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Summary 

The simplest configuration of mitochondria in a cell is as small separate organellar units. 

Instead, mitochondria often form a dynamic, intricately connected network. A basic 

understanding of the topological properties of mitochondrial networks and their influence 

on cell function remains lacking. We performed an extensive quantitative analysis of 

mitochondrial network topology, extracting mitochondrial networks in 3D from live-cell 

microscopic images of budding yeast cells. In the presence of fission and fusion, 

mitochondrial network structures exhibited certain topological properties similar to other 

real-world spatial networks. Fission and fusion dynamics were required to efficiently 

distribute mitochondria throughout the cell and to generate highly interconnected networks 

that can facilitate efficient diffusive search processes. Thus, mitochondrial fission and 

fusion combine to regulate the underlying topology of mitochondrial networks, which may 

independently impact cell function. 

 

Introduction 

Mitochondria form dynamic, three-dimensional tubular networks in the cell. These 

structures range from many small individual organelles to one single large, continuous 

network depending on the organism, cell type, and functional state of the cell (Bereiter-

Hahn, 1990). Mitochondrial networks are constantly remodeled by active and biologically 
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regulated fission and fusion events, which permit the connections between individual 

tubules to be formed and removed (Sesaki and Jensen, 1999; Jensen et al., 2000). 

Fission and fusion are implicated in maintaining mitochondrial DNA (mtDNA) integrity and 

mitochondrial network health by permitting damaged subregions of the network to either 

be restored, via content mixing with the rest of the network, or segregated and targeted for 

turnover (Twig and Shirihai, 2011; Hoitzing et al., 2015).  

 

The wiring of a network impacts the behavior or performance of processes that take place 

within it, such as the speed with which a contagious disease can spread through a 

geographical area (Warren et al., 2002) or the efficiency of a transportation system (Lin 

and Ban, 2013). Complex networks research has developed measurements that formalize 

the topological properties of a network and assess network performance (Boccaletti et al., 

2006). For example, the degree distribution of a network can modulate search times by 

random walks through the network, with nodes of a higher degree (more edges per node) 

being found more efficiently (Noh and Rieger, 2004). More highly interconnected networks 

are also more resilient to random failures, such as the disruption of generators in power-

grid networks (Callaway et al., 2000; Boccaletti et al., 2006). Here we investigate whether 

well-established network properties are relevant for mitochondrial network structures. 

 

A number of previous studies have focused on extracting and characterizing mitochondrial 

network structures (Zamponi et al., 2018; Harwig et al., 2018; Valente et al, 2017; 

Vowinckel et al., 2015; Leonard et al., 2015; Ahmad et al., 2013; Sokhorukov et al., 2012; 

Jakobs et al., 2003). Some of these studies obtained a large number of structures, 

allowing the compilation of statistics on network anisotropy, cluster fragmentation, and 

branch lengths (Zamponi et al., 2018; Valente et al, 2017; Vowinckel et al., 2015). 
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However, a comprehensive data-driven analysis of how fission and fusion dynamics 

modulate mitochondrial network properties has not previously been carried out.  

 

 We performed an extensive quantitative analysis of the underlying properties that 

characterize mitochondrial networks using the budding yeast, Saccharomyces cerevisiae, 

as a model system. To understand the contribution of mitochondrial dynamics to network 

topology, we analyzed Δdnm1Δfzo1 fission/fusion mutant yeast cells that lack both the 

fission protein, Dnm1, and fusion protein, Fzo1 (Sesaki and Jensen, 1999; Jensen et al., 

2000; Osman et al., 2015). We found that in the absence of fission and fusion dynamics, 

mitochondrial networks display severe topological and geometrical alterations. These 

alterations, in turn, impact mitochondrial distribution within the cell and expected transport 

efficiency within the mitochondrial network. 

 

Results 

 

Fission and fusion dynamics generate mitochondrial networks that are 

well distributed throughout the cell 

Mitochondria cannot be created de novo. Therefore, some mitochondria must be actively 

transferred from mother to daughter cells. In budding yeast, mitochondria are moved from 

the mother to daughter cell along polarized actin cables that form along the mother-

daughter axis during bud growth (Frederick and Shaw, 2007). The overall timescale of net 

mitochondrial transfer into the bud (via transport and retention mechanisms) is similar to 

the timescale of active polarized bud growth (Rafelski et al., 2012). Rapidly growing cells 

thus require continual transfer of mitochondria into the bud along these actin tracks.  
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To remove the confounding effect of polarized transport, we developed an experimental 

setup that permits yeast cells to transition from rapid, polarized growth to a non-polarized, 

non-dividing steady state. Yeast cells grown under physical constraints arrest as 

unbudded, non-dividing cells in the G2-M phase of the cell cycle (Suzuki et al., 2004). We 

grew yeast cells containing mitochondrial matrix-targeted fluorescent protein (mito-dsRed) 

in microfluidic chambers that trap the cells in a single monolayer. As the cell density in 

these chambers increases, the cells exert physical constraints on each other and transition 

from rapid, polarized growth to a non-polarized, non-dividing steady state over time. These 

cells continue to receive nutrient-rich media while in the microfluidic chambers. We 

observed a dramatic drop in the proportion of dividing cells (budding index) over time; by 

24 hrs of growth in the microfluidic device only 6% of cells displayed buds (Figure 1A). 3D 

live-cell spinning-disk confocal microscopy confirmed that Δdnm1Δfzo1 mitochondrial 

networks were collapsed and poorly distributed throughout the cell during rapid growth 

conditions (Figure 1B). After 24 hrs of growth, however, mitochondrial networks in 

Δdnm1Δfzo1 cells looked well distributed and almost indistinguishable from wild-type cells 

(Figure 1C). This experimental setup thus permits us to investigate differences in the 

properties of mitochondrial networks independently of the effects of rapid polarized growth 

in a system where the network has the opportunity to reach a steady state. 

 

Mitochondria are networks embedded in space, meaning their tubule ends and branch 

points (nodes) have a physical location in the cell. Mitochondrial networks thus fall into the 

class of geographical networks, as opposed to purely topological networks such as the 

World Wide Web, where hyperlink connections are generally independent of the physical 

locations where webpage nodes are hosted. It is well known that the way geographical 

networks are distributed in space has crucial implications to their function and 

performance (Hitchcock et al., 1996; Gastner and Newman, 2006). For example, slime 
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mold plasmodium veins are geographical networks with a high surface coverage that 

spans much of the available space to optimize their search for food. In another example, 

the larger the area covered by a transportation subway network, the greater the network 

capacity, in this case the subway ridership (Louf and Barthelemy, 2014).  

 

To quantify the spatial distribution of mitochondria within each cell, we project the 

experimental mitochondrial network (Figure 1D) onto the surface of an ellipsoid (Figure 

1E) and smooth out the network skeleton (Figure 1F) to generate a spatial probability 

distribution. The entropy of the probability distribution measures the degree to which 

mitochondria are uniformly distributed in the cell (see STAR methods). This evaluation of 

mitochondrial spatial distribution is shown for a more evenly distributed example in Figures 

1D-F and a less evenly distributed example in Figures 1I-K. 

 

To enable comparison between the in vivo mitochondrial distributions and a passive 

process, we simulated spatially-embedded random walks along the ellipsoid surface and 

calculated the entropy values corresponding to their distributions (Figures 1G-H and L-M). 

These random walks serve as a null model, representing randomly sampled configurations 

of a single long filament with persistence length corresponding to the measured value for 

mitochondrial tubules (see STAR methods for details). We note that such random walk 

structures are expected to arise from mitochondrial growth through the biogenesis and 

insertion of new mitochondrial material, which would lengthen network edges without 

altering the connectivity. 

 

Figure 1N shows the distribution entropy for wild-type, Δdnm1Δfzo1, and simulated null 

model (random walks) – greater entropy represents networks that occupy the available 

space more uniformly. In vivo networks (wild-type and Δdnm1Δfzo1) are substantially 
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more uniformly distributed than the null model, and wild-type networks are on average 

more uniformly distributed than Δdnm1Δfzo1 networks lacking fission and fusion. We note 

that increasing the total length of the mitochondrial network necessarily increases the 

occupied area of the cell surface and thus the entropy of the distribution. However, for 

both wild-type and Δdnm1Δfzo1 mutant networks this increase is much steeper than for 

the null model. This suggests that, as more mitochondria are produced, they spread 

through space via a basal mechanism common to both wild-type and Δdnm1Δfzo1 cells 

yet distinct from a purely passive random extension over the surface that does not account 

for branching or self-avoidance. 

