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Data Dissemination:
Shortening the Long Tail of Traumatic Brain Injury Dark Data

Bridget E. Hawkins,1,* J. Russell Huie,2,* Carlos Almeida,2 Jiapei Chen,2 and Adam R. Ferguson2,3

Abstract

Translation of traumatic brain injury (TBI) research findings from bench to bedside involves aligning multi-species data

across diverse data types including imaging and molecular biomarkers, histopathology, behavior, and functional out-

comes. In this review we argue that TBI translation should be acknowledged for what it is: a problem of big data that can

be addressed using modern data science approaches. We review the history of the term big data, tracing its origins in

Internet technology as data that are ‘‘big’’ according to the ‘‘4Vs’’ of volume, velocity, variety, veracity and discuss how

the term has transitioned into the mainstream of biomedical research. We argue that the problem of TBI translation

fundamentally centers around data variety and that solutions to this problem can be found in modern machine learning and

other cutting-edge analytical approaches. Throughout our discussion we highlight the need to pull data from diverse

sources including unpublished data (‘‘dark data’’) and ‘‘long-tail data’’ (small, specialty TBI datasets undergirding the

published literature). We review a few early examples of published articles in both the pre-clinical and clinical TBI

research literature to demonstrate how data reuse can drive new discoveries leading into translational therapies. Making

TBI data resources more Findable, Accessible, Interoperable, and Reusable (FAIR) through better data stewardship has

great potential to accelerate discovery and translation for the silent epidemic of TBI.

Keywords: analytics; big data; data sharing; FAIR principles; traumatic brain injury

Introduction

Traumatic brain injury (TBI) is a prevalent disorder im-

pacting millions of individuals without a widely accepted

therapeutic approach. TBI impacts 69 million individuals world-

wide.1,2 The estimated economic burden of TBI is more than $60

billion annually in the United States alone3 and some estimates

suggest it costs the global economy $400 billion worldwide.4

Paucity of therapeutic options results in a lack of clinical consensus

and poor follow-up for TBI patients, which is especially detri-

mental for individuals with persistent post-injury symptoms.5 This

stands in sharp contrast to the large number of potential therapeu-

tics discovered in basic and pre-clinical models of TBI.6–8

Altogether, this suggests that translation of TBI research from

basic animal models into human therapeutics lacks a well-defined

pipeline.9 This special issue of the Journal of Neurotrauma

highlights barriers to translation and recent exciting achieve-

ments that help to overcome these barriers, from novel ap-

proaches of animal models to biomarkers and regulatory

innovations. In the present article we focus on the role of data

science in accelerating translation. We frame our discussion

around the concept that raw research data and unpublished ‘‘dark

data’’ are under-utilized resources for driving discovery.10 We

argue that better data stewardship has great potential to advance

translation from basic research to therapy. In particular, we focus

on the principle that organizing and federating numerous small

datasets can produce big data that open new opportunities to

apply modern machine learning tools for data-driven discovery.

We contrast the treatment of pre-clinical research data with

clinical data and point to recent advances in data-driven dis-

covery in clinical TBI that are rapidly advancing precision

medicine. Our review is intended to cover translation between

pre-clinical and clinical data science without delving deeply into

either side of this translational divide. Where possible, we refer

interested readers to other reviews focused in depth on issues

specific to clinical or pre-clinical domains.
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Big data/small data—what’s the difference?

The term big data was first coined in early 2000s in the Internet

technology field to describe data that are difficult to work with

because of being ‘‘big’’ according to at least one of the ‘‘3Vs’’:

volume, velocity, and variety.11 In recent years, veracity has been

added as a fourth V as it became apparent that the accuracy of data

is an increasing challenge as diverse aspects of society, including

social media transition to the digital world. There have been various

proposals to add more Vs,12 but we will limit our discussion here to

these ‘‘classic’’ 4Vs as we feel they are most relevant to neuro-

trauma big data. The 4Vs challenge the limits of traditional data-

base infrastructures, analytical approaches, and human

accessibility, making knowledge extraction difficult. These chal-

lenges have led to innovations in data management approaches in

the last decade. Examples include cloud storage—enormous en-

terprise data centers—to manage data volume; parallel on-chip

processing (as opposed to hard-disk processing) of data streams to

manage high-velocity data such as social media threads and multi-

sensor data from mobile phones; and machine learning algorithms

to manage data variety. Veracity, the uncertainty of data, may be

remedied by provenance tracking and quality controls taken during

collection and aggregation steps.

