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Abstract:	
This	article	develops	some	ideas	concerning	the	“big	picture”	of	how	using	
computers	might	fundamentally	change	learning,	with	an	emphasis	on	
mathematics	(and,	more	generally,	STEM	education).	I	develop	the	big-picture	
model	of	computation	as	a	new	literacy	in	some	detail	and	with	concrete	examples	
of	sixth	grade	students	learning	the	mathematics	of	motion.	The	principles	that	
define	computational	literacy	also	serve	as	an	analytical	framework	to	examine	
competitive	big	pictures,	and	I	use	them	to	consider	the	plausibility,	power,	and	
limitations	of	other	important	contemporary	trends	in	computationally	centered	
education,	notably	computational	thinking	and	coding	as	a	social	movement.	While	
both	of	these	trends	have	much	to	recommend	them,	my	analysis	uncovers	some	
implausible	assumptions	and	counterproductive	elements	of	those	trends.	I	close	
my	essay	with	some	more	practical	and	action-oriented	advice	to	mathematics	
educators	on	how	best	to	orient	to	the	long-term	trajectory	(big	picture)	of	
improving	mathematics	education	with	computation.	
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Introduction	
	
The	goal	of	this	paper	is	to	provide	a	“big	picture”—succinct,	but	as	broad	and	deep	
as	I	can	manage	in	the	space—of	the	best	that	we	can	hope	for	concerning	
computers	in	mathematics	learning.	I	will	be	looking	at	historical	and	present	
trends,	but	the	ultimate	aim	is	to	consider	the	future,	in	what	directions	progress	
would	best	be	pursued,	and	what	opportunities	and	pitfalls	await	us.		
	
At	the	center	of	my	analysis	is	one	particular	view	of	how	we	should	construe	the	
ultimate	aims	of	engaging	computers	in	STEM	education.	(I	use	“STEM”	to	
emphasize	the	breadth	of	concerns	when	restriction	to	mathematics	would	be	
misleading.)	That	view	has	been	gradually	built	and	elaborated	over	the	45	years	
during	which	I	have	been	thinking	about	and	working	toward	improving	STEM	
education	with	technology.	It	is	a	view	that	bears	a	strong	family	resemblance	to	
that	of	many	current	workers	in	the	field.	In	particular,	I	started	my	work	in	
technology	and	education	in	Papert’s	Logo	Group	within	the	MIT	Artificial	
Intelligence	Laboratory,	and	the	lines	of	work	out	of	that	profound	beginning	are	
strong	and	continuing	(though	hardly	exclusive)	in	the	range	of	work	on	“tech	and	
ed.”	However,	I	will	use	my	own	formulation	of	the	big	picture	in	the	interest	of	
specificity	and	in	order	to	raise	some	issues	that	I	believe	are	important	but	not	
salient	in	other	formulations.1	
	
Putting	forward	one	particular	view	might	be	interpreted	as	advocacy.	But	I	am	not	
aiming	particularly	to	advocate,	here.	For	that	purpose,	readers	might	consult	my	
Changing	Minds	book	(diSessa,	2000)	(from	which,	however,	I	will	borrow	
extensively).	Instead,	my	aim	is	more	analytic,	to	establish	at	least	one	clear	and	
plausible	reference	view	in	some	detail,	and	to	pursue	a	family	of	issues	that	
become	salient	in	that	view.	I	believe	that	many	of	these	issues	apply	to	many,	
most,	or	possibly	all	possible	“big	pictures”	of	computers	in	STEM	education.	A	
significant	part	of	this	paper	will	be	making	the	case	for	how	this	view	provides	an	
analytical—sometimes	critical—frame	for	considering	other	perspectives	on	
technology	and	education,	both	close	to	and	distant	from	my	own.		

The	Literacy	Model	
	
My	model	of	the	best	future	for	computers	and	STEM	learning	is	easy	to	say.	I	view	
computation	as,	potentially,	providing	a	new,	deep,	and	profoundly	influential	
literacy—computational	literacy2—that	will	impact	all	STEM	disciplines	at	their	

																																																								
1	An	excellent	comparison	to	this	essay	from	within	Papert’s	contstructionist	
orientation	is	Wilensky	and	Papert	(2010);	both	similarities	and	differences	are	
illuminating.	
2	The	plural,	“literacies,”	is	more	apt.	But	I	aim	to	keep	the	discussion	as	simple	as	
possible.	
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very	core,	but	most	especially	in	terms	of	learning.	In	using	the	term	“literacy”	I	
need	immediately	to	warn	that	I	do	not	mean	the	popular,	denatured	use	of	
“literacy”	as	“a	casual	acquaintance	with	…,”	which	usage	was	particularly	common	
near	the	beginnings	of	computer	use	in	education.	Instead,	I	mean	to	take	on	a	
serious	comparison	to	one	of	the	foundational	achievements	of	modern	civilization,	
mass	literacy	with	the	written	word,	which	permeates	not	only	all	professional	
intellectual	activity	in	STEM,	but	almost	all	learning	and	instruction	in	STEM.	
Indeed,	developing	textual	literacy	occupies	a	substantial	proportion	of	all	
schooling.	
	
Genuine	literacies	are	big	deals.	Mass	textual	literacy	took	hundreds	of	years	to	
achieve.	There	is	a	fairly	extensive	literature	on	textual	literacy	and	how	it	works.	
So	one	need	not	start	from	scratch	in	understanding	computational	literacy.	On	the	
other	hand,	literacy	theory	is	also	a	contested	area	that	has	gone	through	several	
major	phases.	It	is	also	true	that	an	absolutely	critical	set	of	issues	for	us—what	
kind	of	literacies	can	exist,	and	how	do	they	come	about?—has	been	severely	
neglected.	So,	on	those	matters,	I	have	to	make	do,	here,	with	some	rough-and-
ready	ideas.	In	addition,	what	might	be	the	same	or	different	about	computational	
literacy	compared	to	textual	literacy	is	not	transparent,	and	it	is	also	something	
that	traditional	theories	of	literacy	do	not	touch.	So,	a	literacy	frame	is	helpful,	but	
one	has	to	extrapolate.	

A	definition	and	historical	examples	
Very	roughly,	I	define	a	literacy	as	the	adoption	by	a	broad	cultural	group3—
perhaps	an	entire	civilization—of	a	particular	infrastructural	representational	form	
for	supporting	intellectual	activities.	Two	consequences	follow.	First,	a	literacy	
depends	deeply	on	the	particular	representational	form,	text,	for	example,	or	
computer	programs	(in	a	very	general	sense).	What	can	be	represented	in	the	
form?	What	is	possibly	represented,	but	difficult	or	marginally	accomplished?	What	
is	impossible	to	represent	and	might	need	complementary	forms?	I	call	these	
questions—which	concern	the	specificity	of	representations	with	respect	to	what	
they	can	represent—the	representation	effect.	It	is	fundamental,	and	I	elaborate	it	in	
several	ways	throughout	this	essay.	
	
The	second	consequence	of	that	definition	is	that	the	emergence	of	a	literacy	is	a	
complex,	extended	social	and	cultural	matter.	In	my	view,	nobody	can	plan	a	
																																																								
3	Literacy	as	it	applies	to	written	language	might	suggest	that	we	should	only	
consider	civilization-wide	candidates	for	new	literacies.	However,	considering	
subgroups	can	also	be	important.	Universal	literacies	might	bud	in	subgroups,	and,	
in	any	case,	some	subgroups	might	have	very	substantial	impact	on	“whole	
civilizations.”	The	technological-scientific	community	might	substantially	
determine	whether	we	survive	as	a	species.	For	me,	algebra	is	not	in	dispute	as	a	
literacy	in	this	sense,	and	my	guess	is	that	calculus	may	well	also	be	in	the	same	
category.	See	later	discussion	of	both	algebra	and	calculus	as	literacies.	I	believe	
computation	will	come	close	to	universality,	even	if	calculus,	for	example,	is	not.	
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literacy	and	enact	it.	So	one	has	to	look	deeply	at	distributed	social	processes	to	
understand	the	possible	emergence	of	a	computational	literacy.	
	
Textual	literacy	is	so	big,	so	complex,	and	so	present,	that	it	is	analytically	
intractable.	So	I	start	with	a	boringly	familiar—but	effective—example	of	the	
intellectual	consequences	of	new	representational	forms:	the	transition	between	
Roman	numerals	and	our	current	Arabic	notation.	Imagine	multiplying	CMLXXVII	
by,	say	II.	Or	by	itself.	What	a	mess!	On	the	other	hand,	this	task	should	be	easy	for	
upper	elementary	school	students	using	Arabic	notation,	starting	“7	times	2	is	14;	
so,	4;	carry	the	1.”	You	might	be	able	to	do	1977	x	2	in	your	head,	imaging	the	
spatial	layout	as	an	organizing	framework.	
	
All	of	a	sudden,	a	class	of	tasks	becomes	much	easier.	Social	consequences	can	be	
enormous.	Every	shopkeeper	can	“now”	do	their	sums	and	make	change;	a	
professional	class,	the	calculational	equivalent	of	scribes,	which	could	be	hired	only	
by	royalty,	either	expires	or	transforms	into	a	different	professional	class	that	
handles	those	tasks	that	are	particularly	complicated	or	specialized:	such	as	
financial	advisors	or	tax	accountants.	
	
The	first	observation	about	this	example	concerns	the	representation	effect.	Every	
representation	has	its	own	affordances.	It	may	make	some	things	dramatically	
easier,	but	it	may	also	have	blind	spots,	things	that	are	inconvenient	to	the	point	of	
uselessness.	This	requires	consideration	of	the	specific	representation	at	issue	and	
of	the	“fields	of	use”	for	that	representation,	about	which	I	will	have	much	more	to	
say.	Text	may	seem	ubiquitously	useful,	but	it	is	not.	Calculation	is	narrower	in	use,	
but	where	it	fits,	it	is	more	powerful.	The	second	observation	elaborates	the	fact	
that	social	consequences	are	critical.	Before	commerce,	perhaps	nobody	in	the	
civilization	might	care	about	the	potential	of	Arabic	arithmetic.	See	Saxe	(2014)	for	
vivid	images	of	how	certain	cultures	are	completely	content	with	minimal	and	
enacted	(rather	than	external	and	stable)	representations	of	number,	and	how	
“silly	little	things,”	like	commerce,	can	drive,	slowly	and	in	a	complex	manner,	
representational	shifts	in	the	culture.	
	
I	need	another	example	to	get	to	a	reasonable	social	scale	and	a	literacy	more	
comparable	to	a	possible	computational	one.	For	this,	I	turn	to	an	experience	I	had,	
(recounted	in	more	detail	in	diSessa,	2000).	I	have	long	been	a	fan	of	Galileo	and	his	
wonderful	scientific	accomplishments,	and	also	a	fan	of	his	wonderful	“naïve-
conception-focused”	expository	mode:	“Someone	might	think…,	but	imagine….”	
However,	a	long	passage	from	one	of	his	books	completely	baffled	me	for	years.	In	
it,	Galileo	proves	six	complex	theorems	about	uniform	motion,	where	distance	is	
accumulated	in	proportion	to	time.	Figure	1	shows	one	of	the	six	proofs.	
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Theorem: If a moving particle, carried uniformly at a constant speed,  
traverses two distances, the time intervals required are to each 

other in the ratio of these distances. 
 

Proof: Let a particle move uniformly with constant speed through two distances AB, BC, 
and let the time required to traverse AB be represented by DE; the time required to traverse 
BC, by EF; then I say that the distance AB is to the distance BC as the time DE is to the time 
EF. Let the distances and times be extended on both sides towards G, H and I, K; let AG be 
divided into any number whatever of spaces each equal to AB, and in like manner lay off in 
DI exactly the same number of time-intervals each equal to DE. Again lay off in CH any 
number whatever of distances each equal to BC; and in FK exactly the same number of time 
intervals each equal to EF; then will the distance BG and the time EI be equal and arbitrary 
multiples of the distance BA and the time ED; and likewise the distance HB and the time KE 
are equal and arbitrary multiples of the distance CB and the time FE. 
 

 
 
And since DE is the time required to traverse AB, the whole time EI will be required for the 
whole distance BG, and when the motion is uniform there will be in EI as many time 
intervals each equal to DE as there are distances in BG each equal to BA; and likewise it 
follows that KE represents the time required to traverse HB. 
 
Since, however, the motion is uniform, it follows that if the distance GB is equal to the 
distance BH, then must also the time IE be equal to the time EK; and if GB is greater than 
BH, then also IE will be greater than EK; and if less, less. There are then four quantities, the 
first AB, the second BC, the third DE, and the fourth EF; the time IE and the distance GB are 
arbitrary multiples of the first and the third, namely of the distance AB and the time DE. 
 
But it has been proved that both of these latter quantities are either equal to, greater than, or 
less than the time EK and the space BH, which are arbitrary multiples of the second and the 
fourth. Therefore, the first is to the second, namely the distance AB is to the distance BC, as 
the third is to the fourth, namely the time DE is to the time EF. 
Q.E.D. 
 
 
Figure 1. A Galilean proof. From Dialogues Concerning Two New Sciences, 
Galileo Galilei. Translated by H. Crew and A. de Salvio, Northwestern 
University, 1939. 

	
The	astute	reader	will	recognize	that	the	theorem	is	basically	“distance	equals	rate	
times	time,”	but	in	proportional	form	for	two	motions:	𝑑!

𝑑!
= 𝑟!

𝑟!
× 𝑡!

𝑡!
.	All	the	other	

theorems	are	simple	variations.	So,	why	does	Galileo	turn	this	simple	fact	into	six	
theorems,	and	why	is	he	burdening	us	with	six	independent	and	complex	proofs?	
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You	should	know,	but	might	not,	that	algebra	in	its	modern	form	simply	did	not	
exist	in	Galileo’s	time.	Toward	the	end	of	his	life,	while	Galileo	was	inscribing	his	
great	insights	in	text	and	drawings,	Descartes,	Vieta,	and	others	were	at	the	
beginning	stages	of	the	long	and	complex	process	of	creating	the	notation	and,	
more	importantly,	the	algebraic	literacy	in	which	most	of	us	are	immersed	today.	
Any	contemporary	high	school	student	should	be	able	to	accomplish	Galileo’s	
“difficult	problem,”	stating	and	finding	the	“simple”	consequences	of	𝑑 = 𝑟𝑡,	with	
ease.		
	
