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ABSTRACT
Objective: To study the association between dietary patterns and subgingival microbiota.
Methods: Participants (n = 651) who were enrolled in the Oral Infections, Glucose Intolerance, and Insulin Resistance Study 
(ORIGINS) with subgingival plaque sampling (n = 890 plaques) and a dietary assessment were included. 16S rRNA gene amplicon 
sequences of subgingival plaque from sites with either probing depth <4 or ≥4 mm were processed separately and used to obtain 
α-diversity metrics (Faith, Shannon, Simpson, Observed) and taxa ratios (Red Complex to Corynebacterium [RCLR], Treponema to 
Corynebacterium [TCLR], and Treponema to Neisseria [TNLR]). Food frequency questionnaires (FFQs) were processed to calculate 
Alternate Healthy Eating Index (AHEI) and A Priori Diet Quality Score (APDQS) scores. Mixed regression models examined the 
mean levels of microbial metrics across quartiles of diet quality. Means ± standard errors are reported along with p-values.
Results: In multivariable models assessing the association between diet scores and α-diversity metrics, higher AHEI values 
were significantly associated with lower Faith (p-value = 0.01) and Observed (p-value = 0.04) diversity values; similar find-
ings were observed for APDQS (p-value = 0.01, p-value = 0.04). In multivariable models assessing the association between diet 
scores (AHEI and APDQS) and taxa ratios (RCLR, TCLR and TNLR), as the AHEI quartile increased, all taxa ratios decreased 
significantly as follows: −1.06 ± 0.093 in Q1 to −1.34 ± 0.099 in Q4 (RCLR), −0.43 ± 0.077 in Q1 to −0.64 ± 0.083 in Q4 (TCLR) 
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and −0.09 ± 0.083 in Q1 to −0.38 ± 0.089 in Q4 (TNLR), respectively. In contrast, as the APDQS quartiles increased, only TNLR 
decreased significantly from −0.08 ± 0.085 in Q1 to −0.34 ± 0.091 in Q4.
Conclusion: Diets rich in fruits, vegetables, whole grains and other nutritionally rich plant foods are associated with lower oral 
microbial diversity and favourable ratios of pathogenic to commensal microbiota.

1   |   Introduction

The oral cavity harbours a wide range of diverse microorgan-
isms, creating an ecological community known as the oral 
microbiome (Lamont, Koo, and Hajishengallis  2018). Prior 
research has extensively characterized how microbial dysbiosis 
(i.e., imbalance) contributes to both oral diseases (e.g., caries 
and periodontitis) and systemic ones (e.g., diabetes, cardiovas-
cular disease and stroke) (X. Li et al. 2000; Kebschull, Demmer, 
and Papapanou 2010; Socransky and Haffajee 2005). In states of 
microbial homeostasis, oral microorganisms help protect against 
pathogens and harmful external stimuli, promote pH recovery 
and inhibit the proliferation of periodontal pathogens and cario-
genic species, contributing to resilience against oral pathologic 
conditions and their sequalae (Radaic and Kapila  2021; Van 
Dyke, Bartold, and Reynolds 2020).

Diet plays a major role in health, and substantial evidence 
exists demonstrating that an unhealthy diet (often character-
ized by high consumption of red meat, saturated fat, refined 
grains and added sugars, and/or low consumption of fruits, 
vegetables and poly- and mono-unsaturated fats) is related to a 
variety of chronic diseases including cancers, cardiometabolic 
disease, renal disease and dementia (Mueller and Appel 2017). 
Evidence is also accumulating linking diet to periodontal dis-
ease (Khocht et al. 2021; Tennert et al. 2020; Vach et al. 2022; 
Martinon et al. 2021; Salazar et al. 2018; DeMayo et al. 2021; A. 
Li et al. 2023), although only limited research exists exploring 
the relationship between diet and the subgingival microbiome.

Dietary intake can influence endogenous environments through 
systemic circulation of nutrients, warranting further investiga-
tion of its effects on the oral microbiota (Kato et al. 2017). Several 
studies assessing short- (Johnson et al.  2019; David et al.  2014; 
De Filippis et al. 2016) and long-term (Bolte et al. 2021; Asnicar 
et al. 2021; Wu et al. 2011) influences of diet on the gut microbi-
ome have found that dietary patterns correspond with microbial 
composition (Asnicar et al.  2021). Short-term dietary interven-
tions have been shown to alter gut microbiota diversity quickly 
in humans, although these alterations are transient and do not 
persist for more than a few days after removal of the intervention 
(David et al.  2014), suggesting that there are other host factors 
controlling microbial ecological homeostasis that extend beyond 
diet (Roager et al. 2016). In contrast, long-term dietary patterns 
have been shown to be associated with distinct compositional dif-
ferences (Wu et al. 2011; Choi et al. 2022). In the context of the oral 
microbiome, a nascent literature is emerging, suggesting that diet 
might influence oral microbial composition (Khocht et al. 2021; 
Tennert et al. 2020; Vach et al. 2022). However, prior studies had 
small sample sizes (n = 39 participants in the largest prior publica-
tion; Khocht et al. 2021) and only two prior studies, to our knowl-
edge, evaluated the microbial composition of subgingival plaque 
(Khocht et al. 2021; Woelber et al. 2019; A. Li et al. 2023).

Diet quality scores, such as the Alternate Healthy Eating Index 
(AHEI) and A Priori Diet Quality Score (APDQS), make it possible 
to quantify diet quality. AHEI was constructed using evidence-
based recommendations that incorporate foods and nutrients to 
predict the risk of chronic diseases (Al-Ibrahim and Jackson 2019). 
The index seeks to capture specific dietary patterns and eating be-
haviours that have been associated consistently with lower risk 
for chronic diseases in clinical and epidemiological investigations 
(McCullough et al. 2002). APDQS is a food-based scoring measure 
that has recently been developed to reflect overall diet quality, 
and APDQS rewards reductions in the consumption of processed 
foods, red meat, sweet/salty foods and whole fat dairy, and in-
creased consumption of seeds, white meat, plants and low-fat dairy 
(Sijtsma et al. 2012). Both measures have been validated (Nettleton 
et al. 2008; Chiuve et al. 2012; McCullough and Willett 2006).

In the present study, we investigate the cross-sectional associ-
ation between dietary patterns and the subgingival microbiota 
among participants enrolled in the Oral Infections Glucose 
Intolerance and Insulin Resistance Study (ORIGINS). We 
hypothesized that healthier diets would be associated with 
altered oral microbial diversity and specific taxa ratios.