To find examples of high-volume, high-velocity neurotrauma

data one only has to enter a busy intensive care unit (ICU) or

neuroradiology suite. High-velocity physiological data collec-

tion (blood pressure, heart rate, oxygen saturation levels, etc.) is

now possible using integrated digital systems, as equipment can

be set to record continuously for days, producing very large data

file sizes.13,14 Neuroimaging using modern 3 Tesla magnetic

resonance imaging (MRI) scanners produce many terabytes of

data in the process of detecting microlesions that predict TBI

outcome.15

However, when considering the alignment of pre-clinical to

clinical TBI data to promote translation, it becomes evident that

translation does not involve particularly high data volume or ve-

locity. This does not mean that translational TBI data are a ‘‘small

data’’ problem. By its very nature, TBI involves heterogeneous

injuries that impact the complex architecture of the brain and tril-

lions of synapses in highly unpredictable ways. This constitutes the

ultimate example of data variety. To grapple with heterogeneity,

researchers typically collect various types of data including high-

resolution imaging, physiology, molecular biology, behavior, and

cognition. Often, multiple types of data are collected from a single

subject, and within a single study or article different subjects are

represented by different subsets of variables split across different

figures. In this sense we would argue that TBI translation is indeed

a big-data problem, and specifically a problem of variety and

veracity.

For example, consider our own experience with the Moody

Project for Translational TBI Research (Moody Project), an effort

aimed at: 1) characterizing acute and chronic TBI using small and

large animal models and 2) repurposing U.S. Food and Drug Ad-

ministration (FDA)-approved drugs and testing novel drugs, de-

vices, and adult stem cell-based therapies for treatment of TBI.16–20

This large-scale project was designed to bring together domain

expertise in genomics, proteomics, histopathology, and behavioral

outcome measures to explore the multi-modal effects of TBI over

time in a pre-clinical model. Tens of thousands of genes were

probed, hundreds of protein targets were assayed, and behavioral

tests of motor function, memory, and cognitive function were

collected. Harmonizing these disparate datasets presents a number

of challenges from a logistical data perspective and provides an

example of the considerations that must be acknowledged when

dealing with this unique form of big data. With a large project

where data collection spans many disciplines, there is the inherent

variability in data structure that must be reconciled.

Each domain tends to collect and organize data in a way that is

most practical or amenable to its field. When tasked with harmo-

nizing this dataset, the first task was to curate and translate the

unique vernacular and domain-specific shorthand into a clear and

concise data dictionary, so that all data fields could be quickly and

easily understood between researchers. Where possible, terminol-

ogy was standardized across domains to keep shared traits con-

sistent and readily identifiable. Aspects as simple as how different

labs may refer to a time-point (e.g., ‘‘3m’’ vs. ‘‘3 months’’ vs. ‘‘3

mon post-injury,’’ etc.), or animal identification (‘‘S34’’ vs.

‘‘Subject 34’’ vs. ‘‘34,’’ etc.) are essential for data harmonization.

After assessing the datasets and noting fields where missing data

were present, we quickly came to realize that we needed a project-

level set of common data elements (CDE) that spanned across

domains before any analysis could begin. Further, we found har-

monizing end-point data, such as genomic/proteomic/histological

data, with longitudinal data such as behavioral measures required

flexibility in our data structure (e.g., restructuring between ‘‘long

form’’ and ‘‘wide form’’ view in a spreadsheet of repeated mea-

sures) and clarity in our variable naming conventions. We also

found that, in the case of genomic datasets, a certain amount of first-

order dimension reduction made data harmonization more man-

ageable. For example, to explore how gene expression and be-

havioral recovery interact after TBI, we first used a data-driven

approach to pare down the 45,610 genes probed using a topological

data analysis tool, followed by factor analysis, which identified a

subset of 79 genes that appeared to have strong correlation with

injury conditions, brain regions, and time-points at which data were

collected.21 This stepwise dimension reduction approach allowed

for better manageable data integration with the behavioral data-

set.22

This type of multi-dimensional analytic workflow has been

termed syndromics or syndromic analysis and involves applying a

data-driven or machine learning approach to heterogeneous neu-

rotrauma outcome measures. The goal of this analysis is to visu-

alize the neurotrauma ‘‘syndromic space’’ across the full landscape

of end-points (for examples, see14, 23–26) and then use this visual-

ization to help manage data variety and to determine the robustness

and veracity of outcome patterns. Syndromic analysis can also be

used to generate additional hypotheses and identify new therapeutic

targets that we can test using pre-clinical models and clinical dis-

covery studies.24,27,28 Together, this illustrates one potential set of

solutions for big-data problems routinely encountered in transla-

tional TBI research.

