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Abstract 

Due to population growth and progress made in sustainable water management, water resources 

availability to California’s croplands is becoming more scarce. Besides, due to climate change, 

year-to-year water supplies are becoming increasingly unpredictable. As 80% of all human use 

of water is diverted for farmland irrigation, spatial estimates of crop evapotranspiration with high 

accuracy, from the field to watershed scale, have become increasingly important for water 

resources management. The present work aims to improve and evaluate an algorithm for 

estimating spatial crop evapotranspiration and explore its application to water resource 

management. The generated knowledge and tools from this study can provide data-driven 

guidance for water resources planning at the watershed level, contributing to a more sustainable 

use of water in California’s agricultural regions.  

The first chapter focused on improving and evaluating a semi-empirical model to map crop 

evapotranspiration at a 30m resolution using Landsat satellite images and concurrent spatial 

meteorological data. The algorithm was optimized and cross-validated with available field 

measurements from over 22 sites in California’s Central Valley for major crops, including 

alfalfa, almond, citrus, corn, pasture, and rice. The evapotranspiration estimates explained more 

than 70% variance in daily measurements with an RMSE of 0.88 mm day-1. The site-level 

evaluation was repeated with the estimates from another remote sensing algorithm, PT-JPL, 

which is developed by scientists at the NASA Jet Propulsion Laboratory. The two algorithms 

share a similar theoretical basis and design, and an improvement over a PT-JPL was observed 

when the proposed approach is crop-specifically calibrated. This chapter demonstrated that land 

use information and field measurements are useful for reducing the uncertainty of spatial crop 

evapotranspiration estimates. The model presented in the first chapter can be applied for 
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continuous monitoring of the dynamics and spatial heterogeneity of crop consumptive water use 

in California at a field scale. 

Chapter 2 scaled up the proposed algorithm to estimate annual evapotranspiration at 30m 

resolution across the entire Central Valley for water years 2014 and 2016. It examined the spatial 

pattern of crop water consumptive use at a regional level and a local scale of Groundwater 

Sustainability Agencies (GSAs). We estimated a mean (x̅) evapotranspiration of 820 mm yr-1 

with a standard deviation (σ) of 290 mm yr-1in 2014. Compared to 2014, the total estimated 

evapotranspiration in 2016 increased by 9.6%, mostly because of land-use conversion from 

fallow/idle land to cropland. Large variation of agricultural water use was found across different 

and within the same crop types, with a coefficient of variation ranging from 8% for Rice (x̅ = 

1110, σ = 85 mm yr-1) to 59% for Pistachio (x̅ = 592, σ = 352 mm yr-1). Besides, tree crops, such 

as Almonds, were found to have a large variation of evapotranspiration among and within GSAs. 

To further understand the spatial variability of almond’s evapotranspiration at the GSAs scale, an 

empirical model using normalized difference vegetation index (NDVI) and orchard age was 

optimized and evaluated. Orchard age was shown to be an important factor contributing to the 

variability of evapotranspiration across GSAs. However, spatial variation of other physical 

factors that could affect NDVI, such as salinity at the root zone, will likely have stronger control 

over almond’s evapotranspiration, explaining its spatial variation within and among GSAs. 

Overall, this chapter demonstrates how spatial estimates of evapotranspiration can be used to 

provide data-driven guidance for more effective land use and water planning across regional and 

local GSA scales. 

In chapter 3, the proposed algorithm was implemented to estimate daily crop evapotranspiration 

at 30m resolution in the Pajaro Valley, CA for 2009 and 2011. The objective of the study was to 



vii 

 

develop and evaluate methods to estimate agricultural applied water from field to local agency 

scales. To estimate applied water at the field scale, the daily spatial evapotranspiration was 

coupled with soil water balance for simulation of daily fluxes in a water balance at 30m 

resolution. This coupled model requires a crop-specific optimization on application efficiency, 

using a limited number of field-scale applied water records. When the model estimates are 

spatially aggregated by fields and temporally aggregated to the annual total, the evaluation 

showed that our applied water estimates agreed well with the pumping records at the field scale, 

explaining 86% of variability with an RMSE of 39.6 million liters. When aggregated over the 

Pajaro Valley, we estimated a total of agricultural groundwater pumping ranging from 53.9 in 

2009 to 42.6 billion liters in 2011, which deviated from the sum of all agricultural pumping and 

surface water delivery by less than 4.6%. Over 16 subregions in the valley, our estimates 

explained more than 89% variance in pumping records with an RMSE of 1.2 billion liters. Our 

estimates of water balance fluxes were also compared with that by USGS, to evaluate the 

model’s ability in representing the hydrological process of the Valley. Results from chapter 3 

demonstrated that remote sensing evapotranspiration estimates can be used to estimate regional 

agricultural applied water with reasonable accuracy yet in a cost-efficient way, over areas where 

only a limited number of field-scale applied water data is available for calibrating a soil water 

balance model. 
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Abstract 

A cost-effective and timely method to estimate crop evapotranspiration with known uncertainty 

from the field to watershed scale has become increasingly important for water management, 

particularly for irrigated agriculture in semi-arid regions. To enable growers to tailor irrigation 

management based on in-field and within-season variation of water use and to better inform 

regional water managers on crop consumptive use, we improved a semi-empirical Priestley-

Taylor evapotranspiration approach, specifically for croplands, to estimate daily 

evapotranspiration with 30m Landsat satellite data. The approach was optimized and cross-

validated with available field measurements from over 22 sites for major crops, including alfalfa, 

almond, citrus, corn, pasture, and rice. The evapotranspiration estimates explained more than 

70% variance in daily measurements with an RMSE of 0.88 mm day-1. An improvement over a 

prominent Priestley-Taylor-based remote sensing model is achieved through crop-specific 

calibration. The model presented here can be applied for continuous monitoring of the dynamics 

and spatial heterogeneity of crop consumptive water use in California at a field scale. It is 

expected to improve irrigation practices at the farm level and provide data-driven guidance for 

water planning at the watershed level, contributing to more sustainable water use in California’s 

agricultural regions.  

1. Introduction 

Evapotranspiration, also known as crop consumptive water use in agricultural lands, is 

often the largest yet most uncertain component of the agricultural water balance in semi-arid 

regions (Burt et al., 2002; Fisher et al., 2017; Oki et al., 2006). Field-based evapotranspiration 

measurements, e.g., from eddy covariance sensors, are reliable and accurate if set up and 
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processed carefully (Chávez et al., 2009). It requires expensive and calibrated instruments, in 

addition to care in field set-up and complex data post-processing data methodology for quality 

assurance. The measurement footprint is generally limited to less than a few hundred meters, so 

an excessive number of stations would be required for regional-scale evapotranspiration 

measurements. In contrast, modeling evapotranspiration with publicly accessible satellite data 

offers a potentially cost-effective monitoring alternative, due to its large spatial coverage and 

consistent imagery acquisition. However, remote sensing estimates have many limitations, 

including the frequency of overpasses, vast amounts of data processing, and the necessity for 

clear skies and scientifically defensible and accurate models.  

A few algorithms of varying complexity have been developed to map crop 

evapotranspiration using remote sensing data, due to the large spatial coverage and consistent 

imagery acquisition by satellite instruments (Akbar et al., 2019; Allen et al., 2007; Anderson et 

al., 2012; Bastiaanssen et al., 1998; Ganguly et al., 2012; Nagler et al., 2005; John M. Norman & 

Becker, 1995). For example, the crop coefficient-based evapotranspiration approach has been 

used by California’s growers for irrigation management (California Department of Water 

Resources, 2005; Melton et al., 2012). This method is relatively easy to implement but does not 

account for other factors, such as water stress and thus likely overestimates actual 

evapotranspiration (Anderson et al., 2012; Cuenca et al., 2013). Energy balance-based 

approaches, on the other hand, estimate evapotranspiration as a residual between available 

energy and sensible heat flux (Allen et al., 2007; Bastiaanssen et al., 1998; John M. Norman & 

Becker, 1995; Su, 2002), e.g., as adopted by the Surface Energy Balance Algorithm for Land 

(SEBAL) (Bastiaanssen et al., 1998) and Mapping EvapoTranspiration at high Resolution with 

Internalized Calibration (METRIC) (Allen et al., 2007). In METRIC, the sensible heat is often 
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estimated using clusters of hot and cold pixels observed within each Landsat scene (Allen et al., 

2007). The pixel selection can be fully automated (Allen et al., 2013) for large-scale applications 

or manually selected by professional users for more accurate regional estimates. 

More sophisticated methods involve solving the soil and canopy latent heat components 

within a process model, constrained by satellite data (Anderson et al., 1997, 2018; Ryu et al., 

2011). The Atmosphere-Land EXchange Inverse (ALEXI) model, for example, implements the 

Two-Source Energy Balance in a time differential mode, based on two snapshots of high 

temporal frequency geostationary satellite thermal observations, to reduce the sensitivity to the 

errors in absolute land surface temperatures (Anderson et al., 1997, 2004, 2018). DisALEXI has 

been further developed to estimate evapotranspiration at 30 m resolution, by bringing in 

additional higher spatial resolution thermal data from Landsat (Anderson et al., 2004, 2012, 

2018; J. M. Norman et al., 2003). A recent comparative study of crop evapotranspiration 

estimates over the Sacramento San Joaquin Delta showed that DisALEXI estimates had an 

RMSE of 1.43 mm day-1 and mean bias of 0.13 mm day-1 while the calibrated METRIC prepared 

by the Irrigation Training & Research Center had an RMSE and mean bias of 2.55 and 2.06 mm 

day-1, respectively (Medellín-Azuara, J. et al., 2018). Another biophysical model, Breathing 

Earth System Simulator (BESS) (Baldocchi et al., 2019; Jiang & Ryu, 2016, p. 201; Ryu et al., 

2011), couples surface energy balance, photosynthesis, and stomatal conductance processes to 

estimate evapotranspiration, forced by biophysical parameters from MODIS 8-day 1km 

observations.  

One compromise between the simple crop-coefficient-based approaches and more 

complex energy balance models described above is the Priestley Taylor approach. It is an 

alternative to Penman-Monteith for estimating potential evapotranspiration (Debruin H. A. R., 
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1983; Eichinger et al., 1996; Priestley & Taylor, 1972). It is primarily driven by available energy 

and a Priestley Taylor coefficient that partitions available energy to latent and sensible heat. This 

coefficient was found to be constant for estimating potential evapotranspiration. For actual 

evapotranspiration, biophysical controls such as water stress can downregulate it and thus reduce 

the fraction of available energy used for latent heat. Fisher et al., (2008), for example, 

parameterized the Priestley Taylor coefficient separately for soil evaporation, canopy 

transpiration, and interception using remotely sensed vegetation index and meteorological data. 

It has been applied to estimate monthly evapotranspiration globally at 5 km and 1° resolution 

using Advanced Very High Resolution Radiometer data (Fisher et al., 2008; Vinukollu et al., 

2011), regionally at 1km using Moderate Resolution Imaging Spectroradiometer (MODIS) data 

(Yao et al., 2015) and most recently at 70 m using ECOsystem Spaceborne Thermal Radiometer 

Experiment on Space Station data (Fisher et al., 2020). Jin et al., (2011) optimized Priestley 

Taylor coefficient, 𝛼, as a function of Leaf Area Index (LAI) and soil moisture for each plant 

function type, using the eddy covariance tower measurements from AmeriFlux sites, and 

estimated monthly evapotranspiration at 1km for the entire continental US, from primarily 

MODIS data.  

Our study here builds upon the original semi-empirical Priestley Taylor model (Jin et al., 

2011). We first modified the 1km, monthly ecological evapotranspiration model to estimate 30m, 

daily crop evapotranspiration in the Sacramento San Joaquin Delta (Medellín-Azuara, J. et al., 

2018). Here, we further calibrated and evaluated the refined semi-empirical Priestley Taylor 

method (Jin et al., 2011) over major California crops, using the Landsat Analysis Ready Data 

(Dwyer et al., 2018). To better understand the uncertainties and limitations of our 

evapotranspiration estimates in the context for water use study within California, multiple cross-
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validations were conducted. We expected this improved remote sensing evapotranspiration 

model, tailored for estimating crop water consumptive use over irrigated land in semi-arid 

regions, could provide valuable information for field-scale and regional water resources 

management. 

2. Data and Methods  

We adapted the semi-empirical Priestley Taylor method (Jin et al., 2011), as shown in 

Equation (1), for agricultural sites in California. The method is driven by Landsat remote sensing 

data and was calibrated and evaluated using recently available in-situ evapotranspiration 

measurements, from 2003 to 2019, over a variety of irrigated crop types. 

𝐿𝐸 = 𝑃𝑇𝑎 ∗
𝛥

𝛥+𝛾
∗ (𝑅𝑛 − 𝐺)           (1) 

𝛥 represents the slope of the vapor pressure-temperature curve and 𝛾 psychrometric constant. Net 

radiation (Rn) and ground heat flux (G) was estimated from Landsat observations. PTa, hereafter 

referred to as the actual Priestley Taylor coefficient, approximates the fraction of available 

energy used for actual evapotranspiration. For potential evapotranspiration without any water 

limitation, the potential Priestley Taylor coefficient was found to be a constant near 1.26 (Paw U 

& Gao, 1988). For actual evapotranspiration, we here estimated PTa as a function of plant growth 

and water stress, as shown in section 2.4.  

2.1 Study Area 

Our study area is the evapotranspiration measurement sites over the 26 agricultural fields 

across the major agricultural production area in the Central Valley of California (Figure 1). Most 

of the sites were located in the Sacramento San Joaquin Delta, as part of the Delta comparative 
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study supported by the California State Water Resources Control Board Office of the Delta 

Watermaster and other agencies. The Sacramento San Joaquin Delta is the major hub of 

California’s statewide water supply system, where the two largest and most important basins in 

the state join and provide some portion of water supply to more than 27 million people and 

approximately twelve-thousands square kilometers of irrigated farmland (Delta Stewardship 

Council, 2018), including more than 1400 km2 of agricultural land within the Delta.  
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Figure 1. Locations of measurement sites overlaid with boundaries of regions of interest: 

California (black line), Central Valley (red line), and the Legal Sacramento San Joaquin 

Delta (orange lines). 
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2.2 Input Data 

2.2.1 Field measurements 

A total of 26 evapotranspiration measurement sites were available in the Central Valley, 

including five agricultural sites from the AmeriFlux network and two from cropland sites 

established for the shorter-term study of California’s specialty crops (Table 1). The measurement 

sites represented 8 crop types, namely, alfalfa, almond, citrus, corn, pasture, rice, tomato, and 

beardless winter wheat (Table 1).  Evapotranspiration was measured either with an eddy 

covariance system (Baldocchi et al., 1988; Paw U et al., 2000; Swinbank, 1951)  or with a 

surface renewal system (Paw U et al., 1995). The eddy covariance system uses a sonic 

anemometer and infrared gas analyzer to measure three-dimensional wind velocities and high-

frequency fluctuations of water vapor concentrations (Baldocchi et al., 2001). It measures 

evapotranspiration by monitoring the vertical flux of water vapor. High-frequency eddy 

covariance measurements in 2 alfalfa, 2 corn, and one rice AmeriFlux sites were collected and 

preprocessed into half-hourly evapotranspiration data as outlined in Eichelmann et al., (2018); 

Hemes et al., (2019). Of the five AmeriFlux sites, net radiation for alfalfa and corn was measured 

with four-channel net radiometers. 

Most sites located in the Sacramento San Joaquin Delta region were also employed in the 

Delta Consumptive Use Comparative Study (Medellín-Azuara, J. et al., 2018) supported by the 

California State Water Resources Control Board Office of the Delta Watermaster and other 

agencies. Less expensive surface renewal systems were deployed over 14 sites for corn, alfalfa, 

and pasture. They use thermocouples to measure sensible heat flux, an NRLITE2 Net 

Radiometer for net radiation, and either measure ground heat flux (G) with a combination of 
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ground heat flux plates and soil thermocouples or assume it is zero for daily estimates.  

Evapotranspiration is then estimated as the residual of the energy balance. For each crop type, an 

eddy covariance tower was deployed to calibrate the sensible heat flux relationship between eddy 

covariance and surface renewal measurements (Castellví et al., 2006; Shapland et al., 2012). 

Evapotranspiration measurements were compiled from two specialty crop research 

projects in Tulare and Kern county of the southern Central Valley, including surface renewal 

measurements in citrus orchards from 2001 to 2004 (Consoli et al., 2006; Snyder & O’Connell, 

2007) and eddy covariance measurements in an almond orchard from 2009 to 2012 (Falk et al., 

2013, p. 20; He et al., 2017). We used only data collected after February 2003 in this study, 

considering the data availability of California Irrigation Management Information System Spatial 

product (Spatial-CIMIS) data. The most recently available eddy covariance tower measurements 

by NASA JPL were also added. The JPL sites are located at the Russell Ranch research field, 

near Davis, including one over tomato from February to October 2017, and the other over winter 

wheat from December 2016 to October 2017. These towers have advanced thermal infrared 

radiometers to measure land surface temperature, and two sets of four channels net radiometers 

to reduce measurement uncertainty. High-frequency evapotranspiration data were automatically 

processed using Campbell Scientific Inc.’s standard Eddy-Covariance Datalogger Program 

software and various quality control procedures. All half-hourly measurements were 

preprocessed and aggregated into daily evapotranspiration if less than 20% of the half-hourly 

measurements were missing within a day.  
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Table 1. List of in situ measurement stations and evapotranspiration data availability. 

Crop type 

(site days) 

ID Site Time Period Citation 

Alfalfa 

(3870) 

1* US-Tw3: Twitchell Island May 2013 – Dec. 2015 Eichelmann et al., 2018; 

Hemes et al., 2018 2*I US-Bi1: Bouldin Island Aug. 2016 – Sep. 2019  

3‡ D02: Staten Island Mar 2016 – Apr. 2017 Medellín-Azuara, J. et al., 

2018 4‡ D07: Bouldin Island Jul. – Nov. 2016 

5‡ D10: Bacon Island Jul 2016 – Arp. 2017 

6† D13: Roberts Island Jul. 2016 – May 2017 

7‡ D14: Twitchell Island Aug 2016 – Dec. 2016 

Almond 

(1405) 

8* A1: Lost Hill Jan. 2009 – Dec. 2011 Couvreur et al., 2016 

Citrus 

(486) 

9† E1: 2 years old Jul. – Aug. 2004 Consoli et al., 2006 

10† E2: 4 years old 

11† E3: 15 years old 

12† E4: 34+ years old Feb. 2003 – Aug. 2004 

Corn 

(1657) 

13* US-Tw2: Twitchell Island May 2012 – May 2013 Hemes et al., 2018 

14*I US-Bi2: Bouldin Island April 2017 – May 2018 

15‡ D01: Union Island April 2016 – Sep. 2016 Medellín-Azuara, J. et al., 

2018 16‡ D06: Holland Island Jul. – Oct. 2016 

 

17‡ D08: Bouldin Island Jul. – Sep. 2016 

18‡ D09: Bacon Island Jul. – Oct. 2016 

19† D11: Staten Island Apr. – Sep. 2016 

Pasture 

(697) 

20‡ D03: Staten Island May 2016 – May 2017 Medellín-Azuara, J. et al., 

2018 21‡ D04: Jersey Island Jun. – Nov. 2016 

22‡ D05: Ripon Island Jun. 2016 – Jan. 2017 

23† D12: Twitchell Island Jun. 2016 – Dec. 2016 

Rice 

(2909) 

24* US-Twt: Twitchell Island Apr. 2009 – Apr. 2017 Baldocchi et al., 2016 

Tomato 

(112) 

25*I RR2: Russell Ranch Jan. 2017 – Nov. 2017 Cawse-Nicholson et al., 

2017 

Winter wheat 

(102) 

26*I RR1: Russell Ranch Jan. 2017 – Oct. 2017 

*Eddy covariance. †Full surface renewal system. ‡Lite surface renewal system estimates daily 

evapotranspiration by assuming the daily mean G is zero. I Reserved for independent validation.  
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2.2.2 Meteorological data  

We obtained the daily gridded meteorological data, including minimum and maximum air 

temperature at 1.5 m, and daily dew point, from Spatial-CIMIS at a 2 km resolution (Hart et al., 

2009). The California Department of Water Resources (DWR) manages a network of over 145 

automated weather stations over well-maintained and well-watered grass sites across California 

providing reference evapotranspiration for pasture. The station data were spatially interpolated to 

produce the 2-km gridded dataset since 2003. We also used the Spatial-CIMIS cloud cover and 

incoming solar radiation for both clear-sky and all-sky conditions, derived from Geostationary 

Operational Environmental Satellite visible channel imager data, for our radiation component 

calculation. 

2.2.3 Remote Sensing data 

All available surface reflectance and surface temperature products, and the corresponding 

quality assessment layers at 30 m were downloaded from USGS Landsat Analysis Ready Dataset 

(Dwyer et al., 2018). The land surface temperature retrieval from the Landsat thermal data is 

based on a radiative transfer model with an improved surface emissivity estimate (Cook, 2014). 

Each Landsat took snapshots between 9:53 to 10:55 am Pacific Standard Time every 16 days. 

Invalid or high uncertainty pixel values were filtered based on the quality assessment rasters, 

including SLC gaps (U.S. Geological Survey, 2016), snow, cloud/cloud shadow, e.g., a high 

value for cloud or cirrus confidence, or with a surface temperature uncertainty greater or equal to 

6 Kelvin. For model calibration and validation purposes, a single-pixel near each measurement 

site was extracted. 
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2.3 Estimating daily net radiation and ground heat flux from Landsat observations 

We estimated surface net radiation (Rn) at a daily time scale as shown in Equation 2, 

𝑅𝑛 = (1 − 𝐴𝑙𝑏𝑒𝑑𝑜) ∗ 𝑆↓ + [𝜀𝑠𝜀𝜎𝑇𝑎
4 − (𝑚 ∗ (𝜀𝑠𝜎𝑇𝑠

4) + 𝑏)]     (2) 

, where 𝑆↓ and 𝑇𝑎 are daily mean all-sky incoming solar radiation and daily mean air temperature 

(𝑇𝑎), from CIMIS-spatial (Hart et al., 2009), 𝜀 represents all-sky emissivity for the atmosphere, 

𝜀𝑠 surface emissivity, Ts for instantaneous land surface temperature in Kelvin from Landsat 

surface temperature product (Figure 2). Two parameters (m and b) to be optimized were included 

here to convert the estimated instantaneous outgoing longwave radiation to daily mean values. 

Shortwave surface albedo was derived at 30m from the Landsat surface reflectance using the 

narrowband to broadband conversion coefficients (Liang, 2001). 

To calculate the incoming longwave radiation, we first estimated clear sky emissivity 

(𝜀𝑐𝑙𝑟) using dew point temperature (𝑇𝑑𝑒𝑤) from Spatial-CIMIS, by following the approach of Jin 

et al., (2011) with the following equations, where 𝜀𝑐𝑙𝑟 =  (1 − (1 + 𝜉) exp{−(1.2 + 3 ∗ 𝜉)0.5}), 

𝜉 = 46.5(
10∗𝑒𝑎

𝑇𝑎+273.15
), and actual vapor pressure 𝑒𝑎 = 0.6108.∗ 𝑒

.
17.27∗𝑇𝑑𝑒𝑤
𝑇𝑑𝑒𝑤+237.3. To correct clear-sky 

emissivity to all-sky emissivity, we used the emipircally calibrated fuction of cloud fraction (𝐹) 

and clear sky emissivity (𝜀𝑐𝑙𝑟), where all-sky emissivity is 𝜀 =  (1 + 𝜇 ∗ 𝐹𝑣) ∗ 𝜀𝑐𝑙𝑟. The 

parameters were 𝜇 = 0.242 and 𝑉 = 0.583 (Duarte et al., 2006), and cloud fraction is computed 

by subtracting 1 by the ratio of Spatial-CIMIS’s all-sky and clear-sky incoming solar radiation. 

We developed a different approach from Jin et al., (2011) to estimate the daily mean 

outgoing longwave radiation from the land surface, considering there is only one Landsat 

overpassing time around 10:30 am as compared to four from MODIS Terra and Aqua. The 
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instantaneous outgoing longwave radiation was first estimated with Landsat land surface 

temperature and surface emissivity (𝜀𝑠) product (Cook, 2014), and then transformed to daily 

mean values through a linear relationship, as shown by two parameters (m and b) in Equation 2. 

We optimized this linear function, with the field measurements of half-hourly longwave 

radiation, only available from sites 1 and 13 from the training dataset during clear-sky 

overpassing days. A piecewise linear regression was used from the Shape Language Modeling 

toolbox (D’Errico, 2020), based on the site measurements of half-hourly longwave radiation, 

available from sites 1 and 13 from the training dataset during clear-sky overpassing days 

(Appendix I, Figure S1, Table S6).  

Ground heat flux (G) was estimated from an empirical relationship of Rn and fractions of 

vegetation and soil (𝑓𝑣𝑒𝑔, 𝑓𝑠𝑜𝑖𝑙) as described in Jin et al., (2011), where 𝑓𝑠𝑜𝑖𝑙 = 𝑒−0.4𝐿𝐴𝐼, 𝑓𝑣𝑒𝑔 =

1 − 𝑓𝑠𝑜𝑖𝑙, and 𝐺 = −4.6144 + (0.0496𝑓𝑣𝑒𝑔 + 0.1048𝑓𝑠𝑜𝑖𝑙)𝑅𝑛. We adopted Fisher et al., 

(2008)’s approach in estimating LAI using normalized difference vegetation index (NDVI), 

where 𝐿𝐴𝐼 = −𝑙𝑜𝑔 (1 − (𝑁𝐷𝑉𝐼 − 0.05))/0.3 (Fisher et al., 2008). NDVI, calculated based on 

the Landsat reflectance at red and near-infrared, has been widely used as an indicator of green 

vegetation cover and biomass (Tucker, 1979). 