2   |   Methods

2.1   |   Study Population

ORIGINS is a prospective cohort study at the Columbia University 
Medical Center in New York City. Participants enrolled between 
January 2016 and January 2020 (n = 814) were included in the 
current analysis. The inclusion criteria for ORIGINS partici-
pants were as follows: (i) aged 20–55 years; (ii) had no diabetes 
mellitus (T1 or T2) based on the participant's self-report of no 
previously diagnosed disease, HbA1c values <6.5% and fasting 
plasma glucose <126 mg/dL; and (iii) had no history of myo-
cardial infarction, congestive heart failure, stroke or chronic 
inflammatory conditions based, again, on the participant's 
self-report. A total of n = 782 participants completed a dietary 
questionnaire via electronic survey at the time of their baseline 
enrollment. After removing individuals with missing periodon-
tal measures, demographic information or diet information, 651 
participants who contributed a total of 890 subgingival plaque 
samples remained in the analysis. Female participants with 
food energy values ≤600 or ≥6000 kcal and males with food en-
ergy values ≤800 or ≥8000 kcal were excluded (Choi et al. 2020; 
Banna et al. 2017; Lo Siou et al. 2021).

2.2   |   Ethics Statement

All participants in ORIGINS provided written informed con-
sent prior to study enrollment. The Institutional Review Boards 
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at Columbia University (AAAD2521) and the University of 
Minnesota (STUDY00002673) approved the use of health data 
for the purposes of scientific research.

2.3   |   Dietary Assessment

Dietary data were collected using the National Cancer Institute's 
Diet History Questionnaire 1 (DHQ-1), which queries the fre-
quency of consumption and portion size for 124 food items over 
the past 12 months (Csizmadi et al. 2007). This food frequency 
questionnaire (FFQ) has previously been validated and found to 
provide valid nutrient intake estimates (Kipnis et al. 2003; Subar 
et al.  2001, 2003; Thompson et al.  2002). Of the participants, 
96.1% completed the FFQ. DietCalc (2007) (National Cancer 
Institute 2005) was used to calculate nutrient level data from the 
FFQ. This dietary data was subsequently operationalized using 
SAS (version 9.4) to calculate the AHEI and APDQS. Briefly, the 
AHEI was scored on the basis of intake of 11 dietary components 
(fruits, vegetables, nuts, red meat, sugar sweetened beverages, 
omega-3 fatty acids, polyunsaturated fats, trans fats, alcohol, 
whole grains and sodium), which were summed for a total AHEI 
score (Al-Ibrahim and Jackson  2019; Kirkpatrick et al.  2018). 
APDQS was calculated on the basis of intake of ‘positive foods’ 
(i.e., those postulated to be associated with reduced cardiovas-
cular disease risk) such as green vegetables, fruits, lean fish, low 
fat dairy products and whole grains; ‘neutral foods’ (i.e., those 
irrelevant to or with uncertain cardiovascular disease risk) such 
as eggs, lean meat, shellfish and potatoes; and ‘negative foods’ 
(i.e., those postulated to be associated with higher cardiovascular 
disease risk) such as fried potatoes, high-fat and processed meat, 
desserts, pastries, full-fat dairy products and soft drinks (Sijtsma 
et al. 2012). The total and subcomponent AHEI score and APDQS 
were modelled in quartiles. Quartile 1 consisted of participants 
with the lowest total and subcomponent diet variable scores for 
AHEI and APDQS, respectively (AHEI quartile 1: 16.36–37.11, 
AHEI quartile 2: 37.11–45.64, AHEI quartile 3: 45.64–54.39 and 
AHEI quartile 4: 54.39–82.49; APDQS quartile 1: 27–54, APDQS 
quartile 2: 54–60.57, APDQS quartile 3: 60.57–69, and APDQS 
quartile 4: 69–96). Higher values of either score represent a the-
oretically more favourable diet pattern, rich in fruits, vegetables, 
whole grains and nuts. Lower values of either score represent a 
theoretically less favourable diet patten, rich in processed foods, 
sugar-sweetened beverages and sodium.

2.4   |   Periodontal Assessments and Plaque 
Collection

Dental examiners conducted full-mouth periodontal exam-
inations as previously described (Demmer et al.  2015, 2019). 
Periodontal probing depth and attachment loss were measured at 
six sites per tooth with a UNC-15 manual probe. Periodontitis was 
defined according to the CDC/AAP classification (Eke et al. 2012). 
Subgingival plaque was collected from up to eight predetermined 
sites per participant. Plaque samples were collected from the mesio-
lingual site in the upper teeth and mesio-buccal site in the lower 
teeth, preserved in 750 μL of MoBio buffer and stored at −80°C 
following the Human Microbiome Project protocol (The Human 
Microbiome Project Consortium 2012). Sites of plaque collection 
were as follows and in accordance with the Human Microbiome 
Project protocol: six plaques were collected from the following six 
index teeth: two molar teeth (#3 and #19), two premolar teeth (#12 
and #28) and two incisor teeth (#9 and #25). If index teeth were 
missing, the next most anterior tooth in the same quadrant was 
selected. Two additional biofilm samples were collected from the 
two deepest pockets identified in the full mouth in any interprox-
imal site (if they were not one of the index sites). Plaque samples 
were preserved in MoBio tubes. To be considered as a moderate/
deep pocket, the probing depth was required to be ≥4 mm, while 
probing depth <4 mm was considered within the range of the 
normal periodontal sulcus. After DNA extraction from individual 
plaques, DNA was pooled together based on clinical status (PD <4 
vs. ≥4 mm). Thus, each participant contributed at most two pooled 
subgingival samples to the analysis. Periodontitis was treated as a 
continuous and categorical variable, classified as a binary variable, 
that is, non/mild periodontitis and moderate/severe periodontitis.

2.5   |   Oral Microbiota Assessment

2.5.1   |   DNA Extraction

Microbial DNA was extracted using the MasterPure Gram 
Positive DNA Positive Purification kit (Lucigen).