I	was	baffled	by	Galileo’s	proofs	because	algebraic	reasoning	was	so	natural	and	
simple	to	me.	Indeed,	the	properties	of	representations	and	their	cultural	power	
are	not	commonly	appreciated.	You	probably	learned	that	algebra	was	an	Arab	
invention	(maybe	you	recognize	the	Persian,	Muḥammad	ibn	Mūsā	al-Khwārizmī,	
who	lived	in	the	eighth	and	ninth	century).	The	conventional	designation	of	“the	
origins	of	algebra”	betrays,	I	think,	a	systematic	lack	of	appreciation	of	the	
importance	of	representations.	Early	“algebra,”	before	Vieta	and	Descartes,	was	
entirely	discursive—represented	in	words	only—pronouncing	sentences	and	
describing	“algebraic	moves”	in	natural	language.	Descartes	himself	seemed	to	
deny	the	power	of	representational	contributions	made	earlier	by	Vieta.	My	friends	
in	mathematics	at	university	glibly	mocked	Einstein’s	pride	in	a	notational	
invention	concerning	tensor	analysis;	they	deprecated	it	as	“notation	theory.”	In	
the	larger	scheme	of	things,	even	after	Descartes’	work,	algebraic	notation	evolved	
significantly,	and,	most	relevant	to	the	present	project,	the	long	social	
transformations	that	took	algebra	from	an	exotic	professional	concern	to	a	socially	
widespread	literacy	had	not	even	begun.	
	
On	the	social	transformation	of	algebra	into	a	true	literacy,	I	make	two	points.	First,	
social	contest	has	been	evident	in	that	transformation	pretty	much	to	the	present	
day.	In	the	early	1900s,	there	was	a	prominent	rebellion	by	leading	mathematics	
educators	against	teaching	algebra	in	high	school.	The	teaching	of	algebra	in	
secondary	school	declined	from	near	60%	of	students	in	the	first	decade	of	the	20th	
century	to	the	mid-twenty	percents	in	the	1950s	(Klein,	2003).	Modern	
percentages	are	back	up	and	beyond	those	of	the	early	20th	century,	near	80	
percent	or	above	(Dalton,	Ingels,	&	Fritch,	2016).	
	
Not	incidentally,	rates	for	different	demographics	tell	a	critical	tale	of	social	contest	
and	consequences.	While	rates	of	taking	algebra	are	similarly	high	for	three	
representative	demographic	categories	(Whites,	Blacks,	and	Asians)	in	the	U.S.,	
calculus	tells	another	story.	The	most	recent	rates	that	I	could	find	(for	the	high	
school	class	entering	in	2009;	in	Dalton,	Ingels,	&	Fritch,	2016;	see	also	“Fewer	
Black	Students	Are	Taking	Calculus	in	High	School,”	2017)	for	enrollment	in	
calculus	for	Whites	is	about	16%,	but	for	Blacks,	it	was	about	6%.	While	Bob	Moses	
(and	others,	of	course)	seems	to	have	succeeded	by	these	simple	statistical	
measures	in	making	algebra	a	common	“civil	right,”	the	same	cannot	be	said	for	
calculus.	While	the	enrollment	rates	for	Whites	and	Blacks	in	calculus	are	
dispiriting,	the	enrollment	rate	for	Asians	tells	a	more	positive	story.	According	to	
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those	same	sources,	the	rate	for	Asians	was	about	43%.	You	will	not	be	surprised	to	
know	that	the	rate	for	private	schools	ranked	only	a	bit	below	that	for	Asians.	
	
Apparently	calculus	has	not	become	a	widespread	literacy,4	and	the	demographics	
suggest	a	potentially	serious	problem	with	the	distribution	of	the	literacy	to	
various	groups.5	Needless	to	say,	dramatic	problems	with	social	distribution	of	
textual	literacy	have	also	existed	in	all	parts	of	the	world,	but	perhaps	most	visibly	
in	the	vicious	enforcement	of	illiteracy	during	times	of	slavery.	
	
To	summarize,	while	algebra	has	become	a	widespread	literacy,	with	fairly	massive	
implications	for	the	present	high	tech	and	scientifically	intense	civilization,	calculus	
has	not.	Social	contest	and	critical	societal	issues,	such	as	access	to	good,	high-
paying	jobs,	are	deeply	implicated.	
	
Algebra/calculus	literacy	makes	a	good	case	study	and	landmark,	all	the	more	
because	it	is	a	technical	literacy.	It	is	not	much	good	for	many	cultural	functions,	for	
example,	for	poetry	or	courting.	But	it	is	useful	enough,	for	enough	important	

																																																								
4	I	am	treating	calculus	as	a	potential	literacy,	sometimes	nebulously	distinct	from	a	
unified	algebra/calculus.	Here	is	how	I	see	the	relevant	issues.	To	some	extent,	
distinctions	between	closely	related	intellectual	competencies	are	arbitrary.	What	
we	need	is	a	more	articulated	view	of	the	connections	and	disconnections	between	
them,	which	would	qualify	any	conventional	choice	of	speaking	about	them	as	
separate	or	unified.	As	for	the	specific	relation	between	algebra	and	calculus,	I	
recognize	that	calculus	relies	intimately	on	algebraic	notation,	with	some	
potentially	critical	extensions	(derivatives	and	integrals,	obviously,	but	a	lot	more	
notational	innovation	appears	when	we	get	to	vector	or	tensor	calculus)	that	might	
be	grounds,	by	themselves,	to	support	an	argument	for	“separate.”	On	a	larger	
plane,	however,	I	think	too	narrow	a	focus	on	literal	representations	is	
counterproductive.	Representations	work	in	virtue	of	conceptual	infrastructures,	in	
addition	to	literal	representational	schemes.	I	believe	the	conceptual	infrastructure	
of	calculus	is	distinct	enough	to	warrant	separate	consideration,	at	least	some	of	
the	time.	Or	we	would	not	appreciate	what	Newton	had	to	do	to	develop	his	laws	
(“invent	calculus”),	distinct	from	the	kinds	of	things	that	had	been	accomplished	
already	using	algebraic	notation.	So,	in	net,	I	am	defending	the	sensibility	of	
considering	calculus	to	be,	potentially	at	least,	a	separate	literacy,	while,	at	the	
same	time,	recognizing	that	it	is	not	categorically	distinct	from	algebra	as	a	
competence.	The	relationship	between	the	“calculus	of	constraint”	(currently	
“algebra”)	and	the	calculus	of	change	(currently	“calculus”)	might	change	with	a	
computational	infrastructure	for	learning.	
5	Of	course,	there	are	great	complexities	that	I	am	not	addressing.	High	school	
enrollment	rates	are	not	definitive	measures	for	literacy	rates.	Maybe	the	
racial/cultural	gap	is	closed	in	college,	at	least	for	some	students?	What	is	actually	
covered	in	algebra	courses?	I	simply	have	to	suppress	such	important	
considerations	here.	
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things,	that	our	prospering	and	even	surviving	as	a	civilization	(what	is	the	change	
in	rate	of	change	of	global	warming?)	are	implicated.		
	
With	this	in	mind,	I	project	that	computational	literacy	will	dramatically	
overshadow	algebra/calculus	literacy	in	the	future.	Computation	is	more	generally	
useful,	and	it	is	far	easier	to	learn.	So	it	will	be	much	more	prevalent	and	important	
than	algebra/calculus.	I	elaborate	these	themes,	but	for	now	I	advance	the	
proposition	that,	in	its	breadth	and	impact,	computational	literacy	will	wind	up	
being	roughly	logarithmically	halfway	between	the	algebra/calculus	technical	
literacy	and,	the	grandparent	and	massively	important	literacy,	competence	with	
written	text.	
	
Allow	me	to	start	a	list	of	literacy	principles	to	help	synthesize	and	summarize	the	
discussion.	
	

0. A	literacy	is	a	massive	social/intellectual	accomplishment	of	a	culture	or	
civilization,	where	many	competing	forces,	over	decades	or	centuries,6	
eventually	settle	on	a	particular	representational	form	for	wide-spread	
learning,	use,	and	subsequent	value.	This	is	virtually	my	definition	of	a	
literacy,	and	a	foundation	for	all	the	other	principles.	

1. Re-mediation:	At	the	core	of	a	literacy	is	the	mass	appropriation	of	a	
representational	system,	which	shows	distinctive	and	critical	strengths,	but	
also	limitations	and	blind	spots,	and,	thus,	a	possible	complementarity	with	
other	forms	of	representation.	

	
Reflecting	on	the	Galileo	example,	I	also	assert	that:	
	

2. Literacies	shift	the	basic	intellectual	structure	of	domains	of	knowledge	
along	with	learning	trajectories	and	societal	participation	structures—who	
gets	to	do	what.	Concomitantly,	a	literacy	needs	a	literature.	One	needs	to	
transcend	a	representational	system	by	itself,	and	get	to	civilizations’	
expanse	of	deep	and	powerful	ideas.	Algebra	has	permeated	almost	all	
scientific	and	technological	literature.	It	is	taken	for	granted,	but	its	value	is	
distributed	among	many	profound	and	not-so-profound	“things	civilization	
has	managed	to	think	and	explain”	using	the	representation,	constituting	a	
profound	and	rich	literature.	This	point	expresses	an	anti-essentialist	line,	a	
literacy	is	not	centered	in	any	core	power	of	the	representational	system,	
nor	in	special	cognitive	capacities	that	it	allows.7	I	will	pursue	this	idea	later.	

																																																								
6	Some	believe	that	society	is	changing	much	faster	these	days.	But	if	one	looks	at	
the	massive	intellectual	changes	that	are	entailed,	it	is	reasonable	to	be	skeptical	
that	deep	literacies	can	possibly	develop	quickly.	We	have	already	had	four	or	five	
decades	of	widespread	computation	and	not	settled	what	that	means	for	the	
education	of	our	young.	
7	Several	important	historical	accounts	of	literacy	are,	in	my	view,	essentialist	in	
this	way.	So,	in	this	respect,	I	am	pursuing	a	different	line.	
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Furthermore,	the	relevant	“literature”	is	multifaceted.	As	the	literature	that	
uses	algebra	is	centered	in	and	at	least	somewhat	distinct	in	different	
disciplines	and	foci,	so	will	computation-relevant	literature	be.	Write	down	
the	central	algebraic	principles	in	physics,	economics,	and	statistics.	Not	
only	the	literal	expressions,	but	also	the	connected	conceptual	structures	
are	diverse.	As	a	physicist,	for	example,	I	instantly	call	up	the	relevant	
concepts	pertinent	to	particular	conceptual	subfields	from	characteristic	
equations	within	them:	classical	mechanics,	quantum	mechanics,	general	
relativity,	and	so	on.	

	
Galileo’s	conception	of	uniform	motion	was	mediated	by	textual	reasoning	of	a	
particular	form,	proof.	However,	his	“complex”	domain	became	unified	and	simple	
once	it	was	re-mediated	with	algebra.	Emblematically	the	domain	became	
essentially	a	single	intuitive	equation,	𝑑 = 𝑟𝑡,	along	with	some	high-school-level	
inferences.	“DRT”	problems	are	simple	exercises	in	modern	algebra	courses,	
exercises	that	don’t	even	hint	at	the	change	in	experienced	complexity	or	in	social	
distribution	compared	to	Galileo’s	time.	

Green	Shoots	of	a	Computational	Literacy:	The	Mathematics	of	
Motion	
	
I	would	like	to	turn	from	big-picture	aspirations	to	real-world	examples	of	a	
budding	computational	literacy.	About	25	years	ago,	my	research	group	developed	
and	taught	a	yearlong	class	for	sixth	grade	children	on	the	mathematics	of	motion.	
This	turned	out	to	be	one	of	the	most	surprising	and	informative	experiences	of	my	
professional	career,	especially	regarding	what	is	possible	and	what	to	expect	even	
at	early	stages	of	computational	literacy.	One	of	the	major	elements	of	the	class	was	
student	projects,	notably	creating	computer	games.	While	critical	to	what	
happened,	I	will	initially	(mostly)	background	this	element	while	I	follow	a	
conceptual	trajectory	through	the	course	using	vignettes	that	connect	to	the	
general	themes	in	this	article.	The	trajectory	might	be	characterized	as	four	easy	
steps	to	teaching	vector	calculus	in	elementary	school.		

Galilean	drop	
This	section	provides	a	brief	description	of	an	early	activity	in	our	sixth	grade	
motion	class.	It	shows	what	can	be	done	with	almost	no	preparation,	and	it	has	
proven	to	be	a	reliable	way	of	scaffolding	the	“rediscovery”	of	one	of	Galileo’s	
fundamental	accomplishments:	the	description	of	“falling”	as	a	motion	with	
constant	acceleration.	In	the	following,	I	include	some	comments	about	our	general	
experience	using	this	activity	on	many	occasions,	in	many	contexts.	In	addition,	the	
activity	makes	a	nice	expository	bridge	from	the	discussion	on	how	algebra	
transformed	Galileo’s	work	to	the	following	sections,	which	continue	a	fairly	long	
intellectual	trajectory	of	learning	the	kinematics	of	motion.	For	the	fascinating	
details	on	the	students’	work	in	this	activity,	consult	diSessa	(2004;	2008).	DiSessa	
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(1995)	provides	a	more	detailed	theoretical	analysis	of	how	computational	
representations	function	to	achieve	surprising	learning.	
	
Soon	after	an	initial	two-week	period	of	instructing	programming,	we	asked	our	
students	to	write	a	program	to	show	“how	a	penny	would	fall	if	dropped	from	the	
Empire	State	Building”	(which	we	simplified	in	future	classes	to	the	more	everyday	
situation	of	a	dropped	ball).	We	provided	a	minimal	and	faulty	initial	model	(Figure	
2).	
	

	
Figure	2.	A	starting	model	of	an	object’s	fall	due	to	gravity.	The	
program	on	the	right	produces	the	graphical	output	on	the	left.	

	
The	computer	language	used	in	the	class	is	called	Boxer,8	and	we	designed	it	
specifically	as	a	medium	suitable	for	experimenting	with	computational	literacy.	
The	notation	should	be	relatively	transparent,	if	unfamiliar.	The	model	here	says	to	
repeat	20	times	go	forward	a	bit	(10	units)—the	instruction	is	literally	“forward”	
(abbreviated	as	fd,	which	is	set	up	to	be	in	the	downward	direction)—and	draw	a	
dot.	
	