2.4 Actual Priestley Taylor coefficient optimization 

The actual Priestley Taylor coefficient PTa in Equation (1) was parameterized as an 

empirical function of LAI, moisture condition, and air temperature, as shown in Eq. 3,  

𝑃𝑇𝑎 = (𝐴 − 𝐶 ∗ 𝑒−𝐵∗𝐿𝐴𝐼) ∗ (𝐷 ∗ (𝑁𝐷𝑀𝐼 + 1) + 𝐸) ∗ 𝑓(𝑇𝑎)          (3) 
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where A, B, C, D, E are parameters to be optimized, and f(𝑇𝑎) was a relatively weak temperature 

control, due to the warm weather in the valley, i.e., lowered to 0.05 only if Ta is lower than -5 C, 

otherwise having the value of 1 (Jin et al., 2011).  The soil moisture constraint was replaced with 

a remote sensing-based normalized difference moisture index (NDMI) (Gao, 1996; Ji et al., 

2011), due to the lack of volumetric soil moisture data and the practical consideration in 

implementing a water balance model as used in Jin et al., (2011) study. NDMI is calculated from 

Landsat reflectance at two bands, the near-infrared centered at 0.86um and the shortwave 

infrared band centered at 1.61um. It has been used as an indicator of plant water conditions due 

to strong absorption by liquid water in the shortwave infrared region (Gao, 1996; Ji et al., 2011),. 

The five parameters (A, B, C, D, E) in Eq. 3 were optimized with daily data from field 

observations. For each crop type that had field measurements, we used the nonlinear least-

squares optimization procedure in MatLab Optimization Toolbox (MATLAB, 2018), to 

minimize the difference between the predicted actual Priestley Taylor coefficients and those 

derived from the daily means of field measurements. We randomly split the measurement data 

during all days when Landsat overpassing days were not obscured by cloud, into training (70%) 

and testing subsets (30%) for each site. The calibration was optimized for each crop type with 

the training subset data compiled from different fields of the same crop type. In this calibration 

procedure, data from sites 2, 14, 25, 26 were exclusively used for testing. To test the robustness 

of the algorithm, we repeated this random selection procedure 1000 times. For crop types that 

had seven stations, i.e., alfalfa and corn, modified k-fold cross-validation was further performed, 

with a “leave-two-out” approach, where all data from two stations was reserved for independent 

testing at a time, while the rest used for calibration.  
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To estimate evapotranspiration for crop types where field measurements were not 

available, a generalized optimization was also developed by pooling the data from all crops 

together for one universal set of optimization. This was done by randomly selecting a maximum 

of 50 points for each crop from the training dataset mentioned above, due to the unevenly 

available sample size among crop types. Similar to the crop-specific optimization, we also 

conducted two types of cross-validations to test the robustness of the generalized method. 

2.5 Daily evapotranspiration estimation 

During cloud-free days with Landsat overpassing, Landsat-derived LAI and NDMI were 

fed into Eq. 3 to estimate the actual Priestley Taylor coefficient for each pixel, which was then 

combined with available energy (Rn -G) to estimate daily evapotranspiration (Figure 2). For days 

between Landsat overpassing days or days (or pixels) without valid or high-quality values such 

as cloudy days or over scan-line corrector data gaps (Storey et al., 2005), a temporal 

interpolation approach was adopted (Allen et al., 2007; He et al., 2017). First, daily 

evapotranspiration estimates, during the adjacent clear sky Landsat days and within ± 2 months 

search window, were divided by the concurrent Spatial-CIMIS daily reference 

evapotranspiration to derive the fraction of reference evapotranspiration (EToF). A shape-

preserving piecewise cubic interpolation was then applied to this discrete time series of EToF to 

obtain a continuous time series of daily EToF. We set a requirement of a minimum of 2 valid 

observations within the search window for a robust interpolation. This temporal interpolation 

was needed mostly during the rainy season in winter and early spring in California, an off-season 

for the majority of the crops. Finally, daily evapotranspiration for missing days was estimated as 

a product of the interpolated EToF and Spatial-CIMIS reference evapotranspiration.  
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Figure 2. The flowchart of estimating daily evapotranspiration at 30 m during clear sky 

Landsat overpassing day. 

2.6 Validation and uncertainty analysis 

The uncertainty of Rn, actual Priestley Taylor coefficient, and daily evapotranspiration, 

directly estimated by our approach during clear-sky Landsat overpass days, was evaluated by 

comparison with the field measurements in the training, testing, and the full datasets, 

respectively.  Four metrics were used to evaluate the method performance, including R2, 1 −

∑ ((𝑃𝑖−𝑀𝑖)2)𝑛
𝑖=1

∑ ((𝑀𝑖−𝑀)
2

)𝑛
𝑖=1

 , also known as Nash-Sutcliffe model efficiency coefficient; root mean squared 

error (RMSE), bias, where 𝐵𝑖𝑎𝑠 =  
∑ (𝑃𝑖−𝑀𝑖)𝑛

𝑖=1

𝑛
, and relative mean absolute difference (RMAD), 

𝑅𝑀𝐴𝐷(%) =
∑ (|𝑃𝑖−𝑀𝑖|)𝑛

𝑖=1

∑ (𝑀𝑖)𝑛
𝑖=1

∗ 100%, where 𝑃 and 𝑀 are remote sensing estimates and field 

measurements respectively. We also summarized the statistics of the results from the cross-
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validations, including the variance of the optimized parameters in Eq. 3, and the corresponding 

estimates of Priestley Taylor coefficient and evapotranspiration values.  

Values of daily evapotranspiration that involved temporal interpolation were further 

evaluated during non-Landsat overpassing or cloudy days. An evaluation was also done for 

continuous daily, weekly, and monthly evapotranspiration estimates. The uncertainty introduced 

by the generalized optimization was also analyzed. 

To compare our refined approach, hereafter referred to as PT-UCD, with previous 

Priestley Taylor approaches, we calculated the actual Priestley Taylor coefficients and 

evapotranspiration for all sites during clear-sky Landsat overpass days, following Jin et al., 

(2011)’s and Fisher et al., (2008)’s methods, hereafter referred as PT-0 and PT-JPL, respectively. 

All methods were driven by the same forcing data here, e.g., Rn, CIMIS-Spatial meteorological 

data, to evaluate the difference caused by the methods themselves. PT-0 did not apply the soil-

moisture constraint for irrigated crops, and therefore its actual Priestley Taylor coefficients 

equation can be simplified as 𝛼 = 1.22(1 − 𝑒−3.48𝐿𝐴𝐼) ∗ 𝑓(𝑇𝑎). To estimate PT-JPL 

evapotranspiration using Landsat time-series data, we modified PT-JPL’s publicly accessible 

code (Fisher, 2008), which was written to estimates spatial evapotranspiration using monthly 

Advanced Very High Resolution Radiometer and The International Satellite Land Surface 

Climatology Project, Initiative II data (See Appendix I Text S1 for details).  
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3. Results 

3.1 Net Radiation and Available Energy 

The Rn estimated from our approach captured similar seasonal dynamics as observed by 

field measurements (Figure 3). For example, estimated Rn was close to 20 Wm-2 in January, 

increased continuously to 200 Wm-2 in June over an example alfalfa site (#2) and corn site (#14), 

and then started to decrease in July, reaching around 75 Wm-2 in October. An overestimation of 

Rn was found over Rice, mostly when the fields were flooded, e.g., during the growing season 

from April to October (Knox et al., 2016) and in winter. There is also a recurring 

underestimation of corn’s Rn in between April and July for both sites 13 and 14, but not site 15 

and 19. 

Overall, the remote sensing-derived Rn agreed well with Rn measurements across all 

sites and overpassing days, with an overall R2 of 0.74, an RMSE of 25.8 Wm-2, and an RMAD of 

14.3% for the testing subset (Figure 4b). Only a small bias of 1.70 Wm-2 was found. The 

agreement was similar to the training subset, with an R2 of 0.70 and an RMSE of 27.4 Wm-2 

(Figure 4a). The uncertainties of Rn estimate varied by crop type, with the highest accuracy 

found for alfalfa, citrus, and pasture while relatively larger uncertainty for rice. Note that both 

evaluations using training and testing datasets were informative about the model’s uncertainty 

because there was only one calibration for our Rn estimate, converting the instantaneous to daily 

outgoing longwave radiation on clear-sky Landsat overpassing days, which used only two sites 

(n = 94) in the training dataset. 

 



20 

 

 

Figure 3. Time Series of Rn from daily measurements (blue) and estimates on clear-sky 

overpassing days (red) over (a) an alfalfa site at Bouldin island (#2); (b) a corn site at 
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Bouldin island (#14) and (c) a rice site at Twitchell Island (#24). The overpassing days of 

Landsat 7 and 8 are indicated by the vertical dash lines in grey. 

 

Figure 4. Comparison of remote sensing derived Rn vs. field measurements over all sites, 

from (a) training data (N=447) and (b) testing dataset (N=389). 

3.2 Actual Priestley Taylor coefficients 

The seasonal dynamics of the actual Priestley Taylor coefficient typically followed the 

plant growth curve, as shown by the values derived from both the field measurements and 

satellite observations (Figure 5). For example, the actual Priestley Taylor coefficients of alfalfa 

frequently fluctuated from 0.5 to 1.5, likely due to the multiple cuttings throughout the growing 

season, as shown by the similar variations in LAI (Figure 5a). Field measurements showed a 

substantial seasonal variation in the actual Priestley Taylor coefficient for the corn and rice sites, 

e.g., with towering peaks in summer growing season, a relatively small peak in spring, and much 

lower values in between fall and winter (Figures 5b, c). 



22 

 

In general, the remote sensing-derived actual Priestley Taylor coefficients, from the crop-

specific optimization, could explain 56% of the variance observed across sites and periods, with 

an RMSE and RMAD of 0.23 and 17.7%, when compared with the field-based estimates over the 

testing dataset (Figure 6). For the generalized optimization, the uncertainties of actual Priestley 

Taylor coefficient estimates increased slightly (e.g., R2= 0.50, RMSE = 0.26, and RMAD = 

21.64%). Among crop types, both crop-specific and generalized actual Priestley Taylor 

coefficient estimation performs best for almond (RMAD = 8.2% and 9.4%). The performance of 

the crop-specific actual Priestley Taylor coefficient is significantly better than the generalized 

actual Priestley Taylor coefficients for corn and citrus. 

The actual Priestley Taylor coefficient estimates showed significant improvement when 

compared to those derived from PT-0, which only captured small seasonal variation (25%) and 

had a higher bias of 0.24 and a larger RMAD of 34.7% over the irrigated cropland in the valley 

(Figure 5). In contrast, PT-JPL estimates showed a reasonable seasonal pattern for alfalfa and 

corn (Figures 5a, b), although it was not calibrated for any land cover type (RMSE = 0.32, and 

RMAD = 27.3%). Across all sites, the crop-specific PT-UCD showed an overall improvement 

over PT-JPL, as shown by the empirical cumulative distribution function of the absolute errors 

when compared to both testing and independent testing data (Figure 7a). For example, 88% of 

testing samples had an absolute error of below 0.30 from crop-specific PT-UCD estimates, 

compared to 62% and 59% from PT-JPL and PT-0 estimates, respectively. The generalized PT-

UCD performed only slightly better than PT-JPL (Figure 7a). 
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Figure 5. Time series of crop-specific (red) and generalized (yellow) PT coefficients 

derived from tower observations and crop-specific remote sensing estimates, over the 
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same three sites as shown in Figure 3. The un-filled symbols on overpassing dates indicate 

that the data points were previously partitioned into the training dataset. The estimates 

from the other two PT approaches, namely PT-0 and PT-JPL, were also shown for 

comparison. The lower panel shows the corresponding LAI and NDMI in green and cyan 

(lower panel), ranging from 0 to 7 and -1 to 1, respectively. All three Priestley Taylor 

methods shown here were driven with the same forcing data. 
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Figure 6. Comparison of remote sensing PT coefficient, derived from crop-specific 

optimization parameters, vs. field measurements on Landsat overpassing days over all 

sites, based on (a) training data (N=447) and (b) testing dataset (N=368). The 

corresponding results, when using generalized optimization, are shown in the bottom 

panel (c) and (d). 

 

Figure 7. Comparison of empirical cumulative distribution errors among estimated (a) 

PT coefficient and (b) evapotranspiration using four models on clear-sky Landsat 

overpassing days. All three Priestley Taylor methods shown here were driven with the 

same forcing data. 

Two types of cross-validation testing further showed the optimization of the parameters 

in Eq. 3 for estimating the actual Priestley Taylor coefficient was reasonably robust. The 

distribution of the estimated parameters showed a very small variance, for the majority of the 

crops and the generalized optimization (Appendix I Table S1). One exception was Parameter D, 

which represented the moisture regulation over the coefficient, for citrus and pasture (typically 
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well-watered). The estimated actual Priestley Taylor coefficients were shown to be stable among 

the repeat and leave-two-out cross-validations (Figure 8 a,b 9-11 a), with an Interquartile Range 

(IQR) of RMAD of less than 5% (Figure 8a).  

 

Figure 8. Distribution of RMAD (a, c), RMSE (b, d) of Priestley Taylor coefficients 

(Top), and evapotranspiration (Bottom) from the repeated cross-validation approach. 
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Figure 9. RMSE distribution for the actual Priestley Taylor coefficients (Top) and 

evapotranspiration (Bottom), comparing the performance of generalized PT-UCD against 

PT-JPL over testing data from the leave-two-out cross-validation approach at individual 

sites. Both PT-UCD and PT-JPL methods shown here were driven with the same forcing 

data. 
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Figure 10. RMSE distribution for Priestley Taylor coefficients (Top) and 

evapotranspiration (Bottom), comparing the performance of generalized against crop-

specific PT-UCD over testing data from the leave-two-out cross-validation approach at 

individual alfalfa or corn sites. 
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Figure 11. RMSE distribution for Priestley Taylor coefficients (Top) and 

evapotranspiration (Bottom), comparing the performance of crop-specific PT-UCD 

against PT-JPL over testing data from the leave-two-out cross-validation approach at 

individual alfalfa or corn sites. Both PT-UCD and PT-JPL methods shown here were 

driven with the same forcing data. 
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3.3 Evapotranspiration estimates 

3.3.1 Daily mean evapotranspiration on clear-sky Landsat overpassing days 

We found a good agreement between field measurements of evapotranspiration and 

satellite-based estimates during the clear-sky days with Landsat acquisitions. When evaluated 

with the testing dataset, both the crop-specific and generalized evapotranspiration models 

captured the seasonal variability well (Figure 12). Across all sites, the crop-specific 

evapotranspiration had an R2 of 0.79, RMSE of 0.90 mm day-1, and RMAD of 20.5% (Figure 

13b). Only a small bias of 0.14 mm day-1 was found. When using the generalized actual Priestley 

Taylor coefficients, slightly higher uncertainties were found, with an R2 of 0.76, RMSE of 0.98 

mm day-1, and RMAD of 23.1% (Figure 13d).  

The performance of evapotranspiration estimates varied by crop types. When using the 

crop-specific Priestley Taylor optimization, the RMSE and RMAD ranged from 0.68 to 1.34 mm 

day-1 and 13.3% to 28.4%, based on the comparison with the testing dataset (Table 2). The best 

performance was found for alfalfa, citrus, and pasture sites, while the weakest performance in 

rice. The generalized approach also performed the best for alfalfa and citrus and performed the 

poorest for rice and corn (Figure 8, 11b, Appendix I Table S2). The leave two out cross-

validation showed relatively small differences in RMSEs of daily ET estimates from site to site 

(Figure 10b), e.g., 0.7 mm day-1 in alfalfa site #6 vs. 0.9 mm day-1 in site #5 based on the results 

from alfalfa-specific optimization, and 0.7 to 1.2 mm day-1 among the corn sites. 

Crop-specific PT-UCD showed an improvement over PT-0, PT-JPL, and generalized PT-

UCD. About 80% of crop-specific evapotranspiration estimates in the testing and independent 

dataset had an error of less than 1 mm day-1, as shown by the empirical cumulative distribution 
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functions of the absolute errors between the daily crop-specific evapotranspiration estimates and 

field measurements (Figure 12b). In contrast, both generalized PT-UCD and PT-JPL appeared to 

perform similarly, i.e., about 70-76% of samples had an evapotranspiration error less than 1mm 

day-1, and about 85-90% less than 1.5 mm day-1. However, for the PT-0 evapotranspiration 

estimates, only 55% and 70% of samples had an error less than 1mm day-1 and 1.5 mm day-1, 

respectively.  

Table 2. Comparison of daily evapotranspiration estimates from three Priestley Taylor 

approaches with field measurements during days with clear-sky Landsat observations and 

other days (from temporal interpolation). For clear-sky overpassing days, statistics were 

based on the full dataset, the testing dataset only (in parenthesis), respectively. 

Crop types R2 RMSE (mm day-1) 

PT-0 PT-JPL PT-UCD PT-0 PT-JPL PT-UCD 

Clear Sky Overpassing Days Interpola

ted 

Clear Sky Overpassing Days Interpola

ted 

Alfalfa 0.64 

(0.57) 

0.69 

(0.71) 

0.83 

(0.82) 

0.75 0.94 

(1.05) 

0.87 

(0.86) 

0.65 

(0.68) 

0.77 

Almond 0.78 

(0.78) 

0.48 

(0.53) 

0.85 

(0.86) 

0.89 1.13 

(1.18) 

1.73 

(1.72) 

0.95 

(0.94) 

0.86 

Citrus 0.40 

(0.24) 

<0 (<0) 0.70 

(0.56) 

0.70 0.99 

(1.08) 

1.39 

(1.48) 

0.69 

(0.83) 

0.86 

Corn 0.18 

(0.11) 

0.72 

(0.70) 

0.75 

(0.71) 

0.68 1.65 

(1.66) 

0.97 

(0.97) 

0.91 

(0.96) 

1.01 

Pasture 0.75 

(0.66) 

0.42 

(0.36) 

0.77 

(0.72) 

0.69 0.86 

(0.86) 

1.31 

(1.81) 

0.82 

(0.77) 

0.94 

Rice 0.80 

(0.77) 

0.80 

(0.72) 

0.75 

(0.67) 

0.77 1.03 

(1.11) 

1.03 

(1.25) 

1.16 

(1.34) 

1.09 

All (Crop 

Specific) 

N/A N/A 0.81 

(0.79) 

0.80 N/A N/A 0.87 

(0.90) 

0.93 

All 

(Generalized) 

0.70 

(0.57) 

0.70 

(0.71) 

0.80 

(0.76) 

0.78 1.15 

(1.32) 

1.12 

(1.07) 

0.91 

(0.98) 

0.95 
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Figure 12. Time Series of crop-specific and generalized (yellow) evapotranspiration vs. 

daily evapotranspiration measurement. The un-filled symbols on overpassing dates 

indicate that the data points were previously partitioned into the training dataset. 

 

Figure 13. Comparison of remote sensing-derived daily evapotranspiration vs. field 

measurements on Landsat overpassing days over all sites, based on (a) training data 

(N=345) and (b) testing dataset (N=149), when using crop-specific optimization 



34 

 

parameters. The corresponding results from the generalized optimization are shown in (c) 

and (d). 

3.3.2 Continuous evapotranspiration estimates 

The interpolation of EToF from adjacent overpassing days introduced a small overall 

uncertainty in daily evapotranspiration estimates, e.g., RMSE increased by 0.10 – 0.17 mm day-1 

and decreased R2 by 0 – 0.08 when estimating evapotranspiration for alfalfa, citrus, corn, and 

pasture (Table 2, Figure 14). When further aggregated to weekly and monthly time scales, the 

satellite-derived evapotranspiration estimates agreed better with those from the field 

measurements (Figures 15). For example, across all sites, R2 was increased to 0.83 and 0.88, and 

RMSE reduced to 0.79 and 0.65 mm day-1, respectively, for weekly and monthly 

evapotranspiration values based on the crop-specific Priestley Taylor optimization.  
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Figure 14. Time Series of crop-specific and interpolated evapotranspiration vs. daily 

evapotranspiration measurement.  
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Figure 15. Comparison of remote sensing-derived evapotranspiration using crop-specific 

parameterization over all sites during (a) Landsat overpassing days (N=600) and (b) days 

without clear-sky Landsat imagery (N=5600). Aggregated mean evapotranspiration at (c) 

weekly (N=1046) and (d) monthly (N=249) time scales are also shown. 
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4. Discussion 

4.1 Site-level performance  

Our study showed that the semi-empirical Priestley Taylor algorithm, when calibrated 

with ground measurement data over diverse crop types and driven by Landsat Analysis Ready 

Data, improved the accuracy of the older 1 km MODIS-driven PT-0 model (Jin et al., 2011). The 

crop-specific Priestley Taylor optimization performed consistently between the testing and 

independent datasets, and slightly better than the PT-JPL method (Fisher et al., 2008) (Figure 7, 

11). The generalized Priestley Taylor optimization had a similar overall performance with PT-

JPL when driven by the same input data. However, relatively larger uncertainties were found 

during non-growing seasons, from November to March, when the evapotranspiration rate was 

relatively low. This was partly due to the limited field measurements data during winter and 

early spring for optimizing the sensitivity of actual Priestley Taylor coefficients to the moisture 

content. Moreover, our Priestley Taylor approach does not separate soil evaporation and plant 

transpiration. This introduces uncertainty in evapotranspiration estimates during non-growing 

seasons when evapotranspiration is mainly driven by evaporation from the soil due to minimal 

canopy coverage or leaf area. For example, we did find that PT-JPL better captured the peak of 

the actual Priestley Taylor coefficient for the corn site during the dormant season (Figure 5b), 

when PT-JPL’s estimates showed that soil evaporation was the most significant component.  

The uncertainty of our refined Priestley Taylor approach here is similar to the DisALEXI 

model, as shown by the report from the Sacramento San Joaquin Delta inter-comparison project 

(Medellín-Azuara, J. et al., 2018). For additional reference, Anderson et al., (2018) reported that 

DisALEXI had an RMSE of 1.09 mm day-1 at site number 1 (alfalfa) and 1.24 mm day-1 at site 
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number 24 (rice) when compared to daily measurements. Being a process-based model, 

DisALEXI does not depend on land use maps and field measurements for calibration once 

validated. The semi-empirical Priestley Taylor approach, however, has the advantage of easy 

implementation, compared to other more sophisticated and computationally more expensive 

approaches. 

Remote sensing evapotranspiration estimates, if properly calibrated and validated with 

locally available measurements, are well suited for soil water balance in groundwater models 

during non-rainy seasons over agricultural areas, especially in semi-arid regions such as 

California’s Central Valley. Based on the most recent fine grid groundwater-surface water 

simulation model (Sustainable Groundwater Management Office, 2020), DWR estimated that 

monthly percolation, between water years 2003 and 2015, at the root zone, over all croplands in 

the Central Valley, ranges from 0.23 mm day-1in dry winter to 1.32 mm day-1 in summer. 

Meanwhile, the ratio of percolation to DWR’s actual evapotranspiration estimates ranges from a 

minimum of 22% in summer to a maximum of 193% in winter. During non-rainy seasons, e.g., 

between May and September, applied water estimates are primarily driven by evapotranspiration. 

The estimated applied water value affects soil moisture computation in the root zone, which in 

turn affects percolation estimates. Therefore, during non-rainy seasons, the derived ratio could be 

used to approximate percolation from evapotranspiration. From section 3.3.2, we found that our 

monthly averaged evapotranspiration has an overall RMSE of 0.65 mm day-1. By adding or 

subtracting DWR’s actual evapotranspiration by our overall RMSE value, and then multiplying it 

with the previously derived ratio to approximate percolation, a maximum deviation of ±30% 

(about 0.23 mm day-1) from the original value, during the non-rainy season, was found in 

September, and the minimum of ±14-15% (about 0.15 mm day-1) was found in July.  
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4.2 Limitation and potential improvement 

Although overall our refined evapotranspiration estimation approach here has similar 

performance to that in more complex models such as DisALEXI (Anderson et al., 2018; 

Medellín-Azuara, J. et al., 2018), there are still a few factors that can cause errors in our 

estimates. PT-UCD is a single-source approach. We noticed an overestimation of rice net 

radiation when the field was flooded, probably due to the challenges posed by heat storage in the 

water column and the effect of a wet surface, and an underestimation of net radiation over the 

two Ameriflux corn sites between every April and July. We also found a larger uncertainty in 

estimating actual Priestley Taylor coefficients for corn during the dormant season between 

January and April. Although evapotranspiration during the non-growing season accounts for a 

small fraction of total annual water use, explicit consideration of soil and plant components of 

energy balance is expected to improve the accuracy of evapotranspiration estimates. Besides, the 

research community often views the remote sensing-based Priestley Taylor approach to over-

simplified the actual evapotranspiration process in irrigated fields. The novelty of the proposed 

approach could be enhanced through more theoretical research. For example, the Priestley Taylor 

coefficient estimation can be formulated in the terms of input variables, such as aerodynamic and 

canopy surface resistances from the Penman-Monteith equation, which can be further tested with 

all datasets that were previous used in Penman-Monteith related studies (see Appendix II for the 

proposed method).        

The errors of field measurements of evapotranspiration can propagate to the optimization. 

The energy balance closure issue, for example, has been well recognized for the eddy covariance 

measurements (Twine et al., 2000; Wilson et al., 2002). Baldocchi et al., (2016) and Eichelmann 

et al., (2018), for example, conducted several analyses at AmeriFlux sites in the Sacramento San 
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Joaquin Delta and found closure of 79.3% in an alfalfa site, i.e., the ratio of the sum of sensible 

and latent heat flux over the residual between net radiation and ground heat flux and storage, and 

71% in a rice site. Their study suggests that incomplete storage calculation, rather than 

underestimation of eddy covariance measurements of fluxes, plays a major role in the lack of 

energy balance closure for their sites in the Sacramento San Joaquin Delta. Therefore, we did not 

perform the correction for eddy covariance measurement sites from our dataset. 