 

To more directly characterize the spatial spreading of networks beyond what would be 

expected for the null model of a single growing filament, we normalized the experimental 

spatial distribution entropies. The entropy of each in vivo mitochondrial network was 

divided by the typical spatial distribution entropy achieved by the null model. We found that 

the normalized spatial distribution of mitochondria in wild-type cells does not change 

significantly as the cells transition from rapid polarized growth to steady state over time in 

the microfluidic chambers (Figures 1O and P). In the absence of fission and fusion 

however, rapidly growing, polarized Δdnm1Δfzo1 cells display a significantly decreased 

normalized spatial distribution within the cell, which is only partially recovered when the 

cells transition to steady state (Figures 1O and P). These results suggest that a 

fission/fusion-dependent mechanism for distribution complements the basal distribution 

mechanism and guarantees that wild-type cells always display a well-distributed 

mitochondrial network independently of polarized growth and at all stages of the cell cycle 

(Figure 1Q). 
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Fission and fusion dynamics generate more highly interconnected 

mitochondrial network topologies 

Mitochondrial networks in Δdnm1Δfzo1 cells have previously been reported to visually 

mostly resemble wild-type networks, even in rapidly growing conditions, with relatively 

minor differences compared to the dramatic over-fused or over-fragmented networks seen 

in the single fission or fusion mutants (Sesaki and Jensen, 1999; Jensen et al., 2000; 

Osman et al., 2015). We wondered whether these apparent similarities held true at the 

level of network topology or whether mutant cells exhibited similar spatial distributions of 

mitochondria but with underlying differences in the connectivity of these networks. We 

skeletonized mitochondrial networks of non-dividing steady state cells in 3D using 

MitoGraph v2.0 software. MitoGraph v2.0 has previously been validated for measuring 

mitochondrial content (Viana et al., 2015). We applied MitoGraph v2.0 software to extract 

“Mitochondrial Graph” representations (referred to as MitoGraphs; Rafelski et al., 2012). In 

MitoGraphs the mitochondrial tubules represent the edges and the tubule ends and 

branch-points represent the nodes of the network (Figures 2A-C). 

 

We found that wild-type MitoGraphs are planar with respect to the cell surface, meaning 

that when the network is projected onto the cell surface, we do not observe any edges 

crossing over each other (Figures 2D-G). This planarity was fission/fusion-dependent; in 

Δdnm1Δfzo1 cells we observed that about 20% of mitochondrial tubules were capable of 

detaching from the inner periphery of the cell and overlapping another mitochondrial 

tubule. The loss of mitochondrial network planarity is consistent with the idea that 

processes and proteins involved with mitochondrial localization through tethering are 

interdependent with those regulating mitochondrial fission and fusion (Cerveny et al., 

2007; Lackner et al., 2013; Pernice et al., 2016), aligning with a similar relationship found 

in mammalian cells (Katajisto et al., 2015). 
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Visual comparison of MitoGraphs (Figures 2H-I) revealed an obvious difference in the 

connectivity pattern between wild-type and Δdnm1Δfzo1 mitochondrial networks. 

Fission/fusion defective networks appeared much less branched than wild-type networks. 

The formation of a new branch occurs primarily through a fusion event at a location where 

two tubules come into contact with each other (Nunnari et al., 1997) and secondarily 

through the pulling out of a new tubule from an existing one (~four-fold less frequent, N=7; 

data not shown) (Osman et al., 2015). We would thus expect that wild-type cells with a 

greater density of mitochondrial tubules at the surface would have a higher chance of two 

tubules coming into contact and exhibit more highly interconnected networks. In contrast, 

fission/fusion defective networks, generated by growth and branching only, would lose this 

connectivity dependence on density.  

 

We measured the number of neighbor nodes per node (degree) in each network to 

evaluate the connectivity of MitoGraphs. The average degree has been linked to several 

important aspects of network function. For instance, a more connected network (higher 

average degree) is better able to maintain flow after losing a random edge (Katifori et al., 

2010). We found a strong correlation (R = 0.64 and p-value<2.2x10-16) between the 

average degree and the mitochondria-to-cell surface ratio in wild-type cells, which is much 

weaker in fission/fusion mutant cells (R = 0.27 and p-value<0.051; Figure 2J). These 

results are consistent with a dominant role for fusion as a key process controlling network 

connectivity. 

 

We next applied a series of standard measurements used in the networks field to quantify 

and formalize the differences in topological properties between wild-type and Δdnm1Δfzo1 

mitochondrial networks (Table 1). Some of these properties have been studied before for 



10  

mammalian mitochondrial networks (Sukhorukov et al., 2012) and other biological 

networks, such as slime mold plasmodium veins (Baumgarten et al., 2010) and plant leaf 

venations (Katifori et al., 2010). These studies have shown that, due to spatial constraints, 

each node in a real-world geographical network can only have a limited number of 

connections (Sukhorukov et al., 2012; Mark et al., 2008; Perna et al., 2011; Fessel et al., 

2012). Consequently the distribution of node connectivities (degrees) in such networks is 

heavily biased to small values. We found that MitoGraphs exist at the extreme of degree 

distributions, with networks consisting almost entirely of nodes of degrees 1 and 3 (Figure 

2K) and that MitoGraphs of Δdnm1Δfzo1 cells are less interconnected than wild-type 

networks (Figure 2K). In fact, the average degree of Δdnm1Δfzo1 MitoGraphs is below 2 

(Figure 2J inset), which is typical of a class of “tree-like networks” containing no loops 

(Barthélemy, 2011), consistent with the observed Δdnm1Δfzo1 network structures (Figure 

2I). 

 

Wild-type cells contained a mean of four connected components, while Δdnm1Δfzo1 cells 

had only two components (Table 1). We found the multiple connected components of 

Δdnm1Δfzo1 cells to be a surprise, given that these mutant cells are devoid of any fission 

dynamics. However, we observed that cytokinesis is able to split mitochondrial tubules in 

time-lapse experiments capturing cell division, thus generating multiple connected 

components in the absence of active fission (Figure S3 and Movie S1). To ensure that the 

change in connectivity in the Δdnm1Δfzo1cells did not arise from a possible loss of 

respiratory function or mtDNA, we compared the number of connected components in 

mutant cells with defective respiration (Δcox6 cells, e.g. rho-) or devoid of mtDNA (Δmip1 

cells, e.g. rho0). We found that, contrary to the Δdnm1Δfzo1 cells, which contain fewer 

connected components, the Δcox6 and the Δmip1 mutant cells contained either a similar 

number or more connected components than wild-type cells (Figure S4). 
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Previous work suggested that mitochondrial networks in mammalian cells are in a 

percolation regime, where a single network component contains a large proportion (~35%) 

of the mitochondrial content (Mark et al., 2008; Sukhorukov et al., 2012).   Mitochondrial 

networks in wild-type budding yeast are in a highly connected state, with a mean of 90% of 

total mitochondrial content contained in a single connected component (Table 1). The 

largest component in Δdnm1Δfzo1 cells contained a large proportion of mitochondrial 

content, with a mean of 78% (Table 1). These results highlight that mitochondrial networks 

in budding yeast are in a highly connected state, well above the percolation regime 

predicted in mammalian cells. 

 

Another classic measure of network connectivity that has been linked to functional 

efficiency in biological networks is the presence and abundance of loops within the 

network. For instance, loops enhance the transport properties within networks of 

chambers inside termite nests (Perna et al., 2012; Mileyko et al., 2012), confer robustness 

against local damage in plant leaf venation networks, and are required for optimal 

transport in the presence of leaf nutrient flow fluctuations (Katifori et al., 2010; Corson, 

2010). Similarly, the presence of loops could affect the spread of mitochondrial 

components, such as diffusive molecules, throughout the network. We measured loop 

abundance in MitoGraphs via two standard network measurements, the global and local 

redundancy of the network. Global redundancy is defined as the increased fraction of 

edges of a network compared to a tree with a similar number of nodes and connected 

components (STAR methods, Figure S5). We found that the global redundancy of wild-

type MitoGraphs is similar to what is observed in other geographical networks (Figure S6), 

but that it is significantly decreased in fission/fusion mutant cells (Figure 2L). We also 

observed that mitochondria in wild-type cells display very specific types of small-sized 



12  

loops (typical size between 2 µm-6 µm; Figure S7). We quantified the abundance of these 

small-sized loops within MitoGraphs via the local redundancy index, the percentage of 

edges that belong to at least one of these small-sized loops (see STAR methods and 

Figure S5). Δdnm1Δfzo1 MitoGraphs display very low redundancy compared to wild-type 

MitoGraphs (Figure 2M). Together, these standard network measurements quantitatively 

demonstrate that fission and fusion dynamics are required to generate more highly 

interconnected mitochondrial networks at both the local and global scale.  

 

Fission and fusion dynamics generate mitochondrial networks that 

topologically resemble other real-world geographic networks 

An underlying principle of real-world geographical networks is that the distance between 

nodes influences the overall network topology and thus topological and spatial properties 

are correlated in these networks. A well-known example is the scaling (ℓ ~ N-0.5) between 

the number of nodes and the average edge length in a geographical network, which is 

found in many different kinds of real-world networks including in man-made street or 

railway networks and in naturally occurring biological networks such as plant leaf venation 

or hyphae of the slime mold physarum (Louf and Barthelemy, 2014; Barthélemy, 2011). 

We found that wild-type mitochondrial networks display a dependence of edge length on 

node number that is consistent with the scaling relation for general real-world spatial 

networks (Figure 2N).  

 

To confirm that this relationship between node number and edge length arises from 

distance-dependent node connectivity, we simulated mitochondrial networks with 

attributes similar to our experimental networks (STAR methods). In the simulated 

networks, N nodes are randomly positioned over the surface of a sphere of area S, and 

randomly interconnected with a distance dependent probability P(ℓ) ~ exp(-αℓ/√ρ), where ρ 



13  

= N/S and α controls the strength of the distance dependence. We observed that 

simulated networks with α=2.5 exhibited a similar dependence of edge length on node 

number as observed for wild-type networks (Figure 2N inset). Mitochondrial networks are 

thus not purely random planar networks but instead exhibit a distance-dependent topology 

similar to other real-world geographic networks. 