Mixing	small-group	work	and	full-class	discussion,	students	essentially	always	
encountered	a	wonderful	set	of	issues	to	debate,	such	as	whether	falling	objects	
always	speed	up,	and	if	so,	how?	How	uniform	(“even”)	is	the	motion,	and	what,	
actually,	does	uniformity	entail?	Many	of	these	issues	are	the	same	ones	that	
Galileo	developed,	himself,	and,	indeed,	uniformity	and	simplicity	were	key	criteria	
that	Galileo	used	to	prune	possible	models	down	to	two,	which	are	isomorphic	with	
the	two	that	almost	always	emerge	as	favorites	in	our	motion	classes	(Fig.	3).		
	

																																																								
8	I	have	to	suppress	the	motivations	and	design	principles	for	Boxer	completely	
here.	Consult	diSessa	(2000).		
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Figure	3.	Two	final	candidate	models	(verbatim	transcriptions	of	
student	work).	To	the	square-cornered	boxes	(procedures),	we	now	
add	round-cornered	boxes,	which	are	variables,	such	as	n.	

	
The	model	on	the	left	is	precisely	Galileo’s	celebrated	discovery:	Every	iteration	
(“increment	of	time”)	brings	a	constant	increment	to	speed	(represented	by	n).	
Galileo	ruled	out	the	model	on	the	right	with	a	sophisticated	argument.9	Students	
are	incapable	of	understanding	Galileo’s	argument	(as	high	school	algebra	students	
would	have	no	hope	of	understanding	Galileo’s	proofs).	So,	for	the	final	lap,	we	
resorted	to	data,	either	from	an	ultrasonic	motion	sensor,	or	as	measured	in	
stroboscopic	(“stop	motion”)	images	of	a	real	fall.	
	
To	summarize,	students	as	young	as	sixth	grade,	supported	by	a	computational	
representational	system,	can	profitably	engage	in	something	very	much	like	one	of	
the	important	intellectual	enterprises	in	which	Galileo	also	engaged.	As	algebra	
scaffolds	a	modern,	easy	conceptualization	of	Galileo’s	six	theorems,	computation	
scaffolds	a	fruitful	inquiry	into	the	nature	of	falling.	Computational	surrogates	for	
velocity	(n)	and	acceleration	(the	increment	to	n)	arise	naturally,	along	with	more	
general	and	less	technical,	but	central	mathematical	ideas,	like	“uniformity”	as	a	
good	first	guess,	and	often	just	the	right	idea.		

																																																								
9	He	used	reductio	ad	absurdum:	A	proper	submotion	of	the	drop	must	take	the	
same	time	as	the	full	motion.	In	modern	terms,	he	showed	that	the	solution	had	to	
be	(Dedekind)	infinite,	so	of	no	relevance	to	the	real	world.	A	near-equivalent	
argument	is	that	the	multiplicative	model	cannot	work	starting	from	a	zero	speed.	I	
do	not	recall	whether	we	tried	this	argument	with	our	sixth	grade	class.	
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The	tick	model	
	

	
	

Figure	4.	The	TICK	model.	
	
Figure	4	shows	what	we	call	the	“tick	model”	for	motion.	The	metaphor	is	that,	on	
each	“tick	of	the	clock,”	the	tick	actions	are	performed.	In	practice,	the	tick	
procedure	is	called	inside	a	loop,	which	repeats	it	over	and	over	(such	as	the	
repeat	action	in	the	drop	models,	above).	In	simple	cases,	that	is	all	there	is.	In	
more	complicated	cases	(games!),	the	loop	contains	other	things,	such	as	checking	
for	object	collisions.	It	is	worth	remarking	(as	we	did	with	students)	that	the	tick	
model	is	essentially	the	same	as	the	students’	version	of	Galileo’s	model,	where	n	is	
identified	as	“speed”	and	a	particular	number	(3	in	Figure	3)	is	identified	as	
“acceleration.”	
	
Tick	defines	the	meanings	of	speed	and	acceleration,	and	it	transparently	shows	
how	these	quantities	affect	motion.	Speed	is	precisely	the	increment	to	position	
during	each	tick,	and	acceleration	is,	similarly,	the	increment	to	speed.	The	
command	“change	position	to:	position	+	speed”	might	easily	be	replaced	or	
augmented	with	a	graphical	display	of	motion,	such	as	fd	(move	a	distance	speed	
in	the	direction	a	graphical	object	is	“facing”),	as	was	the	case	in	Galilean	fall.		
	
This	model	is	more	general	than	“distance	=	rate	times	time.”	If	acceleration	is	not	
zero	(whether	it	is	constant	or	not),	then	speed	(rate)	is	constantly	changing.	You	
don’t	need	an	equation	for	motion,	such	as	𝑥 =  !

!
𝑡!;	it	just	happens.	Indeed,	if	

acceleration	or	speed	is	adjusted	in	real	time	by	the	student,	there	is	no	equation	
that	represents	the	motion.	Arranging	for	real-time	control	is	simple.	One	can,	for	
example,	introduce	a	slider	control	object	linked	to	acceleration.	Figure	5	shows	
such	a	slider	as	it	appears	in	Boxer.	
	

	
Figure	5.	A	graphical	object,	a	slider,	can	be	linked	directly	to	the	
acceleration	variable,	which	can	then	be	changed	using	the	mouse.		

	
Conjoining	the	tick	model	with	observing	the	motion	that	results	pays	rich	
conceptual	dividends.	Different	speeds	are	visually	apparent	when	speed	is	
changed.	Negative	speed	is	a	natural	continuation	of	reducing	speed	“beyond”	zero,	



	 13	

whereas,	before	the	tick	model,	students	denied	that	negative	speed	was	at	all	
sensible.	
	
Similarly,	one	can	see	what	different	accelerations	mean—not	just	the	everyday	
meaning,	“speeding	up,”	but	“acceleration”	can	mean	slowing	down,	too,	if	velocity	
and	acceleration	have	opposite	signs.	After	a	high	school	course	and	a	term	of	
university	physics,	students	sometimes	still	mentally	abbreviate	“acceleration,”	as	
“speeding	up,”	which	has	untoward	conceptual	consequences	in	physics.	For	
example,	they	see	a	toss	as	two	separate	processes:	decelerating	up	and	
accelerating	down	(Sherin,	2001).	In	contrast,	a	toss	is	just	one	continuous	process	
to	a	physicist;	the	peak	of	the	toss	does	not	mark	any	change	at	all	in	the	process	
itself.	
	
Further	experience	with	motion	as	controlled	by	the	tick	model	takes	steps	toward	
understanding	Newton’s	laws,	𝐹 = 𝑚𝑎.	In	particular,	how	does	pushing	and	pulling	
control	the	motion	of	an	object,	in	tick	model	terms?	One	can	experiment	with	
moving	objects	around	using	a	controller	to	modify,	in	sequence,	position,	velocity,	
and	acceleration.	Little	challenges	develop	understanding.	For	example,	controlling	
velocity,	how	can	you	move	the	object	from	being	stopped	at	one	position,	to	being	
stopped	at	another?	(You	have	to	coordinate	the	return	to	zero	slider	value	with	
the	precise	instant	you	are	at	your	target	position).	Or,	how	can	you	do	the	same	
thing	by	controlling	acceleration?	Sixth	grade	students	figure	out	how	to	do	that	in	
a	few	minutes.	The	ultimate	question	is	how	does	one	actually	control	motion	in	the	
real	world?	The	answer	is	via	acceleration,	not	directly	via	velocity	or	position	
(there	is	only	an	a	in	𝐹 = 𝑚𝑎).	While	it	cannot	be	obvious	to	students	that	that	is	
how	things	work,	experience	with	the	tick	model	can	prepare	them	for	
understanding	the	meaning	and	consequences	of	the	fact.10	
	
The	tick	model	is	easily	accessible	to	sixth	grade	children.	Mediated	by	
computational	representations,	it	is	an	approach	to	motion	that	has	many	
advantages	over	an	algebraically	mediated	approach:	

	
1. Conceptual	transparency:	The	meaning	and	function	of	speed	and	

acceleration	are	easy	to	say	and	play	out,	even	without	literally	running	
the	program.		

2. Phenomenological	presence:	The	tick	model	inherently	makes	things	
move,	unlike	algebra.	So,	motion	phenomena	can	directly	interpret	and	
enrich	understanding	of	the	model.	The	correlation	between	numerical	
phenomena	(signs	of	numbers;	relative	magnitude)	and	perceptual	
phenomena	(“turns	around,”	“stops,”	etc.)	becomes	salient	and	
explorable.	

																																																								
10	One	of	the	strong	conjectures	behind	our	course	was	that	once	a	language	of	
motion,	provided	by	computational	representations,	was	well	in	hand,	Newton’s	
laws	of	motion	would	be	much	easier	to	approach.	Yes,	this	is	true:	diSessa	(2008).	
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3. Generality:	The	tick	model	describes	any	motion,	including	motions	that	
involve	varying	acceleration.	Anticipating	later	learning,	tick	models	also	
generalize	in	a	different	way	to	time-discrete	models	of	the	dynamics	of	
any	physical	system,	a	mainstay	of	any	modern	study	of	complex	
systems,	such	as	for	weather	or	ecology.	One	just	has	to	write	down	what	
happens	“on	each	tick.”	Down	the	road,	students	will	find	discrete	
simulation	of	any	system	to	be	an	obvious	thing	to	do,	and	they	will	have	
skills	for	entering	that	practice.		

4. Fun!:	The	tick	model	was	a	great	mechanism	at	the	core	of	many	
engaging	individual	and	group	projects.	Students	invented	and	
implemented	games	using	it.	Many	of	the	games	and	activities	we	
designed	and	gave	to	the	children	had	the	tick	model	saliently	and	
literally	presented	at	their	core.	Ubiquitous	contact	is	a	wonderful	
learning	principle.	

Discrete	calculus	
In	a	continuous	and	algebraic	world,	the	obvious	representation	for	functions	is	
with	algebraic	expressions.	It	is	well	known	that,	as	motion	and	other	mathematical	
topics	are	conventionally	taught,	many	students	get	stuck	believing	that	functions	
are	equations	(or	just	“expressions”)	and	never	get	past	that.	However,	this	
problem	does	not	exist	when	motion	is	mediated	computationally,	rather	than	
algebraically.	In	line	with	this	observation,	we	chose	to	represent	functions	in	our	
motion	course	as	lists	of	numbers.	You	can	look	back	at	fall	models	(e.g.,	Figure	3)	
and	imagine	how	easy	it	might	be	to	convince	students	that	a	list	of	numbers	is	a	
great	way	to	specify	the	changing	speed	of	a	motion.	But	now,	a	changing	position	
is	equally	obviously	represented	by	a	list	of	coordinate	positions.	And	a	changing	
acceleration	is	just	the	same.	One	can	ask	(and	we	did)	how	do	these	“functions”	
(number	lists)	relate	to	one	another?	It	shouldn’t	take	but	an	instant	for	you	to	
realize	the	relationship,	and	it	doesn’t	take	sixth	grade	students	much	longer.	
Figure	6	provides	a	prop	for	thinking.	The	“discovery”	is	that	changes	in	position	
can	be	computed	by	adding	up	a	sequence	of	speeds	(which	are	literally	small	
changes	in	position).	Similarly,	speeds	are	recoverable	precisely	in	the	difference	
between	successive	positions.	The	same	relations	exist	between	speed	and	
acceleration.	These	relationships	are	the	discrete	version	of	the	fundamental	
theorem	of	calculus.	
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Figure	6.	Position,	speed,	and	acceleration	as	functions	of	time,	represented	
as	lists.		

	
I	want	to	call	out	several	things.	First,	these	relations	were	regarded	as	obvious	to	
all	the	members	of	our	sixth	grade	class.	Indeed,	one	of	the	students	spontaneously	
proposed	that	an	excellent	representation	for	a	changing	motion	would	be	a	list	of	
speeds	long	before	we	introduced	number	lists	in	Boxer.	And,	he	casually	added	
that	you	could	even	add	up	the	speeds	to	get	distance.	Second,	creating	and	using	
number	lists	of	positions	or	velocities	is	a	trivial	addition	to	tick	models.	Just	insert	
a	command	to	“append	<a	velocity	or	position>	to:	<a	box>.”	So,	the	fundamental	
theorem	of	calculus	can	be	easily	operationalized,	checked,	and	used.	It	has	easy	
experiential	and	even	practical	presence	(e.g.,	collecting	data)	in	working	with	
motion	in	a	computational	medium.	
	
Again	anticipating	later	learning,	number	lists	and	the	discrete	version	of	functions	
generalize	better	than,	for	example,	the	“slope	of	the	curve”	and	“the	area	under	the	
curve”	to	more	advanced	differential	and	integral	forms.	Algebra	and	calculus	hide,	
rather	than	reveal,	simple	qualitative	facts	underlying	the	study	of	change.	Adding	
up	little	bits	that	then	gives	information	about	boundary	values	(e.g.,	“change	over	
an	interval”)	generalizes	much	better	to	vectors	(just	below),	but	also	to	differential	
forms	like	divergence,	curl,	and	vector	field	index	theorems	(e.g.,	Atiyah-Singer).	
We	have,	in	fact,	taught	high	school	students	the	Gauss-Bonnet	theorem	(Abelson	&	
diSessa,	1981),	the	Atiyah-Singer	index	theorem,	and	the	whole	class	of	Stokes-like	
theorems	(Gauss’	and	Stokes’	theorems	as	special	cases)	using	the	core	idea	of	
“adding	up	bits”	and	“cancelling	at	the	boundary.”	

Vectors	and	the	calculus	of	vector	functions	
Our	first	proposal	for	funding	to	the	National	Science	Foundation	was	rejected	
because,	they	told	us,	the	instructional	program	was	absurdly	ambitious.	A	core	
example	used	against	us	was	that	vectors	are	“developmentally	inappropriate”	for	
sixth	graders.	Everyone	knows	that	vectors	are	difficult	even	for	high	school	
students,	and	one	doesn’t	usually	get	any	hint	of	vector	calculus	until	university.	
We	toned	down	the	proposal,	eliminated	talk	of	vectors,	and	were	funded.	But,	
then,	we	taught	vectors	to	our	sixth	grade	students,	and	it	wound	up	being	an	easy	
and	resounding	success.	Here’s	how	we	did	it.	
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The	key	goal	was	getting	vectors	into	the	computational	representational	system	in	
a	deep	and	functional	way.	Bruce	Sherin	implemented	vectors	for	us	in	Boxer,	and	
they	looked	like	Figure	7.	
.	
	