Additional uncertainties can be introduced due to the varying footprint size of the flux 

towers and the scale mismatch between 30m ET and tower measurements. We compared the 

annual evapotranspiration value extracted from a single Landsat pixel collocated with 

measurement sites and the mean (and standard deviation) of the values within the surrounding 

larger areas (Appendix I Table S3). The differences in estimates between a 90m by 90m window 

and the single-pixel were small, with the largest difference of -3.2% occurred at site 18 in 2016. 

The differences generally increased with a larger footprint, depending on the heterogeneity of the 

areas, e.g., over a 510 m by 510 m window at site 16 (corn) in 2016 had the largest mean relative 

difference of -10.3% from the corresponding center pixel value. Other studies also suggested that 

a rigorous footprint approximation is needed in future studies to make a fair comparison with 

field measurements (Anderson et al., 2018). For example, the Kljun et al., (2015) flux footprint 

model could be implemented at flux tower sites to determine the weight and extent of the pixel 

window.  

Compared to those driven by MOIDS with daily revisiting (Jin et al., 2011), the 

evapotranspiration estimates derived from Landsat have the benefit of capturing finer spatial 

details, which is critical for water use assessment over a heterogeneous landscape. Landsat’s 16-

day repeating cycle, however, can potentially lead to uncertainty in water use monitoring, 
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especially during the rainy season or during the rapid plant growth and senescence stages. In this 

study, the uncertainty due to the temporal interpolation of the missing days was found minimal 

overall, likely because the rainy season coincides with dormancy or the very beginning or ending 

of the crop growth for the majority of crops in Central Valley due to its Mediterranean climate 

(Figure 14, Table 2, Appendix I Table S4). There were situations, e.g., right after irrigation or 

right after harvesting for crops that undergo multiple harvests (alfalfa), when a relatively large 

error was introduced from the estimates interpolated from observations a few days apart. Future 

work is also needed to increase the temporal resolution of water use estimate by fusing Sentinel 2 

A&B satellite observations every 5 days with Landsat data. A sophisticated data fusion technique 

will also improve the accuracy of evapotranspiration monitoring and assessment, by taking 

advantage of complementary observations from multiple sensors (Anderson et al., 2018). 

The robustness of our optimization approach partly relies on the availability of multiple 

field measurements for diverse crop types across the Central Valley. The automatic workflow 

developed here allows for a continuous improvement of the optimization accuracy, by taking 

advantages of the increasingly available crop evapotranspiration measurements with the 

increased deployment of both research-grade and commercialized surface renewal stations in the 

state (Clay et al., 2019; Jin et al., 2018; Souto et al., 2019; Xue et al., 2020). Although the 

Priestley Taylor parameters in this study were tailored for California’s cropland, our data-model 

integration framework is generalizable to other regions. Once recalibrated and tested with local 

field data, the PT-UCD approach can be applied to monitor daily evapotranspiration and assess 

water use at various scales over regions besides the Central Valley. 
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5 Conclusions 

To enable estimation of agriculture consumptive water use at the field scale in Central 

Valley, we further refined the semi-empirical Priestley-Taylor approach (Jin et al., 2011), by 

optimizing the actual Priestley Taylor coefficient as a function of LAI and moisture index with 

recently compiled ground measurements of evapotranspiration for California’s major crops. The 

net radiation estimates with Landsat Analysis Ready Data had an RMSE of 25.8 Wm-2 and R2 of 

0.74. Our study shows that the crop-specific optimization with field data is relatively robust, and 

the locally optimized approach captured well the regulation of plant growth and moisture stress 

on latent heat exchange and thus improved the accuracy of evapotranspiration estimation. The 

daily evapotranspiration, directly estimated during Landsat overpassing days under clear-sky and 

interpolated for other days, agreed well with the field measurements, with an R2 of 0.78 and an 

RMSE of 0.95 mm day-1. 

Much could be improved in the parameterization of the PT coefficient when more field 

data are available in the future. This makes the method robust, adaptive, and relatively easy to 

implement for operational evapotranspiration estimation over both agricultural and natural 

ecosystems. Additional field observations, such as LAI measurement, dates of irrigation, 

flooding, draining, and harvest, and temporal field-camera images, could also help researchers to 

interpret the errors in remote sensing estimates, inciting ideas for model improvement. The daily 

evapotranspiration maps at 30m moderate resolution, from our fully automated workflow, could 

provide growers with spatially explicit information to tailor irrigation management at the field 

scale, thus improving water use efficiency. At the watershed or regional scale, it could inform the 

water agencies that monitor water use among various water basins and sectors and to improve 

water allocation and planning. The evapotranspiration estimates can also be combined with 
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available data on surface water delivery and applied water efficiency to estimate groundwater 

pumping. By further developing this model and researching its application, we can provide 

timely and reliable information to help growers and water use planners to implement practices 

and monitor progresses toward sustainable groundwater management. 
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Abstract 

Due to population growth and progress in sustainable water management, water resources 

availability to California’s croplands is becoming more scarce.  Besides, year-to-year water 

supplies are becoming increasingly unpredictable due to climate change. As 80% of all human 

use of water is diverted for farmland irrigation, spatial estimates of crop evapotranspiration with 

high accuracy, from the field to watershed scale, have become increasingly important for water 

resources management. We here provided a comprehensive assessment on patterns of annual 

agricultural water use over California’s Central Valley, using the 30m daily evapotranspiration 

estimates from Landsat satellite data. When aggregated over the Valley, we estimated the 

average evapotranspiration of 820 mm yr-1 with a standard deviation of 290 mm yr-1 in 2014. 

Agricultural water use varied significantly across and within crop types, with a coefficient of 

variation ranging from 8% for Rice (x̅ = 1110, σ = 85 mm yr-1) to 59% for Pistachio (x̅ = 592, σ = 

352 mm yr-1). Total water uses in 2016 increased by 9.6%, as compared to 2014, mostly because 

of land-use conversion from fallow/idle land to cropland. Analysis across 134 Groundwater 

Sustainability Agencies (GSAs) further showed a large variation of agricultural 

evapotranspiration among and within GSAs, especially for tree crops, e.g., almond 

evapotranspiration ranging from 339 (σ =80) mm yr-1 in Tracy to 1240 (σ =136) mm yr-1 in Tri-

County Water Authority. An empirical model using NDVI and orchard age was optimized and 

evaluated to understand and predict the variability of evapotranspiration within and across GSAs. 

Trained with the 2014 data, the empirical model could respectively explain 84% and 80% of 

evapotranspiration across and within GSAs in 2016. Continuous monitoring and assessment of 

the dynamics and spatial heterogeneity of agricultural evapotranspiration provide data-driven 

guidance for more effective land use and water planning across scales.  
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1. Introduction 

Evapotranspiration, also known as crop consumptive water use in agricultural lands, is 

often the largest yet a second-most uncertain component of the agricultural water balance in 

semi-arid regions (Burt et al., 2002; Fisher et al., 2017; Oki et al., 2006). Irrigation accounts for 

70% of human freshwater use and supports 45% of the world’s food supply production (Koech 

& Langat, 2018). Most irrigation water is lost to the atmosphere via evapotranspiration 

(California Department of Water Resources, 2020a). Information of evapotranspiration can be 

applied to optimized sustainable regional water allocations and farm-level irrigation 

management, improving water and food security in a changing climate to meet the demands of a 

growing population (Fisher et al., 2017).  

As one of the world’s most productive agricultural regions, California is the major 

producer of various specialty crops including half of the fruits, vegetables, and nuts grown in the 

United States(California Department of Food and Agriculture, 2018). A quarter of the nation’s 

produce comes from the Central Valley alone, due to its fertile soils and extended growing 

season, generating $20 billion of agricultural sales in 2017 (U.S. Department of Agriculture - 

National Agricultural Statistics Service, 2019). More than 7 million acres (28,000 square 

kilometers) of the Central Valley are irrigated via the system of reservoirs and canals, accounting 

for about 75% of the state’s irrigated lands and consuming about 23 trillion liters of water per 

year (Faunt, 2009). The acreage of high-value yet water-intensive tree crops, such as almonds, 

pistachios, and walnuts, has been expanding in recent decades, increasing water demand in the 

state’s largest groundwater basin (Strom, 2014). Groundwater is a major source of water supply 

in the Central Valley, ranging from 30% during wet years to 70% during extremely dry years 

(Faunt et al., 2016). During the recent 2012-2016 drought, groundwater pumping was intensified, 
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which led to the doubling of the reduction in the valley’s groundwater storage to 11 trillion liters 

per year from the 2007-2009 value (Xiao et al., 2017). This groundwater overdraft due to 

excessive pumping accounts for 13% of water sources in the San Joaquin Valley, which is the 

southern half of the Central Valley (Hanak et al., 2017). It caused significant land subsidence 

(Faunt et al., 2016), and subsequent damages to aqueducts. The damages cost the state “tens of 

millions of dollars” in repairs to the aqueduct in the last 40 years (Smith, 2015) and will cost 

even more to fix the most recent damages (CBS, 2015).   

The intensifying drought and reduction in water supply during the summer-growing-

season are expected to continue, due to a projected decrease in snowpack and increasing 

temperature in the coming decades (Cvijanovic et al., 2017). Consequences of chronic 

groundwater overdraft and non-point sources pollution motivated the enactment of the 

Sustainable Groundwater Management Act in 2014. It requires local groundwater agencies in 

critically over-drafted basins to achieve a sustainable water balance by 2040 (California 

Department of Water Resources, 2019a). Another management challenge under water scarcity is 

to balance the competing beneficial water uses by many stakeholders, e.g., maintaining river 

flows to support estuarine habitat (Escriva-Bou et al., 2019). Some potential water management 

alternatives to attain Sustainable Groundwater Management Act requirements include demand 

management. e.g., via reduced irrigated area, in addition to increasing supply via groundwater 

recharge. Spatial evapotranspiration estimate records could inform stakeholders on historical and 

present water demand. Time series of accurate evapotranspiration maps can also help water 

managers better understand the dynamics of groundwater pumping, improve estimates of 

groundwater recharge, improve regulation oversight, and evaluate the impacts of the 

implemented water policy (Garcia et al., 2016; Hanak, 2011). As 77% of cropland owners in 
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California have fields smaller than 0.4 km2  (Macaulay & Butsic, 2017), remotely monitoring 

individual land owner’s water use is only possible by using routine satellite observations at a 

relatively high spatial resolution. 

In this study, our primary objective is to improve our understanding of the agricultural 

water use patterns in California’s Central Valley, to facilitate water resources planning, in the 

context of the Sustainable Groundwater Management Act. The improved semi-empirical 

Priestley Taylor method (PT-UCD) presented in Chapter I was implemented to generate spatial 

estimates of crop evapotranspiration. The method was chosen for this study based on its 

relatively good performance and computational efficiency for large-scale applications (Medellín-

Azuara, J. et al., 2018). The automated workflow for regional applications was applied to assess 

the spatial patterns of evapotranspiration across the Central Valley and among dominant crop 

types and to analyze water use changes between 2014 and 2016 water years. To provide insights 

for water management agencies in their efforts to prepare for droughts and implement 

Sustainable Groundwater Management Act, we further provided a comprehensive assessment on 

agricultural evapotranspiration by boundaries of Groundwater Sustainability Agencies (GSAs). 

An empirical model was developed to estimate annual evapotranspiration using normalized 

difference vegetation index (NDVI) (Tucker, 1979) and orchard age for almonds, the largest 

agricultural land use in the Central Valley. The simple model helped better understand the 

influence of orchard age on the variability of evapotranspiration among and within GSAs and 

could potentially be used for predicting almond crop water consumptive use.   

2. Data and Methods   

2.1 Study Area 
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We focused on the major agricultural production area, about 25 thousand km2, in the 

Central Valley of California (Figure 1a). The top 8 crop types include almond, grapes, corn, rice, 

alfalfa, walnuts, pistachios, and tomatoes, based on the updated crop layers from the California 

Department of Water Resources (DWR) (California Department of Water Resources, 2020b) 

(Figures 2a, c, 3a). Together, these accounted for 68 and 73% of agricultural land use in 2014 

and 2016, respectively. This semi-arid region has a Mediterranean climate, with mild winter and 

hot, dry summer. Its mean annual precipitation ranges from 51 mm yr-1 in the north to 13 mm yr-

1 in the far south, and the majority of rainfall occurs from November to March. The valley is 

therefore highly dependent on irrigation and vulnerable to water scarcity. Its groundwater storage 

depleted by approximately 16 trillion liters between spring 2005 and 2010 (California 

Department of Water Resources, 2019a). The depletion during the recent 2012-2016 drought is 

expected to be much worse, since Xiao et al., (2017) estimated that the valley’s groundwater 

storage depletion doubled to 11 trillion liters per year from the 2007-2009 value. 
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Figure 1. Study area, with locations of measurement sites from which the data were used 

to calibrate the PT-UCD model in Chapter I. Also shown are 2014 agricultural land use 

(a) over California (black line), County boundaries (orange lines), DWR water planning 

areas (colored base map) (b), and Groundwater Sustainability Agencies (colored base 

map) (c) in the Central Valley (red line). 

GSAs were established under the Sustainable Groundwater Management Act to manage 

California’s groundwater resources at the local scale. Over 260 GSAs were initially formed in 
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the State’s high and medium priority and some are currently under reorganization and 

consolidation. Figure 1c shows 134 GSAs in the Central Valley that have more than 1km2 of 

farmland in both 2014 and 2016. The GSAs boundaries are defined by the most recently 

available DWR’s Exclusive GSA map (California Department of Water Resources, 2019b); 

GSAs boundaries were sometimes split into parts by other political boundaries, so we merged the 

polygon parts that share an identical GSA name, e.g. Byron-Bethany Irrigation District GSA - 

East Contra Costa and Byron-Bethany Irrigation District GSA – Tracy were merged into a single 

GSA. 

2.2 Spatial Land Use and Orchard Age Data 

Spatial land use data from 2014 and 2016 (California Department of Water Resources, 

2020b) were prepared by Land IQ using remote sensing and machine learning techniques with 

extensive field survey campaigns. The crop identity and boundaries of individual agricultural 

fields across the entire state of California were recorded in a shapefile. The land use information 

in polygons is clipped by the area extent of the Central Valley and is rasterized into a 30m grid. 

Besides, the land use map from 2014 was used to estimate planting years of all almond orchards 

in the Central Valley (Chen et al., 2019). In specific, for each field polygon, a change detection 

algorithm was implemented to examine the long-term time series of remote sensing vegetation 

indices beginning in 1984 to 2014 and then identify the most recent planting event.   
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2.3 Spatial Evapotranspiration Estimates 

The PT-UCD method optimized in Chapter 1 was applied over the whole California 

Central Valley to estimate crop evapotranspiration during the 2014 and 2016 water years. 

Satellite images from 8 tiles of the Landsat Analysis Ready Dataset were processed to estimate 

evapotranspiration at 30m across the Central Valley. The crop-specific actual Priestley Taylor 

coefficient parameterization results were used for daily averaged evapotranspiration estimation 

over alfalfa, almond, corn, citrus, pasture, and rice areas during Landsat overpassing days. For 

remaining crop types, including but not limited to grapes, walnut, pistachio, tomatoes, wheat, 

and cotton, where no field evapotranspiration data were available for crop-specific optimization, 

the generalized actual Priestley Taylor coefficient parameterizations was applied.  

Remote sensing estimates of evapotranspiration on clear-sky satellite overpassing days 

were divided by the concurrent Spatial-CIMIS daily reference evapotranspiration (Hart et al., 

2009) to derive the fraction of reference evapotranspiration (EToF). Temporal interpolation was 

applied to derive a complete time series of daily evapotranspiration for each Landsat pixel. For 

each month, an EToF pixel is interpolated only if there are at least two estimates on clear-sky 

overpassing days with a ±2-month moving time window; the un-interpolated pixels were gap-

filled by multiplying daily reference evapotranspiration by EToF averaged by corresponding 

month and crop within each Landsat Analysis Ready Data tile. Daily evapotranspiration 

estimates were further averaged to annual time scales to analyze the regional patterns. 

Evapotranspiration was summarized for each crop type and compared the differences among 

crops by evaluating the annual evapotranspiration, reference evapotranspiration, and EToF. 

Specifically, the per-area water consumptive use average was computed by dividing the sum of 
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annual evapotranspiration by crop area over non-gap-filled pixels, while total consumptive use 

was computed over all crop area pixels. 

2.4 Regional evapotranspiration patterns 

We further summarized annual evapotranspiration by GSA boundaries (Figure 1c) to 

provide agricultural water use information for water planning. Specifically, the annual water use 

and variability were quantified for each planning area and compared across areas. We also 

analyzed the association of water use with the corresponding land use, Rn, actual Priestley 

Taylor coefficient, EToF, and reference evapotranspiration, to understand what contributed to 

water use differences among GSAs. While GSAs manage local groundwater resources, DWR 

oversees water resources regionally by water planning area. We summarized our annual crop 

evapotranspiration estimates by water planning areas in the Central Valley with mean and 

standard deviation. The mean value is further compared with DWR’s estimates for the water year 

2014. 

2.5 Influence of orchard age on almond evapotranspiration 

To better understand how orchard ages may affect a region’s mean and variation in 

evapotranspiration, an empirical model was developed, as shown in Equation (1), using age, 

NDVI, and reference evapotranspiration (ETo) to estimate annual evapotranspiration.  

𝐸𝑇 = (𝑎 + 𝑏 ∗ (1 − 𝑒  −((𝐴𝑔𝑒−𝑐) 2/𝑑 2 ))) ∗ (𝑒 ∗ 𝑁𝐷𝑉𝐼 + 𝑓) ∗ 𝐸𝑇𝑜           (1) 

We implemented the model for almond because it is the largest agricultural land and crop 

consumptive water user in the Central Valley. Equation (1) resembles the crop coefficient 

approach, where the crop coefficient here is predicted with orchard age and NDVI. To estimate 
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the coefficient with age, a Gaussian semivariogram fitting equation was used, which caps the 

maximum coefficient value as age approaches toward infinity. The equation was modified with a 

parameter, c, to increase the flexibility of the shape of the curve in describing the relationship 

between young orchards and evapotranspiration. 

 To compute evapotranspiration, the annual average of reference evapotranspiration was 

computed from the Spatial-CIMIS daily data, and the maximum NDVI value in June for each 

almond pixel was extracted. To optimize the parameters a through f, all evapotranspiration and 

model inputs at 30m resolution were summarized into median by fields. Only fields with young 

orchards between 3 to 12 years old in 2014 were used for optimization. The parameters are 

optimized with a non-linear least-square curve fitting function with the Python Scipy package. 

The equation, optimized with data in 2014, was evaluated with the field-summarized remote 

sensing evapotranspiration estimates in 2016. The four evaluation metrics include R2, 1 −

∑ ((𝑃𝑖−𝑀𝑖)2)𝑛
𝑖=1

∑ ((𝑀𝑖−𝑀)
2

)𝑛
𝑖=1

 , mean absolute error where 𝐵𝑖𝑎𝑠 =  
∑ (|𝑃𝑖−𝑀𝑖|)𝑛

𝑖=1

𝑛
, RMSE, and mean absolute 

percentage error (MAPE), 𝑀𝐴𝑃𝐸(%) =
 ∑ (

|𝑃𝑖−𝑀𝑖|

𝑀𝑖
∗100%)𝑛

𝑖=1

𝑛
, where 𝑃 and 𝑀 are empirical Age & 

NDVI driven crop coefficient model estimates and remote sensing estimates respectively. 

Equation 1, after optimized at the field scale, was implemented to estimate annual 

evapotranspiration in 2014 and 2016 at a pixel level. The estimates were summarized by GSA 

boundaries and compared with Almond specific data summary from section 2.4. 
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3. Results 

3.1 Evapotranspiration patterns and dynamics over the Central Valley 

We estimated a total of 19.9 and 21.8 tera-liter of water consumption via 

evapotranspiration over the agricultural land in California’s Central Valley in 2014 (24.1 

thousand km2) and 2016 water years (25.8 thousand km2), respectively (Figures 2c, d). In the 

water year 2014, the top eight crop types accounted for 75% of total crop consumptive water use 

in the valley, including almond (22.2%), rice (10.2%), grapes (9.4%), alfalfa (9.4%), corn 

(8.9%), walnuts (7.3%), pistachios (4.1%), and tomatoes (3.6%) (Figures 3a, b). Overall, rice 

was the second largest water consumer after almonds, although it only used 7.6% of cropland, 

due to its highest annual evapotranspiration rate of 1109 (σ = 85) mm yr-1, on a per unit area 

basis (Figure 3c). Pasture, walnut, almonds, citrus, and alfalfa also had relatively high 

evapotranspiration rates (greater than 800 mm yr-1) (Figure 3c) (Table 1). In contrast, wheat 

consumed the least amount of water per area (x̅ = 561, σ =228 mm yr-1) among major crops, 

whereas pistachio, tomato, corn, cotton, and grapes had a moderate evapotranspiration rate 

between 600 and 800 mm yr-1. As the second and third largest cropland in the valley, grapes, and 

corn used less total water than rice but similar water with alfalfa, walnuts, and fruits. 
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Figure 2. Spatial distributions of (a, c) land use and (b, d) annual evapotranspiration (m 

yr-1) over the Central Valley in 2014 and 2016 water years, respectively. 
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Figure 3. Primary agricultural land use (a) and agricultural consumptive water use (b,c) 

for each crop type in the Central Valley for 2014 and 2016 water years. The standard 

deviation of per-area evapotranspiration was also shown (error bars) in (c). Crops are 

sorted by the combined area in 2014 and 2016. Individual crops with an area less than 
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690 km2 in either 2014 or 2016 were grouped into one of the following three categories, 

vegetables, other fruits, and others. Others include flowers, nursery, Christmas tree, 

miscellaneous deciduous, miscellaneous grain and hay, miscellaneous grasses, safflower, 

sunflowers, and young perennials. 

Table 1. Statistics (Mean and standard deviation and CV) of per unit area annual 

evapotranspiration of major crops in the Central Valley.    

Crop type Mean Standard Deviation CV 

(mm yr-1) (mm yr-1) (%) 

WY2014 WY2016 WY2014 WY2016 WY2014 WY2016 

Alfalfa 885 914 168 143 19.0 15.6 

Almonds 964 1044 328 302 34.0 28.9 

Citrus 933 1022 260 275 27.9 26.9 

Corn 705 721 155 128 22.0 17.8 

Cotton 717 722 143 113 19.9 15.6 

Grapes/Vineyard

s 

726 793 203 203 27.9 25.6 

Pasture 991 1017 166 167 16.7 16.4 

Pistachios 592 705 352 376 59.5 53.3 

Rice 1110 1129 85 83 7.7 7.3 

Tomatoes 603 617 95 103 15.7 16.7 

Walnuts 981 1049 291 249 29.7 23.8 

Wheat 562 510 229 171 40.7 33.5 

Table 2. Statistics (Mean and standard deviation and CV) of EToF of major crops in the 

Central Valley.    

Crop type Mean Standard Deviation CV 

  (%) 

WY2014 WY2016 WY2014 WY2016 WY2014 WY2016 

Alfalfa 0.55 0.68 0.12 0.12 21.6 18.1 

Almonds 0.59 0.75 0.2 0.21 34.0 27.7 

Citrus 0.62 0.74 0.18 0.2 29.1 26.7 

Corn 0.43 0.53 0.11 0.14 26.3 25.7 

Cotton 0.35 0.41 0.07 0.08 20.3 18.8 

Grapes/Vineyard

s 

0.42 0.55 0.11 0.14 27.0 25.5 

Pasture 0.63 0.77 0.11 0.11 17.4 14.4 

Pistachios 0.33 0.47 0.19 0.24 58.6 50.4 

Rice 0.62 0.69 0.06 0.08 9.1 11.0 

Tomatoes 0.31 0.37 0.07 0.09 22.3 25.2 

Walnuts 0.58 0.73 0.17 0.15 28.9 21.0 

Wheat 0.37 0.44 0.15 0.16 39.8 36.0 
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Across the valley, the mean annual evapotranspiration rate varied by 35% (x̅ = 820, σ = 

290 mm yr-1) over all agricultural pixels in 2014, mostly due to the diversity of the crop types. 

We also found high variability of evapotranspiration rate within each crop type, especially over 

orchards such as almond, pistachios, and walnut, with a CV higher than 20% (Table 1), most 

likely due to differences in planting density, age, canopy structures and stressors among orchards 

(Ferguson et al., 2005). For example, the almond evapotranspiration rate varied by 34% (x̅ = 964, 

σ = 328 mm yr-1), and the rate for pistachio varied by 59% (x̅ = 592, σ = 352 mm yr-1) in 2014. 

Wheat also had a very high variability (CV: 41%), different from other annual crops, which 

typically had a much lower variation of evapotranspiration rate than perennial crops. For all 

major crop categories, the difference in CV between 2014 and 2016 was less than 7.2%. 

Compared to 2014, total crop consumptive water use increased by 9.6% in 2016 (Figure 

3b), with an evapotranspiration rate of 856 (σ =306) mm yr-1, although the reference 

evapotranspiration from Spatial-CIMIS decreased by 4%. This increase in evapotranspiration 

was mostly caused by land-use changes (Figure 3a). Total irrigated agriculture land use increased 

by 7.0% in 2016, partly due to a 2370 km2 land-use conversion from fallow/idle lands in 2014 to 

cropland in 2016. A large portion of fallow land conversion grew rice (18%), wheat (16%), and 

perennial (9.7%) crops in 2016, leading to an increase of total water use by 1.3 tera-liters. 