What is the ‘‘long tail’’? What are ‘‘dark data’’?

The problem of data variety leads to a curiously skewed distri-

bution of TBI data in published literature29 that parallels a phe-

nomenon observed in online marketing and in public health, the so

called long tail of product (e.g., data) dissemination. Specifically,

plotting the volume of each dataset (y-axis) as a function of the

number of datasets (x-axis) produces a highly non-normal distri-

bution, with relatively few datasets representing a bulk of the high-

volume ‘‘big’’ data that is publicly available (e.g., published)

(Fig. 1). The vast majority of the datasets collected extend to the

right of the distribution into the long tail of data distribution,
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reflecting datasets of relatively modest size and high variety

(Fig. 1A). Dissemination of these work products in the form of

digital data is a rare phenomenon, even though long-tail data col-

lectively comprise the majority of data collected in neurotrauma.

It has been suggested that the long-tail phenomenon reflects the

concentration of centralized data release by the traditional peer-

reviewed publication system,30 where page limits and other costs

prohibit publishing data in their full form. The modern scientific

peer review system is centered around a 17th century data dis-

semination model, essentially unchanged since the first scientific

journal,31 where data are reported in a highly refined form with

accompanying narratives, summary figures, and tables. Indeed,

given the high costs of traditional publishing, the literature typi-

cally only contains data in the form of summaries, graphs, or tables

with very few examples of high-volume raw data being released as

independent publications that can be directly accessed (e.g., gene

accession numbers). These artifacts of the traditional publishing

system result in the long-tail data that contain large quantities of

semi-accessible data (‘‘gray data’’32) as well as inaccessible and

unpublished data (dark data) (Fig. 1A).29

Recent estimates suggest that the long tail of dark data comprises

approximately 85% of the data collected in the biomedical research

enterprise worldwide.33,34 For this reason, it has been argued that

published literature represents a small, highly selected subset of

findings that reflect 15% of the data that happen to conform to

expectations (i.e., hypotheses) of the article authors and fit into a

tidy narrative ‘‘story.’’29 Based on Bayesian statistical arguments,

some prominent epidemiologists have suggested that the majority

of published articles contain ‘‘false-positive’’ findings that con-

tribute to irreproducibility in the biomedical research literature.35,36

A recent umbrella meta-analysis indicates that pressure to publish

high-impact research results in suppression of dark data and

‘‘gray’’ literature (dissertations, abstracts, personal communica-

tions, and non-published works), resulting in systematic over-

estimation of effect sizes in the published literature, contributing to

systematic patterns of scientific irreproducibility.37

The central question of the current review then becomes: how do

we shorten the long tail of dark data to produce a more compre-

hensive data dissemination model than traditional scientific pub-

lishing? (Fig. 1B). We believe the answer lies in new data

dissemination tools that enable ‘‘data publication’’ and other forms

of public release of long-tail and dark data.

Why publish long-tail or dark data?