2.5.2   |   16S rRNA Sequencing and Taxonomic 
Classification

Sequencing of the 16S rRNA gene was conducted per the 
HOMINGS methodology (Human Oral Microbiome Identification 
Using Next Generation Sequencing), designed specifically for oral 
taxa to generate species-level information. A modified protocol was 
used as previously described (Gomes et al. 2015): 16S rDNA (50 ng) 
was amplified with 341F/806R universal primers (V3–V4 re-
gion), and polymerase chain reaction products were purified with 
AMPure beads; 100 ng of each library was pooled, gel-purified and 
quantified with a bioanalyzer; and 12pM of the library mixture was 
spiked with 20% PhiX and run on a MiSeq (Illumina) platform. The 
16S data curation pipeline has been outlined previously (Marotz 
et al. 2022). Overall, 18,531,931 sequences were generated for the 
final analysis (median, 75,977 sequences per sample). Sequence 
reads were taxonomically classified with two approaches. First, a 
customized BLAST program (ProbeSeq for HOMINGS) blasted the 

Summary

•	 Growing evidence suggests that dietary patterns 
are related to periodontal health outcomes. Diet has 
emerged as a potential influencer of oral microbial di-
versity, but this relationship is not well studied.

•	 We found that healthier diets (driven by higher nut/
legume and whole grain intake) were associated with 
lower oral microbial diversity and favourable ratios of 
pathogenic to commensal microbiota.

•	 Diet interventions may serve as a viable approach in 
promoting oral eubiosis, thus promoting periodontal 
health.
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16S rRNA reads against species-specific 16S rRNA-based oligonu-
cleotide ‘probes’ (Mougeot et al.  2017). Quality-filtered forward-
read sequences were denoised using Deblur (Marotz et al. 2017) 
with default parameters. Samples with less than 1000 quality-
filtered reads were removed from downstream analysis.

The multinomial regression tool Songbird (Morton et al. 2019) was 
used to identify differentially abundant microbes in periodontal 
pockets <4 versus ≥4 mm. Each amplicon sequence variant (ASV) 
was assigned a differential, where higher scores reflect relative 
enrichment in periodontal pockets <4 mm, and low scores reflect 
relative enrichment in periodontal pockets ≥4 mm. The phyloge-
netic relationship among these ASVs and their associated Songbird 
differentials was visualized with EMPress (Chen et al. 2018). ASVs 
from the genus Treponema tended to have low (disease-associated) 
differentials, while ASVs from the genus Corynebacterium tended 
to have high (health-associated) differentials. Second, a DADA2 
workflow was applied to identify ‘exact sequence variants’, and 
taxonomy was assigned using the Silva Projects (version 128) ref-
erence database (Callahan, McMurdie, and Holmes 2017; Callahan 
et al. 2016).

2.5.3   |   α-Diversity

α-Diversity is the mean diversity of species within a sample 
(Whittaker  1972). Four different measures of α-diversity were 
calculated: Faith phylogenetic diversity (Faith), Shannon index 
(Shannon), Simpson's index (Simpson) and Observed spe-
cies (Observed). Faith accounts for phylogenetic relatedness 
(Faith 2018); Shannon is an information statistic index, assum-
ing all species are represented in a sample and that they are 
randomly sampled (Thukral et al. 2019); while Simpson is a dom-
inance index, giving more weight to common or dominant spe-
cies (Thukral et al. 2019), and Observed is the simplest measure 
of richness, that is, the number of species observed in the sample 
(Edgar and Flyvbjerg 2018).

2.6   |   Statistical Analyses

Participant characteristics were described using means ± stan-
dard deviation (SD), frequencies and percentages. A Pearson 
correlation matrix containing α-diversity metrics and taxa ratios 
is presented to illustrate the relationships between the different 
measures. Mixed regression models were used to examine the as-
sociations between quartiles of diet quality and α-diversity metrics 
(using quartile 1 as the reference group). Given that each partic-
ipant could contribute up to two pooled subgingival samples, 
mixed models were used to account for the within-person correla-
tion present within samples contributed by the same participant. 
Means ± standard errors (SE) are reported along with p-values. 
Models were constructed for each diet quality score as follows: 
Model 1: total caloric intake, age, gender, race/ethnicity, educa-
tion, smoking, body mass index, prediabetes, periodontitis status. 
Similar linear regressions were also performed separately among 
periodontal pockets <4 mm and periodontal pockets ≥4 mm.

α-Diversity metrics that were statistically significantly associ-
ated with the diet score (AHEI and/or APDQS) were then further 
evaluated to examine whether the metric was associated with the 

different components that make up each diet score. Mixed regres-
sion models were used to examine the associations of quartiles of 
each dietary component with α-diversity metrics (using quartile 1 
as the reference group). Results were presented as means ± SE for 
two models: α model 1: crude, and α model 2: age, gender, race/eth-
nicity, education, smoking, total caloric intake, body mass index, 
prediabetes, periodontal status and total AHEI score or total 
APDQS score depending on which diet score was being assessed.

The multinomial regression tool Songbird (Morton et al.  2019) 
was used to identify differentially abundant microbes in high ver-
sus low diet scores. Each ASV was assigned a differential score, 
where higher scores reflect relative enrichment in higher (better/
healthier) AHEI and APDQS, and low scores reflect relative en-
richment in lower (worse) AHEI and APDQS scores. To further 
characterize ASVs associated with pockets <4 versus ≥4 mm, 
we plotted the Songbird differentials from each ASV using the 
interactive tool Qurro (X. Li et al. 2000) to visualize feature rank-
ings and log-ratios. Prior research (Marotz et al. 2022; Kageyama 
et al. 2017; Socransky et al. 1998) and findings from Qurro have 
identified three different taxa ratios that are predictive of systemic 
disease: the Red Complex (consisting of known periodontopathic 
bacteria Porphyromonas gingivalis, Treponema denticola and 
Tannerella forsythia) to Corynebacterium (RCLR); Treponema to 
Corynebacterium (TCLR) and Treponema to Neisseria (TNLR).

All log-ratios of taxa were calculated as pseudo-counts to deal 
with zero inflation. Mixed regression models were used to exam-
ine the associations of quartiles of diet quality with taxa ratios 
(using quartile 1 as the reference group). Means ± SEs were re-
ported along with p-values. Five models were constructed for each 
diet quality score as follows: diet model 1: total caloric intake; diet 
model 2: model 1 + age, gender, race/ethnicity, education; diet 
model 3: model 2 + smoking; diet model 4: model 3 + body mass 
index, prediabetes; diet model 5: model 4 + periodontitis status. 
All analyses were performed with R (version 3.5.3).