Another major land-use change was the conversion from annual crops (386 km2) to high water 

demand orchards, including almonds, walnuts, citrus, or grape in 2016, accounting for 1.5% of 

2016 cropland and decreasing water use by 0.07 tera-liters due to the low evapotranspiration rate 

of young orchards.  

3.2 Evapotranspiration difference among GSAs 
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Across a total of 134 GSAs in the valley, the annual mean per-crop-area 

evapotranspiration rate was averaged at 803 (σ = 154) mm yr-1 in the 2014 water year, and it 

varied significantly among GSAs, with a CV of 19% and IQR of 173 mm yr-1 (Figure 4a). Most 

GSAs with a high ET rate (>1000 mm yr-1) were located in the north-eastern Central Valley, 

such as the Vina, Yuba Water Agency, and Southern Sutter Water District GSAs in Butte, Sutter, 

and Yuba counties. On the other hand, most GSAs with ET rates lower than 700 mm yr-1 were 

scattered across the south-western Central Valley, e.g. East Contra Costa Irrigation District GSA 

in the Contra Costa County, City of Tracy GSA, and the City of Stockton GSA in San Joaquin 

County, El Rico GSA in Kings county, and Pleasant Valley GSA and Westlands Water District 

GSA in the western part of Fresno county.  
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Figure 4. Spatial variation across Groundwater Sustainability Agencies in 2014 for (a) 

Per-area evapotranspiration rate (m yr-1), (b) Net radiation (Wm-2day-1), (c) Actual 

Priestley Taylor coefficient, (d) EToF over all cropland averaged by GSAs.  

 

 

Figure 5. Spatial variation across Groundwater Sustainability Agencies in 2016 for (a) 

Per-area evapotranspiration rate (m yr-1), (b) Net radiation (Wm-2day-1), (c) Actual 

Priestley Taylor coefficient, (d) EToF over all cropland averaged by GSAs.  

Variability of evapotranspiration rate among GSAs was primarily driven by non-

meteorological drivers. Across GSAs, we found that the evapotranspiration rate highly correlated 

with net radiation (r=0.92) and actual Priestley Taylor coefficient (r=0.88) (Figures 4b, c). Many 
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of these factors were regulated by land-use types, vegetation cover, and plant water stress status. 

The annual ETo (x̅ = 1498 σ = 74 mm yr-1) could only explain 4.5% of the variation in annual 

evapotranspiration rate among GSAs (Figure 6a). In contrast, EToF was the dominant driver of 

evapotranspiration rate variability among GSAs (r=0.96) (Figure 4d), mostly driven by crop 

types, e.g. rice with EToF of 0.61 (σ = 0.06), tomato 0.33 (σ = 0.07), almond 0.52 (σ = 0.11), and 

pistachio 0.37 (σ = 0.16) summarized at the GSA scale. The observed correlations for 2014 are 

similar to 2016 (Figure 5). 

 

 

Figure 6. Reference evapotranspiration (m year-1) in 2014 (a) and 2016 (b) over all 

cropland averaged by GSAs. CV (%) of per-crop-area evapotranspiration rate in 2014 (a) 

and 2016 (b) by GSAs. 
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Even for the same crop type, EToF varied significantly among GSAs for some tree crops 

and wheat 0.36 (σ = 0.09). The average almond EToF (Figure 7c), for example, ranged from 0.25 

in the City of Tracy GSA in Tracy county to 0.75 in Rock Creek Reclamation District GSA in 

Chico county. Pistachio’s EToF was much lower in the majority of the western San Joaquin 

Valley areas (Figure 7d), probably due to the plant stress caused by salinity (Hanak et al., 2017; 

Jin et al., 2018; Letey, 2000). Citrus EToF (x̅ = 0.57, σ = 0.11) had an IQR of 0.16 at the GSA 

scale.  In contrast, the mean EToF showed much smaller variation among GSAs for the majority 

of annual crops such as alfalfa 0.54 (σ = 0.08) (Figure 12a), rice 0.61 (σ =  0.06) (Figure 7b), 

pasture 0.57 (σ = 0.09), and cotton 0.35 (σ = 0.05). Similar observations can be found in 2014 

with figure 8. 

Within each GSAs, the annual EToF also showed large spatial variation, with a mean CV 

of 31% (σ = 12%) across all agricultural fields; Some GSAs with a lower evapotranspiration rate 

had the highest variability (Figures 6c, 4a), mostly located at and around the Westlands Water 

District region in the western-Fresno and Kings county. In addition to crop diversity within each 

GSA, significant variation of EToF was also found for each tree crop type, such as almonds and 

pistachios (Figures 7g, h), with IQRs of CVs among GSAs greater than 15%. For examples, the 

CVs of pistachio EToF within each GSAs had a mean of 34% (σ = 20%) and an IQR of 33% 

across GSAs, with the largest within-GSA variation found in the Central Delta-Mendota GSA; In 

the Southeast Kings GSA, CV of Pistachio EToF is 29%, much lower than its neighbor, Tri-

County Water Authority GSA (64%). Other types with highly variable EToF (CV of 18+% with 

σ = 10+%) included almond, citrus, walnut, and wheat. In contrast, EToF was more 
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homogeneous within GSA for alfalfa with a mean CV of 17% (σ = 7%) and IQR of 6% (Figure 

7e), and rice (Figure 7f).  
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Figure 7. Mean (Top) and CV of the fraction of reference evapotranspiration by GSAs in 

2014 for alfalfa (a, e), rice (b, f), almond (c, g), and pistachio (d, h). 
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Figure 8. Mean (Top) and CV of the fraction of reference evapotranspiration by GSAs in 

2016 for alfalfa (a, e), rice (b, f), almond (c, g), and pistachio (d, h). 
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About 39 GSAs had more than 60% of agricultural land areas planted with perennial 

crops including almond, pistachio, citrus, walnut, and grape in 2014, which accounted for 76% 

of total agricultural water use by these GSAs and 27% of Central Valley’s total agricultural 

water use in 2014 (Figure 7b). These GSAs will likely face greater vulnerability to prolonged 

drought due to the high cost of fallowing productive orchards. When dividing the total 

consumptive use of perennial crops by the GSA area (Figure 7c), we found that some small and 

medium-size GSAs, such as Delano-Earlimart Irrigation District GSA, Madera Water District 

GSA, and New Stone Water District GSA, will need to reserve a much greater depth (400 mm 

yr-1) of groundwater storage to maintain the orchards during drought. 
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Figure 9. Percent of cropland (a) and total water consumptive use (a) in 2014 by major 

perennial crops (Almond, Pistachio, Citrus, Walnut, and Grape) in GSAs, and their total 

water consumptive use normalized by GSA area size (c). 
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Figure 10. Percent of cropland (a) and total water consumptive use (a) in 2016 by major 

perennial crops (Almond, Pistachio, Citrus, Walnut, and Grape) in GSAs, and their total 

water consumptive use normalized by GSA area size (c). 

3.3 Almond Evapotranspiration in Relation With Orchard Age and NDVI 

A pattern of increasing evapotranspiration can be observed among orchards younger than 

10 years old (Figure 11). For older orchards, the median of annual field-scale evapotranspiration 
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estimates by remote sensing, as shown in the box plots, fluctuates around 3 mm day-1. 

Comparing between the water years 2014 and 2016, almond’s evapotranspiration across the 

central valley is generally higher in 2016 (Figure 11a). Across the three basins (Figure 11b), we 

observed some differences in the pattern of evapotranspiration. In the Sacramento River Basin, 

younger orchards have higher evapotranspiration than the other two basins in the southern 

Central Valley. However, after age 12, evapotranspiration in the Sacramento River Basin is often 

lower than the other two basins. Between the two basins in the southern Central Valley, 

evapotranspiration is generally higher in Tulare than in the San Joaquin River Basin. The box 

further shows that the interquartile range of evapotranspiration is generally less than 1mm day-1. 

However, some outliers could not be explained, and significant variability in evapotranspiration 

could be explained by orchard age. 

NDVI, on the other hand, could well describe the variability of evapotranspiration 

(Figure 12). However, we did not observe a significant difference in the relationship between 

evapotranspiration and NDVI, among Basins and water years. An exception was the best fit line 

in 2914 for the Sacramento River Basin (Figure 12a). The slope was found to be lower, while the 

intercept to be higher than the other basins. This is consistent with the previous observations 

regarding orchard age and evapotranspiration in the Sacramento River Basin. 
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Figure 11. Box plots of field median evapotranspiration. The summarized 

evapotranspiration across the Central Valley by water year in (a) and the 2014 

evapotranspiration in by the three basins of the Valley in (b). The box plot shows the 

quartiles of the dataset. The upper whisker is extended to the last datum less than the sum 

of the 1.5 times of interquartile range and the 3rd quartile. Similarly, the lower whisker is 

extended to the first datum greater than the first quartile subtracted by the 1.5 times of 

interquartile range.  
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Figure 12. Scatter plots of NDVI and evapotranspiration. The water year 2014 data were 

shown on top and the 2016 data on the bottom. The dots are colored by basins of the 

Central Valley. The best line for each plot was also shown. 

Using both orchard age and NDVI together could effectively estimate annual 

evapotranspiration in both 2014 and 2016. The empirical equation (2) was generated by 

optimizing equation (1) with the 2014 dataset over orchards that are younger than 12 years old.  

𝐸𝑇 = (−0.66 + 1.36 ∗ (1 − 𝑒  −((𝐴𝑔𝑒+9.99) 2/61.89 ))) ∗ (1.57 ∗ 𝑁𝐷𝑉𝐼 + 0.07) ∗ 𝐸𝑇𝑜        (2) 

The empirical model explained at least 71% of the variability of evapotranspiration across 

orchards of all ages (Figure 13), with an RMSE, MAE, and MAPE of less than 0.34 mm day-1, 
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0.28 mm day-1, and 9.71%, respectively. The model has a similar performance between young 

and old orchards. For orchards between 2 and 12 years old, the R2 was greater than 0.73, and 

RMSE, MAE, and MAPE were less than 0.33 mm day-1, 0.28 mm day-1, and 9.71%, 

respectively. As for orchards older than 12 years old, the R2 was greater than 0.68, and RMSE, 

MAE, and MAPE were less than 0.34 mm day-1, 0.28 mm day-1, and 9.70%, respectively. 

 

Figure 13. 2D-Density plot comparing the fields-median of remote sensing 

evapotranspiration estimates with empirically estimated evapotranspiration. Comparison 

with the dataset for 2014 and 2016 was shown separately in (a) and (b). 

 The empirical model, when implemented at a pixel level and aggregated by GSAs, agreed 

well with the summarized statistics from section 3.2. The model, trained with young orchard data 

in 2014, could explain 84% of the variance in mean evapotranspiration of 2016 across GSAs, 

with an RMSE, MAE, and MAPE of 0.21 mm day-1, 0.17 mm day-1, and 6.9%, respectively 

(Figure 14a). It could also explain 80% of the variance across GSAs in terms of the standard 

deviation of evapotranspiration within individual GSAs, with an RMSE, MAE, and MAPE of 0.1 
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mm day-1, 0.08 mm day-1, and 19.78%, respectively (Figure 14b). The summary statistics based 

on the remote sensing and empirical models are highly correlated with Pearson’s r-value of at 

least 0.92 and a P-value less than 7.3E-38. The error in estimating mean and standard deviation 

is propagated to the estimation of CV. Our 2016 empirical estimates could only explain 70% of 

the variance, with an RMSE, MAE, and MAPE of 3.82%, 3.15%, and 19.5%, respectively. 

 

Figure 14. Scatter plots, comparing GSAs-scale statistics based on the 2016 estimates by 

remote sensing model vs empirical model. The mean and standard deviation were 

compared in (a) and (b), respectively. The dots were colored by the median orchard age 

for each GSA. 

 

To our surprise, the agreement in the estimated mean across GSAs was less in the training year 

2014 than the prediction year 2016. For 2014, the empirical model could explain only 58% of the 
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variance in mean evapotranspiration across GSAs, with an increase in RMSE, MAE, and MAPE 

of 0.37 mm day-1, 0.23 mm day-1, and 11.36%, respectively (Figure 15a). The increase is 

primarily caused by an outlier, at the County of Glenn GSA in the northern Central Valley, 

where the empirical estimates are nearly 2mm day-1 higher than remote sensing estimates. The 

GSA had less than 0.07 km2 of orchards all at the age of 15 in 2014. In terms of standard 

deviation, it also captured 80% of the variance in 2014 across GSAs, with a slight improvement 

in RMSE, MAE, and MAPE of 0.09 mm day-1, 0.07 mm day-1, and 15.99%, respectively (Figure 

15b). 

 

Figure 15. Scatter plots, comparing GSAs-scale statistics based on the 2014 estimates by 

remote sensing model vs empirical model. The mean and standard deviation were 

compared in (a) and (b), respectively. The dots were colored by the median orchard age 

for each GSA. 
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4. Discussion 

4.1 Regional evapotranspiration estimates 

At a regional scale, the annual mean values of per-area water use of major crop types in 

the Central Valley (Table 1) estimated here are generally within the ranges reported in the 

literature (Burt et al., 2002; California Department of Water Resources, 2019a; Schauer & 

Senay, 2019). For example, DWR’s water portfolio and balances dataset, as part of DWR’s 2018 

Water Plan, reports that water requirement by corn ranges from 390-835 mm yr-1 in 2014 across 

sub-regions (Detailed Analysis Units by County) of all planning areas in the Central Valley 

(California Department of Water Resources, 2019a). Burt et al., (2002) estimated that corn in the 

Central Valley conventionally used 813 mm yr-1 in a typical precipitation year. Our regional 

average of corn evapotranspiration (705 mm yr-1) was 16% more than DWR’s average corn 

water requirement over planning areas (604 mm yr-1). Larger differences were found for alfalfa, 

pasture, wheat, almonds, pistachio, and vineyard, for which our regional averages were 30-65% 

lower or higher than DWR’s values. Over all the 30m pixels of agricultural lands in Central 

Valley (~25 thousand km2), the average annual evapotranspiration rate, estimated here, is higher 

than the estimates over the whole Central Valley (~47 thousand km2) by the BESS biophysical 

process-based model forced with 1km satellite observations (Baldocchi et al., 2019). The 

discrepancy is likely due to the scale effect (Wu & Li, 2009) and differences in land cover maps. 

Larger pixels likely contain other land use areas such as fallow, urban, water, and natural 

vegetation. Nonetheless, our estimates in 2014 align with the values reported in Schauer & 

Senay, (2019) based on the SSEBop remote sensing evapotranspiration model driven by Landsat 

thermal data.  
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We found some differences between DWR’s crop coefficient model and our regional 

estimates, but we could not conclude which estimate is more reliable. Based on findings reported 

by Medellín-Azuara, et al., (2018), it would appear that our estimate would be more reliable than 

DWR’s estimate at a field scale. They found that DWR’s monthly estimates of corn, alfalfa, and 

pasture’s estimate differ significantly from field measurements in the Sacramento San-Joaquin 

Delta, while the estimates by the early prototype of PT-UCD did not. However, more 

evapotranspiration measurement data across major crop types and in different parts of the Valley 

are needed to evaluate the uncertainty of crop coefficient and our estimate. Furthermore, if a 

model has a high error in estimating evapotranspiration at a field scale over selected fields, the 

results only show that the model could not account for spatial variability of evapotranspiration at 

the field scale. When such a model is aggregated at the regional scale, its estimate might agree 

with the actual regional measurements.  

Our estimation of 19.6 tera-liter water consumption in 2014 was equivalent to 74% of 

DWR’s estimate (26.2 tera-liter) over all planning areas within the Central Valley, which was 

derived from CalSIMETAW (Orang et al., 2013). Among the planning areas, the discrepancies 

ranged from - 53.4 to -18.5%, with the most significant disagreement (<-50%) occurring in the 

southern and center-east of the San Joaquin Valley (planning areas 704, 708, 709 in Figure 1b). 

Similarly, previous studies in the Sacramento San Joaquin Delta, a subset of the Central Valley, 

showed that remote sensing estimates are lower than CALSIMETAW’s estimates by 6 to 24% 

(Medellín-Azuara, et al., 2018; Paul et al., 2017). Over this Delta area, our crop-specific 

Priestley Taylor method in this study estimated 1.20 tera-liter in 2016, very similar to the 

DISALEXI’s estimate of 1.16 tera-liter in the water year 2016; both were about 80% of 
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CalSIMETAW’s estimates of 1.49 tera-liters, based on the published data summary table in 

Medellín-Azuara, et al., (2018).  

Two factors may have caused the discrepancy in regional estimates between PT-UCD 

and CalSIMETAW. First, CalSIMETAW’s crop coefficient approach implemented at a regional 

scale may overestimate actual evapotranspiration, because it didn’t account for the impacts of 

planting variabilities such as orchard age distribution and planting density, field conditions such 

as salinity and disease, and crop management like deficit irrigation. Secondly, the land-use map 

used by CALSIMETAW was different from the DWR’s land use map that we used here. For 

example, CALSIMETAW estimated 13.7, 23.9, and 23.9 km2 of corn, alfalfa, and pasture in PA 

704 in 2014, in contrast to our DWR’s map-based estimates of 18.2, 21.4, and 9.3 km2 of corn, 

alfalfa, and pasture. 

4.2 Explanation of variability of almond evapotranspiration within and among GSAs. 

The optimization and evaluation of the empirical Age and NDVI based crop coefficient 

model provides insight into the variation of almond evapotranspiration within and among GSAs 

(Figure 7 c,g, and 8 c,g). Our study demonstrates that the growth of immature orchards is 

associated with the increases in crop water use at a field scale. When using both age and NDVI 

information, the empirical model could explain a large portion of spatial variation within each 

GSA and among GSAs. Further experimentation reveals that age alone is adequate in estimating 

the variability of evapotranspiration among GSAs since the comparison of mean 

evapotranspiration has a MAPE of 18.59%. However, it could not be used to estimate the 

variability within GSA, since the comparison of standard deviation in evapotranspiration has a 

MAPE of 67.81%. The results suggest that although NDVI is associated with orchard age, there 
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are other important factors, such as salinity and farm management, that could both affect NDVI 

and explain the variability of evapotranspiration within and among GSAs.  

4.2 Implications for water resource management 

Currently, California’s Groundwater Sustainability Agencies (GSAs) use various 

approaches to estimate evapotranspiration in their water budget accounting and management 

plan development, causing inconsistency among GSAs. For example, the Olcese GSA estimates 

monthly evapotranspiration from 1993 to 2015 using the METRIC prepared by the Irrigation 

Training & Research Center; North Kings GSA uses DWR’s crop coefficient to estimate annual 

evapotranspiration rate over detailed analysis units from 1998 to 2010, while the Delano and 

Yuba GSAs use crop coefficients published by the Irrigation Training & Research Center in 

2003 and derived from SEBAL’s evapotranspiration map in 2009, respectively. Our study shows 

that the fractional of reference ET (EToF), or similarly crop coefficients, for most crops, varies 

spatially across and even within GSAs, and for some crops, EToF changes considerably between 

years. More consistent estimates with known uncertainty from a calibrated or thoroughly 

evaluated approach are needed to ensure consistent quantitative information for data-driven 

decisions for water planning. Our optimized Priestley Taylor approach driven by remote sensing 

observations provides an efficient way to capture both spatial heterogeneity and temporal 

dynamics of water balance. However, remote sensing observations should be verified with 

locally available field measurements, before being implemented spatially to inform management 

decisions. 

In particular, we found that orchards and wheat generally had a greater spatial variability 

of evapotranspiration and crop coefficients than other major crop types, across the Central Valley 
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(Table 1 & 2), within and among GSAs. Age distribution and other stressors such as salinity 

likely contributed to evapotranspiration variability for tree crops (Jin et al., 2018; UC-ANR, 

2008, 2018). Among three major nut tree crops, pistachio had the lowest mean annual 

evapotranspiration rate (x̅ = 592, σ = 352 mm yr-1 in 2014), followed by walnut (x̅ = 981, σ =  

291 mm yr-1 in 2014) and almond (x̅ = 964, σ =  328 mm yr-1 in 2014). Coincidentally, 26% of 

pistachio acreages in 2014, 18% of walnut in 2015, and 15% of almond in 2014 across California 

were non-bearing orchards (Administrative Committee for Pistachios, 2020; California 

Department of Food and Agriculture, 2020; U.S. Department of Agriculture, 2020). The high 

variability of wheat water use is likely due to cultivar and end-use for the crop (Fulton et al., 

2006). 

The rapid expansion of perennial crop acreage in the past two decades raises concerns 

about increasing and hardening water demand (Hanak et al., 2017; Johnson & Cody, 2015; Mall 

& Herman, 2019). As perennial crops have an expensive initial investment cost, fallowing 

perennial crops during drought results in greater economic loss than fallowing annual crops. 

Therefore, GSAs with a high percentage of water use by perennials (Figure 9b, 10b) will likely 

experience challenges in implementing sustainability management during drought. To minimize 

economic loss during a severe multi-year drought, a large buffer between the sustainability 

threshold and actual water level should be maintained for those GSAs, i.e., to prepare for a five-

year drought with conditions like 2014’s, a groundwater buffer should be aimed with an 

approximate depth at least five times the values shown in Figure 9c, after accounting for surface 

water availability and total porosity of the aquifer. 
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The empirical model developed here for almond orchards could be used for the time-

sensitive operation of water resource management, such as predicting in July on the annual total 

almond consumptive water use during a severe drought year. If future research can demonstrate 

that NDVI of almond orchards can be predicted using age information and satellite observations 

from the previous year, our empirical model could be useful to GSAs in project future water use 

and variability. Furthermore, NDVI measurements are becoming easily accessible to farmers 

because of the commercialization of affordable, compact field sensors, and drone imaging 

technology. Therefore, the empirical model could also be used by growers in planning water 

uses. However, further research is needed to refine the empirical model, so it could estimate 

daily evapotranspiration estimates using the NDVI data collected by the growers. 

5 Conclusions 

To facilitate the implementation of sustainable groundwater management, we applied this 

calibrated approach to the whole Central Valley, one of the world’s most productive agricultural 

regions, to estimate evapotranspiration at 30m resolution for water years 2014 and 2016 when 

high accuracy local land use maps are available. The evapotranspiration rate averaged at 820 mm 

yr-1 and had a large spatial variability with a standard deviation of 290 mm yr-1 over all 

agricultural pixels in 2014. Total water use in 2016 increased by 9.6%, as compared to 2014, 

mostly as a result of land-use conversion (2370 km2) from fallow/idle land in 2014 to cropland in 

2016. When aggregated by the GSA boundaries, the annual evapotranspiration rate showed large 

variation among GSAs, i.e., x̅ = 803, σ = 154 mm yr-1, and a CV of 19% in 2014. This variability 

was mostly associated with variation in net radiation and actual Priestley Taylor coefficient or 

fraction of reference evapotranspiration, driven by crop type diversity and conditions. Perennial 
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crops such as pistachios and almonds typically had much higher variability within and among 

GSAs than annual crops.  

Our study demonstrates that remotely sensed evapotranspiration estimates can be 

combined with land use maps to inform water resources planning and management. In particular, 

we provided more realistic estimates of crop coefficient and evapotranspiration for local water 

budget accounting, evaluation of crop water use variation within and among GSAs, and 

highlighted the importance of crop planning, orchard age structure, and other physiological 

stressors such as salinity on the trajectory of local orchard water use and demand.  
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Abstract 

Information of regional agricultural applied water, or pumping in areas without surface water 

delivery, is of central importance to sustainable water management activities. However, water 

accounting is not carefully observed or monitored in most agricultural areas of California, 

resulting in difficulties in developing an accurate water balance. Field-scale agricultural water 

use could potentially be inferred from remote sensing of actual crop evapotranspiration, which 

provides spatial estimates of crop water demands. We here evaluated a pumping estimate, driven 

by remote-sensing-based daily evapotranspiration at 30m and a soil water balance approach. We 

focused on the Pajaro Valley, CA, a predominantly agricultural region where groundwater 

pumping is measured and provides over 90% of the region's water demand. This case study 
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provides a test of the crop consumptive use approach to estimating groundwater pumping where 

it is not measured. We first derived the application efficiency for four major crop types in the 

region, based on 94 field pumping records from a survey, remote sensing evapotranspiration 

estimates, and a soil water balance model. For regional pumping estimates at the field scale, we 

applied the median application efficiency for each of the major crop types in the valley. The 

estimated daily agricultural applied water use at 30m grids is further spatially and temporally 

aggregated into annual regional and zonal agricultural applied water use estimates. Our applied 

water estimates can explain 85% of the variability of pumping records at the field scale. 

However, with a WAPE of 34.7%, it is not suitable for field-scale water accounting. When 

aggregated to the region, we estimated a total of agricultural groundwater pumping ranging from 

53.9 in 2009 to 42.6 billion liters in 2011, which deviated from the sum of all agricultural 

pumping and surface water delivery by less than 4.6%. Over 16 subregions, our estimates 

explained more than 89% variance in pumping records with a WAPE of 26.4%. Compared to 

USGS’s estimates from a groundwater model that was finely tuned with zonal water use data, 

our estimates are more accurate at the regional scale but have larger uncertainty at the local 

scale. A good agreement was found between USGS’s and our estimates, for the major water 

balance fluxes at sub-regional scale, with R2 values greater than 0.94. This study results 

demonstrated that remote sensing evapotranspiration can be used to estimate regional 

agricultural applied water with reasonable accuracy yet in a cost-efficient way, over areas where 

only a limited number of field-scale applied water data is available for calibrating a soil water 

balance model.  