The problems of bias and research inefficiency introduced by

long-tail and dark data have been reported in several central ner-

vous system (CNS) injury models.29,34,38–40 For example, sys-

tematic reviews and meta-analyses within the field of pre-clinical

stroke have revealed a substantial overstatement of effect size in

studies with poor reporting on key features such as blinding/ran-

domization and subject attrition.39,41,42 In addition, meta-analysis

tools that estimate selective reporting and publication bias suggest

that around 30% of completed studies in pre-clinical stroke are not

reported in published literature, likely because these results de-

tracted from the authors’ hypotheses, resulting in a major over-

statement of effect sizes in the literature.39 In the field of spinal cord

injury (SCI), a similar impact of dark data has been reported in

meta-analyses of rho/rock inhibitors and cell-based therapies.40,43

This overstatement of effect sizes is a critical problem that has been

shown to directly contribute to irreproducibility and failures in

translation, as clinical trials are often based on highly selected and

low-quality pre-clinical evidence of efficacy.36 Indeed, it has been

demonstrated using objective bibliometric methods that article

quality metrics are inversely correlated to effect size; that is, low-

quality articles report the highest effect sizes, independent of ci-

tations or the impact factor of the journal.36,38,39

To date, there have been relatively few meta-analyses examining

publication bias in TBI44; however, such efforts are underway.45 It

is noteworthy that meta-analysis methods estimate dark data based

on effect size in reported articles and impute completed but unre-

ported studies.46 They do not speak to long-tail data, smaller

FIG. 1. Shortening the long tail of dark data for traumatic brain injury (TBI) research. (A) The current state of TBI data consists of a
relatively small number of large, publicly accessible datasets reflected schematically as a right-skewed distribution. The majority of data
collected by the field exists in the long tail of the distribution, with most datasets consisting of relatively modest data sizes as either gray
data that are difficult to access beyond summaries reported in publications; or dark data that are inaccessible, locked in non-digital
formats. (B) The goal of digital data stewardship is to make TBI data Findable, Accessible, Interoperable, and Reusable (FAIR),56

thereby shortening the long tail of dark data, and making a greater proportion of the data in the TBI literature publicly accessible to drive
new discoveries and accelerate translation.
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packets of information such as partially completed studies that were

halted early due to perceived futility, adverse health events (drug

side effects, husbandry issues, etc.), data about non-primary out-

comes, and meta-data about collected experiments. These exam-

ples of long-tail data are estimated to comprise the majority of data

collected in biomedicine with ‘‘file-drawer’’ dark data representing

an estimated $200+ billion in annual research investment world-

wide.34,47 This suggests that failing to publish long-tail and dark

data contributes to systematic biases, irreproducibility, misinfor-

mation, and fiscal waste in the system of biomedical research.35,48

A number of countermeasures have been presented to overcome

publication bias.49

In addition to avoiding the negative impact of publication bias,

mining long-tail and dark data can yield direct positive benefits.

Our own experience demonstrates opportunities for novel discov-

eries, high-impact publications, and perhaps even accelerated

translation through reuse and publication of long-tail and dark data.

Within the SCI research community, grassroots efforts have begun

to yield a culture of data sharing and pooled analysis that has

launched new areas of inquiry.50–52 For example, our team devel-

oped the VISION-SCI data repository, pooling retrospective data

from 13 SCI research laboratories; at the time of writing it contains

data on more than 4000 animals and more than 2700 variables.52

Re-analysis of these legacy data using modern machine learning

approaches has yielded novel insights with high potential for

translation, even in very old data.

For example, re-analysis of data collected from 1994–96 as part

of the Multicenter Animal Spinal Cord Injury Study (MASCIS)53

in combination with cervical SCI model development studies from

the early 2000s54 revealed a previously unreported null effect of the

steroid methylprednisolone on motor and histological outcomes.24

However, a recent machine intelligence tool known as topological

data analysis (TDA) revealed that random variability in mean ar-

terial blood pressure at the time of injury was a major predictor of

long-term motor outcome, eclipsing the effect size of any drug-

based therapeutic effects. In addition, this finding developed an

unexpected direction: high blood pressure specifically predicted

worse outcomes than low blood pressure. This was surprising be-

cause high blood pressure was previously unrecognized as a clin-

ical predictor of outcome; indeed, most clinical focus has been on

avoiding low blood pressure with vasopressors with little attention

paid to the impact of high blood pressure.55 Yet, hypertension is a

very robust predictor in multiple models of SCI58 and is now being

examined in clinical studies. If these findings are confirmed in

ongoing clinical studies, this will have immediate translational

implications, because a number of anti-hypertensive drugs can

offer new opportunities for precision medicine in SCI. This pro-

vides a strong argument for publishing long-tail data for reuse by

outside researchers and data scientists to drive new discoveries.57

Other examples arguing for publishing long-tail data come from

a similar retrospective effort in TBI and poly-neurotrauma models.