	
Figure	7.	A	vector	in	Boxer	appears	as	a	box	with	an	arrow	in	it.	The	
arrow	tip	can	be	moved	around	with	the	mouse,	and	there	are	
commands	to	add	vectors,	multiply	them	by	numbers,	and	move	
objects	according	to	a	vector	specification—the	vector	equivalent	of	
forward.	Vectors	can	be	unnamed	or	named	(corresponding	to	
“bare”	numbers	and	variable	numbers,	respectively).	

	
A	keystroke	makes	a	new	vector,	quicker	than	typing	a	multi-digit	number.	With	a	
few	keystrokes,	one	can	create	two	vectors	and	add	them	by	executing	the	
command	shown	in	Figure	8.	You	should	imagine	a	student	playing	with	changing	
the	added	vectors	(mouse	drag),	and	seeing	what	results	from	their	addition	(the	
result	of	a	“do-it”	key	press).	
	

	
Figure	8.	V+	designates	vector	addition.11	Pressing	the	“do-it”	key	
(execute)	results	in	a	returned	value,	the	right-most	vector.	

	
The	core	of	a	tick	model	suitable	for	experimenting	with	vector	velocity	and	
acceleration	appears	in	Figure	9.	Imagine	dragging	the	acceleration	around	in	real	
time	in	order	to	try	to	get	an	object	to	move	in	something	like	a	circle.	We	had	an	
“orbiting	spaceship”	game	that	presented	just	this	problem.	Students	quickly	got	
better	than	us	at	managing	a	rough	circle	(acceleration	always	toward	the	planet).	
	

																																																								
11	To	keep	the	exposition	brief,	I	use	a	notation	different	from	what	our	class	used.	
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Figure	9.	A	tick	procedure	for	experimenting,	in	real	time,	with	how	
velocity	or	acceleration	controls	the	motion	of	an	object.	

	
We	prepared	a	fairly	elaborate	curriculum	for	teaching	vectors,	but	the	tasks	we	
designed	turned	out	all	but	superfluous.	Vectors	were	such	a	hit	with	our	students	
that	they	spent	massive	amounts	of	time	playing	with	them,	and,	as	with	the	linear	
tick	model,	building	games	using	them.	Vectors	make	a	superb	game	interface,	as	
well	as	a	programming	element.	One	student,	for	example,	implemented	a	game	
where	you,	as	the	captain	of	a	boat,	are	trying	to	land	at	a	dock	without	crashing	
into	it.	A	vector	represented	the	direction	and	power	applied	by	the	boat’s	motor,	
which	the	boat	driver/game	player	controlled.	An	internal	variable	representing	
the	tide	changed	in	a	somewhat	random	way	to	make	the	game	challenging.	
	
All	of	the	advantages	that	I	mentioned	for	the	tick	model	accrued	to	vectors.	After	
considerable,	often	self-motivated,	experience,	they	became	conceptually	
transparent	(e.g.,	what	vector	addition	means;	how	vector	velocity	or	acceleration	
relate	to	motion).	The	“considerable	experience”	involved	simultaneous	presence	
of	the	experiential	aspect	(motion)	and	the	computational	analytic	(vectors	as	
adjustable	controllers	of	motion).	The	motions	generated	were	liberated	from	
those	representable	by	simple	algebraic	expressions.	And,	vectors	were	regarded	
as	fun	in	the	students’	freely	chosen	projects.	
	
We	asked	students	to	replay	the	Galilean	model	of	a	drop,	this	time	with	an	upward	
toss	at	an	oblique	angle.	We	presented	them	with	a	stroboscopic	image	of	such	a	
toss	and	then	asked	them	to	select	a	vector	function	of	time	(a	list	of	acceleration	
vectors,	each	of	which,	of	course,	the	students	could	modify	with	their	mouse)	in	
order	to	make	an	object	re-trace	the	real	(stroboscopically	presented)	motion.	The	
students	pretty	quickly	zeroed	in	on	the	surprising	fact	that	constant	acceleration,	
again,	lies	behind	gravitational	trajectories.	

Review	of	principles	
Let	me	review	the	literacy	principles	announced	earlier	as	they	relate	to	this	case,	
starting	with	principle	1,	re-mediation.	Quite	clearly,	use	of	a	computational	
medium	massively	influenced	the	experience	students	had	in	learning	the	
mathematics	of	motion.	Computation	seems	almost	an	ideal	representational	
system	in	which	to	study	motion,	in	substantial	degree	because	programming	is	
centrally	about	actions	across	time.	A	study	comparing	students’	learning	with	
algebra	with	learning	with	programming	(Sherin,	2001)	showed	a	distinct	bias	for	
the	students	using	algebra	to	emphasize	some	things	(conservation,	expressed	well	
in	static,	algebraic	form)	and	to	be	quite	poor	at	basic	time-dependent	behavior	(as	
is	far	better	represented	in	tick	models).	Programming	students	were	much	better	
at	time-dependence.	
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In	our	motion	class,	computation	re-organized	the	intellectual	domain	(principle	2)	
in	profound	ways.	This	is	easiest	to	see	in	the	learning	sequences.	Students,	here,	
learned	about	motion:	velocity	and	acceleration—even	in	vector	form—and	even	a	
legitimate	form	of	the	fundamental	theorem	of	calculus	in	mathematically	precise	
ways	(but	not	in	ways	that	are	familiar	to	most	people)	years	before	they	would	
have	the	skills	with	algebraic	representations	and	continuous	functions	to	
accomplish	similar	things	if	mediated	by	that	“old”	representational	system.	But,	
the	shift	to	a	computational	representation	also	has	corresponding	deep	
epistemological	shifts,	such	as	essentially	viewing	our	universe	as	discrete	in	time.	
With	respect	to	the	long	social	road	to	adopting	a	computational	literacy	(principle	
0),	I	know	that	mathematicians	and	mathematics	educators	(and	physicists,	too)	
will	trip	over	the	epistemological	shifts	encountered	here,	and	likely	will	resist	
them.	I	will	treat	some	of	this	later,	after	some	further	preparation.	However,	based	
on	our	extensive	experience,	I	am	confident	that,	eventually,	the	computational	
mathematics	of	motion	will	be	viewed,	at	minimum,	as	both	legitimate	and	a	very	
effective	stepping	stone	to	a	“grown	up”	mathematics	of	motion.	
	
Two	more	points	about	cultural	change:	First,	the	perennial	complaint	about	
learning	the	representational	system,	programming—“I	have	no	time	for	anything	
else	in	the	curriculum”—should	be	wilting.	We	spent	two	weeks	teaching	
programming	before	we	started	in	earnest	on	motion…out	of	a	full	year	of	
instruction.	Of	course,	that	effort	would	easily	be	further	amortized	if	other	courses	
employed	programming,	as	well.	Even	with	two	weeks	of	work,	students	
complained	that	we	spent	too	much	time	with	programming.	They	maintained	that	
it	delayed	the	really	fun	and	interesting	parts.	And,	besides,	they	said,	programming	
was	better	learned	as-you-go,	in	doing	the	“fun”	things.	If	I	were	to	re-do	that	
course	now,	I	would	heed	the	students’	advice.	
	
As	our	society	gets	more	experienced	with	programming,	the	bugaboo	that	it	is	
“hard	and	takes	too	much	time”	will	fade.	See	also	related	societal	trends	in	the	
next	section.	We	also	discovered	that	the	most	important	parts	of	the	learning	that	
our	students	accomplished	were	often,	like	tick	models,	incredibly	simple	from	a	
programming	point	of	view.	However,	I	am	far	less	sanguine	about	how	current	
curricular	standards	constrain	the	changes	needed	in	instruction	to	enact	
computational	learning	like	this.	Or	worse	(again,	see	later	discussion),	learning	
programming	will	continue	to	be	rigorously	separated	from	core	mathematics	(or	
from	STEM,	in	general).	
	
I	believe	the	tick	model	and	our	way	of	approaching	calculus	for	sixth	grade	
children	should	be	regarded	as	part	of	a	new,	deep	literature	engaging	a	
computational	literacy	(incorporated	in	principle	2).	We	should	begin	thinking	
about	literatures	differently	than	“a	library	full	of	books,”	and	more	like	some	key	
conceptual	ideas	(e.g.,	representing	motion	in	programs)	and	associated	activities	
and	learning	goals.	However,	I	also	don’t	expect	landmark	presentations	and	
textbooks	to	disappear	very	soon.		
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Finally,	I	want	to	introduce	two	new	principles	that	are	salient	in	what	happened	
with	our	motion	class.	

3. A	computational	literacy	can	transform—revitalize—the	ecology	of	learning	
activities.	Much	of	the	power	of	our	motion	curriculum	resided	in	the	
enthusiasm	exhibited	by	our	students	toward	it.	Activities	exercising	the	
relation	between	motion	and	computational	formalisms	(tick	models)	were	
taken	as	good	fun,	and	often	an	inspiration	for	personal	variations.	For	
example,	one	sixth	grade	girl	thought	that	maybe	there	should	be	something	
“beyond”	acceleration,	and	wrote	a	program	involving	a	variable	that	
incremented	acceleration,	which,	in	fact,	is	called	“jerk”	by	physicists.	It	
turns	out	that	it	is	almost	impossible	to	control	an	object	using	jerk,	which	
this	student	discovered.	More	generally,	the	freedom	to	take	these	ideas	and	
put	them	to	personal	use	(concretized	most	clearly	in	their	projects	of	
designing	and	implementing	motion	games)	gave	an	extraordinary	spark	of	
life	to	the	class.	For	me,	the	comparison	of	what	happened	in	this	class	with	
the	way	we	teach	algebra—one	personally	irrelevant	and	deadly	dull	
exercise	after	another—is	earthshaking.	Here	is	where	the	fun	our	students	
had	takes	deep	root	in	the	development	of	a	computational	literacy.	

4. Reformulation	(cognitive	simplicity).	The	prominent	visibility	of	
representations	may	distract	from	a	concomitant	and	equally	important	
thing	that	is	going	on	here	with	motion.	The	discrete	formulation	of	motion	
means	that	children	can	think	about	it	using	everyday	conceptual	strategies,	
for	example,	comparing	categorical	changes	(e.g.,	“before	and	after”),	and	
imagining	sequences	of	these.	In	our	motion	course,	we	could	see	students	
using	these	strategies,	but	adapting	them	skillfully	to	assumptions	of	
continuity.	For	example,	they	drew	stepladder	“graphs”	of	motion,	but	did	
not	assume	speed	changed	in	big	jumps.	Instead,	they	interpolated	between	
“before”	and	“after”	appropriately	(diSessa,	Hammer,	Sherin,	&	
Kolpakowski,	1991).	Newton’s	method	of	“blows”	(he	construed	“forces”	as	
a	sequence	of	discrete	“hits”)	shows	the	same	cognitive	simplification,	but	
without	the	systematic	framework	of	computational	representations.	
Reformulation	is	too	complex	and	separate	a	matter	to	pursue	in	depth,	
here,	although	I	will	drop	some	tidbits	into	the	conversation	later.	But	the	
upshot	is	that	there	are	ways	of	approaching	subject	matter	that	work	better	
for	reasons	other	than	(or	in	addition	to)	re-mediation.	In	general,	my	
personal	formulation	of	reformulation	involves	understanding	the	character	
and	potential	power	of	common,	“naïve”	ideas	in	scaffolding	technical	
competence	(A	detailed	exemplar	is	diSessa,	2017;	a	popular	presentation	is	
contained	in	diSessa,	2000).12	When	such	ideas	are	engaged	to	show	

																																																								
12	The	currently	popular	pursuit	of	discovering	“learning	progressions”	(Hmelo-
Silver	&	Duncan,	2009)	with	good	properties	recognizes	the	essence	of	this	point.	
Unfortunately,	the	related	literature	has	simply	not	concerned	itself	with	
representational	infrastructure,	much	less	the	development	of	literacies	that	may	
transform	what	our	society	regards	as	“easy”	and	“hard,”	and	what	is	taught	in	
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surprising	cognitive	simplicities	and	when	they	align	with	a	powerful	
representational	change,	as	for	motion	here,	learning	becomes	amazingly	
transformed,	faster,	and	easier.		

Caveats	and	concerns,	and	the	inherent	implausibility	of	major	reformulations	
and	re-mediations	
There	are	sensible	questions	about	the	legitimacy	of	this	whole	program	of	coming	
to	understand	the	mathematics	of	change.	For	example,	in	what	sense,	really,	do	
numbers	in	a	speed	variable	represent	speed,	as	opposed	to	merely	small	
distances?	When	might	it	be	necessary	to	teach	the	“real”	(continuous)	
mathematics	of	change,	as	opposed	to	an	“approximation”	to	it?	Will	the	time-
discrete	version	be	a	help	or	hindrance	to	that	learning?	
	
Some	of	these	questions	have	relatively	easy	answers,	even	if	they	might	stress	
contemporary	epistemological	assumptions	about	these	matters.13	Other	questions,	
such	as	concerning	long-term	learning	trajectories	(e.g.,	to	“real”	calculus),	will	take	
more	time	to	answer	convincingly,	although	I	feel	I	see	the	path	quite	clearly	in	
exposing	important,	simple	qualitative	relations	that	are	salient	in	the	
computational	formulation,	but	hidden,	nearly	invisible,	in	algebraically-mediated	
views	of	motion	and	change.	Initial	resistance	and	long	periods	of	incubation	are	
undoubtedly	the	norm	for	substantial	re-mediations	and	reformulations	in	
anticipation	of	new	literacies.	The	necessity	of	long-term	cultural	change,	including	
some	trial	and	error,	may	be	one	of	the	few	certain	things	about	them.	But,	we	
surely	will	not	get	there	without	trying,	and	considerable	experience	with	some	of	
these	ideas	shows	very	promising	results.	