1. Introduction 
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California, as one of the world’s most productive agricultural regions, overdrafts 1.2-2.5 

trillion liters of groundwater per year (California Department of Water Resources, 2014). In San 

Joaquin Valley, the southern half of the Central Valley, groundwater overdraft through excessive 

pumping accounts for 13% of water resources (Hanak et al., 2017). This caused significant land 

subsidence (Faunt et al., 2016), and the subsequent damages on aqueducts, costing the state “tens 

of millions of dollars” in repairs to the aqueduct in the last 40 years (Smith, 2015).  It also caused 

many wells to dry up during drought, seawater intrusion, and other undesirable consequences. To 

address these issues, over 260 Groundwater Sustainability Agencies (GSAs) were formed under 

the Sustainable Groundwater Management Act to manage local groundwater use and co-manage 

groundwater basins (California Department of Water Resources, 2019). They depend on 

groundwater models to develop the water budget and make management and investment 

decisions (California Department of Water Resources, 2017; Sinclair Knight Merz & National 

Centre for Groundwater Research and Training, 2012). However, the majority of agricultural 

groundwater pumping in California is not metered (Escriva-Bou et al., 2016). This creates 

difficulties in establishing a billing structure for deterring excessive use and funding 

management operations and infrastructure investments. To estimate regional pumping, modelers 

adopt different variation the crop consumptive use approach, which uses crop evapotranspiration 

and irrigation efficiency to estimate agriculture applied water and subtracted by surface water 

delivery. The lack of pumping measurements, in combination with different assumptions in the 

crop consumptive use approach, resulted in large discrepancies in pumping estimates of Central 

Valley’s subregions; The subregions, with an average size of 2465 km2, which is nearly five 

times the size of the Pajaro Valley, have an average discrepancy of 63% or 271 billion liters per 

year (Maples, 2019). The discrepancy in Central Valley’s sub-regional scale is expected to 
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magnify at the local GSA scale, potentially mislead local groundwater planning and basin co-

management.  

Applied water in an agricultural setting refers to water supplied to crops through 

irrigation. Most irrigated fields in California draw water from both surface water and 

groundwater. As surface water delivery strictly follows water right regulation, groundwater 

pumping estimates at a regional scale are generally computed by subtracting surface water 

delivery records from applied water estimates. Therefore, improving the accuracy of applied 

water estimates is critical to reducing the uncertainty of the water budget. Due to various 

geographical factors and individuals’ irrigation and field management practices, applied water 

estimates could differ significantly from crop water demand. For example, in the central coastal 

regions of California, precipitation typically fulfills the majority of crop water demands during 

the early growing season, while croplands in the Central Valley may be entirely dependent on 

irrigation. Meanwhile, irrigation methods, soil characteristics, the slope of irrigated fields, and 

other conditions, require additional irrigation to ensure soil water moisture at the root zone is 

sufficient for crop water needs. 

For regional water planning purposes, applied water is often estimated as a residual of 

agricultural water balance. A water balance generally accounts for precipitation, 

evapotranspiration, and application efficiency. A simple approach, such as the groundwater box 

model, subtracts temporally-aggregated actual (crop) evapotranspiration from precipitation to 

compute irrigation requirement, then divides the irrigation requirement by application efficiency 

to estimate agriculture water demand (Garza-Díaz et al., 2019). If regional measurements of 

applied water and land use information were available, application efficiency can be calibrated 

for individual crop types by year to improve the regional applied water estimate.  



98 

 

A more complex approach of agricultural water balance accounts for soil moisture 

storage (Brady & Weil, 1999; Devine & O’Geen, 2019; McCauley et al., 2005; O’Geen, 2012). 

In a soil-moisture storage model, precipitation and applied water are stored at the root zone until 

soil moisture reaches field capacity.  The storage is depleted overtime through 

evapotranspiration. When soil-moisture storage depletes to a predefined threshold (generally at 

50% between wilting point and field capacity), irrigation is triggered to fill soil-moisture storage 

to field capacity. If storage were beyond field capacity, such as during a heavy precipitation 

event, excess water is partitioned to percolation and surface runoff. The most complex 

approaches of agricultural water balance involve modeling soil moisture dynamics over time 

(Hanson et al., 2014; Schmid et al., 2011). These approaches first estimate effective 

precipitation, which is the amount of precipitation subtracted by the runoffs from precipitation. 

Then, the models estimate the percolation rate, which should theoretically vary by soil types and 

soil moisture condition. These approaches are often coupled with a groundwater model. With 

available measurements, such as metered groundwater pumping, observed groundwater level, 

stream gauge data, the parameters in the coupled model can be calibrated to match water balance 

fluxes to measurements. 

Although agricultural water balance is constrained by mass balances, regional water 

balance estimates generally have large uncertainty (Maples, 2019). Modelers lack information on 

farms’ soil property and crop-type and farmer’s irrigation method and timing. Uncertainties in 

forcing data and model parameters could also be propagated and magnified in a model, causing a 

significant error in applied water estimates. Furthermore, model parameters could be overfitted 

during the calibration process, introducing errors in estimating water budgets during time periods 

when measurements are not available. As the majority of local applied water and pumping are 
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not measured in California (Escriva-Bou et al., 2016), stakeholders rely on the best available 

water budget estimates to develop water management plans. 

Crop evapotranspiration - a key driver for spatial-temporal variability of agricultural 

applied water - is traditionally estimated using the crop coefficient method (Garza-Díaz et al., 

2019; Hanson et al., 2014; Snyder et al., 2012). This method is simple to implement but does not 

account for field-specific factors, such as water stress, irrigation management, and crop 

physiological variations, when being implemented for regional water budget purposes. 

Therefore, this method will likely overestimate actual evapotranspiration (Anderson et al., 2012; 

Cuenca et al., 2013). The absence of field-specific information hinders regional water managers 

from accurately estimating local crop evapotranspiration. Thus, some Groundwater 

Sustainability Agencies (GSAs) in California began to adopt satellite data-driven 

evapotranspiration estimates in the computation of water budget. 

In recent years, many satellite data-driven evapotranspiration estimates have been 

evaluated  (Anderson et al., 2018; Fisher, 2008; He et al., 2017) and commercialized such as 

products provided by LandIQ, Open ET, Formation Environmental, and The Irrigation Training 

& Research Center (ITRC). Compared to field measurements, some studies reported a ±10% 

error. These approaches generally use satellite multispectral and thermal data to model the 

surface energy balance and then estimate evapotranspiration as a residual of the energy balance. 

One example is a recently developed semi-empirical model, PT-UCD. It can estimate daily 

evapotranspiration at 30m resolution in California, with an RMSE of 0.87 mm day-1 (Wong et. 

al. 2021). Since remote sensing evapotranspiration can better capture the temporal changes and 

spatial variability of crop water use than the traditional crop coefficient approach, it is expected 

that a water budget driven by remote sensing evapotranspiration can improve estimates of 
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agricultural applied water. At Olcese GSA, the modeler recently incorporated monthly remote 

sensing evapotranspiration, from 1993 to 2015, prepared by ITRC using the METRIC model, to 

prepare a water budget for the groundwater sustainability plan. Similarly, Yuba GSA purchased 

SEBAL’s evapotranspiration map in 2009 and derived crop coefficients to estimate annual 

evapotranspiration in their water budget. Besides regional water budget preparation, the 

Environmental Defense Fund and Rosedale-Rio Bravo Water Storage District are experimenting 

with the application of Open ET’s evapotranspiration estimates in field-scale water accounting 

and trading. While remote sensing evapotranspiration could potentially revolutionize water 

management, few have evaluated whether it could be used to accurately estimate regional 

applied water (Martínez-Santos & Martínez-Alfaro, 2010). 

In this study, our primary objective is to develop an accurate regional agricultural applied 

water estimation method at the local GSA scale, using a limited number of field water use data, 

remote sensing techniques, and soil water balance. We addressed a knowledge gap in using 

remote sensing actual evapotranspiration to estimate applied water, by quantifying the 

uncertainty of our estimates from field to GSA scale. We further evaluated our water balance 

against that of a well-calibrated model and reported the limitations and constraints of remote 

sensing evapotranspiration in the water budget. Our findings will inform best practices of 

developing the water budget, thus improving resource planning in the context of the Sustainable 

Groundwater Management Act. 

2. Data and Methods  

PT-UCD was applied to estimate daily actual evapotranspiration over the Pajaro Valley 

in 2009 and 2011 calendar year; A soil water balance model was implemented at daily time-step 
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in 30m resolution, then the model outputs were spatial-temporally aggregated to the regional and 

zonal annual average; metered pumping data were used to derive application efficiency at a field 

scale and to validate applied water estimates from field to regional scales.  

2.1 Study Area 

Pajaro Valley, with a size of approximately 388 km2, located in the central coastal part of 

California, is an excellent region for studying regional agricultural water use because it is one of 

the few areas in California where agricultural pumping was metered (Figure 1a). If Pajaro Valley 

were a county, it would rank 5th in agricultural production in California (City of Watsonville, 

2009). In 2009, the largest land use in the Pajaro Valley was native vegetation/riparian (47.7%), 

followed by urban land uses (16.6%). Excluding water, fallow, and non-irrigated crops, 30.3% of 

the entire valley was irrigated cropland (Hanson et al., 2014). The temperate climate in the 

region, with mild summer and wet, cool winters, is suitable for growing fruits, vegetables, and 

nurseries, such as berries, grapes, apples, lettuces, and cut flowers. The most dominant irrigated 

cropland is vegetable row crops (truck crops) (9.5% of all land uses), followed by strawberry 

(8.7%), deciduous (orchards) (5.1%), and raspberries, blackberries, and blueberries (3.4%). 

Pajaro Valley encompasses the Watsonville city and is adjacent to Salinas city; As of 2021, the 

Watsonville/Salinas district is the largest strawberry production region in California with 

49.7km2 or 43.2% of total fall planted acreage (California Strawberry Commission, 2021), 

surpassing the total acreage in Florida and is nearly half of the total acreage in Mexico.  

The ~100 km2 irrigated cropland in the Valley consume 48-64 billion-liters of water per 

year, over 90% of which were extracted from groundwater (Garza-Díaz et al., 2019). Since the 

1940s, groundwater overdrafts resulted in seawater intrusion along the coast (Hanson et al., 
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2014). Beginning in 2000, wells that pump greater than 12.3 million liters per year (10 acre-feet 

per year) were required to report pumping measurements to the Pajaro Valley Water 

Management Agency (PVWMA) (Hanson et al., 2014). PVWMA has since expanded water 

supply with a Recycled Water Project, a Harkins Slough Recharge Project, and an Import Water 

Pipeline Project  (Hanson et al., 2014). To reduce coastal pumping, PVWMA also built a Coastal 

Distribution System (CDS) pipeline to deliver water from Harkin Slough, supplemental wells, 

and a recycled water facility to coastal farms. 

 

Figure 1. Agricultural land use of the Pajaro Valley watershed in 2009 (a) and 2011 (b). 

The 22 subregions, as defined by Hanson et al., 2014 were shown in (a), and the modified 

zones are shown in (b). 
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Croplands in the Pajaro Valley typically receive about 530 mm yr-1 of precipitation. 

While most of the precipitation occurs in quarters 1 and 4 (January-March and October-

December), a significant amount of precipitation is generally available to support crop water 

needs in quarters 2 (April-June). For example, a total of 31mm and 69mm of precipitation were 

available in 2009 and 2011 in quarter 2, alleviating the need for irrigation (Figure 2). The total 

reference evapotranspiration, e.g. crop water needs of well-watered, standardized height pasture, 

are typically over 800 mm yr-1. The majority of reference evapotranspiration occurred in quarters 

2 and 3, each accounting for 35-37% of the annual total in 2009 and 2011. Between the two 

years, quarter 3’s evapotranspiration is 46mm higher in 2009. Higher quarter 3 reference 

evapotranspiration and lower quarter 2 precipitation helped explain why pumping in spring and 

summer in 2009 were higher (Figure 2). 

 

Figure 2. Time series of precipitation (Prcp), reference evapotranspiration (ETo), and 

Pumping averaged over all croplands in the Pajaro Valley in 2009 and 2011. Precipitation 
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from Daymet is smoothed with 10 days moving window. Regional total pumping is 

divided by days in the quarter. 

2.2 Land use, parcels, pumping records, and field survey data  

The agricultural land-use maps of the Pajaro Valley for 2009 and 2011 were provided by 

PVWMA. The field ID and land use information was extracted from the original shapefile 

dataset and rasterized to align with the 30m grid of remote sensing evapotranspiration data. A 

parcels map, generated by Macaulay & Butsic, (2017), was also used in this study. The map 

consolidated all land parcels that share an identical landowner name in each county of California. 

The interactive map is available online and was downloaded for local post-processing using a 

web-scraping technique.  

A confidential field pumping record was provided by PVWMA, documenting quarterly 

aggregated flow measurements from 2003 to 2011 for every known groundwater pump and CDS 

outlet. While the majority of pumps are used for irrigation, some were used for residential and 

industrial purposes. To identify agricultural pumps, we overlaid the well locations on top of 

parcel maps (Macaulay & Butsic, 2017) and land use maps provided by PVWMA. If a well is 

not situated in a parcel that contains agricultural land use (including fallow fields), the well is 

excluded from the study. For validation purposes, the preprocessed agricultural pumping data in 

2009 and 2011 were spatially aggregated by subregions as defined in figure 1. 

Besides PVWMA’s pumping data, Lin et al., (2013) conducted a field survey as part of 

the potential water savings through an improved irrigation efficiency study. For four crop classes 

in the valley, namely Vegetable Row Crops, Strawberries, Raspberries and Blackberries, and 

Deciduous (Apples), a total of 98 growers were surveyed from 2009 and 2011 (Appendix IV 
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Text S1). The survey documented the IDs of the pumps and the fields operated by the 

interviewed growers, enabling us to attribute an individual pump to the fields that water was 

delivered to.  

By joining survey records from Lin et al., (2013) with PVWMA’s pumping data, field-

scale pumping measurements were compiled for the 98 sites. Four sites were omitted because 

PVWMA’s land-use map shows that surveyed sites are either mixed with ‘Ag. Unknown use’ 

and ‘Fallow’ field or identified as ‘Nurseries/Flowers/Tropical Plants’. The remaining 94 sites 

were used to derive field-scale application efficiency for the four major crop types. 

For regional pumping estimation purposes, PVWMA’s metered records were spatially 

aggregated according to the zoning definition (Hanson et al., 2014). The Pajaro Valley was 

divided into 24 water-balance-subregions (WBS) for groundwater modeling at 1km spatial 

resolution (Figure 1a). In this study, zone 4, 13-15, 24 were excluded, because these areas 

represent urban water use or the Harkins Slough Aquifer-Storage-and-Recovery System. These 

zoning schemes have two problems when used for validating pumping estimates. Firstly, WBS 

zones significantly vary in size, and secondly, the zone boundaries often split land parcels into 

fragments. A manually modified zone boundary was also used in this study to address the 

aforementioned issues (Figure 1c). Small WBSs from the original scheme were combined. For 

example, agricultural fields in WBS 2, 3, 8, 10, 16, 17, 22 were grouped into zone 22, WBS 11 

and 12 were combined into zone 12, and WBS 9, 18-20 were aggregated into zone 9. Then, by 

overlaying the consolidated WBSs with topography and parcel maps, the zonal borders were 

modified to align along with rivers, watersheds boundaries, and land parcel clusters that have 

agricultural fields. The modified zone boundary helped better evaluate the uncertainty of zonal 

pumping estimates, because of the challenge of associating wells to agricultural fields. 
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2.3 Remote sensing evapotranspiration estimates 

We estimated daily crop evapotranspiration at 30m resolution, following the generalized 

PT-UCD method in Wong et. al. (2021). The estimation requires gridded meteorological data, 

i.e., minimum and maximum air temperature at 1.5 m, and daily dew point, reference 

evapotranspiration, from California Irrigation Management Information System Spatial product 

(Spatial-CIMIS) at a 2 km resolution (Hart et al., 2009). All spatial meteorological data were 

resampled to the 30m grid of remote sensing evapotranspiration using the nearest neighbor 

method. 

Besides meteorological data, imageries from the Landsat Analysis Ready Dataset (ARD) 

were used to estimate evapotranspiration on clear-sky satellite overpassing days. The ARD tile 

002009 covers the Pajaro Valley watershed, and a total of 167 and 166 days of Landsat 5/7 

operational land imager and thermal infrared imageries were compiled in 2009 (August 2008 to 

January 2010) and 2011 (August 2010 to January 2012), respectively. Although Landsat 

satellites only revisit the exact location every 16 days, ARD tile images are generated every 

several days when a satellite captures an image that partially overlaps with the extent of the ARD 

tile. When both Landsat 5 and 7 are operational during cloud-free seasons, the majority of the 

Pajaro Valley typically have a maximum of 3 satellite observations per month. However, some 

areas that are located at the image overlapping zones, may have more observations. After 

preprocessing the compiled images for quality assurance, evapotranspiration is estimated for all 

cloud-free pixels. The estimated evapotranspiration value is further divided by reference 

evapotranspiration to derive the fraction of reference evapotranspiration (EToF) on clear-sky 

Landsat days.  
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Daily EToF is estimated with a shape-preserving piecewise cubic interpolation, using all 

valid EToF values from adjacent clear sky Landsat days within ± 2 months search window. We 

set a requirement of a minimum of 2 valid observations within the search window for a robust 

interpolation. This temporal interpolation was needed mostly during the rainy season in winter 

and early spring in California, an off-season for some crops in Pajaro Valley. Finally, daily 

evapotranspiration was estimated as a product of the interpolated EToF and reference 

evapotranspiration. At last, the estimated daily evapotranspiration over the ARD tile was clipped 

by a boxed area encompassing the watershed for further analysis. 

2.4 Soil Water Balance Model 

The Soil water balance model was implemented in Python at a daily time step with a 30m 

grid. The model (Figure 3) resembles the Irrigation Demand Calculator (IDC) (California 

Department of Water Resources, 2020). IDC is an integrated component of the Integrated Water 

Flow Model, which is applied in the California Central Valley Groundwater-Surface Water 

Simulation Model (Sustainable Groundwater Management Office, 2020) and other basin-wide 

groundwater modeling (Harter & Morel-Seytoux, 2013). A key difference between IDC and our 

model is that IDC solves the soil water balance equations using an iterative solution, while our 

approach computes the equations in a specific sequence in daily time steps. Another difference is 

that IDC is more flexible and is suitable for non-agricultural land use, while our model is 

constrained to agricultural land use with specific assumptions. For example, IDC users may add 

parameters to account for drainage and a root zone that changes over time. 

We built the model from scratch to minimize labor-intensive tasks of converting various 

gridded data into text files and extracting output files for data analysis. Our end-to-end 
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automated model enables modification of calculation and optimization approaches and rapidly 

testing of different assumptions, thus it is well suited for developing a proof of concept. For 

regional management purposes, our approach should be reimplemented in a well-evaluated 

model, such as IDC and the Farm Process Module (Schmid & Hanson, 2009), which could be 

directly integrated into a groundwater model. 

 

Figure 3. Conceptual Diagram of the Soil Water Balance Model. 

2.4.1 Day-to-day Soil Moisture Accounting in the Root Zone 

The proposed model is governed by the conservation of mass, in which the amount of soil 

water in the root zone at day t is a product of soil moisture (𝜃𝑡) and root depth (𝑧𝑡). Assuming a 

constant root depth, available soil water on the present day (t) is the sum of the available soil 

water from the previous day (t-1) and the residual water balance on the present day (𝑊𝑏
𝑡), as 

shown in equation 3.1.  
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𝜃𝑡𝑧 = 𝜃𝑡−1𝑧 + ∆𝑡𝑊𝑏
𝑡           (1) 

The depth of the root zone is spatially defined by land-use type, based on values used in (Hanson 

et al., 2014) (Appendix IV Text S2). A constant root depth is assumed for implementing the 

water balance. Meanwhile, all soil-related parameters at the root zone are based on the soil 

property maps provided by California Soil Resources Laboratory (O’Geen, n.d.) (Appendix IV 

Text S3). The maps were originally derived from the USDA-NCSS soil survey data and 

aggregated into an 800m2 grid cell. We resampled them to Landsat’s 30m grid using bilinear 

interpolation and gap-filled the unknown value along the coast using nearest neighbors 

resampling technique. 

2.4.2 Intraday Water Balance 

The computation of 𝑊𝑏
𝑡 accounted for major water fluxes, including percolation (𝑃𝑐), 

precipitation (𝑃), direct runoff from precipitation (𝑅𝑝), evapotranspiration (ET), applied water 

(𝐴𝑊), and return flow of applied water (𝑅𝑓). By approximating the return flow equation from 

IDC with application efficiency (AE), crop irrigation water demand (𝐴𝑊
𝑡 − 𝑅𝑓

𝑡) can be 

rewritten as a product of application efficiency and applied water. With the model operating at 

daily time step (∆𝑡 = 1), equation 3.1 can be rewritten as: 

𝜃𝑡𝑧 = (𝜃𝑡−1𝑧 − 𝑃𝑐
𝑡) + (𝑃𝑡 − 𝑅𝑝

𝑡) − 𝐸𝑇𝑡 + (𝐴𝑊
𝑡 ∗ 𝐴𝐸)          (1.1) 

Given soil moisture from the previous time step (𝜃𝑡−1𝑧), percolation (𝑃𝑐) at the present 

time step is estimated with equation 2, using mean saturated hydraulic conductivity (𝐾𝑠), total 

porosity (𝜃𝑇) (Appendix IV Text S3), and a parameter m, which is computed from the pore size 

distribution index (𝜆) (Appendix IV Text S4) with 𝑚 = 𝜆/(𝜆 + 1).  
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𝑃𝑐
𝑡 = 𝐾𝑠(

𝜃𝑡−1

𝜃𝑇
)0.5(1 − (1 − (

𝜃𝑡−1

𝜃𝑇
)1/𝑚)𝑚)2        (2) 

After accounting water loss at the root zone via percolation, precipitation (𝑃𝑡) is added. 

Daily precipitation at a 1km grid was obtained from NASA’s Daymet Version 3 product 

(Thornton et al., 2017) and resampled to the model’s 30m grid. Part of precipitation leaves the 

field as runoff (𝑅𝑝
𝑡), which is estimated with SCS curve number method, where 𝑅𝑝

𝑡 =

1

𝛥𝑡

𝑃𝑡𝛥𝑡−0.2𝑆

𝑃𝑡𝛥𝑡+0.8𝑆
. Details of computing the curve number and soil moisture-driven parameter, S, can be 

found in Appendix IV Text S5. The difference between 𝑃𝑡and 𝑅𝑝
𝑡, also known as effective 

precipitation, is added to the present soil moisture.  

The soil moisture, after accounting for outflows for percolation and evapotranspiration 

and inflow from effective precipitation, is used to determine the quantity and timing of irrigation. 

This intermediate simulated moisture (𝜃𝑠𝑖𝑚
𝑡
), where 𝜃𝑠𝑖𝑚

𝑡 =
(𝜃𝑡−1𝑧−𝑃𝑐

𝑡)+(𝑃𝑡−𝑅𝑝
𝑡)−𝐸𝑇𝑡

𝑧𝑡 ,  is 

compared with field capacity (𝜃𝑓) (Appendix IV Text S3). If 𝜃𝑠𝑖𝑚
𝑡
depletes below or equal to 

50% of field capacity, an irrigation event at the 30m cell is triggered. The amount of applied 

water is dictated by application efficiency, root depth, and the difference between field capacity 

and intermediate simulated moisture, such that 𝐴𝑊
𝑡 = 𝑧(𝜃𝑓 − 𝜃𝑠𝑖𝑚

𝑡)/𝐴𝐸. 

2.5 Derivation and analysis of field-specific application efficiency 

Application Efficiency is defined as the fraction of the volume of irrigation water stored 

in the root zone to the volume of irrigation water delivered to the field. In practice, application 

efficiency is often used interchangeably with irrigation efficiency by assuming other beneficial 

water use, such as removal of salts, microclimate control, seedbed preparation, and softening of a 
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soil crust for seedling emergence, did not occur in the field. Depending on model designs, 

application efficiency may or may not account for deep percolation. Our approach estimated 

deep percolation from soil moisture storage in the root zone. However, at a field scale, applied 

water entering the soil might exceed field capacity and this excess soil moisture, rather than 

stored at the root zone, typically percolates quickly across the root zone. Because the estimation 

of crop irrigation demand is constrained by (𝜃𝑓 − 𝜃𝑠𝑖𝑚
𝑡), the application efficiency, derived 

from matching estimated applied water and actual pumping, accounts not only for runoff from 

irrigation but also for percolation due to applied water in excess of field capacity (Figure 3). 

The application efficiency values were derived for 94 surveyed fields across four major 

crop types in the Pajaro Valley. To implement the derivation, water balance models were 

executed 99 times, each with a different application efficiency (ranging from 1% to 99% with 

1% increment) applied uniformly across the Pajaro Valley. At each iteration, the 30m grid 

estimates of daily applied water were aggregated spatially for each surveyed field and temporally 

for the full calendar year. The applied water estimates from the iterations were recorded, and 

application efficiency is derived for each specific field by finding the best match (minimum 

absolute percentage error) between the estimates and the reported pumping. In some scenarios, 

the best match could not be derived. For example, if measured pumping is zeros and the amount 

of precipitation stored in the root zone is less than percolation and evapotranspiration, the 

derived application efficiency is invalid. 

The derived field-specific application efficiency (n=94) was summarized by crop types 

with median, standard deviation, lower (25th percentiles), and upper (75th percentile) quantiles. 