Nielson and colleagues24 applied TDA machine intelligence to

simultaneously re-assess the full set of multi-dimensional end-

points in a prior study of controlled cortical impact (CCI) TBI

versus contusive SCI versus polytrauma with both TBI and SCI.58

Machine learning revealed unexpected motor improvement when

TBIs were ipsilateral to SCI, despite human intuition that this

should cause bilateral impairment by impacting the corticospinal

tract bilaterally at two different levels: damaging the right corti-

cospinal tract at the level of the motor cortex and left corticospinal

tract at the level of the spinal cord below the decussation of the

pyramids.24 The functional improvement with bilateral injuries was

shown to be of a very large effect and consistent when all end-

points are considered in ensemble by the machine learning tool,

although effects were subtle at individual end-points tested using

older, less-sensitive statistical methods.58 Similar workflows have

been extended to pooled clinical TBI data from the TRACK-TBI

pilot and TBI Endpoints Development (TED) datasets.25,27

In a second example, Haefeli and associates59 pooled long-tail

data from three separate pre-clinical trials of combinatorial thera-

peutics for TBI involving the anti-inflammatory drug minocycline,

a neurotrophic drug acting on the p75 NTR system, and various

types of rehabilitation therapy. Given the design complexity, a

complete statistical analysis would have involved more than 300

analyses of variance for the 202 animals in the pooled dataset. For

illustration purposes, Haefeli and associates ran all of these ana-

lyses and demonstrated that only 10% of the tested comparisons

yielded statistical significance at a level that would survive statis-

tical correction for multiple comparisons, suggesting that detection

of significance is an improbable event considering all possible

versions of the ‘‘truth’’ about therapeutic effects. Yet the unsu-

pervised machine learning approach of non-linear principal com-

ponent analysis (NLPCA) demonstrated a more nuanced

‘‘precision medicine’’ finding that the neurotrophic drug improved

outcome but was undermined by certain forms of rehabilitation.

On the other hand, minocycline amplified the efficacy of the

neurotrophin drug. Once the machine learning tool identified these

effects, hypotheses could be generated and directly interrogated

using hypothesis testing approaches. Haefeli and associates as-

sessed scientific reproducibility empirically using a non-parametric

cross-validation approach: external cross-validation across distinct

experiments and internal cross-validation through 2000 iterations

of balanced bootstrapping. The bootstrapping approach is a tool

that depends on modern computers to assess reproducibility: the

pooled population of subjects is randomly subsampled many dif-

ferent times with statistical analysis performed separately on each

subsample.60 In the study by Haefeli and associates, these analyses

revealed precise confidence intervals and effect sizes for thera-

peutic effects using the full set of long-tail data including both

previously published61 and unpublished data, and demonstrated a

reliable effect of neurotrophic agent therapy under certain reha-

bilitation conditions.

Together these early examples from SCI and TBI demonstrate

the potential scientific value of long-tail and dark data and provide a

rationale for publishing these data. In addition, they provide ex-

amples of general machine learning analytic pipelines (which

should also be published online in programming development

platforms such as GitHub) that can be used in both pre-clinical

discovery and clinical data.25,27,62 Examples of such cross-species

precision translation are beginning to be seen in the field of neu-

rotrauma,63 demonstrating new opportunities for seamless inte-

gration of data across species within a single framework.

Incentives for publishing long-tail/dark data

The examples highlighted above involve data harmonization and

curation efforts by dedicated data scientists working closely with

the original data collectors to iteratively refine data curation and

analysis. However, it is possible for such efforts to be less labor

intensive if data stewardship for future dissemination is considered

at the time of data collection. This, of course, requires that such

stewardship be incentivized. Incentives for dissemination of long-

tail and dark data include policy guidance, as well as a system of

‘‘carrots’’ and ‘‘sticks.’’
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The dominant, emerging policy for data stewardship was pre-

sented in a highly cited article by Wilkinson and co-workers64 that

suggested all biomedical research data should be made Findable,

Accessible, Interoperable, and Reusable (FAIR) (see box).

The FAIR data principles have been endorsed by major funders

including the U.S. National Institutes of Health (NIH),65 the U.S.

Veteran’s Affairs Health System,66 non-profit groups such as the

International Neuroinformatics Coordinating Facility (INCF67),

and major journals.68 At the time of writing, these endorsements are

framed in terms of encouraging researchers to adhere to FAIR

stewardship. However, it is not a stretch to imagine that these will

become mandates in coming years as the role of long-tail and dark

data becomes better appreciated as major work products of the

publicly funded biomedical research enterprise worldwide. Some

funders, such as the Bill and Melinda Gates Foundation,69 are al-

ready enforcing data sharing under certain circumstances and have

the ability to withhold funds unless data are made FAIR. This

provides a clear example of sticks that are designed to incentivize

sharing long-tail and dark data.

What about carrots? There are clear benefits of FAIR data

sharing to donators, researchers, other investigators in the field, and

the community at large (e.g., taxpayers). Other fields have issued a

number of challenge initiatives to incentivize data sharing and

collaboration, including the NIH Precision Medicine Initiative

(now All of Us70), the Cancer Moonshot,71 the Sudden Unexpected

Death in Epilepsy (SUDEP) Grand Challenge,72 among many

others.

Data sharing increases transparency and reproducibility by al-

lowing outside groups to corroborate findings using the same data

with different analytic techniques. Data sharing also enables larger

return on investment as reuse of the same dataset can leverage prior

investments in research dollars and researcher data collection time.