 

Fission/fusion mutant networks, however, have a notably steeper dependence of edge 

length on node number. The average edge length is ~two-fold longer than expected for a 

given number of nodes (Figure 2N, Table 1). These results suggest that fission and fusion 

are required to maintain well-established underlying scaling properties found in real-world 

geographic networks, including wild-type mitochondrial networks. The distinct relationship 

between node density and edge length for wild-type and Δdnm1Δfzo1 networks in Figure 

2N is further evidence of a structural difference between the two network types, setting 

Δdnm1Δfzo1 networks apart from a wide variety of transportation networks.  

 

Fission and fusion dynamics generate mitochondrial network 

topologies that can support improved spread throughout the network 

The topological properties of real-world geographic networks are often linked to functional 

or performance improvements (Barthélemy, 2011). We hypothesized that wild-type 

mitochondrial networks might display improved functional properties compared to 

Δdnm1Δfzo1 networks. The shortest path length is a standard metric used to quantify the 

relative performance of network transport-related tasks in real-world geographic networks 

(Mark et al., 2008; Estrada and Hatano, 2008; Latora and Marchiori, 2001). It measures 

the average shortest distance (number of edges) between all pairs of nodes. The shorter 

the path length is, the easier the communication between nodes. We measured the 

average shortest path length in the largest connected component of each MitoGraph and 
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normalized it by the size of the component. We found that this normalized shortest path 

length is drastically increased in the absence of fission and fusion (Figure 3A). A drawback 

of this measurement is that it is only applied to a single connected component. A more 

appropriate measurement that takes all connected components into account is the global 

efficiency. Larger values of global efficiency are associated with improved transportation 

efficiency, such as tunnel networks in ant colonies and street and subway networks 

(Latora and Marchiori, 2001; Buhl et al., 2006; Buhl et al., 2006b). Consistently, wild-type 

MitoGraphs had greater normalized global efficiency than fission/fusion mutant 

MitoGraphs (Figure 3B and STAR methods).  

 

We hypothesized that the decreased normalized shortest path length and the increased 

normalized global efficiency confer functional advantages to wild-type mitochondrial 

networks. For instance, topological properties previously linked to improved transport-

related performance could represent increased efficiency with which any diffusive process 

would spread throughout the network. We thus simulated the dynamics of diffusive 

particles within our experimentally measured MitoGraphs, treating edges as 

interconnected one-dimensional domains. Focusing on the largest connected component 

of each mitochondrial network, we determined the mean time for the first encounter 

between two simulated diffusing molecules that start uniformly distributed throughout the 

structure (Figure 3C). This metric approximates diffusion-limited reaction rates between 

molecules found at very low concentrations within the mitochondrial network structure. 

Encounter times are positively correlated with network total edge length, which effectively 

measures the volume of space that the molecules must explore to find each other. 

However, total edge length does not fully determine the average encounter time: for a 

given total edge length there is a broad spread of encounter times, with Δdnm1Δfzo1 

networks typically yielding larger encounter times than the wild-type structures. 
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To establish which structural features of the mutant network are responsible for the 

predicted increase in particle encounter kinetics, we also determined simulated encounter 

times on Bethe lattice structures - simplified tree networks with no loops, equal-length 

edges, and all nodes of degree 1 or 3 (Fig. 3C, inset). Bethe lattices with the mean wild-

type edge length roughly corresponded to the longest encounter times for wild-type 

networks, suggesting loops (absent in Bethe lattices but present in most wild-type 

networks) decrease the search time. Bethe lattices with mean Δdnm1Δfzo1 edge length 

had encounter times roughly matching the typical Δdnm1Δfzo1 encounter times, 

consistent with the tree-like, nearly loop-less Δdnm1Δfzo1 network structures. The 

comparison to Bethe lattice structures indicates that the increased individual edge length 

of the Δdnm1Δfzo1 networks accounts for a small portion of the increased encounter times 

compared to wild-type networks. However, much of the difference stems from the 

distinction between tree-like Δdnm1Δfzo1 networks and wild-type networks containing 

many loops. 

     

The effect of loops on simulated diffusive search of mitochondrial network structures is 

shown by plotting the encounter time versus the cyclomatic number (or loop number), 

defined as (# edges) - (# nodes) + 1, which is closely related to the global redundancy. 

This metric counts the number of independent cycles (loops) in a graph structure (Derrible 

and Kennedy, 2011). In Figure 3D, simulated encounter times (color map) are plotted 

against loop number as well as total edge length, clearly showing decreased diffusive 

encounter times as loop number increases. Hence, the presence of loops in wild-type 

mitochondrial network structures is expected to enhance search times and reaction rates. 

It also appears that encounter time can be more narrowly specified with a combination of 

loop number and total edge length, compared to total edge length alone. Although wild-
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type and Δdnm1Δfzo1 networks have distinct typical encounter times for a given edge 

length (Figure 3C), networks with similar total edge length and loop number are seen to 

have very similar encounter times (Figure 3D). These results suggest that changes to loop 

number and total edge length account for most of the difference in simulated encounter 

times between wild-type and Δdnm1Δfzo1 networks. 

 

To explore the effect of network structure on molecular reaction rates, we also considered 

the simulated rate of arrival for diffusing molecules to a stationary target (placed at random 

within the network). This rate is dependent on the diffusive molecule concentration (Figure 

3E, inset). In a two- or three-dimensional environment, diffusive arrival rates are expected 

to scale linearly with concentration, giving the usual kinetic behavior of reactions in bulk 

medium. In a one-dimensional environment, however, the rate of arrival scales with the 

square of concentration, resulting in distinct kinetics (Condamin et al., 2007). The 

mitochondrial structures interpolate between these two regimes, with high concentrations 

of molecules resulting in essentially one-dimensional kinetics that are the same for both 

wild-type and Δdnm1Δfzo1 networks. Lower molecular concentrations approach two-

dimensional behavior, with more rapid rates for wild-type network structures. The 

increased connectivity of wild-type networks is found to increase simulated reaction rates 

by up to 80% in the limit of very low molecular concentrations (Figure 3E). As the molecule 

concentration increases, the enhancement of search on wild-type over Δdnm1Δfzo1 

networks diminishes as the morphological difference between the two network types 

becomes unimportant for target search with dense molecular concentrations.  

  

The results in Figure 3 suggest that the underlying network topology, generated by fission 

and fusion dynamics, can enhance efficient diffusive search throughout mitochondrial 

networks. This enhancement is expected to be particularly important for molecules that 
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exist with low copy numbers within the mitochondrial network structure. A large variety of 

proteins are present in mitochondria at low copy number (Morgenstern et al., 2017), such 

as intron splicing protein MNE1 (0.05-0.10 µm-1 for a typical 58 µm length mitochondrial 

network), mitochondrial degradosome component DSS1 (0.24-0.38 µm-1), and 

mitochondrial RNA polymerase (0.55-1.24 µm-1). The speed with which such proteins find 

their targets should be greatly accelerated by the high connectivity of wild-type 

mitochondrial networks. 

 

 

Discussion 

Intracellular structures comprise a wide range of geometries including physical network-

like structures. It is well known that the way networks are wired impacts the transport 

processes that take place within them. We performed extensive quantitative analysis of 

the topological properties of the mitochondrial networks and the contribution of fission and 

fusion dynamics to these properties in S. cerevisiae. We took advantage of the small size 

of budding yeast to image entire mitochondrial networks. Our analysis reports a clear and 

consistent result that fission and fusion dynamics are required to generate underlying 

properties of the mitochondrial network that are predicted to be advantageous for the cell. 

 

Our analysis revealed that wild-type mitochondrial networks display a very restricted 

degree distribution (Figure 2K) that could be a consequence of the limited types of 

biological events that can reshape the network (Sesaki and Jensen, 1999; Jensen et al., 

2000, Sukhorukov et al., 2012). In addition, the topological properties of wild-type 

networks are consistent with those of other geographic (spatially constrained) networks 

found in nature and in man-made structures (Figure 2N). This suggests the possibility of 

some underlying functional advantage to this particular type of interconnected network 
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topology. In contrast, these properties were not maintained in the less connected, more 

tree-like mitochondrial networks seen in the absence of fission and fusion. Tree-like 

networks are known for being very fragile with respect to random failures (Katifori et al., 

2010; Corson, 2010). These tree-like topologies are consistent with the idea that the only 

remaining topology-modifying events in these cells would be the pulling out of new 

branches and the splitting of the network via cytokinesis (which is no longer occurring in 

the steady state growth condition). Together, these results suggest that yeast cells lacking 

fission and fusion dynamics display mitochondrial networks that are less robust in 

maintaining network-wide transport properties compared to those found in wild-type cells 

as well as in a wide range of other real-world physical networks. 

 

Efficient diffusive search within the mitochondrial networks is expected to be important for 

a number of biologically critical processes. Localized mitochondrial damage, for example 

due to intense ROS production, occurs very rapidly and its mitigation via mitochondrial 

content mixing requires both removal of damaged components away from the sites of 

damage as well as access of repairing components (e.g. chaperones, proteases) to these 

sites. Any damaged component constrained to travel within the membrane or matrix of the 

mitochondria (e.g. damaged membrane proteins or damaged lipids themselves) is 

expected to mix much more efficiently within a highly interconnected network. In addition, 

mitochondrial transcription and its regulation requires diffusive search by DNA-binding 

proteins present in low copy numbers within the mitochondrial lumen.  