The applicability of derived efficiency value is further evaluated at selected sites. Of the 94 
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surveyed fields, 52 fields were surveyed in 2009, among which 13 were re-visited in 2011. Nine 

of those revisited did not experience land-use changes in 2009 and 2011 according to PVWMA’s 

land-use map. Despite some sites having changes in application areas, we assumed that the 

growers did not change irrigation practices and conducted an evaluation. Specifically, we used 

the derived application efficiency values from 2009 to estimate applied water in 2011 and 

quantified the errors by comparing them with pumping records. Besides the 13 re-visited fields, 

68 fields were surveyed in only one of those two years; 16 of those had unchanged crop type and 

a non-zero pumping in quarter 3 for both years. For these 16 sites, we assumed that attribution 

between irrigation application areas and identified wells did not change between the two years 

and used the derived application efficiency value from the survey year to estimate applied water 

at the same field in a non-surveyed year. When comparing estimated applied water with field 

pumping measurements, our estimates are evaluated with four metrics, including R2 which is 

also known as Nash-Sutcliffe model efficiency coefficient, root means squared error (RMSE), 

and mean absolute error (MAE), and weighted absolute percentage error (WAPE).  

2.6 Validation of spatial applied water estimates from field to regional scales 

For practical application of applied water estimates, field-scale pumping records for all 

croplands are rarely available for back-calculation of field-specific application efficiency.  To 

spatially estimate applied water, we computed a median of all previously derived field-specific 

application efficiency values for each of the four major crop types and used it to generate a map 

of application efficiency in a 30m grid based on land use. Combining the application efficiency 

map, remote sensing evapotranspiration, and the soil water balance model, we computed spatial 

applied water estimates at the daily time step for 2009 and 2011.  
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The estimates were temporally summed to annual total, then spatially aggregated in four 

different ways for evaluations. First, the annual total applied water estimates over the 94 

surveyed fields were extracted and compared with pumping estimates. Estimates over the 16 

once surveyed fields during the non-surveyed year were extracted for comparison. Second, the 

spatial estimates over all croplands in the Pajaro Valley were aggregated and compared with the 

spatially aggregated field pumping measurements (section 2.2). Lastly, the spatial estimates were 

aggregated according to the original and modified zonal maps (Figure 1) and evaluated with the 

respective aggregated field pumping measurements. 

2.7 Comparison of zonal water budget fluxes 

The annual applied water estimate in 2009 was compared to PVHM's estimate at regional 

and unmodified zonal scale. To quantify the agreement at zonal scale between two models, 

RMSE and Pearson’s correlation coefficient (r) with P-value were calculated. A best-fit line is 

also derived and the line’s R2 is computed.  Although our study focuses on estimating applied 

water in croplands, the comparison between the two models was conducted by aggregating all 

pixels within subregions, instead of aggregating only cropland pixels. It is because the most 

recently published PVHM used an older version of the hydrological computation model that 

could not export intermediate products, such as evapotranspiration and runoffs, in a grid format. 

The model produces a detailed water budget by subregions but did not separate fluxes between 

croplands and other land uses. Thus, the model comparison was limited to a zonal scale with the 

original WBS definition. 

To determine whether the proposed water balance could effectively estimate the 

hydrological fluxes in the valley, we compared precipitation, evapotranspiration, and non-
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evapotranspiration outflows between our estimates and PVHM over 16 agricultural dominant 

zones. PVHM’s water budget is expected to be a good representation of the actual hydrological 

process in the Pajaro Valley because it was calibrated and evaluated with the best available 

pumping, groundwater level, and river flow observations. Instead of comparing runoff and deep 

percolation separately, the two fluxes are combined into non-evapotranspiration water outflows 

for comparison. The reason is that the proposed model could not separate irrigation inefficiency 

into direct runoff and immediate deep percolation due to irrigation exceeding field capacity in 

the root zone. It is also important to note that the non-evapotranspiration water balance outflows 

of the proposed model are indirectly computed. We assumed that changes in soil moisture at the 

root zone are negligible at the annual time scale, so outflows could be quantified as the sum of 

precipitation and applied water, subtracting evapotranspiration.  

In PVHM, evapotranspiration is estimated using the traditional monthly crop coefficient 

approach. The crop coefficient is adjusted with a scale factor that varies between dry and wet 

years. Unlike remote sensing evapotranspiration, the zonal variation of PVHM’s 

evapotranspiration estimates is primarily driven by the difference in the proportion of major land 

uses and reference evapotranspiration. The remote sensing evapotranspiration estimation method 

in this study has not been tested on the natural landscape. To effectively compare zonal 

evapotranspiration between the models, remote sensing evapotranspiration over non-cropland-

pixels was adjusted with the help of soil water balance. In specific, applied water was 

constrained as 0 over non-agricultural pixels. At these pixels, when soil moisture conditions at 

the root zone drop below 50% of field capacity, evapotranspiration estimates of the day were 

adjusted to 0.  
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Using evapotranspiration, PVHM employed a slightly different approach than IDC in 

computing agricultural applied water. Aside from differences in input data, e.g. precipitation and 

reference evapotranspiration, the most significant difference between PVHM and the proposed 

approach is that the on-farm application efficiency of PVHM is optimized by crop types, 

subregions, years, and months. For the same year and month, a large difference in application 

efficiency value, e.g. >=54% in August 2009, is observed among zones for vegetables and 

strawberries, which are the top two agricultural land use in the region. Relatively small (>=26%) 

or no variation across subregions were found for other crop types.  

3. Results 

3.1 Field Scale Application Efficiency 

We found the derived application efficiency at the field scales varied among crop types 

(Figure 4). Apple orchards had the highest application efficiency, mostly at the maximum limit 

of 0.99 (σ = 0.17 in standard deviation) (n=22), while raspberries and blackberries had the lowest 

application efficiency with a median of 0.35 (σ = 0.19) (n=25). Application efficiency for 

vegetable row crops such as lettuce, broccoli, and cauliflower was slightly higher than that of 

strawberries, with a median of 0.55 (σ = 0.27) (n=22) versus 0.49 (σ = 0.21) (n=25) (Figure 4, 

Appendix 4 Table S1). Their interquartile range ranges from 0.23 to 0.45. Small clusters of 

application efficiency for these crops were observed in figure 4 and they may be associated with 

soil type, irrigation method, and field management practices. 
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Figure 4. Box plot of derived field-specific application efficiency over the 94 surveyed 

fields four major crop types in the Pajaro Valley. The values are derived by iterating the 

application efficiency value in a soil water balance model and finding the value that best 

matches the estimated annual applied water use with pumping records at the field. The 

derived value from each field is represented by a dot. The box plot shows the quartiles of 

the dataset. The upper whisker is extended to the last datum less than the sum of the 1.5 

times of interquartile range and the 3rd quartile. Similarly, the lower whisker is extended 

to the first datum greater than the first quartile subtracted by the 1.5 times of interquartile 

range. 
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3.2 Field Scale Applied Water Estimates 

When using the field-specific application efficiency derived from one year, the estimated 

applied water, based on satellite-derived evapotranspiration and simple soil balance model, 

agreed well with the pumping records (Table 1, Figure 5), with an R2 greater than 0.80, RMSE 

less than 23.84 million liters, and WAPE less than 32.9% among fields. When compared in a 

per-area unit, the estimates have an RMSE of 0.17 m/year and 0.16 m/year, respectively at the 

twice and once surveyed, unchanged land-use sites. 

 

Figure 5. Evaluation of applied water estimates based on derived field-specific 

application efficiency vs. pumping records at selected sites from the 2009 and 2011 

survey. The selected sites did not experience land-use change between the two years. Sites 

that were surveyed in both years were shown in (a), where the application efficiency 

values were derived from 2009 and used for applied water estimates in 2011. Sites that 

were surveyed once in either 2009 or 2011 were shown in (b), where the application 
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efficiency values were derived from the surveyed year and used for applied water 

estimates in the non-surveyed year.  

Table 1. Model uncertainties of applied water estimate using field-specific or crop-

specific applied efficiency.  

 

Applic

ation 

Efficie

ncy 

All Surveyed Sites 

(n = 94) 

 

Sites Surveyed in both 2009 & 

2011 (Evaluated with 2011 

records)  

(n = 9) 

Sites Surveyed in either 2009 & 

2011, with no land-use change 

(Evaluated with non-surveyed 

year records)  

(n = 16) 

R2 RMS

E 

MAE WAP

E 

R2 RMS

E 

MAE WAP

E 

R2 RMS

E 

MAE WAP

E 

Field 

Specifi

c 

N/A 0.85 9.70 8.22 33.0

% 

0.80 23.84 13.07 28.2

% 

Median 0.86 39.58 24.70 34.7

% 

0.86 9.22 7.71 30.9

% 

0.72 27.98 18.70 40.3

% 

For spatial applied water estimates, we used the crop-specific median application 

efficiency values from Appendix IV Table S1 to define application efficiency at a field scale. 

The performance only reduced slightly, especially over the 9 fields where exact well attributions 

to the fields were known, with a WAPE of 35.4% and 30.9% in 2009 and 2011, respectively. At 

sites that were surveyed once or twice and with identical land use in both years, the performance 

of applied water estimates for median-based spatial estimates is worse than that for field-specific 

derived value, with an R2 greater than 0.72, RMSE less than 27.98 million liters, and WAPE of 

less than 40.3% (Table 1 and Figure 6). The increase in uncertainty is primarily contributed by a 

nearly 100% overestimation of water use at a raspberries and blackberries site. This site is 

possibly an outlier, as the attribution between well to irrigation areas is uncertain. When 

compared in a per-area unit, the estimates have an RMSE of 0.17 m/year and 0.21 m/year, 

respectively for the twice and once surveyed sites. Although the estimates based on field-specific 

and median application efficient values were similar at the evaluation and simulation sites, it is 
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uncertain whether the median-based estimate is suitable for field-scale applied water estimates. 

Compared to pumping records overall surveyed sites, the median-based estimate had an R2 of 

0.86, WAPE of 34.7%, and RMSE of 39.58 million liters, which is equivalent to an RMSE of 

0.29 m/year.  

 

Figure 6. Evaluation of spatial applied water estimates (based on the crop-specific 

median of derived application efficiency values) vs. pumping records at selected sites 

from the 2009 and 2011 survey. The selected sites, in b through d, did not experience 

land-use change between the two years. The estimates are computed with a soil water 

balance using the median application efficiency values for the four major crop types. The 

comparison with all surveyed sites is shown in (a). Sites that were surveyed in both years 
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are shown in (b & d), with pumping records from 2009 compared in (b) and 2011 in (d). 

Sites that were surveyed once in either year are shown in (c & e), with pumping records 

from the surveyed year shown in (c) and non-surveyed in (e). 

3.3 Regional and Zonal Applied Water Estimates 

The 30m spatial estimates of field scale applied water (Figure 7b) were aggregated 

spatially to estimate regional and zonal total agricultural applied water use. Our estimates of the 

regional total of agricultural applied water, based on the median of derived application 

efficiency, agree well with aggregated measurements. The agreement is comparable to that by 

Hanson et al., (2014). At the regional scale, we estimated that the agricultural applied water was 

53.9 and 42.6 billion liters in 2009 and 2011, respectively. Compared to regionally aggregated 

pumping measurements (pumping from wells and water delivered via CDS), our estimates 

deviate by -2.9% in 2009 and 4.6% in 2011. On the other hand, Hanson et al., (2014) estimated 

that 57.8 billion liters of groundwater were pumped in the valley in 2009, which is 4.2% higher 

than the measurement. 
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Figure 7. Visualization of spatial estimates of evapotranspiration (a) and applied water 

(b) in 2009. The evapotranspiration shown here was adjusted over non-cropland-pixels 

during the soil water balance computation; At non-cropland pixels, if soil moisture 

conditions at the root zone drop below 50% of field capacity, evapotranspiration estimates 

of the day were adjusted to 0.  

At zonal scale with the PVHM’s original boundaries, a reasonable agreement was found 

between aggregated pumping records and applied water estimates in 2009 and 2011 (Figure 8, 

Appendix IV Figure S1), with R2 of 0.89, MAE of 810 million liters, RMSE of 1215 million 

liters, and WAPE of 26.36%. In 2009, PVHM’s estimates had an R2 of 0.97, MAE of 548 

million liters, RMSE of 704 million liters, and WAPE of 16.09%. Our estimates in 2009 have 
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much greater uncertainty than PVHM’s, with an R2 of 0.89, MAE of 900 million liters, RMSE of 

1264 million liters, and WAPE of 26.42%.  

The performance of our estimates in 2009 and 2011 worsened when zonal boundaries 

were modified, with an overall R2 of 0.84, MAE of 1318 million liters, and RMSE of 1633 

million liters. However, the overall WAPE decreased from 26.36% to 15.8%. Modification on 

the subregions, e.g. aggregating small subregions and modifying borders according to natural 

boundaries, such as watersheds, rivers, and clusters of fields, helped reduce the total percent 

errors. For example, the seven small subregions near WBS 22 under the original boundaries had 

percent errors ranging from -43 to 41% in 2009 (Appendix IV Figure S1a). Through grouping 

subregions, the percent errors reduced to -11% in 2009 (Appendix IV Figure S1d). 
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Figure 8. Comparison of annual zonal agricultural pumping estimates with 

measurements. Estimates for 2009 (left) and 2011 (right) were shown above. Results are 

based on PVHM’s zones (top) and the modified zones (bottom). PVHM’s 2009 estimates 

are also shown (a). 

Our estimates have higher uncertainty than PVHM when compared to aggregated 

pumping records, but our estimates agree well with PVHM’s. Comparing our estimates with 

PVHM’s yielded the best fit line, where our estimates are equal to 90% of PVHM’s estimates 

subtracted by 38.8 million liters. The two estimates are highly correlated, with an r-value of 0.98, 

and an RMSE of 926 million liters (Figure 9). Among the major fluxes in a water balance, the 
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two models agree best, in terms of RMSE, for applied water, followed by evapotranspiration, 

precipitation, and then non-evapotranspiration water balance outflows.  

 

Figure 9. Comparison of annual zonal water budget fluxes between PVHM and the 

proposed model in 2009. Estimates of precipitation (a), applied water (b), 

evapotranspiration (c), and non-evapotranspiration water balance outflow (d) were shown 

above. Remote sensing evapotranspiration estimates for the proposed model are adjusted 
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over non-irrigated and non-agricultural pixels, where daily evapotranspiration becomes 

zero when soil moisture in the root zone reaches below 50% of field capacity. 

4. Discussion  

Our study demonstrated that remote sensing evapotranspiration estimates could be used in a soil 

water balance for estimating applied water from field to regional scales. In previous studies, an 

accurate regional applied water estimation requires regional pumping measurement data and 

complex calibration. Here, we showed that a comparable estimate can be achieved by coupling 

remote sensing evapotranspiration and a relatively simple soil water balance and by using a 

limited quantity of annual pumping records (n=94).  

4.1 Field-scale applied water estimates 

With traditional approaches that use crop coefficient-based evapotranspiration, field-scale 

applied water estimates are unfeasible. It is because two nearby fields growing the same crop, 

would have an identical evapotranspiration rate; If the two fields share the same soil conditions, 

their crop irrigation demand would also be identical. Remote sensing based evapotranspiration, 

on the other hand, could capture the spatial variability due to management practices and rapid 

water stresses, thus enabling the possibility of field or local scale water balance.  

Our study confirms that field-scale estimates of applied water are feasible. However, 

several challenges require further research and investigation. Firstly, our approach is constrained 

by data availability of local field scale pumping, as well as the ability to estimate application 

efficiency when the pumping measurement is not available. With derived application efficiency 

data at the Pajaro Valley, a model could be developed to map field-specific application 
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efficiency values based on spatial maps and ancillary data. The current data and model also 

support seasonal derivation of application efficiency, but more study is needed to understand the 

variability and season-to-season changes of the efficiency value.  In addition, fulfilling crop 

water needs is only of many agricultural uses of water; Other uses, such as salt flushing and frost 

control, are not explicitly modeled in the soil water balance. Therefore, when application 

efficiency value is derived by equating crop water demand and percolation with pumping at 

annual timescale, the derived application efficiency value may seem low if the groundwater were 

used for other purposes and may introduce uncertainty when the value is used in estimating 

applied water.  

Secondly, the accuracy of the applied water estimate is subject to the uncertainty of 

evapotranspiration estimates and other input variables. We found that our annual 

evapotranspiration rate is higher than the crop coefficients based estimates at many apple 

orchards sites. As the derived application efficiency value is constrained with a maximum of 

0.99, an overestimation of evapotranspiration is likely responsible for the overestimation of 

pumping at apple orchard fields (figure 6a). Future studies should consider employing a crop 

specifically calibrated version of PT-UCD to reduce the uncertainty of crop evapotranspiration 

estimates, and further investigate whether remote sensing approaches could accurately estimate 

the variability of daily evapotranspiration due to microclimates, irrigations, and fogs. Besides the 

uncertainty of evapotranspiration, additional information of individual fields, such as irrigation 

method and orchard age, could further reduce the uncertainty of field-scale water balance. 

At last, the quantity and quality of survey data, specifically the place of use areas for 

individual wells, is a major bottleneck of this study. Lin et al., (2013) rely on verbal interviews to 

identify the place of use areas for individual growers. Instead of drawing the specific place of 
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use, the survey only recorded the field IDs from PVWMA’s land use map. The land use maps 

were manually produced and the field boundaries are subject to errors. For example, the place of 

use area information could be incomplete or inaccurate, because wells are sometimes co-

operated among growers and some field polygons on the land use map should be further 

subdivided to reflect different land ownership and management practices. To support future 

field-scale water use studies, water agencies could consider adopting an online groundwater 

extraction platform similar to the one developed by the State Water Resources Control Board 

(SWRCB) (Vanderburgh, 2018). The platform enables growers to digitally report pumping and 

to map the corresponding place of use, and their database could potentially be used for future 

field-scale water use research. 

4.2 Regional applied water estimates 

While the proposed field-scale water accounting method requires more data, research, 

and evaluation, our regional pumping estimate is comparable to PVHM. PVHM requires 

calibration of crop and subregion specific application efficiency parameters using subregional 

total pumping data, and our estimates only used field pumping measurements from 94 fields and 

calibrated a single parameter. At the annual time scale for zonal estimates, we found a good 

agreement between the two water balances in terms of precipitation, applied water, 

evapotranspiration, and other combined outflows. However, further investigation is needed for 

comparisons in a longer time period (e.g. 2003 to present) and at quarterly and monthly intervals. 

Our results showed that the zonal estimates of PVHM are more accurate than our 

estimates, but PVHM’s success at the zonal scale is largely contributed by zonal specific 

calibration of application efficiency using zonal total pumping measurements. This makes the 
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approach difficult to replicate in other agricultural regions of California. Therefore, our approach 

(not the implemented model on python, but the general approach which can implemented any 

groundwater model), although having much room for improvement, is a promising alternative for 

estimating zonal and GSA scale agricultural water use in areas with limited pumping data.  

4.3 Implications for water resource management 

Our relatively simple soil water balance approach could not explain some variability in 

pumping at a field and zonal scale. An RMSE of 40 million liters (figure 6a) is equivalent to 32 

acre-feet, which could worth $46,000 of surface water during droughts in some parts of 

California. Therefore, we agree with SWRCB’s decision that remote sensing evapotranspiration 

should not be used directly to infer total groundwater extraction of individual fields unless 

significant additional information relating to agricultural practices and field conditions is 

provided (California State Water Resources Control Board, 2020). At Rosedale-Rio Bravo Water 

Storage District, a pilot field-scale water accounting framework is being conducted. Their 

approach of charging fees on groundwater pumping, which is solely based on remote sensing 

evapotranspiration estimation, could be problematic. 

Our research suggests that accurate regional applied water could be estimated by 

coupling field-scale, daily, remote sensing evapotranspiration estimates with a soil water balance 

model. However, water managers may hesitate to adopt remote sensing techniques. It is because 

using remote sensing techniques in regional water budgets also made the evaluation of the model 

at a field scale possible, but the field-scale estimates, which may be accurate when spatial-

temporally aggregated at local GSA scale, may not agree with field measurements. This scaling 
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issue is common among remote sensing applications (Wu & Li, 2009), but understanding and 

addressing the issue will require extensive research. 

4.4 Other Potential improvements 

The research here could serve as a cornerstone for future research. Besides gathering 

more data and test cases from farms and agencies across the western United States, as well as 

implementing this approach using other well-established remote sensing evapotranspiration 

estimates, we seek to further improve the design and accuracy of modeling agricultural applied 

water. In this study, we implemented a soil water balance model from scratch and conducted the 

study as a proof of concept. The modeling approach - deriving crop-specific field-scale 

application efficiency using remote sensing evapotranspiration and pumping data, and using the 

summarized application efficiency values for regional spatial applied water estimates - can be 

implemented in many other well-established soil water balance models, such as the IDC. IDC 

has been integrated with groundwater model, enabling enables calibration of the hydrological 

model with fluctuations of groundwater level and streamflow observations. The coupled 

hydrological model may also enable the possibility for deriving local application water use 

efficiency with fewer field pumping data.  

5 Conclusions 

Our approach showed great promises of using remote sensing evapotranspiration for 

consistent and accurate field-scale water accounting. It demonstrated the capability for 

estimating regional applied water within 4.6% in 2009 and 2011 over the Pajaro Valley using a 

limited quantity of field pumping measurements (from 94 fields across four major crop classes). 

We also identified challenges and problems of using remote sensing evapotranspiration for water 
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budget from field to regional scales. Before the development of remote sensing 

evapotranspiration techniques, outflow fluxes of a zonal water balance, namely 

evapotranspiration, runoff, and percolation, were nearly impossible to verify. Our modeling 

approach allows researchers to utilize field data, such as soil moisture, evapotranspiration, and 

soil type, to validate the water balance at a field scale, which could be further aggregated to a 

subregional scale for resource management purposes. This approach unifies field-scale and 

regional-scale water accounting, enabling local groundwater agencies to bill growers for 

pumping groundwater, to develop local water budgets and sustainability plans, and to work with 

nearby agencies to co-manage a groundwater basin by using a single model. With future 

research, our proposed model could be an all-in-one integrated solution to many problems that 

local agencies are facing today. 
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Chapter 4: Concluding Remarks 

California is one of the world’s most productive agricultural regions. However, 

agricultural activities are sustained by over-drafting 1.2-2.5 trillion liters of groundwater per year 

(California Department of Water Resources, 2014). A key challenge to the sustainable 

management of groundwater is that the majority of groundwater pumping activities are not 

metered or reported to the Groundwater Sustainability Agencies (GSAs). This creates difficulties 

in establishing a billing structure for deterring excessive use and gathering funding for 

management operations and infrastructure investments. Without field measurements of 

agricultural groundwater use, agencies are uncertain about their estimates of local water demand. 

Their best estimate, based on various assumptions and modelings of the hydrological process, 

and calibrated with the best available data, could be inaccurate, thus potentially misinforming 

management decisions. Maples (2019) found that the subregional pumping estimates in the 

Central Valley, between USGS’s and California Department of Water Resources’ (DWR) 

groundwater models,  have an average discrepancy of 63% or 271 billion liters per year. This 

discrepancy creates opportunities for self-organized local GSAs to pick whichever estimates that 

best fit their agenda. As a result, DWR had to devote enormous effort to review and approve 

GSAs’ water plans. All these problems in implementing sustainable groundwater management 

begin with a lack of field-scale water use records. While requiring metering of all pumping 

activities is expensive and politically challenging to implement, remote sensing of 

evapotranspiration could provide spatial estimates of agricultural water use at a field scale. 

Broadly, this dissertation demonstrates that remote sensing evapotranspiration is well 

suited for water resource management in California. Chapter 1 presented an improved model for 

estimating daily crop evapotranspiration at 30m resolution. The refined semi-empirical Priestley-

https://www.zotero.org/google-docs/?Cqs8Nm
https://www.zotero.org/google-docs/?lL9AiV
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Taylor approach, after optimizing the actual Priestley Taylor coefficient as a function of LAI and 

moisture index with recently compiled ground measurements of evapotranspiration for 

California’s major crops, can accurately capture the temporal and spatial variability of crop water 

consumptive uses. The daily evapotranspiration, directly estimated during satellite overpassing 

days under clear-sky and interpolated for other days, agreed well with the field measurements, 

with an R2 of 0.78 and an RMSE of 0.95 mm day-1.  

After evaluating the uncertainty of a remote sensing evapotranspiration estimate in 

Chapter 1, the dissertation further provided two specific applications of spatial 

evapotranspiration estimates in water resources management. The first application, as 

exemplified by Chapter 2, is to assess the pattern of evapotranspiration estimates to understand 

the what, when, where, and how crops are consuming water from field to regional scales. Based 

on the analysis of our estimates over the Central Valley, we found that the crop 

evapotranspiration rate averaged at 820 mm yr-1 and had a large spatial variability with a 

standard deviation of 290 mm yr-1 over all agricultural pixels in 2014. Compared to 2014, total 

water use in 2016 increased by 9.6%, mostly as a result of land-use conversion (2370 km2) from 

fallow/idle land in 2014 to cropland in 2016. When aggregated by the GSA boundaries, the 

annual evapotranspiration rate showed large variation among GSAs, i.e., x̅ = 803, σ = 154 mm 

yr-1, and a CV of 19% in 2014. This variability was mostly associated with variation in net 

radiation and actual Priestley Taylor coefficient or fraction of reference evapotranspiration, 

driven by crop type diversity and conditions. Perennial crops such as pistachios and almonds 

typically had much higher variability within and among GSAs than annual crops. Many other 

insights regarding crop water use in the Central Valley are provided in Chapter 2. Overall,  we 

provided more realistic estimates of crop coefficient and evapotranspiration for local water 
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budget accounting, evaluation of crop water use variation within and among GSAs, and 

highlighted the importance of crop planning, orchard age structure, and other physiological 

stressors such as salinity on the trajectory of local orchard water use and demand.  