																																																																																																																																																																			
school.	Another	prominent	line	of	work	on	“misconceptions”	and	“naïve	theories”	
regards	pre-instructional	knowledge	as	full	of	errors	and	blocks	to	learning,	and	
minimizes—if	it	is	considered	at	all—the	pursuit	of	cognitive	simplicity,	helpful	
naïve	ways	of	thinking.	See	diSessa	(2017).	
13	There	is	no	space	in	the	text	for	convincing	elaboration.	But	in	this	note,	I	touch	
on	a	few	issues.	Many	people	trip	over	the	fact	that	our	mathematics	of	motion	is	
based	on	time-discrete	models.	Here’s	a	playful,	but	to-the-point	reply:	Suppose	
that	scientists	have	discovered	that	time	is	actually	discrete,	but	at	a	scale	
something	like	10-20	seconds.	Then	I	challenge	them	to	come	up	with	a	realistic	way	
to	observe	that	granularity.	An	even	better	view	is	that	computation	provides	a	
perfectly	fine	model	of	motion.	And	all	we	have	with	regard	to	the	world	is	better	
or	worse	models.	Suitably	deployed,	computational/discrete	models	are	both	
powerful	and	much	more	learnable—at	least	concerning	some	things.	There	is	
nothing	more	to	ask.	Finally,	concerning	whether	a	“small”	distance	can	
legitimately	represent	speed,	I	put	forward	the	principle	that	the	meaning	of	
numbers	lies	primarily,	if	not	exclusively,	in	how	they	are	used.	Scaling	(“proper	
units”)	is	a	fine	thing	to	learn,	but	it	is	separate.	
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The	Development	of	a	Computational	Literacy:	Current	Trends	

Thinking	about	cultural	change	
You	would	think	that	the	development	of	literacies	would	attract	a	lot	of	study.	But	
that	is	not	the	case.	The	literature	on	“the	theory	of	literacy”	deals	almost	
exclusively	with	what	literacies	do	and	how	they	do	it.	Empirical	study	of	the	
development	of	literacies	seems	minimal.	I	have	struggled	finding	relevant	study	of	
the	development	of	the	algebra/calculus,	at	least	study	that	makes	contact	with	any	
generalizations	about	literacy	development.	The	history	of	text-based	literacy	is	
pretty	well	documented,	but	nearly	devoid	of	generalizations	that	can	yield	insight	
into	new	literacies	that	might	be	different	from	textual	literacy	in	substantial	ways	
(e.g.,	specialized	to	“technical”	literacies,	as	computational	literacy	will	be).	
	
So,	in	preparation	for	examining	contemporary	trends,	I	will	here	present	a	“toy”	
model	of	literacy	development	that	will,	nonetheless,	be	useful	in	following	
sections.	
	
Let	us	consider	a	culture	to	be	a	repository	of	a	lot	of	different	kinds	of	things	that	
are	historically	developed,	but	also	responsive	to	the	contemporaneous	
environment.	Here	is	a	short	list	of	such	“cultural	elements,”	which	I’ll	dub	MMVSS	
(pronounce	as	“Em	Vees”).	
	
Movements	–	Cultural	history	is	full	of	movements	that	galvanize	many	people	in	
concerted	efforts	to	change	things	in	a	certain	way.	Examples	of	political	
movements	are	a	dime	a	dozen,	but	not	“cheap”:	They	can	have	world-shattering	
impacts.	In	education,	per	se,	movements	have	been	important	(despite	the	
amazing	resistance	of	educational	systems	to	change).	For	example,	the	anti-
algebra	movement	in	the	early	20th	century	was	one	such,	and,	more	recently,	the	
algebra-for-everyone	movement	has,	I	think,	had	substantial	and	opposite	impact.	
Constructivism	has	had	a	continuing	great	impact,	as	has	“Back	to	Basics.”	Some	of	
the	movements	relevant	to	the	potential	rise	of	computational	literacy,	however,	
may	originate	outside	education,	per	se,	or,	more	particularly,	outside	of	
educational	research.	Re-representation	and,	especially,	reformulation	have	not	
been	a	substantially	developed	part	of	educational	research,	certainly	not	
concerning	a	scale	of	change	like	that	presented	by	computational	literacy.	
	
Memes	–	At	the	other	end	of	the	“size”	spectrum,	little	but	influential	ideas	can	
accumulate	into	great	impact.	One	that	will	be	relevant	to	later	discussion	is	the	
idea	that	“nerd	culture”	can	be	both	interesting	and	attractive:	“Nerd	Power.”	If	you	
take	to	listing	recent	movies	and	television	shows	that	celebrate	the	subculture	of	
scientifically/technically	brilliant	people,	who	are	most	often	depicted	as	a	bit	
socially	awkward,	you	won’t	soon	run	out	of	examples.	
	
Values	–	What	should	we	prize	in	an	educational	experience?	The	traditional	focus	
on	rigor	and	coverage	of	“the	standard	material”	should	be	expanded	to	include	far	
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deeper	engagement,	especially	in	view	of	modern	societal	conditions:	dealing	with	
diversity	in	schools	and	the	need	to	make	STEM	learning	more	attractive	to	a	wider	
range	of	students.	If	there	is	a	trade-off	in	terms	of	societal	good—which	is	not	
obvious,	given	the	ad	hoc	and	scientifically	untested	societal	value	of	traditional	
goals	and	curriculum—then,	still,	we	should	tilt	instruction	in	the	direction	of	what	
my	group	did	with	our	sixth	grade	students.	No	doubt	this	will	be	controversial	and	
contested	in	the	throes	of	the	revolution	toward	a	computational	literacy.	
	
Outside	of	school,	Papert	suggested	that,	in	the	way	that	ecology	has	become	a	deep	
value	in	many	corners	of	contemporary	society—everyone	should	do	their	part—
so	should	“mathetics,”	the	science	of	learning,14	making	as	much	of	our	civilization	
as	possible	attuned	to	children’s	learning.	Whatever	the	status	of	this	idea,	there	is	
no	discernable	movement,	yet,	comparable	in	any	way	to	ecology.	
	
Sensitivities	–	A	principle	part	of	modern	“first-world”	culture	is	highly	sensitive	to,	
for	example,	issues	of	equity	and	prejudice.	Obviously,	this	was	not	true	in	the	past,	
and	we	can	hope	that	these	issues	will	someday	be	enough	in	the	“gears”	of	the	
working	society	(structural	non-racism)	that	explicit	attention	may	be	less	
necessary.	Anticipating	the	special	concerns	of	computational	literacies,	the	
epistemological	power	of	evolving	new	representational	systems,	including	the	
very	possibility	of	a	new	literacy,	may	not	currently	be	particularly	resonant	with	
popular	culture.	
	
Sensibilities	–	How	do	and	should	things	“work”?	Who	gets	to	say	what	should	be	
taught	in	the	mathematics	curriculum	and,	even	roughly	how?	Mathematicians?	
The	developers	of	accountability	measures	or	standards	documents?	Who	was	it	
that	said,	“vectors	are	completely	age-inappropriate	for	sixth	grade	students?”	A	
true	computational	literacy	will	without	doubt	disrupt	current	assumptions,	and	
cultural	ruptures	will	appear	in	the	process.	
	
I	need	one	more	idea	to	complete	my	toy	theory	of	cultural	change.	The	idea	is	
resonance	or	synergy,	where	some	changing	MMVSSs	come	to	mutually	reinforce	
and	blossom	into	larger	and	stronger	trends.	An	upcoming	example	will	be	highly	
relevant	to	the	emergence	or	delay	(sidetrack,	short-circuit)	of	a	potential	
computational	literacy.	
	
I	now	turn	to	two	trends	in	the	use	of	computers	in	mathematics	(STEM)	education	
in	view	of	the	considerations	above.		
	
The	first	trend	is	a	highly	visible	one,	and	one	that	has	already	been	extremely	
consequential.	It	may	not	be	salient	to	many	mathematics	educators,	but	that	is	
part	of	the	point.	
																																																								
14	The	term	“mathetics”	was	coined	by	John	Amos	Comenius	in	the	17th	century	to	
mean	“the	science	of	learning.”	Papert	also	used	the	term	in	the	same	way,	as	a	
contrast	to	the	science	of	instruction.	
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Computational	thinking	
Jeannette	Wing	deserves	credit	for	raising	the	visibility	of	teaching	computational	
thinking	as	a	potentially	very	important	concomitant	to	the	rise	to	prominence	of	
computers	and	computation	in	our	civilization.	Computational	thinking	shares	
some	features	with	computational	literacies.	Indeed,	Grover	and	Pea	(2013),	in	a	
review	of	the	research	literature	relevant	to	computational	thinking,	judged	that,	
while	computational	literacy	was	a	concept	developed	well	before	computational	
thinking,	the	phrase	“computational	thinking”	was	probably	a	better	one.	It	is	more	
modern	sounding	and	stands	less	chance	of	being	confused	with	“computer	
literacy,”	which	movement	I	took	pains	earlier	(as	I	always	do)	to	distinguish	from	
computational	literacy.	But,	the	problem	in	Grover	and	Pea’s	analysis	is	that	
computational	literacy	and	computational	thinking	are	quite	distinct,	even	
divergent,	which	they	either	did	not	notice	or	chose	not	to	mark.	(Although,	to	their	
credit,	they	do	note	that	computational	thinking	has	not	addressed	how	its	ideas	
come	down	to	brass	tacks	in	learning	domains	such	as	mathematics—which	is	a	
primary	focus	for	computational	literacy.	See	continuing	discussion.)	This	is	not	an	
issue	of	choosing	terms;	it	is	an	issue	of	choosing	directions.	Regardless	of	where	
one	comes	down	in	terms	of	advocacy,	we	should	certainly	have	an	analytical	frame	
that	can	separate	these	two	ideas,	and	other	such	ideas	and	movements.	That	is	at	
the	heart	of	this	article,	and	it	is	front	and	center	in	this	section.	
	
Wing,	in	a	series	of	articles	(Wing,	2006;	2008;	2011;	2014),	brought	the	idea	of	
computational	thinking	to	public	prominence.	Wing’s	definition	starts	heuristically	
with	a	rather	parochial	view,	“thinking	like	a	computer	scientist”	(in	all	of	the	cited	
articles).	But	she	adds	extension	and	precision.	For	example,	“Computational	
thinking	involves	solving	problems,	designing	systems,	and	understanding	human	
behavior,	by	drawing	on	the	concepts	fundamental	to	computer	science”	(e.g.,	Wing,	
2008,	emphasis	added).	Her	latest	and	most	technical	definition	(2014)	is,	
“Computational	thinking	is	the	thought	processes	involved	in	formulating	a	
problem	and	expressing	its	solution(s)	in	such	a	way	that	a	computer—human	or	
machine—can	effectively	carry	out.”	
	
Wing	draws—	“masterfully”	might	be	appropriate—on	a	very	wide	range	of	facts	
and	MMVSSs	in	contemporary	culture.	Here’s	a	sample:	

• Computers	are	ubiquitous	and	deeply	embedded	in	our	modern	world.	
People	ought	to	learn	about	them.	

• “Coding,”	all	by	itself,	is	a	modern	and	fun	thing	to	learn.	It	ought	to	be	made	
more	fun	and	widespread.	

• Equity:	Computer	science	ideas,	like	all	powerful,	general	intellectual	
capacities,	should	not	be	bottled	up	in	computer	science	tracks,	but	should	
be	made	available	to	everyone.	

• Many	disciplines	are	being	transformed	by	computation:	statistics,	by	being	
able	to	deal	with	huge,	real-world	data	sets;	biology,	by	algorithms	for	gene	
sequencing;	physics,	by	the	need	for	detailed	and	specialized	physics	in	the	
pursuit	of	quantum	computers;	etc.		



	 24	

• Computer	scientists	know	that	computation	is	powerful,	beautiful,	and	
engaging;	everyone	should	experience	that.	

• But,	perhaps	the	central-most	leitmotiv	of	her	writing	is	that	computational	
ideas	are	generally	powerful,	applicable	in	principle	by	everyone	to	a	very	
wide	range	of	situations.	Literally	the	first	text	of	her	first	article	is:	
“[Computational	thinking]	represents	a	universally	applicable	attitude	and	
skill	set	everyone,	not	just	computer	scientists,	would	be	eager	to	learn	and	
use.”	(Wing,	2008,	p.	33,	emphasis	added)	A	significant	proportion	of	each	of	
her	articles	deals	with	this	particular	meme.	

	
The	pervasiveness	of	this	last	point	in	Wing’s	writing	makes	it	look	as	if	she	is	
advocating	a	kind	of	computational	literacy.	Perhaps.	But	it	is	not	a	computational	
literacy	like	the	one	toward	which	I	am	pointing.	Many	of	the	principles	I	
mentioned	differentiate	these	two	directions,	which	I	will	make	clear	directly.	
	
The	second	to	last	meme,	above,	has	a	strong	resonance	for	computer	scientists:	
Feelings	for	the	power	and	beauty	of	their	fields	characterizes	virtually	all	
disciplines.	Wing	gave	voice	to	computer	scientists’	feelings,	but	more	importantly,	
enrolled	them	in	an	activist	position	in	the	whole	computational	thinking	
movement.	Subcultures	and	subgroups	can	be	incredibly	important	in	movements,	
and	their	own	values	and	memes,	thereby,	become	important.	I	don’t	think	it	is	a	
secret	or	a	surprise	that	computer	scientists	have	been	strongly	at	the	vanguard	
and	in	the	trenches	of	the	computational	thinking	movement.	
	
Computational	thinking	has	taken	off	and	has	had	big	influences.	The	wider	social	
uptake	involved	a	greater	scope	of	MMVSSs	than	Wing’s	emphases.	For	example,	
“coding	academies”	that	advertise	computational	thinking	also	strongly	invoke	
employability,	entry	to	the	high-tech	world,	as	a	core	incentive.	Wing,	herself,	is	not	
so	overtly	vocationalist	in	her	talk.	
	