 

Our analysis was based solely on the underlying topology of the network that is generated 

as a consequence of fission and fusion dynamics. It did not take into account the action of 

active fission and fusion itself and how this may affect the spread of mitochondrial 

components throughout the network in addition to topological effects. Our results thus 
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suggest that in addition to considering the effects on content mixing that occur due to 

individual fusion events, one needs to also consider the topology of the network itself 

which generates underlying constraints to the system upon which active fission and fusion 

dynamics act. 

 

Much of the work described here, including the topological characterization of network 

structures and quantification of diffusive search processes, could be readily applied to 

other intracellular network structures. One such structure is the extensively interconnected 

tubular network of the peripheral endoplasmic reticulum (ER) (Westrate et al., 2015). The 

peripheral ER shares many mitochondrial network features, including a looped structure, 

which spans much of the cell (Lin et al., 2014), dynamic reorganization (Georgiades et al., 

2017), and a variety of distinct ER morphologies depending on cell type (Westrate et al., 

2015). Further exploration of the parallels between these two networks could prove a 

fruitful future direction. 
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Main Figure Legends 

Figure 1: Mitochondria are spatially less evenly distributed in fission/fusion defective cells. 

(A) Budding index (percentage of cells with a bud) of wild-type and Δdnm1Δfzo1 cells as a 

function of time grown in the microfluidic chamber. The solid black line represents a 

budding index of 6% and error bars are 95% confidence intervals. (B) Mitochondria in live, 

wild-type yeast cells in rapid growth conditions imaged with spinning disk confocal 

microscopy shown as the maximum intensity projection (MIP) of mitochondrial matrix-

targeted dsRed. Left panels: wild-type cells. Right panels: fission/fusion mutant 

(Δdnm1Δfzo1) cells. (C) Same as (B) for non-polarized, non-dividing cells after 24 hrs in 

the microfluidic chamber under constant flow of glucose rich media. (D-F and I-K) The 

process of calculating the entropy of mitochondria of a cell for examples of cells with high 

and low values of spatial distribution, respectively. (D and I) To calculate the entropy of 

mitochondria of a given cell, we start with an experimental mitochondrial skeleton; (E and 

J) The skeleton is projected onto the ellipsoid that represents the cell surface; (F and K) 

The projected skeleton is convolved with a Gaussian kernel with SD=2.0 and normalized 

so that the values sum up to one and can be interpreted as a probability distribution. 

Finally we calculate the entropy of the resulting probability distribution (Eq. 1 in STAR 

methods). (G-H and L-M) Spatially-embedded random walks are used to simulate 

passively distributed networks and to normalize the entropy values obtained for each cell. 

(N) Entropy values as a function of mitochondrial density (length/area) for log-phase (0 
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hrs) wild-type (blue dots, one dot per cell) and Δdnm1Δfzo1 cells (red dots, one dot per 

cell) grown in glucose. Black dots represent the entropy of simulated random walks for 

different density values. The green reference line was obtained by using local polynomial 

regression. (O) Examples of mitochondrial networks in yeast cells grown in glucose as a 

function of time in microfluidic chambers. Mitochondrial surfaces, generated by MitoGraph 

v2.0 software, are gold and cell surfaces are gray. Normalized spatial distribution values 

for each mitochondrial network are indicated beneath each cell. (P) Normalized spatial 

distribution of mitochondria in wild-type (blue, N=1268) and Δdnm1Δfzo1 (red, N=1007) 

cells as the cells transition from log-phase (0 hrs) to steady state (72hrs). One dot per cell 

is plotted. Data points are spread out along the x-axis around each of the seven time 

points for visualization purposes. Large dots correspond to the mean values of each 

population. Dotted box represents the data used to generate panel Q. Green line 

represents the average normalized spatial distribution of mitochondria in simulations of 

passive diffusion. (Q) Normalized spatial distribution of mitochondria for different stages of 

cell cycle (as measured by bud volume) in polarized (log-phase; 0 hrs) cells grown in 

glucose. One dot per cell is plotted. Large dots correspond to the rolling average (centered 

within a 16 data point window size). Error bars are 95% confidence intervals. 

 

Figure 2: Mitochondrial networks display fission/fusion-dependent differences in their 

topological properties. (A) Maximum intensity projection (MIP) of the top half of a matrix 

labeled mitochondrial network (mito-dsRed). (B) The top half of the respective MitoGraph 

with the cell surface in gray, the mitochondrial surface in gold, network edges in dark blue 

and network nodes as in light blue spheres. (C) Topological view of the MitoGraph shown 

in (B). Dark blue nodes correspond to nodes from the MitoGraph shown in (B). 

Translucent nodes in are not visible in (B) and dashed edges link translucent nodes to the 

rest of the network in the bottom half of the cell. (D) Projection of mitochondrial networks 
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onto the cell surface is planar in wild-type cells. (E) In the absence of fission and fusion we 

observed that the projection of mitochondrial networks onto the cell surface displays a 

large number of edges crossing over each other (e.g. green arrows). (F) Example of two 

edges crossing over each other as seen in the image stacks slices and the corresponding 

MIP. (G) Number of overlaps per edge in wild-type and Δdnm1Δfzo1 mutant cells. We 

verified that in absence of fission and fusion almost 20% of the edges detach from cell 

surface and overlap another edge. (H) MIPs of representative examples of matrix labeled 

mitochondria (dsRed) in wild-type cells and their respective network representations. (I) 

MIPs of representative examples of matrix labeled mitochondria (mito-dsRed) in 

Δdnm1Δfzo1 cells and their respective network representations. (J) Average degree as a 

function of mitochondria-to-cell surface ratio (length of mitochondrial networks divided by 

cell surface area). Small blue and red data points represent experimental wild-type 

(N=350) and Δdnm1Δfzo1 (N=50) cells, respectively (one dot per cell). Large points 

represent the rolling average. Inset corresponds to the average degree (# edges per node) 

of MitoGraphs in wild-type and Δdnm1Δfzo1 cells. (K) Degree distribution of MitoGraphs in 

wild-type (N=350) and Δdnm1Δfzo1 (N=50) cells. (L) Global redundancy (fraction of 

edges) of MitoGraphs in wild-type and Δdnm1Δfzo1 cells. (M) Local redundancy (fraction 

of edges) of MitoGraphs in wild-type and Δdnm1Δfzo1 cells. Error bars are 95% 

confidence intervals. (N) The average edge length of mitochondrial networks is normalized 

by the radius of a sphere with the same surface area as the cell. For the other 2D 

geographical networks, the normalization is the radius of a circle with the same perimeter 

as the network convex-hull (Figure S1). Small blue and red data points represent 

experimental mitochondrial networks in wild-type (N=350) and Δdnm1Δfzo1 cells (N=50), 

respectively (one dot per cell). Linear regression analysis is shown in STAR methods. 

Large data points represent different examples of 2D geographical networks (Viana et al., 

2013). Dashed black line represents √𝜋/𝑁, the average edge length expected for a 
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random network built by placing N points at random over the surface of a unit sphere and 

connecting them to their first neighbor. Inset shows data points of mitochondrial networks 

together with solid lines that represent the relationship obtained from the random model, 

discussed in STAR methods, for values of α = 0, 1.0 and 2.5. The solid lines represent the 

average of thousand simulations for each value of α. The 95% confidence intervals of the 

mean and the line thickness are about the same. 

 

Figure 3: Fusion and fission dynamics generate network topologies that can facilitate 

diffusive transport within the network. (A) Average shortest path length of the largest 

connected component within wild-type (N=350) and Δdnm1Δfzo1 (N=50) networks 

normalized by the component length. (B) Normalized global efficiency of mitochondrial 

networks in wild-type (WT) and Δdnm1Δfzo1 cells. (C) Computed mean time for first 

encounter between two simulated particles diffusing on wild-type (blue circles) and 

Δdnm1Δfzo1 (red circles) structures. Lines represent simulated diffusion on synthetic 

Bethe lattice tree networks with edge length matching the mean edge length of wild-type 

(1.29µm, orange-red) and Δdnm1Δfzo1 (2.56µm, green) networks. Inset shows example 

Bethe lattice network. (D) Data from (C) plotted against the total edge length and the loop 

number of the network structures. Color represents encounter time in seconds. Wild-type 

are shown as dots and Δdnm1Δfzo1 as stars.  (E) Rate of arrival for simulated diffusive 

molecules to reach a stationary target within the mitochondrial networks, as a function of 

molecule concentrations. Rates averaged over wild-type and Δdnm1Δfzo1 network 

structures are plotted in the inset, with comparison to concentration scaling behaviors 

expected for one-dimensional (~C2) and two- or three-dimensional (~C) systems. Main 

figure shows ratio between wild-type and Δdnm1Δfzo1 network averages, with error bars 

giving standard error of the mean. 
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Table 1: Topological and geometrical differences between mitochondrial networks in wild-

type and Δdnm1Δfzo1 cells. We manually correct a subset of N=50 wild-type networks to 

account for tubule intersections, and Figure S2 shows that the networks automatically 

generated by MitoGraph are similar to the manually corrected counterparts. Errors are 

standard deviations. Wilcoxon rank sum test reports the significance of the difference 

between the subset of manually corrected wild-type networks and Δdnm1Δfzo1 networks 

(N=50) used in the paper. 