The second application of spatial evapotranspiration estimates in water resources 

management, as demonstrated in Chapter 3, is coupling evapotranspiration estimates with a soil 

water model to estimate agricultural water use from the field to regional scales. The study 

demonstrated the capability for estimating regional applied water within 4.6% in 2009 and 2011 

over the Pajaro Valley using a limited quantity of field pumping measurements (from 94 fields 

across four major crop classes). Before the development of remote sensing evapotranspiration 

techniques, outflow fluxes of a zonal water balance, namely evapotranspiration, runoff, and 

percolation, were nearly impossible to verify. Our modeling approach allows researchers to 

utilize field data, such as soil moisture, evapotranspiration, and soil type, to verify the water 

fluxes at a field scale, which could be further aggregated to subregional scale for resource 

management purposes. The proposed approach unifies field-scale and regional-scale water 

accounting, enabling local groundwater agencies to bill growers for pumping groundwater, to 

develop local water budgets and sustainability plans, and to work with nearby agencies to co-

manage a groundwater basin by using a single model.  

While the dissertation research was implemented in the Central Valley and Pajaro Valley 

of California, the presented tools and methods are broadly applicable to other semi-arid, 

agriculturally-dominated regions. With future research and collaboration, the application of 

remote sensing evapotranspiration could provide solutions to many problems that water 

resources management agencies are facing today. 
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Appendices 

Supporting tables and figures, and additional analysis for the dissertation research are included 

here. The additional analysis includes a sensitivity analysis of equations in PT-UCD, a proposed 

modification of PT-UCD using Penman-Monteith, an investigation of orchard age and salinity on 

PT-UCD’s remote sensing input variables and estimates, and a study comparing 

evapotranspiration estimates between PVHM and PT-UCD. 

Appendix I: Supporting Materials of Chapter I 

Text S1. 

PT-JPL was implemented in our study to estimate evapotranspiration at all measurement sites. It 

serves as a baseline for quantifying the accuracy of PT-UCD. Unlike PT-UCD, PT-JPL is a dual-

source energy balance model. Latent heat flux from canopy and soil were estimated separately.  

𝐿𝐸 = 𝛼𝑠
𝛥

𝛥+𝛾
𝑅𝑛𝑠 + 𝛼𝑐

𝛥

𝛥+𝛾
𝑅𝑛𝑐              (S1) 

The subscript s and c represent soil and canopy, respectively. 𝑅𝑛 were partitioned into soil net 

radiation with a ratio of 𝑒𝑥𝑝 𝑒𝑥𝑝 (−0.6 ∗ 𝐿𝐴𝐼) . PT-coefficient for soil and canopy is estimated 

with the following equations, 

𝛼𝑠 = ((1 − 𝑅𝐻4) ∗ (𝑅𝐻𝑉𝑃𝐷) + 𝑅𝐻4)1.26       (S2) 

𝛼𝑐 = (1 − 𝑅𝐻4) ∗
1.14

1+𝑒
2(𝑇𝑜𝑝𝑡−𝑇𝑎−10)

∗
𝑓𝐴𝑝𝑎𝑟

𝑁𝐷𝑉𝐼−0.05
∗

𝑓𝐴𝑝𝑎𝑟

𝑓𝐴𝑝𝑎𝑟𝑚𝑎𝑥
+ 𝑅𝐻4)1.26   (S3) 

 𝑓𝐴𝑝𝑎𝑟 = 1.2 ∗ 1.136 ∗ 𝑆𝐴𝑉𝐼 + (1.2 ∗ −0.04)      (S4) 

, where RH is relative humidity and VPD is vapor pressure deficit. Both RH and VPD are 

computed from CIMIS Spatial’s dew point temperature and 𝑇𝑎. Soil adjusted vegetation indices, 
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SAVI, are 0.45(NDVI)+0.132. 𝑇𝑜𝑝𝑡 is 𝑇𝑎 on clear-sky Landsat overpassing date that has the 

maximum value of 𝑅𝑛 ∗ 𝑇𝑎 ∗
𝑆𝐴𝑉𝐼

𝑉𝑃𝐷
. To determine 𝑇𝑜𝑝𝑡 and 𝑓𝐴𝑝𝑎𝑟𝑚𝑎𝑥 of each Landsat pixel, a full 

calendar year of remote sensing and meteorological input data time series were used. To 

compare PT-JPL with PT-UCD, we estimated PT-JPL daily evapotranspiration and then back-

calculated the equivalent PT coefficient with the single source latent heat flux equation 

(Equation 1 from Chapter 1).  

Table S1. Statistics of Priestley Taylor Coefficient Parameters for the three cross-

validation approach as outlined in section 2.4. Holdout cross-validation result is based on 

one-time random partitioning of training and testing data, with sites 2, 14, 25, and 26 

reserved for independent validation. 

𝑃𝑇𝑎 = (𝐴 − 𝐶 ∗ 𝑒−𝐵∗𝐿𝐴𝐼) ∗ (𝐷 ∗ (𝑁𝐷𝑀𝐼 + 1) + 𝐸) ∗ 𝑓(𝑇𝑎) 

Cross-

Validation 

Versions 

Para

meter

s 

A B C 

Crop media

n 

mea

n 

Standar

d 

Deviati

on 

media

n 

mea

n 

Standar

d 

Deviati

on 

median mean Standar

d 

Deviati

on 

Holdout Gener

alized 

N/A 1.30

0 

N/A N/A 0.90

0 

N/A N/A 1.200 N/A 

Repeated 1.300 1.30

0 

0.000 0.900 0.90

0 

0.000 1.200 1.200 0.000 

Leave-2-

out 

1.300 1.29

9 

0.011 0.900 0.90

0 

0.004 1.200 1.201 0.009 

Holdout Alfalf

a 

N/A 1.20

0 

N/A N/A 0.80

0 

N/A N/A 1.300 N/A 

Repeated 1.265 1.27

0 

0.052 0.800 0.80

7 

0.024 1.191 1.204 0.061 

Leave-2-

out 

1.265 1.26

1 

0.042 0.800 0.81

1 

0.027 1.192 1.201 0.051 

Holdout Almo

nd 

N/A 1.40

0 

N/A N/A 0.94

1 

N/A N/A 1.100 N/A 

Repeated 1.400 1.35

0 

0.073 0.800 0.87

0 

0.089 1.100 1.150 0.078 

Holdout Citrus N/A 1.40

0 

N/A N/A 1.00

0 

N/A N/A 1.100 N/A 
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Repeated 1.400 1.40

0 

0.000 1.000 1.00

0 

0.000 1.100 1.100 0.000 

Holdout Corn N/A 1.40

0 

N/A N/A 0.80

0 

N/A N/A 1.100 N/A 

Repeated 1.400 1.39

9 

0.006 0.800 0.85

0 

0.086 1.100 1.101 0.006 

Leave-2-

out 

1.400 1.39

7 

0.008 0.800 0.86

7 

0.096 1.100 1.117 0.034 

Holdout Pastur

e 

N/A 1.40

0 

N/A N/A 1.00

0 

N/A N/A 1.100 N/A 

Repeated 1.400 1.39

5 

0.024 1.000 1.00

0 

0.000 1.100 1.104 0.024 

Holdout Rice N/A 1.40

0 

N/A N/A 1.00

0 

N/A N/A 1.100 N/A 

Repeated 1.400 1.40

0 

0.000 1.000 1.00

0 

0.002 1.100 1.100 0.000 

 

Versions Parameters D E 

Crop median mean Standard 

Deviation 

median mean Standard 

Deviation 

Holdout Generalized N/A 0.352 N/A N/A 0.511 N/A 

Repeated 0.335 0.335 0.063 0.535 0.535 0.080 

Leave-2-out 0.327 0.331 0.064 0.541 0.539 0.083 

Holdout Alfalfa 

 

N/A 0.124 N/A N/A 0.853 N/A 

Repeated 0.227 0.224 0.051 0.637 0.641 0.093 

Leave-2-out 0.241 0.232 0.063 0.616 0.639 0.107 

Holdout Almond N/A 0.665 N/A N/A 0.049 N/A 

Repeated 0.569 0.559 0.128 0.212 0.250 0.225 

Holdout Citrus N/A 0.111 N/A N/A 0.706 N/A 

Repeated 0.060 0.064 0.056 0.768 0.762 0.068 

Holdout Corn N/A 0.509 N/A N/A 0.096 N/A 

Repeated 0.378 0.379 0.042 0.263 0.258 0.059 

Leave-2-out 0.372 0.417 0.108 0.267 0.206 0.135 

Holdout Pasture N/A 0.000 N/A N/A 0.888 N/A 

Repeated 0.000 0.036 0.054 0.872 0.843 0.070 

Holdout Rice N/A 0.335 N/A N/A 0.573 N/A 

Repeated 0.314 0.312 0.072 0.611 0.613 0.097 

Table S2. R2, RMSE, and MAE, and best-fit-line coefficients of net radiation and 

evapotranspiration estimates for training and testing data during holdout cross-validation.  

Crop 

types 

Net Radiation 

Training Testing 

R2 RMS

E 

MAE Slope y-Intercept R2 RMS

E 

MAE Slope y-Intercept 

Alfalfa 0.78 21.10 15.77 0.94 7.92 0.84 20.54 15.68 0.89 12.32 

Almond 0.82 23.83 16.39 0.94 7.71 0.80 26.54 18.23 1.00 1.68 

Citrus 0.56 24.64 20.39 0.72 52.94 0.74 18.85 15.05 1.02 4.02 
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Corn 0.37 29.88 23.94 0.81 39.49 0.67 27.25 22.26 0.93 3.12 

Others N/A N/A N/A N/A N/A 0.48 24.50 21.84 1.10 -9.59 

Pasture 0.81 17.35 12.77 1.04 2.83 0.81 17.34 15.00 1.03 10.53 

Rice 0.53 37.71 32.60 0.95 35.82 0.39 39.70 35.63 1.03 22.37 

Crop 

types 

Generalized Estimates of Evapotranspiration 

Training Testing 

R2 RMS

E 

MAE Slope y-Intercept R2 RMS

E 

MAE Slope y-Intercept 

Alfalfa 0.80 0.69 0.53 0.89 0.48 0.75 0.79 0.61 0.99 0.42 

Almond 0.82 1.03 0.74 0.86 0.26 0.84 1.01 0.72 0.90 0.09 

Citrus 0.70 0.65 0.53 1.05 -0.25 0.36 0.99 0.72 1.05 -0.23 

Corn 0.55 1.24 0.99 0.97 0.96 0.58 1.15 0.91 1.02 0.45 

Others N/A N/A N/A N/A N/A 0.71 1.11 0.95 1.13 0.72 

Pasture 0.63 1.00 0.77 0.69 1.18 0.74 0.75 0.58 0.76 1.07 

Rice 0.85 0.87 0.69 0.99 0.14 0.77 1.12 0.90 0.92 0.28 

Crop 

types 

Crop-Specific Estimates of Evapotranspiration 

Training Testing 

R2 RMS

E 

MAE Slope y-Intercept R2 RMS

E 

MAE Slope y-Intercept 

Alfalfa 0.83 0.65 0.51 0.85 0.45 0.82 0.68 0.53 0.92 0.42 

Almond 0.84 0.95 0.67 0.92 0.14 0.86 0.94 0.66 0.96 -0.04 

Citrus 0.74 0.62 0.51 0.98 0.03 0.56 0.83 0.65 1.02 -0.10 

Corn 0.80 0.83 0.69 0.91 0.51 0.71 0.96 0.76 0.91 0.17 

Others N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 

Pasture 0.69 0.91 0.69 0.70 1.31 0.72 0.77 0.64 0.75 1.29 

Rice 0.71 1.20 1.04 1.09 0.43 0.67 1.34 1.10 1.01 0.57 

Table S3. Comparison of annual evapotranspiration estimates averaged over different 

footprint window sizes. 

Site 

ID 

Year Pixel Window 

1x1 3x3 11x11 

Mean Mean Std CV % 

Difference 

Mean Std CV % 

Difference 

1 2014 2.45 2.50 0.06 2.5% 2.2% 2.52 0.12 4.8% 3.1% 

24 2014 3.38 3.38 0.02 0.7% 0.0% 3.26 0.21 6.5% -3.6% 

1 2016 2.36 2.35 0.03 1.1% -0.5% 2.32 0.09 3.8% -1.7% 

2 2016 2.61 2.60 0.02 0.9% -0.5% 2.54 0.06 2.5% -2.8% 

3 2016 2.62 2.60 0.03 1.1% -0.8% 2.54 0.31 12.3% -2.7% 

4 2016 2.97 2.97 0.03 1.0% 0.1% 2.71 0.31 11.4% -8.5% 

5 2016 2.53 2.51 0.04 1.5% -0.8% 2.46 0.07 2.9% -2.6% 

6 2016 2.43 2.37 0.08 3.5% -2.2% 2.23 0.25 11.0% -8.3% 

7 2016 2.38 2.38 0.04 1.8% -0.1% 2.38 0.10 4.3% 0.0% 

15 2016 1.76 1.76 0.02 1.1% 0.0% 1.77 0.06 3.4% 0.6% 

16 2016 2.10 2.06 0.10 4.8% -2.3% 1.89 0.19 10.0% -10.1% 

17 2016 1.74 1.73 0.03 1.5% -0.4% 1.75 0.10 5.7% 0.6% 

18 2016 1.95 1.89 0.06 3.2% -3.2% 1.89 0.18 9.3% -3.2% 

19 2016 1.83 1.79 0.11 6.1% -2.0% 1.88 0.15 8.0% 2.4% 

20 2016 3.03 3.04 0.02 0.6% 0.1% 2.96 0.32 10.7% -2.4% 
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21 2016 2.99 3.03 0.03 1.1% 1.2% 3.04 0.11 3.5% 1.6% 

22 2016 3.02 3.03 0.07 2.4% 0.3% 2.97 0.41 13.6% -1.6% 

23 2016 2.48 2.44 0.04 1.6% -1.8% 2.34 0.15 6.6% -6.0% 

24 2016 2.99 2.90 0.14 4.8% -3.0% 2.90 0.19 6.4% -3.2% 

25 2016 1.88 1.89 0.04 1.9% 0.9% 1.89 0.06 3.3% 0.9% 

26 2016 1.44 1.44 0.01 0.7% -0.2% 1.46 0.03 2.1% 0.9% 

 

Site 

ID 

Year Pixel Window 

1x1 17x17 33x33 

Mean Mean Std CV % 

Difference 

Mean Std CV % 

Difference 

1 2014 2.45 2.51 0.16 6.2% 2.8% 2.34 0.31 13.4% -4.3% 

24 2014 3.38 3.13 0.37 11.7

% 

-7.4% 2.95 0.45 15.3% -12.9% 

1 2016 2.36 2.39 0.13 5.3% 1.4% 2.47 0.34 13.8% 4.4% 

2 2016 2.61 2.51 0.19 7.6% -3.8% 2.38 0.44 18.4% -8.8% 

3 2016 2.62 2.43 0.32 13.3

% 

-7.0% 2.33 0.37 15.9% -11.0% 

4 2016 2.97 2.67 0.28 10.4

% 

-10.1% 2.61 0.25 9.5% -12.0% 

5 2016 2.53 2.31 0.31 13.3

% 

-8.6% 1.92 0.76 39.6% -23.9% 

6 2016 2.43 2.23 0.25 11.1

% 

-8.4% 2.11 0.36 17.0% -13.2% 

7 2016 2.38 2.43 0.15 6.4% 2.1% 2.53 0.35 13.7% 6.5% 

15 2016 1.76 1.76 0.08 4.6% -0.3% 1.89 0.29 15.5% 7.3% 

16 2016 2.10 1.89 0.25 13.5

% 

-10.3% 1.58 0.58 36.9% -24.9% 

17 2016 1.74 1.81 0.23 12.6

% 

4.0% 1.89 0.46 24.1% 8.8% 

18 2016 1.95 1.90 0.18 9.5% -2.7% 1.87 0.49 26.5% -4.4% 

19 2016 1.83 1.88 0.17 9.0% 2.7% 1.89 0.16 8.6% 3.2% 

20 2016 3.03 2.78 0.50 18.0

% 

-8.4% 2.52 0.61 24.1% -16.8% 

21 2016 2.99 2.99 0.24 8.0% -0.2% 2.45 0.90 36.8% -18.0% 

22 2016 3.02 2.80 0.55 19.7

% 

-7.3% 2.44 0.52 21.3% -19.2% 

23 2016 2.48 2.35 0.23 9.7% -5.5% 2.42 0.37 15.3% -2.7% 

24 2016 2.99 2.85 0.23 8.0% -4.8% 2.90 0.36 12.5% -3.2% 

25 2016 1.88 1.89 0.07 3.5% 0.5% 1.86 0.23 12.2% -0.8% 

26 2016 1.44 1.50 0.10 6.8% 4.0% 1.75 0.43 24.8% 21.0% 

Table S5. Comparison of daily evapotranspiration estimates from three PT approaches 

with field measurements during days with clear-sky Landsat observations and other days 

(from temporal interpolation). Results from generalized PT-UCD were not shown for 

individual crop types. 
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Crop types n 

Clear Sky Overpassing Days Interpolated All Days 

Testing Independent All 

Alfalfa 159 111 370 3500 3870 

Almond 27 N/A 102 1303 1405 

Citrus 13 N/A 41 445 486 

Corn 104 82 165 1492 1657 

Others 21 21 21 193 214 

Pasture 19 N/A 86 611 697 

Rice 46 N/A 212 2697 2909 

All 

(Generalized) 

389 214 997 10241 11238 

All (Crop 

Specific) 

368 193 976 10048 11024 

 

Crop types R2 

Clear Sky Overpassing Days Inter

polat

ed 

All 

Days Testing Independent All 

 PT-0 JPL UCD PT-0 JPL UCD PT-0 JPL UCD 

Alfalfa 0.57 0.71 0.82 0.55 0.71 0.81 0.64 0.69 0.83 0.76 0.76 

Almond 0.78 0.53 0.86 N/A N/A N/A 0.78 0.48 0.85 0.89 0.88 

Citrus 0.24 < 0 0.56 N/A N/A N/A 0.39 -0.21 0.70 0.70 0.70 

Corn 0.11 0.70 0.71 < 0 0.70 0.65 0.18 0.72 0.75 0.68 0.69 

Others < 0 0.70 N/A - - - - N/A - - - - N/A N/A N/A 

Pasture 0.66 0.36 0.72 N/A N/A N/A 0.75 0.42 0.77 0.69 0.71 

Rice 0.77 0.71 0.67 N/A N/A N/A 0.80 0.80 0.75 0.77 0.77 

All 

(Generalized) 

0.57 0.71 0.76 0.30 0.72 0.68 0.68 0.70 0.80 0.78 0.79 

All (Crop 

Specific) 

N/A N/A 0.79 N/A N/A 0.75 N/A N/A 0.81 0.80 0.80 

 

Crop types RMSE (mm day-1) 

Clear Sky Overpassing Days Inter

polat

ed 

All 

Days Testing Independent All 

 PT-0 JPL UCD PT-0 JPL UCD PT-0 JPL UCD 

Alfalfa 1.05 0.86 0.68 1.10 0.88 0.72 0.94 1.11 0.65 0.77 0.76 

Almond 1.18 1.72 0.94 N/A N/A N/A 1.13 0.87 0.95 0.86 0.86 

Citrus 1.08 1.48 0.83 N/A N/A N/A 0.99 1.73 0.69 0.86 0.84 

Corn 1.66 0.97 0.96 1.55 0.85 0.91 1.65 1.39 0.91 1.01 1.00 

Others 2.12 1.14 N/A - - - - N/A - - - - N/A N/A N/A 

Pasture 0.86 1.18 0.77 N/A N/A N/A 0.86 1.31 0.82 0.94 0.93 

Rice 1.11 1.25 1.34 N/A N/A N/A 1.03 1.03 1.16 1.09 1.09 

All 

(Generalized) 

1.32 1.08 0.98 1.41 0.90 0.95 1.15 1.11 0.91 0.95 0.95 

All (Crop 

Specific) 

N/A N/A 0.90 N/A N/A 0.80 N/A N/A 0.87 0.93 0.92 
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Table S6. Evaluation of outgoing longwave radiation estimates over sites 2, 14, 25, and 

26, which were exclusively used for testing. 

Validation Data n R2 Bias 

(W/m2) 

MAE 

(W/m2) 

RMSE 

(W/m2) 

MAPE 

(%) 

RMAD 

(%) 

Everything 244 0.73 6.68 17.14 21.19 4.19 4.16 

Alfalfa 111 0.73 8.82 14.09 17.28 3.56 3.53 

Corn 82 0.46 11.2 19.27 24.05 4.81 4.73 

Others 51 0.72 -5.22 20.36 23.84 4.57 4.55 

 

Figure S1. Evaluation of outgoing longwave radiation estimates over sites 2, 14, 25, and 

26, which were exclusively used for testing. 
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Appendix II: Improving PT-UCD 

The author has no plan on publishing this research at the moment. However, the ideas and works 

presented here have tremendous value for developing a more sophisticated Priestley-Taylor-

driven evapotranspiration model. For example, a neural network could be trained to predict the 

actual Priestley Taylor coefficient, using net radiation, vapor pressure deficit, and aerodynamic 

(𝑟𝑎) and canopy surface (𝑟𝑐) resistances. And trained model could be compared with the partial 

derivative of the Priestley Taylor coefficient equation presented here. Finally, the model can be 

extended to using satellite observations instead of resistances values as model inputs. 

 

The Priestley Taylor equation (Eq. 1) has been adapted by remote sensing scientists to 

estimate actual evapotranspiration (Fisher et al., 2008; Jin et al., 2011). With remote sensing, the 

Priestley Taylor coefficients are often estimated with vegetation and moisture-related indices. 

Despite their accuracy in estimating evapotranspiration, the remote sensing driven Priestley 

Taylor models lack a theoretical basis in relating remote sensing indices with the Priestley Taylor 

coefficient (𝑃𝑇𝑎). Here, we propose that the Priestley Taylor coefficient could be expressed in 

terms of aerodynamic (𝑟𝑎) and canopy surface (𝑟𝑐) resistances by equating the Penman Monteith 

equation (Eq. 2) with the Priestley Taylor equation. 

𝐿𝐸 = 𝑃𝑇𝑎 ∗
𝛥

𝛥+𝛾
∗ (𝑅𝑛 − 𝐺)         (1) 

𝐿𝐸 = (𝛥 ∗ (𝑅𝑛 − 𝐺) + (𝜌 ∗ 𝐶𝑝 ∗ 𝛿𝑒/𝑟𝑎))/(𝛥 + 𝛾 ∗ (1 + 𝑟𝑐/𝑟𝑎))    (2) 

The Priestley Taylor equation can be interpreted as a simplified form of Penman-

Monteith, first by assuming an equilibrium condition, where vapor pressure deficit (𝛿𝑒) and 

canopy surface resistance (𝑟𝑐) are zero, then by scaling the equilibrium evapotranspiration with  a 
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Priestley Taylor coefficient (𝑃𝑇𝑎), to estimate evapotranspiration of an extensive wet surface in 

the absence of advection (Eichinger et al., 1996). 

 Besides the empirical approach of estimating the Priestley Taylor coefficient, few have 

explored the derivation of the coefficient by equating the Priestley Taylor equation with other 

evapotranspiration estimation equations. Eichinger et al., (1996) equated the Bowen ratio 

equivalent of Priestley Taylor equation with that of the Penman equation, by assuming sufficient 

upwind fetch and a uniform, saturated surface, as well as linearly approximating the slope of 

saturation vapor pressure. They derived that 𝑃𝑇𝑎 =
1+

𝛾𝐶

∆+𝛾

1−(
𝛾𝐶

∆+𝛾
)

2 where 𝐶 =
𝑒𝑎

∗−𝑒𝑎

𝑒𝑠
∗−𝑒𝑎

 when the surface is 

saturated. ‘∗’ and ‘ ’ represent the saturated and actual vapor pressure, and ‘a’ and ‘s’ denote air 

and surface respectively. When a surface is not saturated, 𝐶 =
(1−𝑅𝐻𝑎)𝑒𝑎

∗−(1−𝑅𝐻𝑠)𝑒𝑠

𝑅𝐻𝑠𝑒𝑠
∗−𝑒𝑎

. 

A similar approach is proposed here, by equating the Penman-Monteith and Priestley 

Taylor equations. We derived that: 

𝑃𝑇𝑎 ∗
𝛥

𝛥 + 𝛾
∗ (𝑅𝑛 − 𝐺) = (𝛥 ∗ (𝑅𝑛 − 𝐺) + (𝜌 ∗ 𝐶𝑝 ∗ 𝛿𝑒/𝑟𝑎))/(∗ (1 + 𝑟𝑐/𝑟𝑎)) 

𝑃𝑇𝑎 ∗
𝛥

𝛥 + 𝛾
∗ (𝑅𝑛 − 𝐺) =  

𝛥 ∗ (𝑅𝑛 − 𝐺)

𝛥 + 𝛾 ∗ (1 + 𝑟𝑐/𝑟𝑎)
+

𝜌 ∗ 𝐶𝑝 ∗ 𝛿𝑒
𝑟𝑎

𝛥 + 𝛾 ∗ (1 + 𝑟𝑐/𝑟𝑎)
 

𝑃𝑇𝑎 = (
𝛥 ∗ (𝑅𝑛 − 𝐺)

𝛥 + 𝛾 ∗ (1 + 𝑟𝑐/𝑟𝑎)
+

𝜌 ∗ 𝐶𝑝 ∗ 𝛿𝑒
𝑟𝑎

𝛥 + 𝛾 ∗ (1 + 𝑟𝑐/𝑟𝑎)
)/(

𝛥

𝛥 + 𝛾
∗ (𝑅𝑛 − 𝐺)) 

𝑃𝑇𝑎 =
𝛥 ∗ (𝑅𝑛 − 𝐺)

𝛥 + 𝛾 ∗ (1 + 𝑟𝑐/𝑟𝑎)
∗ (

𝛥 + 𝛾

𝛥(𝑅𝑛 − 𝐺))
) +

𝜌 ∗ 𝐶𝑝 ∗ 𝛿𝑒
𝑟𝑎

𝛥 + 𝛾 ∗ (1 + 𝑟𝑐/𝑟𝑎)
∗ (

𝛥 + 𝛾

𝛥(𝑅𝑛 − 𝐺))
) 

𝑃𝑇𝑎 =
𝛥 + 𝛾

𝛥 + 𝛾 ∗ (1 + 𝑟𝑐/𝑟𝑎)
+

𝛥 + 𝛾
𝜌 ∗ 𝐶𝑝 ∗ 𝛿𝑒

𝑟𝑎𝛥(𝑅𝑛 − 𝐺))

𝛥 + 𝛾 ∗ (1 + 𝑟𝑐/𝑟𝑎)
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𝑃𝑇𝑎 =
𝛥 + 𝛾

𝛥 + 𝛾 ∗ (1 + 𝑟𝑐/𝑟𝑎)
∗ (1 +

𝜌 ∗ 𝐶𝑝 ∗ 𝛿𝑒

𝑟𝑎𝛥(𝑅𝑛 − 𝐺))
) 

This Priestley Taylor coefficient formula has most likely been studied in the 1970s and 1980s. 

