurements for rare objects,
which are difficult to target efficiently for multi-object spectroscopy.

In two companion white papers we describe the gains for LSST cosmology that would
come from community access to highly-multiplexed optical and infrared spectroscopy on 4–
40 m telescopes, either via surveys of faint objects at the full depth of LSST cosmological
samples, i∼25 [1], or from wider-area (> 20deg2) but shallower surveys [2].

2 Type Ia Supernova Spectroscopy to High Redshifts

As described in a companion paper [2], the largest sets of redshift measurements for LSST
supernovae should come from targeting SNe and their host galaxies via wide-field multi-
object spectroscopy, either using a small fraction of fibers in surveys that span the LSST
footprint or via targeted surveys in the LSST Deep Drilling Fields (DDFs). However, higher
signal-to-noise observations will be needed for a significant sample of low-z SNe to charac-
terize the range of intrinsic spectra; and to compare this to the high-z LSST Type Ia SN
(z ∼ 0.5 − 1.4) will require targeted long-exposure follow-up while the high-z SNe are still
bright.

Typing to eliminate non-SNe Ia contamination and to validate photometric
classification at high (and low) redshift: Much work has gone into techniques for de-
termining supernova types and redshifts from photometry alone, but this is still a difficult
technique when applied over a large redshift range due to changing filter coverage and un-
known drifts in the spectroscopic properties of the SNe. Current photometric identification
techniques require spectroscopically classified training samples, ideally over the full range
of redshifts under consideration. Fully characterizing some classes of objects from LSST
at the faintest magnitudes [e.g., SLSN and Type II SN, see 3, 4] will require spectroscopic
observations on 25–40 m class telescopes. Furthermore, measuring the redshifts via spectra
of “live” supernovae eliminates type uncertainty, yielding high-purity samples with limited
systematics. Ultimately, detailed spectrophotometric studies of low-z Type Ia SN will be the
best source of high-signal-to-noise information about the behavior over a large range of Type
Ia SN subtypes, making spectroscopy on smaller telescopes valuable as well. An example of
such a study can be found in [5].

Systematic error mitigation: Detailed understanding of a variety of potential sources
of systematic error will be crucial for supernova science with LSST, including evolution of
the Type Ia SN population with redshift; errors in the specification of the spectral energy
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distribution (SED) in different redshift/rest-frame wavelength ranges that can affect training
of light curve models; and mis-classifying fine sub-types (“twins”) of Type Ia supernovae.
Finally, we do not know if our current catalog of spectral properties is exhaustive, and,
if not, the mismatch between assumed spectral model templates and actual spectra will
introduce systematic shifts in our cosmological distance measurements. While deep follow-
up of a variety of LSST transients will be needed to understand their physics and evolution,
requirements for the use of SNe Ia as cosmic probes of distance are particularly stringent,
and hence detailed spectral studies are needed.

Very high data quality is needed if spectra of “live” supernovae will be used to detect the
subtle differences between sub-types of SN Ia, to study evolutionary population drift, and
to match highly-similar supernovae (“twins” as described in [6]) to reduce the dispersion of
measured distances. So far, such purposes require high signal-to-noise observations to track
subtle spectroscopic features and spectrophotometric data to allow a clean subtraction of the
host galaxy light. For systematics constraints on measurements of high-redshift Type Ia SN
to be commensurate with the precise statistical uncertainties resulting from large numbers
of LSST-discovered SNe, there will be a need for new instrumentation for ground-based
telescopes (e.g., IFU or high-throughput spectrographs now in the planning stages for 2–4 m
telescopes and IFU reformatters on existing spectrographs (with or without AO) on 8–40 m
telescopes), as well as development of space-based observational avenues such as coordinated
observations with Euclid, WFIRST or other space missions now planning spectrophotometric
instrumentation.

3 Cosmology with Strong Gravitational Lens Systems

One of the most striking consequences of general relativity is that light from distant sources
is deflected by the gravitational field of massive objects near the line of sight. When the
deflection produces multiple images, the phenomenon is known as “strong gravitational lens-
ing.” The multiple images of strongly lensed sources arrive at different times because they
travel different paths and through different gravitational potentials to reach us [7, 8]. When a
strongly lensed source is time variable, the arrival time delays can be measured and combined
with a mass model to yield cosmological constraints, particularly on the Hubble constant H0.
Strongly-lensed QSOs, compound lens systems, and strongly-lensed supernovae each provide
opportunities for measurement of cosmological parameters with LSST, and the LSST DESC
plans to exploit them all [9].