 
Wild-type 

Wild-type 
(manually corrected) 

Δdnm1Δfzo1 
p-value 

(Wilcoxon 
rank sum test) 

     
Avg. degree 2.2 ± 0.3 2.2 ± 0.2 1.8 ± 0.3 3.36e-09 
Proportion end nodes 
(Pk1) 

(40 ± 13)% (40 ± 11)% (57 ± 13)% 3.88e-09 

Proportion of bifurcation 
nodes (Pk3) 

(54 ± 12)% (58 ± 12)% (42 ± 13)% 8.08e-09 

Global redundancy 0.18 ± 0.07 0.17 ± 0.06 0.07 ± 0.07 2.00e-09 
Local redundancy 0.3 ± 0.2 0.3 ± 0.2 0.04 ± 0.09 4.79e-14 
Largest connected 
component 

(90 ± 14)% (92 ± 13)% (78 ± 24)% 0.13 

Avg. number of 
components 

3.8 ± 2.3 3.7 ± 2.2 2.4 ± 1.4 0.0005 

Avg. edge length (1.3 ± 0.2)µm (1.4 ± 0.2)µm (2.9 ± 0.8)µm 3.2e-17 
Normalized shortest path 
length 

0.12 ± 0.04 0.12 ± 0.03 0.24 ± 0.09 9.24e-14 

Normalized global 
efficiency 

0.66 ± 0.2 0.63 ± 0.2 0.44 ± 0.2 1.60e-05 
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STAR Methods 

LEAD CONTACT AND MATERIALS AVAILABILITY 

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Susanne Rafelski (susanner@uci.edu).  

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Yeast strains 

Standard yeast methods were used throughout this study. We used the Saccharomyces cerevisiae 

W303A wild-type strain SRY-1 expressing the 2-micron plasmid pVT100U-dsRed to constitutively 

label the mitochondrial matrix (formerly SMR-12 in Rafelski et al., 2012). Δdnm1Δfzo1 strain (-his 

and -trp selection), a gift from Jodi Nunnari, was transformed with pVT100U-dsRed to generate 

strain SRY-45. Δdnm1Δfzo1 cells were maintained on SC selection plates containing glycerol (2%) 

and ethanol (3%) as carbon source to avoid formation of petites. Wild-type cells were maintained 

on SC selection plates with glucose (2%) as carbon source.  

Δcox6 (SRY-175) and Δmip1 (SRY-174) strains were created by disrupting COX6 and MIP1 using 

the pFA6a-HIS3MX6 plasmid (Longtine et al., 1998). The HIS3 disruption cassette was amplified 

by PCR from the plasmid using cassette specific primers as described in Longtine et al. 

(underlined) with added homology arms for COX6 and MIP1 (italic), respectively:  

ΔCOX6_F: 5’ 

GTAGCGGAGATAAACAGCCGAACAATTGTATTTGACACATAAACTAATAAATATACAACAATGC

GGATCCCCGGGTTAATTAA 

ΔCOX6_R: 5’ 

AATCGTTTTACAAAATAAATACGAATCTTATTTCAAATTGAGGAATTTTCCACAAGAATTCGAGC

TCGTTTAAAC 

ΔMIP1_F: 5’ 

TCTAAAGAAGAGGTCGAGATGGGGATTATATGTAGTTGTTGAGCAACGAGGGACAAGTATGC

GGATCCCCGGGTTAATTAA 

mailto:susanner@uci.edu
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ΔMIP1_R: 5’ 

AATGTGCTGTATATATAAATACAAATGCGAAAGCTAATGCAGATTTTGCCTAGAATTCGAGCTC

GTTTAAAC 

PCR product was cleaned up (QIAquick PCR Purification Kit, QIAGEN, Germantown, MD, USA) 

and transformed into SRY-1 (W303A wild-type strain expressing pVT100U-dsRed plasmid) using 

the lithium acetate method. Transformed cells were grown on SC–his selection plates containing 

glucose. Disruption of COX6 and MIP1 was confirmed in yeast clones using PCR using two primer 

sets. Primer set 1 contained forward primer specific to the 5’ UTR of COX6 and MIP, respectively, 

while the reverse primer was specific for the HIS3 disruption cassette, resulting in amplification 

when COX6 and MIP1 were disrupted by the proper integration of the HIS3 disruption cassette. 

COX6_F: 5’ AGCTTTCTTT GAATCTCCCTATGA 

MIP1_F: 5’ GCCTGTTCTG TGCCTCTT 

HIS3_R: 5’ CTCTTCAGGTAAGGGAGCTTTG 

Primer set 2 contained same forward primers as primer set 1 but the reverse primer localized 

within the COX6 and MIP1 gene, respectively, resulting in amplification when COX6 and MIP were 

still intact. 

COX6_R: 5’ TACTTGGATGAATTGAAGGATGTCA 

MIP1_R: 5’ AAAAGAAACCATCACAAGCAAGAAC 

Loss of COX6 and MIP1 was also confirmed by the lack of grow of yeast clones on SC-his 

selection plates containing glycerol, suggesting that cells lost respiratory capacity. Actin cables 

(Figure S9B) were visualized by transforming SRY-1 with an integration plasmid carrying ABP140-

3xGFP, a gift from David Drubin (pBS-3GFP-His3 + ABP140(-ORFnt1501-1884) + 

ABP140(340bp_downstream; Toshima et al., 2006) to generate strain SRY-4. 

 

METHOD DETAILS 

Experimental setup 

Microfluidic device and microscope 

Wild-type and Δdnm1Δfzo1 cells were grown overnight at 30°C in YP media with 2% glucose then 

diluted and allowed to grow to early mid-log phase (O.D.600 = 0.45 ± 0.04). Cells were appropriately 
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diluted and briefly vortexed, then loaded into the microfluidic CellAsic ONIX plates (Y04C-02, EMD 

Millipore, Billerica, MA, USA) using the manual CellAsic ONIX Microfluidic System (EMD Millipore) 

at a pressure of 3-4 psi until desired cell densities were reached (Figure 1). Cell concentrations at 

loading took different growth rates into account to permit comparable increase in cell density 

during the experiment. Media flow was maintained at 3psi throughout the experiment using the 

automated CellAsic ONIX Microfluidic System (EMD Millipore). Wild-type and Δdnm1Δfzo1 cells 

were kept at room temperature and imaged at 0, 6, 12, 18, and 24 hours. For imaging wild type, 

Δcox6 and Δmip1, cells were grown overnight at 30°C in YPD media, diluted and grown to mid-log 

phase (O.D.600 = 0.55 ± 0.09). Diluted mid-log cells were loaded into the microfluidic CellAsic 

ONIX plates (Y04C-02, EMD Millipore, Billerica, MA, USA) using the manual CellAsic ONIX 

Microfluidic System (EMD Millipore). Cells were imaged as described (Viana et al., 2015) using an 

inverted Nikon Eclipse microscope (Nikon Inc, Melville, NY, USA) with a Yokagawa CSUX1 

spinning-disk head (Tokyo, Japan) equipped with a Hamamatsu EMCCD camera (C9100-13, 

Shizuoka, Japan). A 100x 1.49 NA oil TIRF objective (Nikon Inc, Melville, NY, USA), a 1.5x tube 

lens, and a piezo z-stage were used to obtain an x, y pixel size of 56 nm with 200nm z-steps. 

Images were collected with 100ms exposures for each the fluorescent and bright field channels. 

Imaging was controlled using Micromanager open source software (Edelstein et al 2010).  

 

Image Processing and Data Analysis 

Budding index calculation 

To calculate the budding index, maximum intensity projections (MIP) of 3D fluorescent images of 

the mitochondrial networks were used to determine the percentage of budding cells per frame for 

each cell type, condition and time point. 

 

Generating mitochondrial networks with MitoGraph 

Confocal z-stacks containing many cells in the field-of-view were used to determine unbudded, 

non-dividing mothers and daughters cells. We used ImageJ to draw a region of interest (ROI) 

around the mitochondria of each cell and then created a single-cell sub-stack. The outside region 
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of the ROI was filled with random Poisson noise to mimic the original stack background and avoid 

spurious segmentation in the next step. 

We used the software MitoGraph v2.0 (Viana et al., 2015) with default parameters to skeletonize 

single cell 16 bit z-stacks of fluorescently labeled mitochondria with pixel size 56 nm and 200 nm z-

spacing. MitoGraph creates a 3D surface model as well as a graph representation of mitochondria. 

MitoGraph exports 3D skeletons and surfaces of mitochondria as VTK (Visualization Toolkit) files 

and we used the software Paraview 4.0 to open and work with these files. MitoGraph also exports 

information regarding the network connectivity, e.g. nodes coordinates and connection list, as text 

files that were analyzed by custom routines written in C++ and R. 

We further validated MitoGraph v2.0 for use in the analysis of mitochondrial network topology in 

wild-type budding yeast cells (96% and 91% correct numbers of nodes and edges, respectively 

compared to manual results; STAR methods, Table S1). 

MitoGraph v2.0 software cannot currently resolve overlapping tubules, thus resulting in less 

accurate Δdnm1Δfzo1 MitoGraphs. To overcome this problem, Δdnm1Δfzo1 MitoGraphs (N=50) 

were manually inspected and corrected to generate the Δdnm1Δfzo1 dataset. We also manually 

corrected a subset of wild-type cells (N=50), and found no effects on any of our results and 

conclusions (Figure S2). 