For example, the VISION-SCI database was developed using

funding from a single NIH R01 grant ($1 million) and contains data

from 26 prior grants including 16 from NIH. An NIH reporter query

suggests that data collected from NIH alone involved a prior in-

vestment of more than $60 million in long-tail and dark data that

were stored in inaccessible formats such as paper records and non-

standardized spreadsheets.52 In other words, simply by making data

FAIR, this work generated a 60-fold return on investment. In a

similar manner, researchers can get a career boost simply by

making their data FAIR and gaining citations for their data if a

digital object identifier (DOI) is assigned.73 Established community

repositories can serve as the issuers of such DOIs using interna-

tional data citation standards,74 and can cross-index these DOIs

with electronic libraries such as the California Digital Library75 and

the Internet Archive.76 Future users of data will be able to give

credit directly to data donors though DOI citation much like the

current system of article citation, and data citations may benefit

academic promotion in tenure decisions.

FAIR data sharing may also prevent researchers from wasting

time on futile experiments by granting access to prior negative

studies (that are ‘‘published’’ as a dataset), thus focusing taxpayer

dollars more effectively. The wait to publicly release data from

repositories following publication is lessened by automated search

tools such as Wide-Open77 that recently triggered the public release

of 400 overdue datasets, and emerging tools such as Google Dataset

Search, among others. Finally, a major incentive with FAIR data

sharing is that interoperable datasets can be pooled together to gain

much higher sample sizes than can be achieved in a single labo-

ratory, providing sensitivity to outcome patterns in larger datasets

that may not appear in smaller, individual lab datasets. In addition,

through the process of allowing their data to be pooled, individual

laboratories may gain access to a wide community of data scientists

who can help annotate their data, and add meta-data and new

analysis pathways. These derivative work-products may then be

added back to the original data as a form of enrichment, enabling

new uses for data. This ‘‘crowd-sourcing’’ process has potential to

create a ‘‘virtuous cycle’’ of open data sharing and analysis that

leads to ever-increasing quality improvement and data value.78

Disincentives for publishing long-tail/dark data
and how do we overcome them?

Although the benefits and potential incentives for sharing long-

tail and dark data are clear, it remains difficult to do so in the current

scientific career ecosystem. It is worth examining some of the

disincentives and barriers to disseminating data in an attempt to

overcome them. First, data sharing is currently time-consuming,

especially for older datasets that did not have data sharing in mind

at the time of collection. Our own experiences with building the

VISION-SCI repository from paper records suggest that this task is

not insurmountable; however, managing legacy TBI data requires a

unique combination of deep domain knowledge in both neuro-

trauma and data science. Currently, this is a rare combination of

skills, limiting the potential workforce that can help with data

‘‘wrangling’’ from legacy data. As the science workforce becomes

more populated with dedicated data science/biomedical science

cross-training programs, such projects will become less cumber-

some. Examples of these programs include the NIH Big-Data to

Knowledge (BD2K) initiative, which has specialized award pro-

grams such as the BD2K RoAD-Trip (Data Science Rotations for

Advancing Discovery), dedicated to data science bootcamp train-

ing for established biomedical researchers.79

A related disincentive is that data sharing can be costly, and may

be considered an unfunded mandate, especially for traditional NIH

grants that are dedicated to testing targeted hypotheses using col-

lected data rather than curating and sharing data. Making data FAIR

may take time and effort from new projects to devote to data

curation of older projects. In some cases, this may not be techni-

cally legal to do in terms of effort reporting. The NIH rules do not

explicitly prohibit designating the amount of effort in National

Institute of Neurological Diseases and Stroke (NINDS) grants for

data curation, but scientific reviewers (i.e., the neurotrauma com-

munity) would need to accept this practice during grant review

The FAIR Data Principles As Applied to TBI

Long-tail and Dark-Data

Findable: Long-tail and dark data should have a unique and

consistent identifier such as a digital object identifier (DOI),

similar to that of published papers.

Accessible: Once TBI data have been found, they can be

accessed by both human scientists and machines such as com-

puters running analytics, visualization, and indexing engines.

Interoperable: TBI data should contain well-defined formal

annotations that enable data to be automatically harmonized

with multiple software tools using widely understood lan-

guage(s) and knowledge representations.