3   |   Results

3.1   |   Study Participants

The average age of participants was 31.3 ± 9.2 (median age 27.7) 
with 72% being women, 31% White, 28% Hispanic, 14% Black 
and 27% other. Eighty-seven percent of participants never 
smoked, 51% had a 4-year college education and 59% were un-
derweight/normal weight. The mean BMI was 25.5 ± 5.9 kg/m2 
and the total caloric intake was 1742 ± 942 kcal, with 9.9% hav-
ing prediabetes, 9.6% having hypertension and 28% having mod-
erate/severe periodontitis (Table  1). General characteristics of 
study participants according to quartiles of Faith are presented 
in Table  1. Age, BMI and periodontitis significantly increased 
with increasing quartiles of Faith.

3.2   |   Microbial Diversity Metrics and Diet Score

The correlations between α-diversity metrics and taxa ratios are 
presented in Table 2. Faith and Observed are highly correlated 
(r = 0.90, p < 0.0001) as are Simpson and Shannon (r = 0.85, 
p < 0.0001). The three taxa ratios (RCLR, TCLR and TNLR) are 
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most strongly correlated with Faith diversity and less strongly 
with Shannon, Observed or Simpson (Table 2).

In the fully adjusted analysis including all periodontal sites, which 
controlled for total caloric intake, age, gender, race/ethnicity, 

education, smoking status, BMI, prediabetes and periodontal 
status, Faith and Observed diversity were significantly associated 
with AHEI. As the AHEI quartiles increased, mean values of Faith 
were lower ([15.2 ± 0.31 in quartile 1 to 14.5 ± 0.33 in quartile 4, 

TABLE 1    |    General demographics for ORIGINS participants, mean ± SD or % and mean ± SE for Faith or %.

All (n = 651) Q1 Faith (N = 163) Q2 Faith (N = 163) Q3 Faith (N = 162) Q4 Faith (N = 163)

AHEI score 46.4 ± 12.1 48.4 ± 0.94 46.3 ± 0.94 47.6 ± 0.95 43. ± 0.94*,**

APDQS score 61.1 ± 11.6 63.5 ± 0.90 61.0 ± 0.90 61.5 ± 0.90 58.6 ± 0.90*,**

Age (years) 31.3 ± 9.2 30.7 ± 0.72 30.8 ± 0.72 30.4 ± 0.72 33.2 ± 0.72*,**

Sex

Male 27.6 27.0 28.8 21.0 33.7

Female 72.4 73.0 71.2 79.0 66.3

Race

Hispanic 27.6 21.5 27.6 24.7 36.8*

White 30.6 42.9 26.4 33.3 19.6

Black 14.0 11.0 15.3 13.0 16.6

Other 27.8 24.5 30.7 29.0 27.0

Education

<College 21.2 14.1 17.2 17.9 35.6*

4-Year college 51.3 50.9 60.7 54.3 39.3

Graduate 27.5 35.0 22.1 27.8 25.1

Smoking

Never 86.9 85.9 92.0 87.7 82.2

Former 6.5 7.4 4.3 6.2 8.0

Current 6.6 6.7 3.7 6.2 9.8

Weight status

Underweight/
normal

58.4 65.0 60.9 65.8 41.9*

Overweight 24.3 18.8 24.2 18.6 35.6

Obese 17.3 16.3 14.9 15.5 22.5

BMI 25.5 ± 5.9 24.6 ± 0.46 25.1 ± 0.46 25.0 ± 0.46 27.2 ± 0.46*,**

Total caloric intake 1742 ± 942.2 1686 ± 73.8 1747 ± 73.8 1708 ± 74.1 1828 ± 73.8

Prediabetes

Yes 9.9 8.6 9.3 9.3 12.3

Hypertension

Yes 9.6 8.0 8.1 8.0 14.4

Periodontitis 0.64 ± 0.93 1.53 ± 0.071 1.44 ± 0.071 1.52 ± 0.071 2.06 ± 0.071*,**

Periodontitis

None/mild 72.0 75.5 82.2 75.3 55.2*

Moderate/severe 28.0 24.5 17.8 24.7 44.8

Note: N = 651; quartiles mean ± SE.
*p < 0.05 for any difference in category. 
**p < 0.05 for linear trend.
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p = 0.01] Table  3). Similar patterns were observed for Observed 
([198 ± 5.77 in quartile 1 to 187 ± 6.11  in quartile 4, p = 0.04] 
Table 3). Other α-diversity metrics also decreased with increasing 
quartiles of AHEI, but none was statistically significant (Table 3). 
These trends were generally consistent when analysing plaques 
from periodontal sites <4 versus ≥4 mm separately. Among peri-
odontal sites with <4 mm probing depth, as the AHEI quartile in-
creased, mean values of Shannon (p = 0.02), Observed (p = 0.01) 
and Faith diversity (p = 0.01) decreased significantly. The same 
trend persisted among ≥4 mm pockets (as the AHEI quartile in-
creased, the mean values of α-diversity decreased), although the 
trend was only statistically significant for Faith (p =0.02).

In the fully adjusted model including all periodontal sites, higher 
APDQS was associated with lower Faith: scores decreased sig-
nificantly from 15.5 ± 0.31 in quartile 1 to 14.6 ± 0.33 in quartile 4 
(p for trend = 0.01, Table 3). Findings were similar for Observed, 
where diversity scores decreased from 201 ± 5.82 in quartile 1 to 
189 ± 6.21 in quartile 4 (p for trend = 0.04, Table 3). Among the 
<4 mm probing depth sites, as APDQS quartile increased, the 
mean values of Observed (p = 0.03) and Faith diversity (p = 0.01) 
decreased significantly. The same trend persisted among 
≥4 mm sites (as APDQS quartile increased, the mean values of 
α-diversity decreased), although the trend was not significant. 
Lastly, β-diversity was not associated with either diet score after 
full multivariable adjustment (data not shown).

3.3   |   Microbial Diversity Metrics and Diet Score 
Components

The association between Faith and components of the AHEI diet 
score are presented in Table 4. Of the 11 components, only nuts/
legumes consumption was statistically significantly associated 
with Faith diversity after adjustment. Components of the APDQS 
score were not significantly associated with Faith diversity in the 
fully adjusted model (data not shown).

3.4   |   Taxa Ratios and Diet Score

In Songbird analyses of taxa-level associations which ac-
count for microbiota compositionality, higher diet quality was 

generally associated with lower relative abundance of ASVs 
from the genera Treponema and Red Complex taxa, and higher 
relative abundance of ASVs from the genera Corynebacterium 
and Neisseria (Figure  1). Among all ASV ratios, the inverse 
association between ASV log-ratios and AHEI score was 
strongest in <4 mm probing depth sites and not statistically sig-
nificant in ≥4 mm sites for the Treponema:Corynebacterium and 
Treponema:Neisseria ratios (Figure 1). Similar patterns were ob-
served for the APDQS score (Figure S1).