There	have	been	numerous	meetings	and	workshops	on	computational	thinking.	
One	was	organized	by	the	National	Research	Council	(NRC,	2010)—the	research	
arm	of	Congress—which	is	sufficient	to	show	the	prominence	and	prestige	
accorded	to	the	idea.	Arguably	the	most	important	consequence	of	its	rise	to	public	
awareness,	computational	thinking	has	become	an	explicit,	endorsed	idea	behind	
substantial	funding,	on	the	order	of	multiple	billions	of	dollars,	over	a	hundred	
million	dollars	in	the	National	Science	Foundation	alone	(White	House,	2016).	The	
fact	sheet	for	the	initiative	prominently	features	“computational	thinking	skills.”	
Internationally,	for	example,	the	Royal	Society	of	the	United	Kingdom	took	note,	
publishing	an	article	by	Wing	(2008)	in	one	of	its	journals	and	commissioning	work	
on	teaching	computer	science	in	school	(Royal	Society,	2010).	Since	then,	the	
government	of	the	U.K.	has	instituted	a	well-funded	and	clearly	focused	program	to	
explore	and	actually	create	a	good	niche	for	computer	science	in	pre-college	
instruction.	
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I	want	to	gain	some	perspectives	on	Wing’s	work	from	the	considerations	I	
developed	earlier.	This	will	address	two	main	issues	having	to	do	with	the	cultural	
properties	of	computational	thinking	as	a	movement,	and	with	some	of	the	
intellectual	heritage	it	has.	

Cultural	insularity	
Wing	is	a	computer	scientist,	and	this	shows	pervasively	in	her	writing.	I	hasten	to	
add	that	every	researcher	has	a	home	territory,	particular	views	and	experiences,	
cultural	assumptions,	and	deep	knowledge	from	their	own	community.	That	is	not	
the	issue.	Instead,	the	issue	is	that	the	professional	pursuit	of	understanding	or	
creating	a	literacy—or	anything	that	has	similarly	broad	aspirations—cannot	
belong	in	any	substantial	degree	to	one	of	the	standard	professional	disciplines:	not	
computer	science,	not	mathematics,	not	physics,	not	cognitive	science,	and	not	even	
education.	The	very	point	of	a	literacy—or	of	Wing’s	computational	thinking—is,	as	
she	said,	that	it	deeply	impacts	many	if	not	all	disciplines.	It	also	requires	all	of	the	
cognitive,	educational,	cultural,	and	other	points	of	view	that	we	can	muster	to	
query	the	nature	and	development	of	broad	cultural	and	intellectual	changes.	My	
first	principle,	“literacy	is	a	massive	social/intellectual	accomplishment,”	roughly	
marks	the	meta-terrain	that	it	behooves	us	to	develop	and	apply	in	order	to	make	
sound	judgments	about	possible	literacies	and	to	help	advance	them	optimally.	
	
I	will	spend	a	little	more	time	documenting	Wing’s	computer-science-centric	
orientation	before	elevating	for	some	perspective.	
	
In	her	earliest	paper	(2006)	and	in	later	ones	(e.g.,	2014),	Wing	states	and	restates	
a	core	commitment	to	computer	science	per	se	in	her	pursuit.	She	says	(2006)	
“Computational	thinking	is	a	grand	vision	to	guide	computer	science	educators,	
researchers,	and	practitioners	as	we	act	to	change	society’s	image	of	the	field.”	This	
is	a	worthy	pursuit	for	all	great	disciplines,	but	it	is	not	a	license	for	grand-scale,	
multi-	or	trans-disciplinary	aspirations.	A	bit	later,	she	says,	“Rather	than	bemoan	
the	decline	of	interest	in	computer	science	or	the	decline	in	funding	for	research	in	
computer	science,	we	should	look	to	inspire	the	public’s	interest	in	the	intellectual	
adventure	of	the	field.	We’ll	thus	spread	the	joy,	awe,	and	power	of	computer	
science,	aiming	to	make	computational	thinking	commonplace.”	In	her	2014	piece,	
she	again	acknowledges	this	local-cultural	aim.	These	are	excellent	points	to	recruit	
computer	scientists	to	the	agenda,	but	not	so	pertinent	for	the	rest	of	us.	
	
At	middle	levels,	she	mentions	some	core	issues	of	computational	thinking.	She	
says,	“Most	fundamentally	[computational	thinking]	addresses	the	question:	What	
is	computable?”	Is	this	really	so	fundamental?	Or	is	it	only	something	core	to	
computer	science	that	others	might	benefit	from	knowing,	but	not	core	to	a	
widespread	intellectual	agenda?	How	do	we	answer	such	questions?	
	
Looking	back	at	her	technical	definition:	“Computational	thinking	is	the	thought	
processes	involved	in	formulating	a	problem	and	expressing	its	solution(s)	in	such	
a	way	that	a	computer—human	or	machine—can	effectively	carry	out.”	I	see	here	a	
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slightly	generalized	version	of	“programming,”	which	she	makes	clearer	by	talking	
more	about	how	one	might	write	down	“the	solution.”	The	problem	is	that	this	
model	does	not	extend	to	some	of	the	core	tasks	that	she	implicates	for	
“computational	thinking.”	Her	definition	is	not	what	(non-computer)	scientists	do	
very	much,	except	when	they	are	writing	computer	programs.	One	essentially	
never	figures	out	how	to	solve	an	important	problem	of	a	discipline	and	maps	out	
exactly	how	it	can	be	solved	before	actually	doing	the	solving.	Rehearse	for	yourself	
how	any	great	historical	scientist	accomplished	their	feats,	or	how	any	example	of	
modern	basic	research	is	working.	For	students,	her	most	general	image	of	
computational	thinking	is	something	like	“problem	solving”	(see	documentation	
and	commentary	later).	But	her	definition	does	not	address	how	one	solves	
problems	in	general,	but	only	a	very	specialized	class.	“Programming”	is	core	to	my	
own	computational	literacy,	but	it	is	hardly	sufficient	to	capture	the	broader	idea—
or	else	I	would	call	it	“programming”	rather	than	“literacy.”	
	
I	find	throwaway	examples	of	“cultural	imperialism”	equally	charming	and	
disturbing.	Wing	says	“Computational	thinking	will	have	become	ingrained	in	
everyone's	lives	when	...	[terms	like]	garbage	collection	take	on	the	meaning	used	
by	computer	scientists;	and	when	trees	are	drawn	upside	down.”	“Garbage	
collection”	is	a	wonderful,	if	esoteric	(my	judgment),	technical	issue	in	the	
implementation	of	particular	classes	of	computer	languages.	How	does	it	become	
an	idea	everyone	should	know	about?	Similarly,	why	should	we	all	have	to	adopt	
culturally	specific	conventions,	trees	drawn	upside	down,	to	inscribe	key	ideas?	
Wouldn’t	any	convention	be	fine?15	For	example,	might	not	the	hierarchy	of	boxes	
inside	boxes	be	more	practical	for	complex	hierarchies,	and	more	adapted	to	a	
broader	range	of	uses?	(I	outlined	and	hierarchically	organized	this	paper	in	Boxer;	
for	such	a	task,	trees,	as	computer	scientists	draw	them,	are	impractical.)	
	
The	fundamental	problem	is	not	that	any	of	these	things	to	learn	are	necessarily	
bad	things,	but	that	Wing	does	not	give	us	any	way	to	think	about	them	in	the	
larger	context.	There	are	no	filters	for	what	from	computer	science	should	become	
“common	knowledge.”	Why	should	garbage	collection	and	one	specific	notational	
convention	become	part	of	computational	thinking?	Wing	doesn’t	provide	
principles	for	lift,	either.	How	does	one	abstract	the	many	things	she	mentions	from	
the	computer	science	context	to	make	them	plausibly	general?	Finally,	she	does	not	
elaborate	embedding,	how	one	places	abstracted	elements	of	computational	
thinking	in	the	“destination”	disciplines	so	as	to	make	them	important	to	
mathematicians,	physicists,	or	engineers?	There	are	many	assertions,	but	no	
principles	for	filtering,	lifting	or	re-embedding.	Such	a	serious	enterprise	as	
“computational	thinking	for	all”	deserves	better.	
	
The	pool	of	references	and	allusions	in	all	of	her	papers	is	completely	dominated	by	
computer	science.	The	main	intent	of	the	paper	by	Grover	and	Pea,	cited	earlier,	
																																																								
15	Our	sixth	grade	motion	students	were	quite	clear	on	this:	Conventions	are	
convenient,	but	also	arbitrary.	See,	diSessa	(2004,	p.	302).	
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was	to	begin	filling	in	what	is	left	out.	To	take	a	case	of	special	interest	to	me,	Wing	
cites	no	literature	from	the	well-developed	and	continuing	line	of	work	in	which	I	
sit,	started	by	Papert,	aiming	to	bring	computational	ideas,	indeed,	programming,	
to	the	wider	population	for	general	intellectual	purposes.	Almost	fifty	years	of	work	
relevant	to	her	core	enterprise,	which	includes	scores	of	books	and	hundreds	of	
research	papers,	deserves	some	consideration.	The	community	well	beyond	
computer	science	knows	something	about	what	she	imagines	we	all	will	want	to	do.	
	
The	next	section	elaborates	a	substantial,	and,	to	me,	problematic	gap	in	the	
perspective	Wing	and	others	in	the	movement	bring	to	computational	thinking.		

A	brief	history	of	higher	order	thinking	skills	and	their	relevance	to	computational	
thinking	
Reading	Wing’s	papers,	those	of	us	who	have	been	around	for	some	time	will	get	an	
acute	sense	of	déjà	vu.	Wing’s	advocacy	for	computational	thinking	echoes	far	back	
in	time,	and	through	a	huge	amount	of	relevant	literature.	Mathematics	educators	
will	be	especially	sensitive	to	at	least	some	part	of	this	story.	Indeed,	the	first	thing	
I	noticed	was	that	Wing	sounded	like	George	Pólya,	with	regard	to	problem	solving	
in	mathematics	and	mathematics	education.	Here	are	some	of	the	ideas	from	Pólya	
(1945)	of	which	there	are	versions	in	Wing’s	writings:	
	
Decomposition	and	recomposition:	Such	general	processes	are	very	salient	in	
computer	programming,	but	Pólya	elaborated	essentially	the	same	idea	in	1945.	
	
Draw	a	figure:	Wing’s	version	appears	more	general—select/design	an	appropriate	
representation—but	the	core	idea	is	in	Pólya.	He	also	talked	about	the	importance	
of	notations,	which	is	muted	in	Wing’s	writings.	I	venture	to	say	that	the	prototype	
for	“an	appropriate	representation”	for	Wing	is,	tacitly,	a	representation	in	a	
relevant	programming	language.	From	the	experience	I’ve	had	in	studying	how	
people	generate	representational	systems	(e.g.,	diSessa,	2004),	I	don’t	believe	the	
skills	to	do	this	can	be	well	developed	only	in	the	context	of	computational	
representations.	
	
Generalize:	Pólya	advises	us	that	a	more	general	problem	may	be	easier	to	solve.	
This	is	next	door	to,	if	it	is	not	the	same	as,	Wing’s	“abstraction,”	which	she	
emphasizes	repeatedly	as	at	the	very	center	of	computational	thinking.	In	Wing	
(2014),	after	defining	computational	thinking,	she	proceeds	directly	to	a	section	
labeled	“Abstraction	is	key.”	The	final	paragraph	of	that	paper	asserts	the	“transfer”	
of	computational	thinking	to	“any	domain,”	using	abstraction	as	the	central	
example.	“The	educational	benefits	of	being	able	to	think	computationally—
starting	with	the	use	of	abstractions—enhance	and	reinforce	intellectual	skills,	and	
thus	can	be	transferred	to	any	domain”	(emphasis	added).	
	
Plans:	Pólya	emphasizes	the	power	of	designing	a	plan	and	carrying	it	out	
effectively.	Wing’s	very	definition	of	computational	thinking	is	being	able	to	design	
and	record	a	plan	(program)	that	solves	a	problem.	But,	as	I	pointed	out,	it	is	
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questionable	whether	that	really	is	the	essence	of	much	good	and	creative	scientific	
thinking.	
	
Even	what	might	be	called	affective	components	of	problem	solving	are	anticipated	
in	Pólya.	Wing	says,	“Computational	methods	and	models	give	us	the	courage	to	
solve	problems	and	design	systems….”	Pólya	talks	about	determination,	hope,	and	
success.	
	
It	would	be	a	good	exercise	to	play	this	game	more	carefully	and	extensively,	but	
here	is	the	main	point.	In	1945	Pólya	anticipated	a	lot	of	what	Wing	is	putting	
forward,	and	more.	In	what	ways	is	Wing’s	list	better,	more	effective,	more	
complete,	and	better	justified	than	Pólya’s?	His	work	had	decades	of	follow-up	in	
educational	work.	Why	is	that	work	not	cited,	or	recruited	(or	even	denied!)	in	the	
task	of	finding	the	powerful	general	ideas	that	computational	thinking	can	convey?	
Why	aren’t	Wing	and	her	followers	drawing	on	and	improving	this	and	other	
relevant	lines	of	work?	
	
Let	me	frame	the	issue	in	a	more	general	way.	Wing’s	strong	rhetoric	about	the	
general	power	of	computational	thinking	draws	very	heavily	on	what	I	might	call	
“the	siren	call	of	higher	order	thinking	skills,”16	HOTS,	for	short.	This	is	an	ancient	
and	amazingly	persistent	meme,	dating	back	at	least	to	Plato,	who,	incidentally	put	
mathematics	as	the	home	discipline	for	HOTS.	He	said,	“Those	who	are	by	nature	
good	at	calculation	are,	as	one	might	say,	naturally	sharp	in	every	other	study,	and	
...	those	who	are	slow	at	it,	if	they	are	educated	and	exercised	in	this	study,	
nevertheless	improve	and	become	sharper	than	they	were.”	(Grube,	1974,	p.	178)	
	
Jumping	ahead	twenty	plus	centuries,	arguably	the	first	highly	visible	and	modern	
form	of	HOTS	arrived	in	the	early	part	of	the	20th	century.	Stanic,	1986,	on	whom	I	
draw	here,	provides	a	useful	précis	of	the	history	of	mental	discipline	and	related	
ideas	with	respect	to	mathematics	education.	“Mental	discipline”	was	a	common	
moniker,	but	the	general	competence	was	often	decomposed	into	supposedly	
general	“faculties,”	which	were,	in	turn,	best	developed	in	certain	disciplines.	
Mathematics,	of	course,	featured	prominently	as	a	host	discipline.	But	so	did	other	
classical	disciplines,	including	learning	Latin	and	Greek.	Now,	it	seems,	Wing	has	
put	computer	science	as	the	prime	locus	for	learning	such	general	skills.	
Abstraction,	Wing’s	candidate	for	a	central	“faculty”	does	not	appear	in	early	lists	of	
faculties,	as	far	as	I	could	find.	But	it	bears	a	strong	family	resemblance	to	things	
that	were	listed,	and	the	issues	concerning	its	legitimacy	and	power	are	the	same.	
	