Reusable: TBI data should have well-developed user li-

censing rules and provide sufficient information to track data

back to its source (provenance).
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process. As such, accepting data stewardship costs as part of grant

review and funding decision may require explicit guidance for peer

reviewers, and perhaps a change in culture about the importance of

this funding designation.

Other cost-related issues include: Who pays for data storage?

Who pays for database maintenance? These issues are commonly

considered as operating costs in for-profit businesses; however,

they are difficult to justify in grant reviews. Once a grant ends, it

may become impossible to continue to fund data hosting and

maintenance without a sustainable business model. This remains a

largely unsolved problem in neurotrauma; however, business

models for scientific journals may be repurposed to help support

ongoing costs of making data FAIR. In the cancer field, federally

funded clinical trial data are maintained in databases developed by

consortia. Large multi-site neurotrauma groups such as TRACK-

TBI (clinical TBI), Operation Brain Trauma Therapy (OBTT), the

Moody Project (pre-clinical TBI), or the emerging Open Data

Commons for SCI and Open Data Commons for TBI initiatives

might be viable resources to support a sustainable data repository.50

For any business model to be feasible, data ownership and

stewardship issues, as well as licensing agreements need to be

solved. One very important question is who actually owns the data?

In the United States, the Bayh-Dole Act automatically assigns in-

tellectual property to universities, and faculty data collectors are

considered stewards of the intellectual property.80 On the other

hand, federal funders such as the NIH have mandated that NIH-

funded data be released to the public after an embargo period, and

this policy has been realized in the form of PubMed Central (PMC).

A similar model could be extended to long-tail and dark data once

data are made citable and FAIR. Such data release would be then

covered under an open access publishing license such as the crea-

tive commons BY (CC-BY) licensing agreement. A related concern

raised by some investigators is that an open access model does not

allow researchers to approve data access, and some researchers

have stated their fear of public misinterpretation of data or misuse

by special interest groups.29,50,81 However, it is our opinion that

these same issues exist in the current dissemination model for open

access publications. It is less clear how making long-tail and dark

data underlying these publications more accessible fundamentally

increases risks beyond the existing system of publication followed

by public scrutiny. It would seem that making source data more

citable would only improve the self-correcting nature of scientific

and public discourse.

A final set of disincentives relate to reputational concerns that

competing researchers or malicious actors from the public will

‘‘weaponize’’ raw data to attack individuals who share their data. In

some of the FAIR data workgroups,50,82,83 researchers have ex-

pressed their personal fears of backlash from competing research-

ers, special interests groups, and even anti-research terrorist

groups84 using these raw data against them. This concern seems

centered around the notion that long-tail and dark data may contain

embarrassing secrets that would call into question the validity of the

conclusions in associated published articles. Given the current re-

producibility crisis, it is worth considering how the culture of data

sharing can evolve such that researchers are rewarded for sharing

data independent of the conclusions made from these data. Such

credit attribution models currently exist in digital e-commerce

market place (e.g., clicks, mouse-overs, and views result in ad

revenues going to content providers) and e-commerce transactional

tools provide examples of encryption-based digital security. Such

models may be repurposed to credit attribution in academic data

dissemination as well. The rise of individual citation metrics such

as the h-index provides a glimpse into this type of attribution sys-

tem.85

Big data options for TBI studies

At the time of writing, there are relatively limited big-data tools

available to academic researchers and there is a strong need for

plug-and-play tools that are easy to use and adaptable for a wide

variety of research datasets. The NIH and U.S. Department of

Defense (DoD) have jointly invested in the Federal Interagency

Traumatic Brain Injury Research (FITBIR) informatics system,

which provides secure access to clinical TBI datasets.3,86 Varia-

bility in data collection (and labeling of data fields) among inves-

tigators, labs, and TBI research subdomains in FITBIR are partly

ameliorated by application of the TBI CDE project of the NIH’s

NINDS.87 The NINDS CDE workgroups defined a common vo-

cabulary and set of protocols for clinical CDE data collection that

should make data harmonization easier in the future. Use of the

clinical CDEs is now a mandate for NIH- and DoD-funded clinical

TBI studies and their use has enabled the development of harmo-

nized multi-study datasets such as the TED meta-dataset88 and has

helped facilitate regulatory pathway development of the first FDA-

endorsed biomarkers for TBI.89,90 The CDE effort has been ex-

tended to pre-clinical TBI common data elements efforts that are

currently underway.91 In theory, the FITBIR system has potential to

create opportunities for FAIR data reuse.