The relationship between the same taxa ratios TCLR, TNLR and 
RCLR were then assessed across quartiles of AHEI. As AHEI quar-
tiles increased, TCLR, TNLR and RCLR decreased significantly 
(−0.43 ± 0.08 in quartile 1 to −0.64 ± 0.08 in quartile 4; 0.09 ± 0.08 
in quartile 1 to −0.38 ± 0.089 in quartile 4; and −1.06 ± 0.09 in quar-
tile 1 to −1.34 ± 0.1 in quartile 4, respectively) (Table 5). Similarly, 
as APDQS quartiles increased, TNLR decreased significantly 
(−0.08 ± 0.1 in quartile 1 to −0.34 ± 0.09 in quartile 4) (Table 5). 
However, as APDQS quartiles increased, TCLR and RCLR de-
creased though not significantly (−0.43 ± 0.078 in quartile 1 to 
−0.56 ± 0.084 in quartile 4, p-value = 0.33 and −1.05 ± 0.093 in 
quartile 1 to −1.23 ± 0.101 in quartile 4, p-value = 0.19), respec-
tively (Table 5).

4   |   Discussion

We observed that higher diet quality as assessed via AHEI or 
ADPQS was associated with reduced subgingival microbial α-
diversity. Findings were strongest among Observed and Faith di-
versity indices. Among sites with <4 mm probing depth, higher 
AHEI diet quality was additionally related to reduced Shannon. 
Additionally, higher diet quality was associated with lower ra-
tios of pathogenic-associated to health-associated microbiota. 
These findings remained after multivariable adjustment for po-
tential confounders.

In a previous publication from ORIGINS, neither AHEI or APDQS 
was associated with mean probing depth, mean attachment loss or 
periodontitis, although increased AHEI was found to be modestly 
associated with reduced bleeding on probing (DeMayo et al. 2021). 
These findings were consistent at the level of food groups with 
only nuts, red meat and trans-fatty acid consumption being re-
lated to probing depth and bleeding on probing but not attachment 

TABLE 2    |    Correlation matrix of α-diversity metrics and three taxa ratios assessed in this study.

Shannon Observed Faith Simpson TCLR RCLR TNLR

Shannon 1 0.785 0.647 0.851 0.194 0.189 0.253

Observed 0.785 1 0.899 0.473 0.365 0.385 0.408

Faith 0.647 0.899 1 0.359 0.581 0.621 0.604

Simpson 0.851 0.473 0.359 1 0.034 0.029 0.101

TCLR_pseudoa 0.194 0.365 0.581 0.034 1 0.948 0.751

RCLR_pseudob 0.189 0.385 0.621 0.029 0.948 1 0.726

TNLR_pseudoc 0.253 0.408 0.604 0.101 0.751 0.726 1

Note: Bolded correlation coefficients p-values <0.05.
aTCLR: Log-ratio of taxa of Treponema to Corynebacterium calculated as pseudo-counts to deal with zero inflation.
bRCLR: Log-ratio of taxa of Red Complex to Corynebacterium calculated as pseudo-counts to deal with zero inflation.
cTNLR: Log-ratio of taxa of Treponema to Neisseria calculated as pseudo-counts to deal with zero-inflation.
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loss. The current results align with our previous findings in a few 
important ways. First, while we find a relationship between diet 
quality and subgingival microbiota, the findings are weak, as with 

diet–periodontal disease associations. Second, our prior findings 
only observed a relationship between diet quality and measures 
of current periodontal inflammation (probing depth and bleeding 

TABLE 3    |    Association between alternative healthy eating index score or a priori diet quality score and α-diversity metrics, mean ± SE.

First quartile 
AHEI (n = 223)

Second quartile 
AHEI (n = 222)

Third quartile 
AHEI (n = 222)

Fourth quartile 
AHEI (n = 223) p-value*

Shannon

All sites 5.38 ± 0.08 5.42 ± 0.08 5.29 ± 0.08 5.29 ± 0.08 0.12

Shallow 5.41 ± 0.08 5.45 ± 0.09 5.25 ± 0.09 5.27 ± 0.09 0.02

Moderate/deep 5.41 ± 0.16 5.42 ± 0.17 5.43 ± 0.16 5.32 ± 0.19 0.67

Observed

All sites 198 ± 5.77 197 ± 6.22 189 ± 6.12 187 ± 6.11 0.04

Shallow 198 ± 6.14 199 ± 6.68 185 ± 6.53 185 ± 6.46 0.01

Moderate/deep 214 ± 10.3 208 ± 10.9 206 ± 10.6 197 ± 12.0 0.15

Faith

All sites 15.2 ± 0.31 15.3 ± 0.33 14.8 ± 0.33 14.5 ± 0.33 0.01

Shallow 15.0 ± 0.32 15.1 ± 0.35 14.4 ± 0.34 14.3 ± 0.34 0.01

Moderate/deep 17.2 ± 0.56 17.0 ± 0.59 16.4 ± 0.58 16.0 ± 0.65 0.02

Simpson

All sites 0.940 ± 0.006 0.946 ± 0.006 0.938 ± 0.006 0.936 ± 0.006 0.33

Shallow 0.945 ± 0.006 0.948 ± 0.007 0.936 ± 0.006 0.937 ± 0.006 0.08

Moderate/deep 0.932 ± 0.013 0.941 ± 0.013 0.944 ± 0.013 0.927 ± 0.015 0.98

First quartile 
APDQS (n = 246)

Second quartile 
APDQS (n = 214)

Third quartile 
APDQS (n = 230)