 

Determining the cell surface location  

Method A - Convex hull method: In yeast, mitochondrial tubules anchor to the cell cortex thanks to 

the tethering between the mitochondrial outer membrane and plasma membrane invaginations 

(Cerveny et al., 2007; Lackner et al., 2013; Pernice et al., 2016). We can therefore use the outer 

surface of the mitochondrial network to determine the surface of the cell. This method for inferring 

the cell surface is especially powerful and accurate for steady state cells in which mitochondria are 

spread all over the cell. We begin with the 3D surface model of mitochondria generated by 

MitoGraph (Figure S8A) and we calculate its corresponding convex hull (Figure S8B) using a 

custom routine written in C++. The convex hull is the smallest convex polygon that contains all the 

3D meshwork points. Next, we use the points of the convex hull to fit a triaxial ellipsoid (Figure 

S8C). Figure S8D shows an overlay of the initial mitochondrial surface and the resulting ellipsoid 
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that represents the cell surface. Our routine exports the ellipsoid surface made of a meshwork of 

triangles as a VTK file (www.vtk.org). The number of triangles in the mesh was kept fixed and 

equal to 4800. The minor, mid and major axes of the ellipsoid are exported as a text file and used 

to compute the surface area and volume of the cell. 

 

Method B - Manual tracing: Contrary to steady state cells, most yeast cells in log-phase do not 

display mitochondria spread throughout the cell, especially in the absence of fission and fusion. 

Therefore, the convex-hull method is not applicable for log-phase cells. For these cells, we started 

by creating a Standard Deviation (SD) projection (Figure S9A) of the bright field z-stacks in ImageJ 

(Image → Stacks → Z Project... → Standard Deviation). Next, we manually drew an ellipse (green 

line) to determine the surface of the cell in the 2D projection. We determined the optimum location 

for the ellipse as the one that minimizes the error between the 2D projection and the convex hull 

method in steady state cells. We found that the optimum location for the ellipse lies between the 

dark ring marked by dashed white line in Figure S9A and the bright spots pointed by purple arrows 

in the same figure. The 2D ellipse is shifted in the z-direction such that its center matches the z-

slices that have an intensity inflection in the bright-field channel. To determine the inflection slice, 

we created an ellipsoidal ROI five pixels wider than the original manually drawn ellipsoid and then 

calculated the SD of pixel intensity inside the enlarged ROI for every slice of bright field z-stack. 

The inflection slice was defined as the slice for which the SD of pixel intensity was the lowest. 

ImageJ exports values of minor and major axes of the ellipse as well as its coordinates for the 

center of mass as a text file that serves as input to a custom routine written in C++. This routine 

rotates the ellipse along its major axis to create an ellipsoid that represents the cell surface and 

computes the surface area and volume of the cell. 

 

Validation of the two methodologies for cell surface calculation 

We used cells containing both the protein Abp140 labeled with GFP to highlight actin cables 

(Figure S9B) and mitochondria labeled with RFP (Figure S9C) to quantify the errors associated to 

the cell surface extraction. First, we applied MitoGraph to the actin cable channel z-stacks. 

Although our imaging system does not have enough resolution to resolve actin cables, we 
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observed that MitoGraph was able to separate the actin cable signal from the background. Next, 

we used the 3D surface generated for actin cables as input for the convex hull method for 

calculating the cell surface. Because the actin cables are well spread all over the cell as shown in 

Figure S9B, we believe that the combination of the 3D actin cable-based surface generated by 

MitoGraph and the convex-hull method produces a very accurate estimation for the cell surface. 

We used this surface as a ground-truth for validating the other cell surface extraction methods. We 

compared results from both methods A and B against this ground-truth for a set of N=18 wild-type 

cells grown in glucose for 24 hrs. For these cells, we calculate the minor, mid and major axes, the 

surface area and volume of the 3D ellipsoids. Figure S9D shows the values of these attributes 

obtained by methods A (red circles) and B (green circles). The x-axis represent the values 

obtained for the ground truth. We observed a strong linear correlation (R=0.96) between the data 

for both A and B methods and the ground-truth for all attributes. This result indicates that both 

methods are very consistent across cells of different sizes. 

 

We found that results shown in Figures 1D-P and Figure 2N in the main text could change due to 

errors associated with the cell surface estimation. In Figures 1D-P the spatial distribution analysis 

depends on the cell surface. In Figure 2N the y-axis is normalized by the radius of the sphere over 

which the network is projected and this radius is calculated as by R = √(S/4π), where S is the cell 

surface area. However, the strong correlations found in Figure S9D (R = 0.99 for method A and R 

= 0.98 for method B) shows that the entropy values used to calculate the spatial distribution shown 

in Figures 1D-P are very similar regardless the methodology used to estimate the cell surface. In 

addition, the average error of R for method A (red) is on the order of ΔR =±0.4μm3 according to 

Figure S9D. This is too small and would not affect the main conclusion of Figure 2N that is 

mitochondrial networks follow the same dependence as other real-world networks in a 

fission/fusion dependent manner. 

 

Representing the mitochondrial network as a spatial probability distribution 

The mitochondrial skeleton is projected onto the ellipsoid and discretized into a sequence of 

equally spaced points. To prevent the projection from having gaps, we ensure the distance 
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between consecutive points is smaller than the smallest distance between the center of mass of 

adjacent triangles that form the meshwork of the ellipsoid surface. Next, we label the mesh 

triangles that contain at least one skeleton point with “1”. Mesh triangles that do not contain any 

skeleton point are labeled with “0” (Figure 1E). The labeled mesh is convolved with a Gaussian 

kernel with SD = 2.0 pixels, which creates two-dimensional tubes with diameters visually matching 

mitochondrial tubules (Figure 1F). The scalar values of the convolved mesh are normalized so that 

the values of all triangles sum up to 1. This process is exemplified in Figures 1D-F and I-K for a 

cell with high and low spatial distribution, respectively. 

 

Representing a passive process as probability distribution 

We used random walks to simulate a cell where mitochondria are distributed solely according to a 

passive process. We started by creating a random walk of length L over the surface of an ellipsoid 

of area S (Figures 1G and L). The random walk starts with a particle located in a randomly chosen 

surface mesh triangle. At each time step, the particle moves to another triangle chosen at random 

among all the triangles located at distance r from the previous one. The parameter r represents the 

persistence length of mitochondrial tubules, which was measured from our experimental networks. 

Our measurements indicate r = 0.37 µm with no significant difference between wild-type and 

fission/fusion mutant cells and no significant variation with time (data not shown). Mesh triangles 

visited by the particle at least once are labeled with 1. Triangles not visited by the particle are 

labeled with 0. The labeled mesh is convolved with a Gaussian kernel with SD = 2.0 as above. The 

scalar values of the convolved mesh are normalized so that the values of all triangles sum up to 1 

(Figures 1H and M). 

 

Entropy-based spatial distribution of mitochondria 

We calculated the entropy given by Equation 1 for each cell from our dataset. The term pi 

represents the probability value calculated as described above for the i-th triangle of the 

meshwork. Figure 1N shows the values of entropy of log-phase (0 hrs) wild-type (blue dots) and 

fission/fusion double mutant (red dots) cells grown in glucose (one point per cell). 
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝𝑖

4800

𝑖=1

𝑙𝑜𝑔⁡(𝑝𝑖)(1) 

 

Next, we simulated random walks with length in the range of 20 μm to 2020 μm in intervals of 5 μm 

as described above. Fifty random walks were generated for each length on the surface of an 

ellipsoid of area 86 μm2, which is the mean surface area of cells in our dataset. The chosen value 

of surface area combined with the range of length ensures that we cover all the possible values of 

mitochondrial density (length/surface area) observed in the experimental data. These results were 

robust against the particular choice of ellipsoid surface (data not shown). We next calculated the 

entropy of each simulated random walk as described above. Results are shown as black dots in 

Figure 1N. We used local polynomial regression to estimate a reference line (green line) for 

entropy versus density expected by the diffusion process. Finally, we calculated the normalized 

spatial distribution of mitochondria for each cell as the ratio between the cell and the diffusion 

process entropy. Examples of this calculation for cells with high and low normalized spatial 

distribution are shown in Figures 1F and H and Figures 1K and M, respectively. To assign a single 

number to each population, we defined the relative distribution as the mean value of the entropy 

ratio averaged over all the cells of a population. For instance, in Figure 1P we show the relative 

distribution for populations at different time points. The blue and red points inside the dashed box 

were obtained by averaging the entropy ratio of cells shown as blue and red dots in Figure 1N. 

 

Normalized global efficiency 

The global efficiency is described in the literature as 

𝐸𝑔𝑙𝑜𝑏 =
1

𝑁(𝑁−1)
∑

1

𝐿𝑖,𝑗
𝑖≠𝑗 , 

where Li,j is the length of the shortest path connecting nodes I and j in a network with N nodes 

(Latora and Marchiori, 2001). The global efficiency as defined above, do not account for size 

effect. Therefore, a mitochondrial network could be more or less efficiency depending on the cell 

size and not only its morphology. To compensate for this effect, we normalize the global efficiency 
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by its counterpart, where the path between nodes I and j are given by the geodesic distance along 

the cell surface Di,j. Therefore the normalized global efficiency is then given by 

𝐸𝑛𝑜𝑟𝑚𝑔𝑙𝑜𝑏 = ∑
1

𝐿𝑖,𝑗
𝑖≠𝑗 /∑

1

𝐷𝑖,𝑗
𝑖≠𝑗 . 