However, whether there will be widespread reuse of these data

by third-party researchers remains an open question. Adoption of

such systems involves incorporating user-centered design princi-

ples that consider the workstyles of neurotrauma researchers in-

stead of solely those of computer scientists and informaticians. To

date, this has been hard to achieve using centralized development

teams that are not integrated with the research community.

In contrast, there are some research community-driven efforts

that provide alternative models for FAIR data sharing of long-tail

and dark data. One model is OBTT, a collaborative research group

whose goal is to screen and validate previously tested therapies in

three animal models of TBI. To accomplish this, the members of

OBTT created a scoring matrix to evaluate all tested therapies

across the three testing sites. The scores allocated to the motor,

cognitive, neuropathology, and serum biomarker categories were 4,

10, 4, and 4, respectively. However, the tasks and category ‘‘sub-

scores’’ differed between the sites. For example, the Miami site

subdivided the Morris water maze results into five different sub-

scores, whereas the Pittsburgh site used two subscores.92

OBTT is composed of six sites: 1) The Safar Center for Re-

suscitation Research, University of Pittsburgh School of Medicine;

2) The Miami Project to Cure Paralysis, University of Miami

School of Medicine; 3) The Neuroprotection Program at Walter

Reed Army Institute of Research; 4) Virginia Commonwealth

University; 5) Banyan Biomarkers, Inc.; and 6) The Center for

Neuroproteomics and Biomarkers Research, University of Florida.

Their data were sent to a central data store, masked, and discussed

at monthly conference calls. Despite having ‘‘negative’’ findings

for their first 4 out of 5 drugs tested, the OBTT group published

articles for each drug as well as a synthesis article explaining the

details of the design and workflow used. These works were pub-

lished in a special issue of the Journal of Neurotrauma.93 The

rationale for the study design and workflow choices of OBTT and

OBTT-Extended Studies were a topic of discussion at the 2016

Moody Project TBI Symposium, held in Galveston, Texas. Dis-

cussion evolved into guidelines for pre-clinical therapy testing for
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TBI and were recently published,9 to share lessons learned with the

neurotrauma community.

In addition to OBTT, the Moody Project group (at The Uni-

versity of Texas Medical Branch at Galveston, with collaborations

at the University of California San Francisco, the University of

Minnesota, and the University of Pennsylvania) also maintains a

central database containing gene expression, proteomics, histopa-

thology, behavior, surgical, and physiological outcome data before,

during, and up to 1 year post-TBI (with and without drug, device, or

stem-cell-based therapies; in three species of animal and using five

different experimental models of TBI).

To complement these community-rooted efforts, several groups

are focused on building scalable FAIR data-sharing infrastructure

for neurotrauma long-tail and dark data. One example is our ex-

perience in building the VISION-SCI repository.52 We have part-

nered with the Neuroscience Information Framework (NIF)/

SciCrunch group to develop an open data commons for SCI94

(http://odc-sci.org) and are developing similar infrastructure for

TBI that enables community-driven data management, uploading,

hosting, and citation as well as an application programming inter-

face (API) that promotes interoperability. It is possible that this

system architecture can be extended to include TBI, with proper

support. The hope is that such systems will apply agile, user-

centered design to help support sharing of long-tail and dark data

from diverse research groups within the field.

Concluding Remarks and Overall Benefits
of Data Sharing

Large, shared individual TBI datasets lend themselves to pre-

cision and targeted personalized medicine and can uncover previ-

ously unseen findings (such as the bimodal deleterious mean

arterial pressure ranges) that could change clinical practices and

improve the lives of TBI survivors.24,25,27,59,95 Additionally, once a

populated centralized public database exists with pre-clinical and

clinical TBI data, these results can be combined with outcome data

from other neuro- and non-neuro-related databases to determine if

TBI impacts other comorbidities, chronic diseases, aging, and

immune responses to allergens and infectious diseases. Data from

repositories have been used to create models and simulations in the

fields of Alzheimer’s disease,96 cardiovascular health,97 and to

predict new drug targets and drug response biomarkers.98 In gen-

eral, public databases can stimulate research by generating new

hypotheses/areas of research,99 reducing the number of unneces-

sary repeated experiments, and lead to novel findings due to a larger

sample size and access to more powerful statistical analyses that

uncover previously unnoticed patterns. Barriers to easy and FAIR

data sharing still exist,100–104 but with continued support for data

repositories and increased interest in recognition for publication of

all data (even long-tail, dark data, and ‘‘negative findings’’), we are

confident that the neurotrauma community can overcome these

challenges.
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