Fourth quartile 
APDQS (n = 200) p-value*

Shannon

All sites 5.42 ± 0.08 5.33 ± 0.08 5.30 ± 0.08 5.29 ± 0.08 0.09

Shallow 5.44 ± 0.08 5.31 ± 0.09 5.30 ± 0.09 5.28 ± 0.09 0.07

Moderate/deep 5.47 ± 0.16 5.47 ± 0.17 5.33 ± 0.17 5.34 ± 0.18 0.29

Observed

All sites 201 ± 5.82 191 ± 5.97 189 ± 6.10 189 ± 6.21 0.04

Shallow 202 ± 6.20 188 ± 6.37 189 ± 6.52 188 ± 6.58 0.03

Moderate/deep 215 ± 10.3 212 ± 11.0 201 ± 10.7 202 ± 11.8 0.10

Faith

All sites 15.5 ± 0.31 14.8 ± 0.32 14.8 ± 0.33 14.6 ± 0.33 0.01

Shallow 15.3 ± 0.32 14.4 ± 0.33 14.6 ± 0.34 14.4 ± 0.34 0.01

Moderate/deep 17.2 ± 0.56 16.9 ± 0.60 16.4 ± 0.58 16.4 ± 0.65 0.08

Simpson

All sites 0.942 ± 0.006 0.941 ± 0.006 0.939 ± 0.006 0.935 ± 0.006 0.18

Shallow 0.945 ± 0.006 0.943 ± 0.006 0.941 ± 0.006 0.935 ± 0.006 0.13

Moderate/deep 0.940 ± 0.013 0.939 ± 0.013 0.932 ± 0.013 0.934 ± 0.015 0.48

Note: Adjusted for total caloric intake, age, gender, race/ethnicity, education, smoking, body mass index, prediabetes and periodontitis as binary variables; among all 
sites, among shallow pocket sites and among moderate/deep pocket sites. n = 651 participants providing n = 890 plaque samples collected from 641 periodontal sites 
<3 mm and 249 periodontal sites ≥4 mm.
*p-values for linear trend.
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TABLE 4    |    Association of components of the alternative healthy eating index score and Faith phylogenetic diversity, mean ± SE.

First quartile 
food type 
(n = 223)

Second quartile 
food type (n = 222)

Third quartile food 
type (n = 222)

Fourth quartile 
food type (n = 223)

*p-
value

Vegetables

Crude 14.8 ± 0.22 13.9 ± 0.22 14.8 ± 0.22 14.4 ± 0.21 0.79

Adjusted 15.0 ± 0.32 14.3 ± 0.33 15.2 ± 0.32 15.0 ± 0.32 0.35

a(No Perio) 14.9 0.317 14.2 0.333 15.1 0.321 14.8 0.318 0.38

Fruit

Crude 14.9 ± 0.22 14.2 ± 0.22 14.6 ± 0.22 14.2 ± 0.22 0.09

Adjusted a 15.2 ± 0.32 14.5 ± 0.33 15.3 ± 0.32 14.6 ± 0.33 0.43

Adjusted b 15.0 0.315 14.4 0.327 15.1 0.322 14.5 0.335 0.44

Nuts/legumes

Crude 15.1 ± 0.22 14.7 ± 0.22 14.0 ± 0.21 14.1 ± 0.21 0.0001

Adjusted a 15.3 ± 0.34 15.1 ± 0.34 14.7 ± 0.32 14.7 ± 0.36 0.09

Adjusted b 15.2 0.344 15.0 0.337 14.5 0.318 14.5 0.356 0.04

Whole grains

Crude 15.1 ± 0.22 14.0 ± 0.21 14.3 ± 0.22 14.4 ± 0.22 0.08

Adjusted a 15.5 ± 0.32 14.6 ± 0.32 14.8 ± 0.32 14.8 ± 0.32 0.06

Adjusted b 15.4 0.322 14.4 0.319 14.7 0.325 14.7 0.325 0.07

Polyunsaturated fatty acids

Crude 14.5 ± 0.22 14.5 ± 0.22 14.6 ± 0.22 14.2 ± 0.22 0.59

Adjusted a 14.8 ± 0.32 15.0 ± 0.32 15.3 ± 0.33 14.8 ± 0.33 0.59

Adjusted b 14.6 0.321 14.9 0.324 15.1 0.327 14.7 0.334 0.63

Omega-3 fatty acids

Crude 14.2 ± 0.22 14.5 ± 0.22 14.6 ± 0.22 14.5 ± 0.22 0.22

Adjusted a 14.6 ± 0.33 15.0 ± 0.32 15.1 ± 0.32 15.1 ± 0.32 0.14

Adjusted b 14.5 0.326 14.8 0.322 15.0 0.324 14.9 0.324 0.11

Alcohol

Crude 14.5 ± 0.22 14.6 ± 0.22 14.5 ± 0.22 14.3 ± 0.21 0.57

Adjusted a 14.8 ± 0.34 15.0 ± 0.33 15.1 ± 0.31 14.9 ± 0.32 0.61

Adjusted b 14.6 0.344 14.8 0.327 15.0 0.315 14.8 0.326 0.49

Trans fat

Crude 14.6 ± 0.22 14.2 ± 0.22 14.4 ± 0.22 14.6 ± 0.22 0.86

Adjusted a 15.1 ± 0.32 14.7 ± 0.31 15.1 ± 0.34 15.0 ± 0.33 0.93

Adjusted b 15.0 0.323 14.5 0.309 14.9 0.338 14.9 0.333 0.93

Sodium

Crude 14.4 ± 0.22 14.6 ± 0.22 14.3 ± 0.22 14.6 ± 0.22 0.80

Adjusted a 14.9 ± 0.33 15.2 ± 0.32 14.8 ± 0.33 14.9 ± 0.32 0.86

Adjusted b 14.8 0.333 15.0 0.323 14.6 0.335 14.7 0.319 0.55

(Continues)
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on probing) but not historical periodontal disease (attachment 
loss and tooth loss), suggesting that diet might be most relevant 
for acute inflammatory outcomes occurring in the early natural 
history of periodontal disease. In ORIGINS, subgingival microbi-
ota were strongly related to current probing depth and bleeding on 
probing (DeMayo et al. 2021; Marotz et al. 2022): thus, we expected 

to see diet associated with microbial biomarkers of periodontal in-
flammation in the current analyses.

Higher diet quality was related to decreased diversity of Faith, 
Observed and Shannon but not Simpson when restricting the 
analysis to <4 mm probing depth sites. These differences may 
arise from the distinct nature of the various diversity metrics. 