 

Random network models 

The simplest model of a mitochondrial network is that of a completely random model, where nodes 

are positioned at random inside the cell and then randomly connected. However, this basic model 

would not represent a true random model of mitochondrial networks for several obvious reasons: i) 

mitochondria are located at the periphery of the cell; ii) mitochondrial networks are planar with 

respect to the cell surface; iii) only nodes with degree 1 and 3 are observed in experimental 

networks; iv) distance likely plays an important role in establishing connections. Here we describe 

our attempt to incorporate these factors as much as possible in a random model for mitochondrial 

networks. 

 

The model requires a planarity test to ensure that new edges do not cross any of the previously 

existing edges. This test is quite time consuming since it has to be performed for every new 

candidate edge. In addition, the number of discarded edges increases as the number of existing 

edges increases. Efficient algorithms are known to perform this type of planarity test when the 

edges lie either on a 2D plane or on a spherical surface. The task of testing the planarity of edges 

becomes a prohibitive when edges lie on the surface of a tri-axial ellipsoid, such as the yeast cells 

surface. For this reason, we decided to project our mitochondrial networks onto the surface of 

spheres that preserve the surface area of the cell surface. 

 

Mapping experimental mitochondrial networks into spherical surfaces: We begin with an 

experimental mitochondrial skeleton and the ellipsoid that represents the cell surface, as shown in 

Figure S10A. Each point of the mitochondrial skeleton is projected onto the closest point on the 

ellipsoid meshwork to generate the projected network (Figure S10B). Next, edges of the projected 

network are replaced with geodesics between the corresponding nodes to generate a geodesic 
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network (Figure S10C). The geodesic between two nodes i and j was approximated by the shortest 

path between these nodes calculated along the ellipsoid meshwork. Finally, the geodesic is 

projected onto the surface of a sphere with the same surface area as the initial ellipsoid (Figure 

S10D). Figure S10E (left three panels) shows the length of the edges before and after each step of 

the process for generating the spherical projection (one point per edge). Figure S10E (rightmost 

panel) shows the relationship between the edge length in the original experimental network and in 

the resulting spherical projection (one point per edge). The strong linear correlation (R= 0.9, p-

value < 2x10-16) suggests that most edges are well represented by straight lines on the surface and 

the difference in length at each step is very small. We extended this analysis to the edges 

(N=195593) of all the cells used in this paper and the result is shown in Figure S10F as a contour 

plot. Red contour lines indicate that the data points are greatly concentrated around the identity 

line (cyan dashed line). 

 

Random models generation: We begin with the spherical projection of an experimental 

mitochondrial network as shown in Figure S11A (and obtained as described above). We extract 

four network attributes: number of nodes (N), surface area (S), total length of the network (L) and 

number of end-points (p1), as shown in Figure S11B. These attributes serve as the input to create 

an instance of a random planar geographic (RPG) model (Figure S11C). In this model, N nodes 

are randomly positioned over the surface of a sphere of area S and randomly interconnected with 

a distance dependent probability (P(ℓ) ~ exp(-αℓ/√ρ)), where ρ = N/S and α controls the strength of 

the distance dependence). The resulting network can display nodes of degree zero and nodes with 

degree two. Because these classes of connectivity do not exist in experimental mitochondrial 

networks by definition, we removed any nodes with degree zero or two in the simulated networks 

(Figure S11D). The numerical implementation of the RPG model has an additional test that 

ensures the algorithm does not enter an infinite loop. For a consecutive number Nlog(N) of 

attempts of adding a new connection that fail due to the planarity test, one existing edge is chosen 

at random and deleted. In addition, we force the algorithm to start all over if N2 edges are deleted. 

The algorithm for RPG instances generation was written in C++ and uses the igraph library to 

perform graph-related computations. 
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Quantification and statistical analysis 

 

Linear regression of figure 2N 

Results of linear regression analysis indicate that wild-type networks display a scaling similar to 

other (2D) geographical networks but different from Δdnm1Δfzo1 networks: intercept = 1.45 and 

slope = -0.54; Δdnm1Δfzo1: intercept = 2.04 and slope = -0.62; the set of other 2D geographical 

networks: intercept = 1.27 and slope = -0.54. Analysis of variance indicates no significant 

difference between wild-type data and the other 2D geographical networks (t = -1.3 and adjusted 

p-value = 0.34 for the intercept and t = 0.11 and adjusted p-value = 1.0 for the slope). Analysis of 

variance indicates a significant difference between wild-type and Δdnm1Δfzo1 data (t = 3.6 and 

adjusted p-value < 6.0x10-4 for the intercept and t = -1.5 and adjusted p-value = 0.24 for the slope). 

P-values have been adjusted by Bonferroni correction. 

 

Diffusion in mitochondrial networks 

Mitochondrial networks are represented as nodes connected by edges with a specified physical 

length. Diffusion is simulated on the largest connected component of mitochondrial networks from 

each cell. Simulation of diffusion along the network is accelerated using the analytical solutions for 

diffusion time distributions in a one-dimensional domain. This approach, which leverages 

propagator functions for geometrically simple subdomains in an event-driven algorithm, is 

analogous to prior work on Green’s-function accelerated kinetics simulations (van Zon and Wolde 

2005) and target search by DNA-binding proteins (Koslover et al., 2011). 

For encounter times (Figures 3C and D), both particles are initiated at a random position on the 

network, weighted by edge length. Each particle then undergoes one-dimensional diffusion along 

the network edges. When at a node, a particle propagates a distance equal to the length of the 

shortest edge connected to the node, over a time interval sampled from known diffusion-time 

distributions (Redner, 2001), and randomly selecting an edge. When positioned along an edge, the 

particle propagates to one of the two connected nodes in a time sampled from known diffusion-

time distributions and choosing a node according to known splitting probabilities (Redner, 2001). 



36  

When two particles are simultaneously found on the same edge, each of them propagates as if 

there was a node halfway between the two particles, preventing them from passing in the tube 

without an encounter. Particles are considered to have encountered one another when they come 

within a separation of 10nm. Encounter times in Figures 3C and D are averaged over 1000 

encounters. 

 

For stationary target search, both a particle and a target are randomly positioned on the network 

(again weighted by edge length). The particle undergoes a random walk until it is within 10 nm of 

the target, when the particle is considered to have found the target. A search time distribution is 

obtained by sampling 10000 independent encounter events. This distribution is converted into a 

single-particle survival probability S1(t), i.e. the probability that the target has not been found before 

a given time by one searching particle. The single-particle survival probability is converted to an N-

particle survival probability, SN(t) = (S1(t))
N. The rate in the inset of Figure 3E is the inverse of the 

mean N-particle survival time 

rate = [∫ 𝑡
∞

0

d𝑆𝑛(𝑡)

d𝑡
d𝑡]

−1

.  

 

DATA AND CODE AVAILABILITY 

The datasets and code generated during this study are available at Mendeley at this URL: 

https://data.mendeley.com/datasets/nshn8hhd6d/1 

 

Supplemental text, figures, legends and video 

Supplemental text, figures, and legends are all contained in a comprehensive PDF.  

 

Supplemental  Movie S1: Cytokinesis is capable of splitting mitochondrial tubules in two even in 

absence of fission and fusion dynamics. Related to Figure 2.  
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited Data 

Data and Code This paper  https://data.mendeley.com/datasets/nshn8hhd6d/1 

Experimental Models: Organisms/Strains 

SRY-1 strain (formerly SMR-
12; W303A wild-type strain 
expressing pVT100U-dsRed 
plasmid) 

Rafelski et al., 
2012 

N/A 

Δdnm1Δfzo1 strain  Jodi Nunnari 
laboratory 

N/A 

SRY-45 strain (Δdnm1Δfzo1 
strain expressing pVT100U-
dsRed plasmid) 

This paper  

SRY175 (Δcox6 in SMR12 
strain) 

This paper N/A 

SRY174 (Δmip1 in SMR12 
strain) 

This paper N/A 

SRY-4 strain (SMR-12 
expressing pABP140-3xGFP 
plasmid) 

This paper N/A 

pVT100U-dsRed plasmid 
Rafelski et al., 
2012 

N/A 

pFA6a-HIS3MX6 plasmid 
Wallace 
Marshall 
laboratory 

N/A 

pABP140-3xGFP plasmid 
Toshima et al., 
2006 

N/A 

Software and Algorithms 

Key Resource Table



MitoGraph: software used for 
extracting the graph 
representation of 
mitochondrial networks from 
3D zstcks of mitochondria-
labeled cells 

Viana et al., 
2015 

https://github.com/vianamp/MitoGraph 

MitoDiffusion: C++ code for 
the calculation of entropy of 
mitochondrial networks as 
described in Figure 2 

This paper 
https://data.mendeley.com/datasets/nshn8hhd6d/1 

LoopFinder: C++ code for 
counting number of loops in 
mitochondria networks via 
brute force search. 