According	to	conventional	lore,	Thorndike	dealt	a	crushing	blow	to	“mental	
discipline,”	and	“faculty	psychology”	with	a	massive	empirical	study	in	the	mid-
1920s.	Thorndike	(1924)	concluded,	“…	the	intellectual	values	of	studies	[read	
																																																								
16	The	terminology	might	be	a	little	abused	in	this	context.	HOTS	might	be	reserved	
for	the	social	movement	that	is	explicitly	affiliated	with	this	banner.	But,	I	need	a	
more	general	framing,	and	HOTS	seems	to	do	that	work	reasonably.	
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“disciplines”]	should	be	determined	largely	by	the	special	information	habits,	
interests,	attitudes,	and	ideals	which	they	demonstrably	produce.	The	expectation	
of	any	large	differences	in	general	improvement	of	the	mind	from	one	study	
[discipline]	rather	than	another	seems	doomed	to	disappointment.”	(p.	98)	In	other	
words,	disciplines	are	powerful,	but	one	should	not	expect	them—most	certainly	
not	any	one	of	them—to	have	substantial,	general	consequences.		
	
Earlier,	Thorndike	and	Woodworth	(1901)	made	a	comment	that	I	think	was	
especially	insightful	concerning	faculties.	They	said,	“[I]t	is	misleading	to	speak	of	
sense	discrimination,	attention,	memory,	observation,	accuracy,	quickness,	etc.”	
This	is	so	because,	“[M]ultitudinous	separate	individual	functions	are	referred	to	by	
any	one	of	these	words.	These	functions	may	have	little	in	common”	(p.	249).	This	
resonates	strongly	with	one	of	the	prime	results	of	my	own	studies	of	conceptual	
change.	One	of	the	main	reasons	that	learning	new	concepts	is	so	difficult	is	that	
they	are,	in	fact,	“multitudinous.”	Concepts	are	not	monolithic,	and	a	core	difficulty	
is	generating	the	separate	forms	and	coordinating	them	properly.	
	
Let	us	focus	on	Wing’s	core	“faculty,”	abstraction.	In	the	first	place,	it	is	a	bit	hard	to	
know	how	one	can	pry	this	idea	out	of	the	possession	of	mathematics,	the	queen	of	
abstract	sciences,	or	why	one	should	do	that.	But,	Thorndike’s	observation	goes	
deeper.	Consider	a	brief	thought	experiment:	Is	it	reasonable	to	consider	
abstraction	to	be	the	same	thing	in	mathematics,	physics,	and	computer	science?	I	
think	not.	Mathematical	abstraction	(let’s	call	it,	inferential	abstraction)	occurs	in	
order	to	build	conceptual	worlds	where	a	small	set	of	attributes	fully	define	
entities,	resulting	in	a	substantial	inferential	fabric—a	family	of	basic	ideas	and	
secure	inferences	(proofs)	from	them	to	other	ideas	(theorems).	Abstraction	in	
physics	(empirical	abstraction)	is	taking	a	look	at	the	world	and	finding	in	it	new	
things	that	cut	away	certain	details,	but	build	on	others	that	might	initially	be	
completely	ignored,	in	order	to	create	core	models	that	apply	across	a	very	wide	
range	of	circumstances.	Mathematicians	do	not,	in	general,	need	or	use	the	skill	of	
“peeling	away”	from	the	world	as	it	exists,	nor	digging	through	the	difficulties	of	
finding	out	how	the	world	is	in	the	first	place,	nor	do	they	have	the	constraint	of	
confirming	empirically	that	the	world	admits	in	a	certain	abstraction,	usually	
within	prescribed	limits.17	Abstraction	in	computer	science	(practical	abstraction)	
resides	substantially	in	peeling	away	the	irrelevant	particulars	of	an	
implementation	so	that	one	only	need	think	about	the	features	of	a	piece	of	it	that	
are	essential	for	a	given	use—its	“contract”	with	the	rest	of	the	program.	In	what	
respects	can	we	guarantee	that	all	these	abstractions	are	similar	enough	that	any	
one	(say,	abstraction	in	computer	science)	strongly	facilitates	abstraction	in	other	
fields?	
	
																																																								
17	Many,	even	most,	excellent	mathematicians	I	know	admit	to	not	understanding	
physics.	I	think	they	are	right	(and	I	happily	admit	to	the	converse).	But,	it	is	
difficult	to	understand	this	if	the	core	process,	“abstraction,”	is	at	the	core	of	both	
disciplines.	
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Provocatively,	a	version	of	the	idea	of	abstraction	(perhaps	“decontextualization”	is	
a	better	descriptor	of	this	version)	appeared	in	the	theory	of	literacy	as	a	central	
power	and	differentiator	compared	to	the	intellectual	capacities	of	pre-literate	
societies	(Goody,	1977).	The	idea	is	that	writing	allows	thinkers	to	separate	
themselves	from	the	intricate	details	of	lived	context,	which	separation	promotes	a	
whole	new	and	abstract	level	of	thinking.	However,	more	recent	views	of	literacy	
have	either	ignored	or	argued	against	the	idea	of	such	central	cognitive	powers	for	
literacy	(Street,	1995;	see	Scribner	&	Cole,	1981,	for	a	cautionary	tale	on	how	
narrow	versions	of	literacy—“reading	and	writing”—may	not	convey	the	kind	of	
power	that	intellectual	practices	in	which	these	skills	are	embedded	may	well	
convey).	
	
After	Pólya,	the	next	major	impetus	for	HOTS	was	arguably	Newell	and	Simon’s	
(1972)	monumental	accomplishment,	Human	Problem	Solving.	Following	on	that	
was	a	huge	blossoming	of	study	of	problem	solving,	mainly	as	it	regards	individual	
disciplines	(mathematics	being	a	prime	example),	although	there	was	a	substantial	
accompanying,	but	usually	less	rigorous,	blossoming	of	curricular	and	commercial	
work	purporting	to	teach	domain-general	problem	solving	skills.	Mathematical	
problem	solving	was	studied	from	multiple	perspectives	and	by	a	powerful	group	
of	educational	researchers.	It	is	problematic	to	summarize	such	complex	
intellectual	histories	in	a	couple	of	sentences,	but	that	is	all	I	can	do	here.	I	believe	
that	the	net	result	of	the	movement	was	that	learning	mathematics	was	not	
radically	transformed.	Problem	solving	does	not	seem	to	be	critically	powerful,	
even	in	a	single	discipline	let	alone	transformative	across	disciplines.	
	
Of	course,	problem	solving	has	not	disappeared,	just	as	the	“devastating	blow”	
rendered	by	Thorndike’s	empirical	work	did	not	actually	stamp	out	the	ideas	of	
mental	discipline	or	faculty	psychology.	But	the	big	picture	of	learning	mathematics	
did	not	change.	What	remains	is	that	the	single	most	powerful	element	in	gaining	
mathematical	power	is	to	understand	deeply	the	concepts	that	the	field	deploys.	
	
Not	incidentally,	Alan	Schoenfeld,	one	of	the	prime	movers	of	the	mathematical	
problem	solving	movement,	identifies	the	same	factor	that	Thorndike	identified,	
multiplicity,	as	a	primary	impediment	to	learning	problem	solving.	All	of	the	
general	heuristics	and	principles	need	specific	consideration	and	learning	in	order	
to	make	them	work	across	a	wide	range	of	circumstances	(Schoenfeld,	1985).18	
	
To	reprise	and	briefly	elaborate,	I	see	Wing	as	skating	on	the	psychologically	deep,	
ancient,	and	amazingly	persistent	meme	that	supports	substantial	power	for	
problem	solving	and	other	“domain	general	skills,”	HOTS,	as	I’ve	rendered	the	
																																																								
18	Schoenfeld	is	still	optimistic	about	the	future	of	problem	solving	in	mathematics	
education.	I	also	have	my	own	version	of	higher	order	competencies	(knowledge	
about	knowledge)	about	which	I	am	optimistic.	However,	the	big	picture	
assumption	of	a	revolution	in	problem	solving	as	a	general	capacity	has	been	
seriously	hobbled.	
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larger	frame	here.	But	the	history	of	HOTS	is	complex,	spotty,	knotty,	and	devoid	of	
consensus	on	what	they	are,	how	“teachable”	they	are,	and	whether	they	are	
effective.	Is	it	responsible	for	a	leader	of	a	movement	built	on	the	siren	call	of	HOTS	
not	to	mention	the	issues	with	it,	and	not	to	urge	us	to	help	resolve	them?	Wing	has	
consistently	reported	advances	and	problems	for	computational	thinking	as	if	the	
HOTS-relevant	intellectual	history	did	not	exist.	Instead,	she	says	that	we	need	to	
figure	out	how	to	sequence	programming	learning	and	make	it	more	broadly	
approachable	and	engaging;	“we,”	apparently,	do	not	need	to	demonstrate	its	
general	power,	against	the	tide	of	history.	It	is	easy—and	perhaps	appropriate—to	
acknowledge	that	a	leader	of	a	social	movement	may	simplify	and	ignore	
complications.	But	one	would	still	hope	that	the	larger	movement	could	address	the	
issues.	I	see	few	signs	of	this.	I	just	read	an	article	about	teaching	of	computer	
science	and	“computational	thinking”	at	my	home	institution.	Abstraction	and	its	
general	power	was	a	prime	example,	and	the	idea	was	used	without	the	slightest	
self-consciousness.	If	there	is	good	and	deep	research	going	on	behind	core	ideas	in	
the	computational	thinking	movement,	it	is	difficult	for	me	to	find,19	and	it	is	also	
virtually	invisible	in	the	public	presence	of	the	movement.	

Coding	
There	is	an	undeniable	boom	in	public	interest	in	“coding,”20	and	a	concomitant	
boom	in	commercial	and	non-commercial	instruction;	coding	is	both	big	business	
and	a	blossoming	grassroots,	altruistically	oriented	enterprise.	
	
A	serious	memetic	analysis	of	this	movement	would	be	fascinating.	I	can	offer	only	
tidbits	here.	

Meme	1:	Equity	and	empowerment	are	highly	visible,	particularly	on	the	
more	grassroots	side	of	things.	“Black	Girls	Code”	(and	many	other	similarly	
directed	organizations);	advertisements	of	targeting	in,	and	success	in,	
minority	and	impoverished	areas	of	the	U.S.	and	the	world.	

	
I	had	a	personal	experience	of	the	depth	of	this	meme	recently	when	a	reporter	
came	to	talk	to	me	about	coding	academies.	She	was	evidently	unhappy	with	my	
lukewarm	assessment	of	the	movement.	When	I	probed	for	the	reason	for	her	own	
enthusiasm	for	coding,	it	came	out	that	she	had	recently	enrolled	in	an	academy	
and	felt	personally	uplifted	by	the	experience,	as	if	a	prohibition	had	been	lifted	on	
																																																								
19	The	NRC	(2010)	report	on	computational	thinking	addresses	some	gaps,	
including	the	lack	of	attention	to	prior,	concurrent,	extensive	and	very	similar	
movements,	such	as	the	Papert/MIT	line	of	work.	However,	(1)	that	report,	of	
course,	does	not	do	the	actual	work	it	proposes	to	be	important,	(2)	later	papers,	
such	as	Grover	and	Pea	(2013),	cited	earlier,	suggest	that	much	of	that	work	is	
undone	and	forms	a	continuing,	important	agenda	that	is	broadly	unacknowledged,	
and	(3)	the	report	did	not	substantially	bring	the	history	of	relevant	scholarship	
critically	to	bear	on	the	public	face	of	computational	thinking.	
20	It	is	interesting	how	terminology	shifts—for	example,	“programming”	becomes	
“coding”—when	the	cultural	resonance	and	contextualization	shifts.		
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her,	and	a	wonderful	intellectual	world	had	opened	up.	It	seemed	the	source	of	
liberation	was	two-fold.	As	a	writer	with	a	liberal	arts	background,	all	of	a	sudden,	
she	had	access	in	an	apparently	successful	way	to	modern	technoscience.	In	
addition,	she	felt	the	movement	was	opening	up	pathways	for	women	that	didn’t	
exist	in	the	past:	equity	and	liberation.	
	

Meme	2:	Computational	thinking	–	Although	not	pervasive	in	my	sampling,	
a	lot	of	coding	instruction	is	accompanied	by	computational	thinking	
rhetoric,	sometimes	with	phrases	that	might	have	been	lifted	from	Wing’s	
writings.	I	suspect	that	computational	thinking	is	not	just	an	advertisement	
of	“competitive	advantage”	of	some	academies,	but	one	of	the	backdrop	
memes	driving	the	movement.	

	
Meme	3:	Arguably	the	most	visible	meme	one	sees	in	the	coding	movement	
is	vocationalism:	“jumpstart	your	career”;	“your	teen’s	future	in	coding;”	“the	
thrill	of	a	start-up	culture;”	advertising	the	most	current	and	well-known	
professional	languages.	

	
The	attractiveness	of	the	vocational	side	of	coding	is	understandable.	Few	things	
are	as	important	and	salient	in	modern	life	as	finding	a	good,	well-paying	job.	
However,	I	think	it	is	well	worth	being	skeptical	of	memes	that	are	so	self-evident	
in	contemporary	society	that	few	would	bother	to	data-check	their	real	status.	
	
While	I	make	no	pretense	to	expertise	or	definitive	conclusions,	I	did	bother	to	go	
to	the	U.S.	Department	of	Labor’s	website	to	see	what	I	could	find.	Here	are	some	
observations	(unless	otherwise	stated,	statistics	are	from	the	Bureau	of	Labor	
Statistics	website	and	dated	2015):	
	
All	jobs	classified	under	“computers	and	IT”	constitute	only	about	2.4%	of	the	labor	
force.		
	
Then	I	looked	more	particularly	at	the	three	most	programming-related	
subcategories	of	computers	and	IT.	Programming,	per	se,	is	not	a	very	positive-
looking	job	category.	It	comprises	0.2%	of	the	U.S.	labor	force,	and	is	projected	to	
decline	8%	over	the	next	decade,	owing	mainly	to	foreign	competition.	
	