First quartile 
food type 
(n = 223)

Second quartile 
food type (n = 222)

Third quartile food 
type (n = 222)

Fourth quartile 
food type (n = 223)

*p-
value

Sugar-sweetened beverages + fruit juice

Crude 14.2 ± 0.21 14.2 ± 0.21 14.4 ± 0.22 15.1 ± 0.22 0.002

Adjusted a 15.0 ± 0.33 14.9 ± 0.33 14.6 ± 0.34 15.2 ± 0.33 0.86

Adjusted b 14.9 0.328 14.7 0.332 14.5 0.338 15.0 0.329 1.00

Red and processed meat

Crude 14.1 ± 0.22 14.3 ± 0.22 14.4 ± 0.22 15.0 ± 0.22 0.002

Adjusted a 14.7 ± 0.33 15.0 ± 0.32 14.9 ± 0.32 15.2 ± 0.35 0.13

Adjusted b 14.5 0.332 14.8 0.318 14.8 0.319 15.1 0.351 0.09

Note: Adjusted a model includes age, gender, race/ethnicity, education, smoking, total caloric intake, body mass index, prediabetes, periodontal status, and total AHEI 
score. Adjusted b model is adjusted for everything listed above aside from periodontal status. n = 890 plaque samples among 651 participants.
*p-values for linear trend.

TABLE 4    |    (Continued)

FIGURE 1    |    Log-ratio of taxa in relation to AHEI diet score. (A) Songbird-based differential ranking of microbes with respect to their association 
with AHEI score. Taxa in the genera Treponema are highlighted in red and taxa in the genera Corynebacterium are highlighted in blue. (B) Scatter 
plot of the log-ratio of Treponema:Corynebacterium in relation to AHEI score among shallow and moderate/deep sites. (C) Songbird-based differential 
ranking of microbes with respect to their association with AHEI score. Taxa in the genera Treponema are highlighted in red and taxa in the genera 
Nesseria are highlighted in blue. (D) Scatter plot of the log-ratio of Treponema:Nesseria in relation to AHEI score among shallow and moderate/deep 
sites. Songbird-based differential ranking of microbes with respect to their association with AHEI score. (E) Taxa in the genera Red Complex are 
highlighted in red and taxa in the genera Corynebacterium are highlighted in blue. (F) Scatter plot of the log-ratio of Red Complex:Corynebacterium 
in relation to AHEI score among shallow and moderate/deep sites.
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TABLE 5    |    Association between diet scores (alternative healthy eating index and a priori diet quality score) and taxa ratios, mean ± SE.

First quartile 
AHEI (n = 223)

Second quartile 
AHEI (n = 222)

Third quartile 
AHEI (n = 222)

Fourth quartile 
AHEI (n = 223) p-value*

RCLR

Model 1 −1.15 ± 0.066 −1.20 ± 0.066 −1.37 ± 0.065 −1.58 ± 0.064 <0.0001

Model 2 −1.13 ± 0.066 −1.15 ± 0.068 −1.30 ± 0.069 −1.45 ± 0.072 0.0003

Model 3 −1.08 ± 0.082 −1.09 ± 0.086 −1.24 ± 0.086 −1.39 ± 0.088 0.0004

Model 4 −1.09 ± 0.093 −1.12 ± 0.100 −1.24 ± 0.098 −1.38 ± 0.099 0.001

Model 5 −1.06 ± 0.093 −1.08 ± 0.100 −1.22 ± 0.098 −1.34 ± 0.099 0.002

TCLR

Model 1 −0.47 ± 0.054 −0.49 ± 0.054 −0.64 ± 0.054 −0.79 ± 0.054 <0.0001

Model 2 −0.46 ± 0.055 −0.45 ± 0.057 −0.60 ± 0.057 −0.70 ± 0.060 0.001

Model 3 −0.43 ± 0.069 −0.43 ± 0.072 −0.57 ± 0.072 −0.68 ± 0.074 0.001

Model 4 −0.45 ± 0.078 −0.45 ± 0.083 −0.57 ± 0.082 −0.67 ± 0.083 0.002

Model 5 −0.43 ± 0.077 −0.42 ± 0.083 −0.55 ± 0.081 −0.64 ± 0.083 0.003

TNLR

Model 1 −0.18 ± 0.060 −0.19 ± 0.060 −0.49 ± 0.060 −0.64 ± 0.059 <0.0001

Model 2 −0.18 ± 0.059 −0.16 ± 0.061 −0.44 ± 0.062 −0.52 ± 0.065 <0.0001

Model 3 −0.10 ± 0.074 −0.08 ± 0.077 −0.35 ± 0.077 −0.43 ± 0.079 <0.0001

Model 4 −0.11 ± 0.084 −0.09 ± 0.089 −0.35 ± 0.088 −0.42 ± 0.089 <0.0001

Model 5 −0.09 ± 0.083 −0.05 ± 0.089 −0.32 ± 0.088 −0.38 ± 0.089 <0.0001

First quartile 
APDQS (n = 246)

Second quartile 
APDQS (n = 214)

Third quartile 
APDQS (n = 230)

Fourth quartile 
APDQS (n = 200) p-value*

RCLR

Model 1 −1.14 ± 0.063 −1.44 ± 0.067 −1.32 ± 0.065 −1.45 ± 0.069 0.01

Model 2 −1.13 ± 0.063 −1.38 ± 0.069 −1.20 ± 0.070 −1.32 ± 0.073 0.14

Model 3 −1.05 ± 0.083 −1.32 ± 0.085 −1.13 ± 0.087 −1.25 ± 0.088 0.13

Model 4 −1.07 ± 0.094 −1.33 ± 0.097 −1.14 ± 0.098 −1.27 ± 0.101 0.15

Model 5 −1.05 ± 0.093 −1.30 ± 0.097 −1.12 ± 0.098 −1.23 ± 0.101 0.19

TCLR

Model 1 −0.47 ± 0.052 −0.68 ± 0.056 −0.58 ± 0.054 −0.70 ± 0.057 0.01

Model 2 −0.47 ± 0.052 −0.63 ± 0.058 −0.49 ± 0.058 −0.61 ± 0.062 0.22

Model 3 −0.43 ± 0.070 −0.60 ± 0.071 −0.45 ± 0.073 −0.58 ± 0.074 0.21

Model 4 −0.45 ± 0.078 −0.63 ± 0.081 −0.47 ± 0.082 −0.59 ± 0.084 0.26

Model 5 −0.43 ± 0.078 −0.60 ± 0.081 −0.44 ± 0.081 −0.56 ± 0.084 0.33

TNLR

Model 1 −0.18 ± 0.058 −0.37 ± 0.062 −0.44 ± 0.060 −0.56 ± 0.064 <0.0001

Model 2 −0.19 ± 0.057 −0.33 ± 0.063 −0.33 ± 0.063 −0.46 ± 0.067 0.003

Model 3 −0.08 ± 0.075 −0.25 ± 0.077 −0.23 ± 0.079 −0.36 ± 0.079 0.003

Model 4 −0.11 ± 0.085 −0.27 ± 0.088 −0.25 ± 0.089 −0.38 ± 0.091 0.003

Model 5 −0.08 ± 0.085 −0.24 ± 0.088 −0.22 ± 0.088 −0.34 ± 0.091 0.01

Note: Model 1: adjusted total caloric intake; Model 2: Model 1 + age, gender, race/ethnicity, education; Model 3: Model 2 + smoking; Model 4: Model 3 + body mass 
index, prediabetes; Model 5: Model 4 + periodontal status. Mixed models were used to account for multiple plaque samples per person. n = 890 plaque samples among 
651 participants.
*p-values for linear trend.
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The Faith index is an explicit measure of phylogenetic diversity 
going beyond measures of richness, evenness or dominance, 
which are concepts better reflected by Observed, Simpson and 
Shannon indices. Our results suggest that higher quality diet 
might lead to a less phylogenetic diversity of oral microbiota.