This paper 

https://data.mendeley.com/datasets/nshn8hhd6d/1 

MitoEfficiency: C++ code for 
calculating the normalized 
global efficiency of 
mitochondrial networks 

This paper 

https://data.mendeley.com/datasets/nshn8hhd6d/1 

Algorithm for diffusive search 
on networks: this code uses 
simulations of diffusion on 
spatial networks  to find mean 
encounter times between two 
diffusing particles, diffusive 
search times for stationary 
targets, and rates of finding 
stationary targets. 

This paper 

https://data.mendeley.com/datasets/nshn8hhd6d/1 
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Magnitude Error Overall Error

Wild-type ∆dnm1∆fzo1 Wild-type ∆dnm1∆fzo1

# Nodes 5.81% 13.90% 3.90% 13.90%

# Edges 9.26% 22.90% 8.51% 22.90%

Avg. degree 4.95% 10.52% 4.83% 10.52%

Total length 2.67% 3.14% 0.97% 3.14%

Avg. edge length 9.71% 26.66% -8.81% -26.66%

SD edge length 18.43% 34.20% -18.43% -34.20%

# Connected components 17.50% 25.00% -17.50% -25.00%

Phi (size of largest connected component) 5.53% 1.78% 5.26% 1.78%

TABLE S1. Average errors of measurements made by MitoGraph for wild-type and fission/fusion

double mutant cells. Related to Figure 2. N=50 skeletons of wild-type and N=50 skeletons of

fission/fusion double mutant cells were manually corrected. For each cell, errori = 1− Qr
Qm , where

Qr represents the quantity in the real skeleton and Qm represents the quantity in the manually

corrected skeleton. Magnitude error was calculated as MagError = 100
N

∑N
i |errori| and overall

error was calculated as OveError = 100
N

∑N
i errori. This table demonstrates that Mitograph

displays much poorer results for ∆dnm1∆fzo1 cells. This is mainly due to topological artifacts

caused by overlapping tubules in ∆dnm1∆fzo1 networks.
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Rapid growth Steady state

0hs 06hs 12hs 18hs 24hs

Wild-type 434 352 269 176 350(50)

∆dnm1∆fzo1 509 340 228 251 260(50*)

TABLE S2. Number of cells in each population of our dataset. Related to Figure 2. Between

parentheses we indicate the number of manually corrected skeletons. *Number of ∆dnm1∆fzo1

skeletons used in the main text for topology-related studies.
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Groane street network

Convex-hull

Circle with same perimeter
as the convex-hull

FIG. S1. Method used to calculate the relative radius of 2D geographical network. Related to Figure

2. The street network of Groane is shown in black and its convex-hull polygon is shown in red.

The green circle has the same perimeter as the network convex-hull. The value of the average edge

length of Groane street network used in Figure 2N is normalized by the radius of the green circle

shown here. The same procedure was performed for all the other 2D geographical networks shown

in Figure 2N.
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FIG. S2. Automatically extracted wild-type mitochondrial networks are similar to their manually

corrected counterparts. Related to Table 1. We used blue and green to represent automatically ex-

tracted and manually corrected networks, respectively. (A) Average degree defined as the average

number of edges attached to a node. (B) Relative frequency of connected components for both

datasets. (C) Topological and geometrical attributes for both datasets. Solid lines correspond to

the best fitting and the gray area represent the 95% CI of the mean. (D) Scaling between average

edge length and number of nodes for both datasets. (E) Average degree as a function of mitochon-

drial total edge length for both datasets. Small dots represent the raw data and big dots represent

the rolling average. Error bars represent the 95% CI of the mean. The good agreement between

the automatically extracted and manually corrected data suggests that the networks automatically

generated by MitoGraph are similar to the manually corrected networks.
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FIG. S3. Cytokinesis is capable of splitting mitochondrial tubules in two even in absence of fusion

and fission dynamics. Related to Table 1. (A) Distribution of number of connected components

in mitochondrial networks of wild-type (blue) and ∆dnm1∆fzo1 cells. (B) Time-points of a

∆dnm1∆fzo1 cell before and after division. Mitochondria are shown in red and overlaid with

bright field MIP. The continuous mitochondrial tubule at t=0 is broken apart by the cytokinesis

after 1 min. The mother cell ends up having two disconnected mitochondrial tubules as indicated

by the green arrows.
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FIG. S4. Mutants with defective respiratory function or lack of mtDNA generate mitochondrial

networks with more connected components. Related to Table 1. The average number of connected

components in wild-type (WT) yeast cells (blue, N=111, 56, and 351 cells, respectively) and mutant

yeast cells from matched experiments. ∆∆ represents ∆dnm1∆fzo1 cells in red (N=89, 260 and

51 cells, respectively; ∆∆∗ are the manually corrected set of networks used in the main results

section), while COX6 and MIP represent ∆cox6 (rho-; N=39) and ∆mip (rho0; N=39) cells, in

two shades of gray respectively. Statistical comparison was performed with Wilcoxon rank sum

with Bonferroni adjustment for pairwise comparison.
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FIG. S5. Measurements of global and local redundancy applied to two examples of networks (see

methods). Related to Figure 2. The first example corresponds to the middle ∆dnm1∆fzo1 network

shown in Figure 2I, which displays no loops. Therefore, both global and local redundancy are zero.

The second example corresponds to a region of the bottom wild-type network shown in Figure 2H.

The network displays four loops, three of which fall in the category of small size loops (loops with

length in the range 2µm-6µm). Global and local redundancy values of this network are 0.2 and

0.6, respectively. Networks are shown in topological view, which means that size of loops do not

correspond to the real values shown on the right side.
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FIG. S6. Mitochondrial networks have decreased global redundancy in the absence of fission and

fusion. Related to Figure 2. (A) The bars represent the global redundancy of some examples of

real-world networks. The solid/dashed black line represents the global redundancy of wild-type

and ∆dnm1∆fzo1 mitochondrial networks, respectively. (B) Global redundancy for wild-type

and dnm1fzo1 mutant cells. The box plots represent the median and the 25th and 75th percentile.

The vertical lines represent the data range.
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FIG. S7. Small-sized loops are absent in mitochondrial networks of fission/fusion defective cells.

Related to Figure 2. (A) Examples of small sized loops in wild-type mitochondrial networks. First

and second columns represent the maximum intensity projection (full cell and 5 slices, respectively).

Third column highlights the small-sized loops for which the perimeter is in between 2µm and 6µm.

(B) Different types of loops found in mitochondrial networks based on their number of sides, i.e.

number of edges that form the loop. (C) Average number of small-sized loops found in wild-type

and mutant cells. (D) Average number of loops normalized by the total length of the network.

Error bars represent the 95% CI of the mean.
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A B C D

FIG. S8. Method for estimation of cell surface. Related to Figure 2. (A) We start with an

experimental mitochondrial surface provided by MitoGraph; (B) We calculate the corresponding

convex-hull of the 3D mitochondrial surface; (C) The convex-hull points are used to fit a 3D

ellipsoid using the least squares algorithm described in MATLAB Central file ID #24693. (D)

Original mitochondrial surface and the resulting ellipsoid.
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FIG. S9. Different methods are used to validate the cell surface detection. Related to Figures 1

and 2. (A) Standard deviation projection of bright field z-stack of a yeast cell containing labels

for both mitochondria and actin. The internal bright ring and the bright spots indicated by purple

arrows are used as reference for the manual traces of cell surface represented by the solid green

line. (B) MIP of the actin-labeled cell shown in (A). The solid purple line indicates the cell surface

determine by the convex-hull method based on the actin signal. (C) MIP of the mitochondria-

labeled cell shown in (A). The solid brown line represents the cell surface determined by the

convex-hull method based on the mitochondria signal. (D) Relevant properties of the resulting

ellipsoid geometry obtained by both methods: manual tracing (green dots) and mitochondria-based

convex-hull (brown dots) compared to the ground truth (actin-based convex-hull). Dashed black

lines represent the identity y = x (a perfect method should have all dots lying on this line). The

solid brown and green lines represent the best fitting and the gray area represent the 95% CI of

the mean.
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FIG. S10. Process of mitochondrial network projection onto a spherical surface. Related to Figures

1, 2, and 3. (A) We start with an experimental mitochondrial network and the ellipsoid that

represents the cell surface. (B) The skeleton is projected onto the ellipsoid surface by assigning

each point of the skeleton to the closest point of the ellipsoid meshwork. (C) The edges of projected

network are converted in geodesic paths between respective nodes along the ellipsoidal geometry.

(D) The geodesic network from (C) is projected onto the surface of a sphere with the same surface

area as the initial ellipsoid. (E) The length of edges (N=45, one point per edge) at each step of the

process of generating the spherical projection. The solid black line represents the reference y = x.

(F) Heat map representing the length of edges (N=195593) in the spherical representation versus

the original length for all the cells used in this study. Red solid lines represent the contours that

contain 94%, 98%, 99% and 99.5% of black points. Cyan dashed line represents the identity y = x.
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FIG. S11. Random planar geographical (RPG) model to simulated random instances of mitochon-

drial networks. Related to Figure 2. (A) We start with the spherical representation of a given

mitochondrial network; (B) We extract the number of nodes, spherical surface area, amount of

mitochondria and fraction of nodes with degree 1 from this representation; (C) The attributes are

used to generate a random instance of the RPG model; (D) The resulting network is filtered to

ensure that the final network does not display nodes with degree 0 or 2.
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