 A partial derivative of the presented Priestley Taylor coefficient equation was taken with 

respect to each key input of the equation. The partial derivatives were initially manually 

calculated and later verified with an online derivative calculator (Scherfgen, 2021). 

𝑑(𝑃𝑇𝑎)

𝑑(𝑅𝑛−𝐺)
=  −

(𝛥+𝛾)𝜌𝐶𝑝𝛿𝑒

∆(𝑅𝑛−𝐺)2((𝑟𝑎+𝑟𝑐)𝛾+∆𝑟𝑎)
;  

𝑑(𝑃𝑇𝑎)

𝑑(𝑟𝑎)
=  

(𝛥+𝛾)((𝑟𝑐𝛥(𝑅𝑛−𝐺)−𝜌𝐶𝑝𝛿𝑒)𝛾−𝛥𝜌𝐶𝑝𝛿𝑒) 

𝛥(𝑅𝑛−𝐺)(𝑟𝑎(∆+𝛾)+𝛾𝑟𝑐)2
 

𝑑(𝑃𝑇𝑎)

𝑑(𝑟𝑐)
=  −

(𝛾+𝛥)(𝜌𝐶𝑝𝛿𝑒/(𝑟𝑎𝛥(𝑅𝑛−𝐺))+1)𝛾

𝑟𝑎(𝛾(𝑟𝑐/𝑟𝑎+1)+𝛥)2 ;  
𝑑(𝑃𝑇𝑎)

𝑑(𝛿𝑒)
=

(𝛥+𝛾)(𝜌𝐶𝑝𝛿𝑒/(𝑟𝑎𝛥(𝑅𝑛−𝐺))+1)

(𝑟𝑐/𝑟𝑎+1)𝛾+𝛥
 

A few behaviors of the Priestley Taylor coefficient can be observed. First, when 𝛿𝑒 = 0, changes 

in 𝑅𝑛 − 𝐺 do not affect the coefficient. Second, given the four key inputs are positive, increasing 

in 𝑅𝑛 − 𝐺and 𝑟𝑐 and decreasing 𝑟𝑎and 𝛿𝑒will decrease the coefficient. With respective to 𝑅𝑛 −

𝐺, the decrease in the coefficient will is nearly negligible when 𝑅𝑛 − 𝐺 is large.  

Additional study is needed to better understand the sensitivity of the proposed equation of 

the Priestley Taylor coefficient. First, different typical scenarios should be defined, e.g. summer 

peak growing season and cloudy bare soil conditions, and tested with partial derivatives and 

evapotranspiration estimation. Next, 𝑟𝑐and 𝑟𝑎 should be derived from field measurements and 

determine if the proposed model could effectively estimate measured evapotranspiration. Finally, 

a literature review is necessary to develop methods to estimate spatial 𝑟𝑐and 𝑟𝑎. Various existing 

wind speeds and vegetation indices products should be tested against field measurements.  
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Appendix III: Influence of orchard age and salinity on almond evapotranspiration 

estimates during peak crop water demand. 

This analysis presented here will be revised and included as a supporting document for 

publishing chapter 2. 

It is commonly believed that salinity and orchard age were expected to influence crop 

evapotranspiration. However, the degree of influence of the two factors is uncertain. It is also 

unclear whether PT-UCD, a satellite data-driven, semi-empirical Priestley Taylor based model, 

could account for variability in evapotranspiration due to the two factors. In this study, we 

evaluated the relationship between evapotranspiration, and salinity, and orchard age, based on 

PT-UCD evapotranspiration estimates and ancillary data. If a relationship could be observed, 

how did remote sensing input data change, which in turn affects the estimates of the PT-UCD 

model? The analysis was conducted using clear-sky evapotranspiration estimates on Landsat 

overpassing days, during peak evapotranspiration month (July) of 2014 and 2016. The spatial 

estimates were compiled across all almond farms in the Central Valley. Then for each field 

(Figure 1), median evapotranspiration was extracted. The preprocessed data were then analyzed 

with salinity, orchard age, and model input and intermediate output data. 

 Based on spatial estimates from PT-UCD, we found that almond evapotranspiration 

generally increases as young orchard matures (Figure 2). After 9 years old, evapotranspiration 

stays around 5.5 mm per day. Older orchards (greater than 22 years old) appear to have a slightly 

lower evapotranspiration rate, but the difference was small and was not consistently observed 
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across the three Central Valley basins (Figure 3). Orchard age has the same effect on net 

radiation and Priestley Taylor coefficient estimates as on evapotranspiration (Figure 4).  

 

 

Figure 1. The number of almond fields evaluated in the Central Valley in July 2014 (Top) 

and 2016 (Bottom). The bar chart is colored by salinity level (group 1-5), where total 

dissolved solids (mg/L) at the production zone are between 1-250, 251-500, 501-750, 

751-1000, >1000, respectively for group 1 through 5.  
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Figure 2. Boxplot of median evapotranspiration across all almond fields in the Central 

Valley in July 2014 (Top) and 2016 (Bottom). The bar chart is colored by salinity level 

(group 1-5), where total dissolved solids (mg/L) at the production zone are between 1-

250, 251-500, 501-750, 751-1000, >1000, respectively for group 1 through 5. The box 

plot shows the quartiles of the dataset. The upper whisker is extended to the last datum 

less than the sum of the 1.5 times of interquartile range and the 3rd quartile. Similarly, 

the lower whisker is extended to the first datum greater than the first quartile subtracted 

by the 1.5 times of interquartile range. 
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Figure 3. Boxplot of median evapotranspiration across all almond fields in three basins 

of the Central Valley in July 2014. The three basins are the San Joaquin River 

(BasinID=1), Sacramento River (BasinID=2), and Tulare Lake (BasinID=3). The bar 

chart is colored by salinity level (group 1-5), where total dissolved solids (mg/L) at the 

production zone are between 1-250, 251-500, 501-750, 751-1000, >1000, respectively for 

group 1 through 5. The box plot shows the quartiles of the dataset. The upper whisker is 

extended to the last datum less than the sum of the 1.5 times of interquartile range and the 
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3rd quartile. Similarly, the lower whisker is extended to the first datum greater than the 

first quartile subtracted by the 1.5 times of interquartile range. 

 

 

Figure 4. Density Plot of orchard age vs. a median of model estimates across all almond 

fields in the Central Valley in July 2014. The estimates are evapotranspiration (top, left), 

reference evapotranspiration (top, right), Priestley Taylor coefficient (bottom, left), and 

net radiation (bottom, right). The color bar indicates the number of orchard fields, given 

age and range of estimates. 
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Further examination on relationships between orchard age and remote sensing data 

helped identify several possible pathways, of which orchard age may affect biophysical 

properties, which is observed indirectly via satellite and ultimately affecting the estimation. In all 

visible wavelengths (red, green, and blue), surface reflectance was found to decrease as young 

orchards mature. This aligns with the common knowledge that the fraction of vegetation to the 

total land area increases as the orchard matures. While plants absorb electromagnetic radiation in 

the visible wavelengths to fuel photosynthesis, the soil has higher surface reflectance than plants 

in the visible wavelength. Therefore, the surface reflectance of immature orchards is typically 

higher than mature orchards. To our surprise, the surface reflectance in the near-infrared band 

appears constant across age classes. It differs from our initial expectation because reflectance in 

the near-infrared band typically increases with the fraction of vegetation to total land area. 

Surface reflectance in the shortwave reflectance and land surface temperature follow a similar 

pattern to visible wavelengths. Reflectance in the shortwave infrared band is negatively 

correlated with moisture availability in plant leaves and on land surfaces, suggesting that 

younger orchards in combination with surrounding open soils have less moisture than mature 

orchards. On the other hand, transpiration during photosynthesis helped to cool the leaf surface. 

This explains why younger orchards, with a lower fractional cover of vegetation, tend to have a 

higher land surface temperature. The response of surface reflectance and temperature to orchard 

age at 30m pixel resolution, influences the computation of albedo, outgoing longwave radiation, 

NDVI, and NDMI, which affects the estimation of net radiation and Priestley Taylor coefficient, 

and ultimately almond evapotranspiration. In summary, we observed that as young orchard 

matures, albedo, NDVI, and NDMI increase and outgoing longwave radiation decreases. This in 
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turn increases available energy to the plant (Net Radiation) and increases partitioning of energy 

to evapotranspiration (Priestley Taylor coefficient). 

 

 

Figure 5. Density Plot of orchard age vs. median values of selected remote sensing input 

across all almond fields in the Central Valley in July 2014. The selected inputs are surface 

reflectance in the red band (top, left), surface reflectance in the near-infrared band (top, 

right), surface reflectance in the shortwave infrared band 1 (bottom, left), and land surface 

temperature (bottom, right). The color bar indicates the number of orchard fields, given 

age and range of estimates. 
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 Contrary to expectations, we did not observe a consistent difference in evapotranspiration 

orchards at different age groups and salinity levels (Figure 2). The remote sensing input data, e.g. 

land surface reflectance and temperature, were not significantly different among the four salinity 

levels (Figure 6, 7). A possible explanation is that the salinity map used in this study does not 

reflect the actual soil condition on the ground. The salinity map in this study was developed with 

a groundwater model, and it estimates the salinity of groundwater at the production zone 

(Luhdorff and Scalmanini Consulting Engineers, 2016). While the map may be correct regarding 

the salinity of water in the aquifer, it might not reflect the salinity of the soil moisture in the root 

zone. As an alternative salinity map covering the Central Valley is not available, a compilation 

of field-measured salinity records will be needed to further investigate the relationship between 

salinity and evapotranspiration. 
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Figure 6. Boxplot of median surface reflectance in the red band across all almond fields 

in three basins of the Central Valley in July 2014. The three basins are the San Joaquin 

River (BasinID=1), Sacramento River (BasinID=2), and Tulare Lake (BasinID=3). The 

bar chart is colored by salinity level (group 1-5), where total dissolved solids (mg/L) at 

the production zone are between 1-250, 251-500, 501-750, 751-1000, >1000, respectively 

for group 1 through 5. The box plot shows the quartiles of the dataset. The upper whisker 

is extended to the last datum less than the sum of the 1.5 times of interquartile range and 
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the 3rd quartile. Similarly, the lower whisker is extended to the first datum greater than 

the first quartile subtracted by the 1.5 times of interquartile range. 

 

 

Figure 7. Boxplot of median land surface temperature across all almond fields in three 

basins of the Central Valley in July 2014. The three basins are the San Joaquin River 
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(BasinID=1), Sacramento River (BasinID=2), and Tulare Lake (BasinID=3). The bar 

chart is colored by salinity level (group 1-5), where total dissolved solids (mg/L) at the 

production zone are between 1-250, 251-500, 501-750, 751-1000, >1000, respectively for 

group 1 through 5. The box plot shows the quartiles of the dataset. The upper whisker is 

extended to the last datum less than the sum of the 1.5 times of interquartile range and the 

3rd quartile. Similarly, the lower whisker is extended to the first datum greater than the 

first quartile subtracted by the 1.5 times of interquartile range. 
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Appendix IV: Supporting Materials of Chapter III 

Text S1. 

Of the four major crop classes in the Pajaro Valley, a total of 102 data entries were recorded. 

Among the available survey entries, four records in 2011 were removed in this study, because 

the pump IDs were missing in three entries and one entry was accidentally duplicated from 

another. In addition, three entries were amended, because, in two entries, typos were found, and 

in one entry, the documented well was discounted after 2009, and the well’s replacement was 

identified. The changes made to the survey data for this study were reviewed and approved by 

the principal investigator of the survey team.  

Text S2. 

Root depth for different crop types was identical to PVHM’s (Hanson et al., 2014), as shown 

below: Strawberries, Artichokes, and Nurseries (91.4cm), Vegetables (46.0cm), Raspberries 

(191.1cm), Vinegrapes (152.1cm), Deciduous (Apples) (182.9cm), and Others (60.96cm). 

Text S3. 

Soil property maps used in the soil water balance include the mean of saturated hydraulic 

conductivity, bulk density, hydrologic group, water holding capacity (0-50cm soil depth), and  % 

clay and % sand by weight (0-25 cm and 25-50cm). From soil property data, total porosity (𝜃𝑇) 

and field capacity (𝜃𝑓) are computed as follows,  

𝜃𝑇 = 1 −
𝐵𝑢𝑙𝑘 𝐷𝑒𝑛𝑠𝑖𝑡𝑦

2.65
𝑔

𝑐𝑚3

 and   𝜃𝑓 =
𝑇𝑜𝑡𝑎𝑙 𝑊𝑎𝑡𝑒𝑟 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦@ 50 𝑐𝑚

50𝑐𝑚
. 

https://www.zotero.org/google-docs/?70rhDN
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Text S4. 

The approximation of 𝜆 is identical to that in Soil Data Builder, an IWFM’s support tool 

(California Department of Water Resources, 2020), where 𝜆 = 𝑒𝑃 and 𝑃 =  −0.7842831 +

0.0177544𝑆 − 1.062498𝜃𝑇 

−0.00005304𝑆2 − 0.00273493𝐶2 + 1.11134046𝜃𝑇
2
 

−0.03088295𝑆𝜃𝑇 + 0.00026587𝑆2𝜃𝑇
2 − 0.00610522𝐶2𝜃𝑇

2
 

−0.00000235𝑆2𝐶 + 0.00798746𝐶2𝜃𝑇 − 0.00674491𝜃𝑇
2𝐶.     (7) 

In equation 7, S and C are the percentages of sand and clay, respectively. To calculate the 

percentage of sand and clay in the 50cm soil column, an average was taken between the soil 

property rasters at 0-25 cm and 25-50cm.  

Text S5. 

The estimation of the parameter, S, in computing runoff from precipitation, is modified for a 

non-iterative solution and is determined by intermediate soil moisture (𝜃𝑖𝑛𝑡
𝑡), where 𝜃𝑖𝑛𝑡

𝑡 =

(𝜃𝑡−1𝑧−𝑃𝑐
𝑡)

𝑧
. When 𝜃𝑖𝑛𝑡

𝑡 ≤
𝜃𝑓

2
, 𝑆 = 𝑆𝑚𝑎𝑥, such that 𝑆𝑚𝑎𝑥 =

1000

𝐶𝑁
− 10; When 𝜃𝑖𝑛𝑡

𝑡 >
𝜃𝑓

2
, 𝑆 =

{𝑆𝑚𝑎𝑥(1 −
𝜃𝑖𝑛𝑡

𝑡−
𝜃𝑓

2

𝜃𝑇−
𝜃𝑓

2

). The curve number (CN) is assigned according to hydrologic groups 

classification, as follows: Group A (64), Group B (75), Group C (82), Group D (85). Areas 

where the hydrologic group classification was uncertain, including groups A/D, B/D, and C/D, 

were all assigned as class D. 

  

https://www.zotero.org/google-docs/?EPYo1z
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Table S1. Summary table of derived application efficiency. The symbol ‘--’ indicates that 

application efficiency was not derived, and the uncalibrated value from Garza-Díaz et al., 

2019 was used in computing regional applied water. 

Variant Year Strawberries Vegetables Raspberries Vinegrapes 

Derived Value 

(Median) 

2009 & 2011 0.490 0.545 0.350 -- 

Derived Value 

(25th - 75th 

Percentile) 

2009 & 2011 0.390 - 0.650 0.345 - 0.793 0.240 - 0.470 -- 

Garza-Díaz et 

al., 2019 

2009 0.805 0.805 0.805 0.851 

2011 0.811 0.811 0.811 0.852 

Hanson et al., 

2014 

2009 0.42 - 0.96 0.32 - 0.96 0.85 0.88 

 

Variant Year Artichokes Deciduous 

(Apple) 

Nurseries Others 

Derived Value 

(Median) 

2009 & 2011 -- 0.99 -- -- 

Derived Value 

(25th - 75th 

Percentile) 

2009 & 2011 -- 0.99 - 0.99 -- -- 

Garza-Díaz et 

al., 2019 

2009 0.805 0.822 0.805 0.805 

2011 0.811 0.825 0.811 0.811 

Hanson et al., 

2014 

2009 0.57 - 0.83 0.80-0.95 0.73 -0.83 0.64 - 0.85 

 

https://www.zotero.org/google-docs/?nd6Msy
https://www.zotero.org/google-docs/?nd6Msy
https://www.zotero.org/google-docs/?34RKdf
https://www.zotero.org/google-docs/?34RKdf
https://www.zotero.org/google-docs/?WK7mty
https://www.zotero.org/google-docs/?WK7mty
https://www.zotero.org/google-docs/?Qjim0f
https://www.zotero.org/google-docs/?Qjim0f
https://www.zotero.org/google-docs/?81uuiD
https://www.zotero.org/google-docs/?81uuiD
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Figure S1. Percent error in annual sub-regional agricultural applied water estimates. 

Results are based on PVHM’s zone boundaries (a, b, c) and the modified zone boundaries 

(d). While the estimates from the proposed model are shown on (a, c, and d), PVHM’s 

estimates are shown on (b). 
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Appendix V: Comparing evapotranspiration estimates between PVHM and PT-UCD0 

The research presented here will be continued when an update on PVHM is published. The 

updated PVHM will enable the export of gridded evapotranspiration estimates, which allow us to 

compare evapotranspiration estimates only on agricultural cells.  

The Pajaro Valley of California is one of the most productive agricultural regions in the 

world, and managing its groundwater resources is becoming increasingly challenging as a result 

of population growth, agricultural development, climate variability, and seawater intrusion. In 

2014, the Pajaro Valley Hydrological Model (PVHM) was developed to produce accurate 

groundwater simulation results at scales relevant to water management decisions that were being 

considered in the revision and updates to the Basin Management Plan. Major components 

(evapotranspiration, applied water, runoff, and percolation) water budget of PVHM were 

considered reliable because the model parameters have been calibrated with the best available 

pumping, groundwater level, and river flow observations. We attempted to test this assumption 

by comparing the PVHM’s evapotranspiration estimates with that of remote sensing estimates. 

On one hand, a significant discrepancy opens up opportunities for further investigation. On the 

other hand, similar evapotranspiration may suggest that PVHM, although requires a significant 

amount of data and sophisticated calibration, was successful in accurately modeling the water 

budget. When comparing the sub-regional evapotranspiration average from PVHM’s estimates 

against the remote sensing estimates, a significant discrepancy was found (R2 = 0.90, RMSE = 

13560 million liters). However, when remote sensing estimates were adjusted with a soil water 

balance over non-irrigated pixels, a significantly better agreement was found (R2 = 0.99, RMSE 

= 1347 million liters). The discrepancy was investigated, and several potential issues and 

limitations were identified. The current results were inconclusive, but they provide an invaluable 
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foundation and guidance for research in the near future when USGS publishes the latest, updated 

PVHM. 

The original remote sensing evapotranspiration was generated from 2004 to 2009 and 

was spatially aggregated by PVHM’s WBS zone boundaries and temporally aggregated to 

monthly, quarterly, and annual time scales (Figures 1-3). For all time scales, remote sensing 

estimates are found to be significantly higher than PVHM’s estimates.  

The disagreement of total evapotranspiration appears to coincide with lack of rainfall 

(Figure 4). From figure 3, an increase of the slope of best fit could be observed, starting from 0.7 

in January to the peak of 5.2 in September after several consecutive months of no precipitation. 

In October, remote sensing estimates in most zones and years remained significantly higher than 

PVHM’s estimates, with an exception where the zones experienced precipitation around 4 mm 

day-1. 
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Figure 1. Comparison of zonal and annual sum evapotranspiration estimates. 

 

Figure 2. Comparison of zonal and quarterly sum evapotranspiration estimates. 
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Figure 3. Comparison of zonal and monthly sum evapotranspiration estimates. 
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Figure 4. Comparison of zonal and monthly sum evapotranspiration estimates. Symbols 

are colored by monthly spatial averaged precipitation from the NASA Daymet 1km 

dataset. 

 Besides precipitation, the discrepancy of evapotranspiration between the two models may 

be related to the percentage of irrigated area in each zone (Figure 5). For example, zones 10 and 
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2 are adjacent to each other, but 60.7% of area zone 10 in 2009 were irrigated crops while zone 2 

only has 17.5%. Comparing the time series of the two zones (Figure 6), we found that estimates 

between the two models were more agreeable at zone 10 than at zone 2. Besides, we observed 

that the pattern of PVHM’s evapotranspiration estimate did not conform to our expectations for 

crops (Figure 6). We did not expect evapotranspiration to be low during the peak summer 

growing season. The February and March evapotranspiration is also higher than expected. 

 Several possible explanations for the evapotranspiration discrepancies were identified. 

First, remote sensing evapotranspiration estimates have not been evaluated in natural landscapes. 

The remote sensing approach likely overestimated evapotranspiration over the natural landscape. 

Therefore, we expected a zonal average of evapotranspiration to behave similarly to our 

estimates at zone 10, where the summer evapotranspiration is much lower than the expected 

value for the crop (6+ mm/day) due to averaging of evapotranspiration between dried up natural 

vegetation and irrigated crops. The remote sensing techniques are also limited by data 

availability. The revisit frequency of a Landsat satellite is once every 16 days, but fortunately, 

the Landsat satellites (5, 7, 8) have long overlapping operation periods, such that a satellite 

image is generally available every 8 days. Weather conditions also affect the accuracy of 

evapotranspiration estimates. When a satellite image is obscured by clouds, it could not be used 

to estimate evapotranspiration, introducing uncertainty in monthly estimates when estimates on 

clear-sky satellite overpassing dates were interpolated. The coastal region of the Pajaro Valley is 

also prone to mists that some persist till noon. The quality assurance product may sometimes fail 

to identify mist, causing errors in the land surface reflectance and temperature products, which 

are key inputs of the remote sensing evapotranspiration estimation model.  
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Figure 5. Comparison of zonal and annual sum evapotranspiration estimates. Symbols 

are colored by percent irrigated agriculture in 2009 calculated from PVHM’s land use 

map. 
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Figure 6. Comparison of monthly averaged evapotranspiration estimates for agriculture-

dominated zone 2 and nature-landscape-dominated zone 10. Lines colored by year, and 

solid and dash lines represent remote sensing and PVHM’s estimates, respectively. 

 Besides the uncertainty of remote sensing estimates, PVHM’s estimate may also be 

problematic, due to its inability to capture the spatial and temporal variation of 

evapotranspiration for identical land use. First, the crop coefficient-based estimates could not 

capture field to field variation in evapotranspiration that is caused by management practice. For 

example, year-to-year variability in weather may affect the plantation and harvest time of crops 

by up to several weeks. Similarly, rapid water stress and the effect of irrigation practices on a 
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field’s evapotranspiration are also not captured by crop coefficient based estimates. Second, 

PVHM attempted to address the year-to-year variability of evapotranspiration by adding a 

calibrated scale factor that differs between wet and dry years. Further evaluation of the calibrated 

values is needed. It is unclear how the wet and dry years are defined and whether the scaling 

factor, in combination with reference evapotranspiration, is sufficient to explain interannual 

variability. At last, PVHM’s evapotranspiration estimates are subject to human error, which 

could introduce uncertainties in optimized parameters. We found that the reference 

evapotranspiration file for 2005 was repeatedly used for 2006. A similar mistake was also 

identified in precipitation, where the 2005 data were used from 2005 through 2009. 

After remote sensing estimates over non-agricultural pixels are adjusted in a soil water 

balance, we found a significant improvement in agreement between PVHM and remote sensing 

estimates, with an RMSE in 2009 decreasing from 24 trillion to 1.3 billion liters or from 1026 

mm day-1 to 0.2 mm day-1. An improvement in the agreement was also found in time series 

comparison (Figure 8).  

The results of the evapotranspiration estimates comparison are not conclusive, as 

additional data and analysis are needed. Currently, adjusted evapotranspiration is only available 

for 2009, because the water balance model in Chapter 3 has not been implemented for other 

years. The comparison should also be conducted over only agricultural cells, but the current 

PVHM model does not support the export of water fluxes in a grid format. As an update on 

PVHM will soon be released by USGS, we expect a more fruitful comparison is possible in near 

future.  
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Figure 7. Comparison of zonal and monthly sum evapotranspiration estimates, where 

remote sensing estimates over the natural landscape are adjusted. 
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Figure 8. Comparison of monthly averaged evapotranspiration estimates for agriculture-

dominated zone 2 and nature-landscape-dominated zone 10. Remote sensing estimates 

over natural landscapes are adjusted. Lines colored by year, and solid and dash lines 

represent remote sensing and PVHM’s estimates, respectively. 

 

 

 

 