The relationship between subgingival microbial diversity and 
periodontal disease has been inconsistent in prior studies, with 
some studies reporting reduced diversity (Huang et al. 2021; Ai 
et al. 2017; Farina et al. 2019) as periodontal disease develops 
and becomes more severe (vs. health controls), while others 
have found increased diversity (Griffen et al. 2012; Abusleme 
et al. 2013; Marotz et al. 2022) in the presence of periodontal 
disease. Similarly, the biological and phylogenetic diversity of 
oral microbial communities in patients with diabetes and pre-
diabetes were also significantly reduced compared to patients 
with normoglycaemia (Huang et al.  2021). These conflicting 
prior findings make it challenging to make firm statements 
about the role of reduced diversity in relation to oral and sys-
temic health. However, in the context of ORIGINS, our prior 
findings that increased diversity is adversely associated with 
periodontal and systemic outcomes (Marotz et al.  2022) are 
consistent with our current findings in which increased di-
versity is related to lower quality diet. Interestingly, a priori 
defined taxa ratios (RCLR, TCLR, TNLR), which were previ-
ously shown to be strongly associated with periodontal pocket 
depth in this cohort (Marotz et al. 2022), were generally more 
strongly related to diet quality than diversity metrics, even 
though these measures do not incorporate information about 
the overall microbial community, suggesting that these ratios 
might better capture ecological shifts early in the natural his-
tory of periodontal disease. For all three taxa ratios, as AHEI 
and APDQS scores increased, taxa ratios decreased signifi-
cantly, suggesting a more favourable oral microbial ecology. 
We were unable to detect a relationship between taxa ratios 
and specific food components of AHEI (Table  S1), and it is 
unclear which food groups lead to a more salutary oral micro-
biome. Future studies that can mechanistically explain these 
patterns of diet–microbiome associations will be important 
for understanding whether dietary patterns are a causal factor 
influencing the oral microbiome as opposed to a non-causal 
correlate confounded by other health behaviours and/or phe-
notypic characteristics.

While diet has been linked to a wide range of chronic disease 
outcomes, including periodontal disease (DeMayo et al.  2021; 
Woelber and Tennert 2020), existing literature investigating the 
association between diet and the oral microbiome is limited and 
generally the findings are weak and inconsistent. One prior study 
found that total carbohydrate, glucose load and sucrose were in-
versely associated with subgingival bacterial α-diversity (Millen 
et al. 2022), while a prior randomized trial found that randomiza-
tion to an anti-inflammatory diet did not change the microbial 
composition of the subgingival plaque despite reducing gingival 
inflammation (Woelber et al. 2019). A comparison of subgingi-
val microbiota between vegetarians and non-vegetarians found 
modest differences in select taxa but no difference in α-diversity 
between the groups (Khocht et al. 2021). Similarly, previous re-
search has found modest (Tennert et al. 2020; Kato et al. 2017) or 
no (Claesson et al. 2012) associations between diet and salivary 
or supragingival microbial composition. Similarly, short-term 
studies in animal models found no difference in growth rates 

of oral bacteria in the presence or absence of food (Beckers and 
van der Hoeven 1982), nor any difference in the total number of 
bacteria in saliva in animals after 18 h of fasting compared with 
fed animals (Vach et al. 2022).

Knowledge about the role of diet in the composition of the oral 
microbiome is important for addressing a major limitation in 
previous studies linking the oral microbiome to a variety of 
chronic diseases. Specifically, a lack of diet data in most prior 
studies precludes the ability to assess the role of confounding 
by diet (Demmer et al. 2015, 2017, 2019; Desvarieux et al. 2005, 
2010; Tonelli, Lumngwena, and Ntusi 2023). It is possible that 
different and more precisely defined dietary patterns are related 
to the oral microbiome, or, perhaps, it is the diet's influence on 
the metabolome (and not the microbiome) that is most relevant 
to periodontal disease. Nevertheless, the current findings sug-
gest that any residual confounding related to diet is likely to be 
very modest.

Some important limitations should be noted in the current 
study. First, the analysis is cross-sectional and did not as-
sess whether dietary patterns (or changing diet patterns) are 
related to longitudinal changes in the oral microbiota. Since 
our study only collected dietary data at one point in time, it 
does not reflect dietary history or change in diet among partic-
ipants. Future studies that can assess patterns regarding diet 
and oral microbial diversity over time can inform the potential 
for diet interventions to prevent shifts in subgingival ecology 
that promote disease. In addition, the use of an FFQ asking 
about diet patterns in the preceding 12 months prevents more 
nuanced analyses related to the short-term influence of diet 
on the subgingival microbiota. It is also important to note that 
FFQs may underreport because of the imprecision with re-
cording consumed foods portions as well as demographic and 
psychosocial factors, but it is a validated tool to measure long-
term diet and the correlations that have been identified for a 
number of foods and nutrients when comparing between FFQ 
and 24-h recalls or biochemical measures (Kipnis et al. 2003; 
Subar et al.  2001). Presently, we only have 16S data avail-
able informing taxonomy but not community functionality. 
ORIGINS participants are relatively young and healthy com-
pared to the general population. Although this gives us greater 
insight into a population not often studied, these results may 
not be generalizable to an older and sicker population. Lastly, 
by following participants over time, we can better understand 
how diet changes and even disease incidence affect oral mi-
crobial compositions.

We have found that a healthier dietary pattern is cross-
sectionally modestly associated with decreased subgingival 
microbial diversity among a diverse sample of generally healthy 
young adults. Future intervention studies that can assess the 
role of specific diets on subgingival microbiome composition 
using metagenomic approaches will be important for better un-
derstanding causality.
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