3.1 Precision Cosmology with Strongly-Lensed Supernova Time Delays

The prospect of cosmological constraints from strongly-lensed supernovae was illustrated
with the ground-breaking Hubble Space Telescope observations of the first multiply-imaged
lensed supernova, SN Refsdal [10]. Ground-based time-domain optical imaging surveys sim-
ilar in spirit to LSST, such as the intermediate Palomar Transient Factory (iPTF), played
a key role in the discovery and follow-up observations of another strongly gravitationally
lensed supernova with resolved multiple images [11, see Figure 1].

Time delays from lensed supernovae present opportunities to observe the earliest phases
of supernova explosions, to infer cosmological parameters, and to map substructure in lens
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Figure 1: iPTF16geu, a Type Ia supernova at z = 0.4 strongly lensed by an elliptical galaxy
at z = 0.2 (data from HST and Keck). This transient—the only known lensed Type Ia SN
with resolved multiple images—was discovered by a predecessor of LSST, the intermediate
Palomar Transient Factory (iPTF). The multiple images of the supernova are indicated with
circles. Due to the small image separation (∼0.3′′), high-resolution imaging was required to
confirm that it was a strongly-lensed supernova. Figure reproduced from [11].

galaxies, but many more systems are needed to achieve these goals. Thanks to novel lensed-
supernova hunting techniques, a new generation of alert-based wide-field imaging surveys
that began in mid–2018 with the Zwicky Transient Facility [ZTF; 12] and will continue into
the 2030s with LSST will increase the size of this sample by orders of magnitude. ZTF is
currently expected to yield ∼20 lensed supernovae over the course of its 3-year campaign,
followed by thousands from LSST and WFIRST [13]. This vast increase in sample size will
enable groundbreaking new measurements with the potential to rapidly deliver precision
constraints on the Hubble constant (H0) and dark energy. The Hubble constant can be de-
termined to exquisite precision with measurements of the nearby universe using the distance
ladder [14, H0 = 73.24 ± 1.74 km/s/Mpc]. It can also be inferred with measurements of
the primordial universe using the cosmic microwave background (CMB), assuming a ΛCDM
cosmology [15, H0 = 66.93 ± 0.62 km/s/Mpc]. The tension between these local and distant
measurements is palpable: they currently disagree by 3.8σ. It is potentially a sign of new
fundamental physics, such as sterile neutrinos or “phantom” dark energy [e.g., 16, 17, 18],
but could also be a sign of systematics in the measurements [e.g., 19, 20]. Time delays be-
tween the multiple images of strongly lensed time-variable sources depend primarily on H0,
and the mass distribution along the line of sight [21, 22, 23, 24]. Refsdal [25] first suggested
using time delays from strongly lensed supernovae to measure H0, but today, more than 50
years later, this measurement has yet to be made with precision. Time delays from lensed
supernovae have many advantages over time delays from strongly lensed quasars, which have
been used to measure H0 to 3.4% in a ΛCDM cosmology Lensed supernovae require 100 times
less monitoring (i.e., a few weeks rather than decades) and are less sensitive to microlensing
[13], mass modeling systematics [26], and selection bias [27]. Consequently, they provide
the most direct and rapid route to sub-percent constraints on H0 with strong lensing time
delays.

3



Distance ladder ΛCDM

WMAP1

WMAP3
WMAP5

WMAP7

WMAP9

P13
P15 +BAO

KP

CHP
SH0ES

SH0ES

Measurement year

H
0

 (k
m

 s
–1

 M
pc

–1
)

2000

65

70

75

80

2005 2010 2015

SH0ES

  LSST SL Δt's
(Projected)

2025

Figure 2: Examples of measurements of H0 since the year 2000. Strong lensing time delays from systems
discovered by LSST and observed with supplemental monitoring and follow-up spectroscopy as recommended
in this white paper (black diamond) will resolve or increase the current tension in H0. Figure adapted from
[17].

We forecast that H0 can be measured to sub-percent precision within ΛCDM cosmological
models with time delays from systems discovered in the first year of the LSST survey. The
total number of supernova time delay systems over the LSST survey is expected to be
∼ 100. Our projected constraint on H0 as shown in Figure 2 is comparable in precision to
the leading current measurement from the combination of Planck and BOSS data [28, 29],
and it is almost ten times better than the current state-of-the-art constraints from quasar
time delays [30]. In addition to constraining H0, time delays from lensed supernovae are
sensitive to dark energy in a completely different way than cosmological probes based on
distances and volumes [e.g., the CMB, the Type Ia SN distance-redshift relation, BAO, and
galaxy clusters; 31, 32], making time-delay measurements highly complementary. Adding in
lensed supernovae from the first year of LSST increases the Dark Energy Task Force [33]
figure of merit by a factor of 3 over an Type Ia SN-based constraint alone—a major gain.

3.2 Photometric and Spectroscopic Follow-up of Lens Systems

LSST is expected to deliver hundreds of cosmologically useful lensed supernovae [34] and
thousands of cosmologically-useful lensed QSOs [35]. Initial observations of strong lenses
piggybacking on wide-field multi-object spectroscopic surveys can help to characterize lensed
QSO systems and identify the most useful ones, as described in a companion paper [2].
However, measuring cosmological parameters to percent-level accuracy with strong-lens time
delays requires two main ingredients once the ideal systems are identified. First, one must
measure the time delays between the multiple images of a source, and second, the lensing
potential must be inferred to convert the observed time delays into a time delay distance.

To measure time delays, high-cadence, high-resolution, multi-filter imaging of the resolved
lensed images is required. In general, the LSST cadence may be insufficient for this purpose;
as a result, dedicated follow-up imaging of lens systems with more frequent visits will be
needed, but this can often be performed on smaller telescopes (2–4 m). To model the lens
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systems, both source and lens redshifts are required, as well as high-resolution imaging of
the lens galaxy and lensed host galaxy to measure apparent positions with high precision.
Kinematic velocity dispersions derived from lens galaxy spectra can also improve the models.
Adaptive optics (AO) IFU spectroscopy on 8–40m-class telescopes (with aperture required
depending on brightness) can satisfy all of these needs simultaneously, but the combination
of AO imaging with slit spectroscopy would also suffice.

4 Recommendations

Important advances in cosmological studies with SNe and strongly lensed systems in the
new era of large-area, high-cadence optical surveys such as LSST will require single-object
follow-up data of several types:

• Spectrophotometry of SNe Ia will enable direct cosmological measurements, the devel-
opment of spectral templates and the calibration of photometric classification perfor-
mance at high redshift (where it is the most uncertain), as well as tests of systematic
effects. Given the wide range of LSST SN brightnesses, this work will be reliant on
large amounts of low-to-medium resolution spectroscopy on ground-based telescopes
with apertures from 4 m to > 20 m, and, ideally, space-based telescopes as well.

• Follow-up imaging with more frequent cadence than LSST will be valuable for measur-
ing strong lensing time delays; this can generally be conducted on 2–4 m telescopes.

• Adaptive optics IFU spectroscopy, or AO imaging plus slit spectroscopy, is needed
for precision image position measurements and lens system modeling; this work will
require access to both 8–10 m and > 30 m telescopes with AO capabilities.

The Kavli/NOAO/LSST report (summarized in Table 1) provided quantitative estimates of
the telescope time required to support cosmology measurements with LSST supernovae and
strong-lens systems [36].

Facility Supernova single-object follow-up requirements
4 m spectroscopy 60–180 nights total
8 m spectroscopy 180–540 nights total
> 20m spectroscopy 180–540 nights total

Facility Strong Lensing single-object follow-up requirements
2–4 m non-AO imaging < 8000 hours total
> 8m AO imaging ∼ 30 hours, split amongst 8 m+ and 30 m+ telescopes
> 8m spectroscopy ∼ 100 hours, split amongst 8 m+ and 30 m+ telescopes

Table 1: Summaries of the required resources, as estimated in the Kavli/NOAO/LSST study
on Ground-based Optical/IR follow-up.

Although in many cases suitable instruments exist (e.g., Keck/OSIRIS) or are being
developed (e.g., Gemini/SCORPIO), cases remain where the telescopes, both ground- and
space-based, best positioned for this work have suboptimal instrumentation; as a result,
additional development, not just telescope time, may be needed.
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