Software	developers	and	web	developers	provide	a	more	positive	picture.	Both	are	
growing	much	faster	than	average.	But	both,	together,	are	significantly	less	than	
1%	of	the	labor	force	and	will	not	even	reach	1%	over	the	next	decade,	under	the	
Department’s	projections	of	growth.	
	
For	comparison,	I	looked	at	the	healthcare	sector.	It	turns	out	nursing	alone,	in	its	
various	subspecialties,	constitutes	a	proportion	of	the	labor	market	that	is	
comparable	to	all	computing	and	IT	categories	combined.	But	the	subcategory	of	
registered	nurses	by	itself	is	much	larger	than	the	three	“programming”	categories,	
mentioned	above,	combined.	Some	subspecialties	in	the	nursing	category	are	
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growing	faster	than	any	of	the	three	“programming”	categories.	Interestingly,	the	
fastest	growing	job	category	listed	by	the	Bureau	of	Labor	Statistics	happens	to	be	
“wind	turbine	technician”	(although	the	category,	at	present,	is	tiny),	which	is	
suggestive	of	some	important	trends.	See	also,	“The	U.S.	wind	industry	now	
employs	more	than	100,000	people”	(2017).	
	
This	all	suggests	that	the	vocational	value	of	programming,	per	se,	might	be	
overblown	and	more	symbolic	than	functional.	I	believe	this	is	true,	but	there	is	a	
deeper	issue,	which	can	be	seen	from	the	top	level	of	my	computational	literacy	
analytic.	I	call	it	“the	mire	of	vocationalism.”	
	
Literacies,	by	nature,	are	not	narrow	channels.	They	work	always	(I	believe)	by	
recruiting	a	broad	range	of	intellectual	enterprises	to	a	common	expressive	system.	
One	doesn’t	learn	reading	and	writing	in	school	based	on	a	narrow,	vocationalist	
targeting	of	skills.	Textual	literacy	is	not	just	for	professional	writers.	And	you	have	
to	acquire	many	important	and	specific	skills,	beyond	the	basic	literacy	skills	you	
learn	in	school,	to	become	a	poet	or	journalist.	Furthermore,	we	don’t	teach	reading	
and	writing	only	within	a	particular	vocational	track.	Reading	and	writing	
specialized	for	physicists,	or	for	mathematicians,	or	for	nurses,	or	for	engineers?	
That	does	not	work.	It	will	not	work	for	computational	literacy.	
	
There	is	a	broader	version	of	vocationalism,	not	learning	programming	to	become	a	
programmer,	that	holds	more	promise.	By	now,	there	is	a	decently	well-developed	
literature	that	deals	with	how	computation	and	mathematics	are	really	integrated	
into	work	situations.	The	upshot	is	that	calculation	and	its	computational	
counterpart,	programming,	are	surprisingly	seldom	seen	in	work	situations.	
Instead,	what	is	important	is	understanding	the	higher	levels	of	what	calculation	or	
computation	can	accomplish,	their	limitations,	their	in-built	assumptions	about	the	
world,	signs	of	failure,	and	what	might	be	done	to	contextualize	algorithms	better,	
or	even	change	them	to	suit	local	needs.	I	am	not	sure	any	one	word	captures	these	
perspectives,	but	mathematical	or	computational	“modeling”	is	a	decent	start.	Noss	
(1998)	offers	a	brief	and	easy-to-understand	introduction.	In	any	event,	these	
directions	define	part	of	a	broader	and	more	legitimate	vocationalism,	which	is	
simply	not	“coding,”	per	se.	
	
One	of	my	greatest	disappointments	in	the	formative	days	of	computers	and	
education	was	the	selection	of	Pascal	as	the	relevant	language	for	the	AP	test,	
signaling	the	cultural	dominance	of	computer	science	and	computer	scientists	in	
the	definition	of	what	computing	should	be.	Pascal	was	a	learning	language	
developed	by	and	for	the	computer	science	community,	and	the	AP	test,	thereafter,	
tracked	evolving,	modern,	professional	languages:	C++,	Java,	Java	5.	The	early	
choice	of	Pascal	as	the	de	facto	standard	for	programming	horrified	and	shook	me	
because	it	made	me	realize	what	shape	programming	would	take	in	our	culture,	at	
least	for	a	long	time.	It	would	be	narrowly	vocationalist	and	techno-centric.	
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Two	final	points:	Most	coding	academies	and	related	entities	are	not	really	about	
anything	other	than	programming,	per	se,	although	some	might	claim	to	include	
“computational	thinking.”	They	don’t	concern,	for	example,	the	mathematics	of	
motion	or	any	equivalent	set	of	ideas.	This	seems	to	me	akin	to	learning	a	language	
by	learning	its	grammar	and	never	talking	about	anything	important	using	it.	What	
is	most	engaging	about	textual	literacy	is	reading	a	good	book,	or	writing	about	
something	you	care	about.	Our	sixth	grade	students	were	very	clear	on	this:	
Programming	was	engaging	precisely	in	the	wonderful	things	they	did	with	it.	So,	
how	do	you	make	programming	and	computer	science	engaging?	Do	something	
interesting	and	important	with	it.	
	
Overall,	coding	academies	may	be	serving	some	aims	related	to	computational	
literacies,	possibly	“ticking	off”	formal	or	informal	prerequisites	for	more	
interesting	and	important	work.	Or,	for	some,	serving	as	an	interest	on-ramp	to	
technoscience	(which	appeared	to	be	the	case	with	the	reporter	that	visited	me	
about	coding	academies).	But	they	are	most	definitely	not	about	transforming	
intellectual	domains	(e.g.,	motion),	nor	inducting	students	into	civilization-wide	
“great	literature,”	nor	freeing	personal	creativity	and	expression,	nor	even	about	
“modeling,”	as	discussed	just	above.	
	
My	last	point	is	that	I	have	found	the	computer	environments	and	instructional	
strategies	used	by	many	coding	academies	to	be	archaic	and,	again,	as	far	as	I	can	
see,	completely	without	cognizance	of	the	things	we	learned	about	teaching	
programming	in	the	Logo	community	and	elsewhere.	It	is	strongly	ironic	that	
current	learning	environments	are	mostly	much	worse	than	what	we	had	almost	
fifty	years	ago,	now	that,	finally,	there	is	a	mass	movement	toward	learning	
computation.	
	
Some	of	the	reasons	for	this	retrograde	move	stem	from	narrow	vocationalism,	for	
example,	using	professional	programming	environments	that	can	have	devastating	
consequences	on	learning.	I	have	seen	those	consequences	in	depressing	detail,	
owing	to	the	work	of	students	that	have	been	involved	with	coding	academies.	
Another	reason	is	likely	historical	ignorance	and	a	general	faith	that	“we	are	doing	
something	essentially	new—there’s	no	point	consulting	history.”	

Synthetic	Review	and	Some	Practical	Advice	
The	perceived	promise	of	computation	to	revolutionize	mathematics	(and,	more	
generally,	STEM)	education	has	a	near	half-century	history.	Computers	and	
computation	have	inspired	researchers’	and	educators’	hope	that	these	
instruments	can	make	a	special	contribution	toward	achieving	long-delayed	goals.	
Some	such	goals	are	practical:	to	teach	more	and	different	things	(e.g.,	“more	
modern”	topics),	and	more	efficiently	and	faster.	Some	goals	are	more	
inspirational:	to	have	mathematics	come	to	feel	more	natural,	relevant,	and	less	
intimidating.	Other	goals	are	moral	or	ethical:	to	be	more	inclusive.	
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This	paper	dips	into	the	set	of	“big	pictures”	that	can	organize	work	toward	
realizing	goals	such	as	those	above.	I	introduced	one	possible	benchmark,	
computational	literacy,	and	a	set	of	principles	concerning	it.	The	principles	help	
define	the	benchmark,	but	they	also	serve	two	other	important	functions.	They	
serve	as	an	analytical	framework	to	compare	and	contrast	with	competitive	big	
pictures.	As	I	mentioned,	computational	literacy	seems	poorly	differentiated	in	the	
public	eye	from	a	more	recent	and	extremely	prominent	candidate,	computational	
thinking.	In	addition,	these	principles	mark	scientific	loci	of	inquiry	that	can	
validate	and	enhance	progress	toward	achieving	the	goals	of	various	big	pictures,	
or,	in	complementary	manner,	undermine	their	credibility,	while	simultaneously	
suggesting	potential	improvements.	

Review	of	Principles	
I	noted	first	that	literacy-scaled	accomplishments	are	massive	social	and	
cultural	accomplishments.	This	suggests	both	that	we	should	set	our	sights	high,	
and	that	we	need	also	to	be	modest	about	what	any	one	of	us,	or	any	movement,	
can	accomplish.	Present	times,	present	curricula	and	sensibilities	about	instruction	
and	learning	do	not	set	a	definitive	frame.	While	it	is	laudable	to	try	to	be	effective	
sooner	rather	than	later,	we	need	to	balance	these	considerations	with	anticipation	
of	very	substantial	future	profit	from	changing	current	assumptions	and	
sensibilities.	In	particular,	if	there	are	no	recognized	landmarks	of	substantially	
changed	teaching	and	learning,	few	will	be	inspired	to	step	outside	the	bounds	of	
contemporary	practice.	I	am	in	favor	of	being	bold,	trying	out	things	with	great	
promise	despite	a	potentially	uncomfortable	fit	with	the	present.	The	proposal	to	
teach	vector	calculus	almost	got	our	proposal	concerning	the	mathematics	of	
motion	to	sixth	graders	rejected.	But,	in	the	end,	it	was	one	of	our	easiest	and	most	
satisfying	accomplishments.	At	the	same	time,	an	“accidental”	cultural	trend	
enhanced	some	aspects	of	our	work.	Entirely	independent	of	the	motivations	we	
had	for	working	on	the	mathematics	of	motion—independent	of	the	anticipation	of	
cognitive	simplicity	that	would	be	displayed	and	independent	of	the	larger	frame	of	
computational	literacy—curricular	standards	across	the	country	began	
incorporating	motion	as	an	elementary	and	middle	school	topic.	Some	of	our	work	
collaborating	with	other	groups	was	strongly	reinforced	by	teachers’	felt	needs	
when	they	were	suddenly	charged	with	instructing	motion,	but	with	no	
preparation	or	appropriate	curricula	to	address	that	demand.	So	one	can	also	take	
advantage	of	present-day	memes	and	movements	to	take	steps	toward	a	larger	and	
possibly	independent	agenda.	
	
Social	change,	specifically	relevant	to	the	emergence	of	a	new	literacy	is,	I	believe,	
the	least	scientifically	understood	locus	among	those	referenced	in	my	principles.	
So,	I	felt	it	necessary	for	rhetorical	purposes	to	augment	the	top	level	of	this	
principle	with	a	“toy”	model	of	social	change,	identifying	elements	of	culture	that	
are	relevant	to	the	emergence	of	a	computational	literacy,	or	similar	large-scaled	
social	change.	I	talked	mainly	about	memes	and	movements,	but	also	introduced	
values,	sensibilities,	and	sensitivities	(collectively	MMVSSs).	A	key	lesson	is	that	
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contemporary	MMVSSs	may	help	propel	us	roughly	in	the	direction	we	want	to	go,	
but	surreptitiously	introduce	distractions	(e.g.,	a	narrow	vocationalism)	and	ignore	
critical	dimensions	of	change	(e.g.,	change	in	the	fundamentals	of	what	is	taught,	
when).	
	
Next,	there	are	the	“four	Rs,”	which	add	detail	and	specific	foci	for	a	literacy-
relevant	agenda.	
	
Re-mediation	–	The	representational	infrastructure	for	our	civilization	is	changing	
dramatically.	Dynamic	and	interactive	representations	on	computers,	along	with	
the	ability	to	design	and	enact	specialized	representations	on	demand	and	often	
quickly	means	that	intellectual	changes	easily	on	the	scale	of	what	algebra	or	
calculus	brought	us	are	almost	certainly	in	the	offing.	I	have	taken	a	particular	line	
on	this	by	aiming	mainly	to	develop	and	build	on	generic	resources	(a	generic	
computational	medium,	including	high-end	compositional	resources—
programming—such	as	Boxer	provides).	But	other	paths	exist,	for	example	
exemplified	in	the	vibrant	community	that	built	up	around	dynamic	geometry	
systems	(Sketchpad,	Cabri	Geometry),	and	similar	families	of	specialized	
representations	for	individual	topics	(such	as	Tabletop	for	statistics),	or,	more	in	
the	direction	of	Boxer,	things	like	Mathematica	or	Python	notebooks.	
	
Reformulation	–	I	introduced	the	possibility	of	very	substantial	changes	in	what,	
when,	and	how	we	teach	subject	matter	based	on	an	improved	understanding	of	
native	human	intellectual	resources:	reformulation.	For	those	who	know	my	early	
work	on	turtle	geometry	with	Hal	Abelson	(Abelson	&	diSessa,	1981),	much	of	that	
stands	as	productive	reformulation	even	independent	of	computational	re-
mediation.	The	cognitive	foundation	for	turtle	geometry	is	the	use	of	body-based	
dynamic	representation,	or	the	body	as	a	modeling	language,	as	a	much	better	basis	
for	learning	about	geometry	than	that	used	by	conventional	static	and	proof-
centered	approaches.	Papert	called	it	a	“body	syntonic”	approach.	A	clean	and	
impressive	demonstration	of	reformulation	without	re-mediation	is	teaching	turtle	
differential	geometry	to	early	and	middle	elementary	school	students	without	
computer	mediation	(Lehrer,	Holmes,	Taimina,	&	Henderson,	2016).	But	motion	as	
approached	in	our	sixth	grade	course	is	different.	This	reformulation	(e.g.,	motion	
construed	in	discrete	form)	without	computational	support	is	minimal	and	
wasteful.	It	is	an	easy	step	to	add	computation,	and	the	resulting	combination	is	
dramatically	superior	along	multiple	dimensions	to	the	one	without	computation.		
	
I	deliberately	backgrounded	scientific	progress	on	“cognitive	simplicity”	as	too	
complicated	and	distinct	to	join	here	with	the	agenda	of	this	paper.	However,	it	has	
strongly	influenced	my	research	group’s	work.	For	example,	diSessa	(2017)	
documents	a	stunning	example	of	student	learning	when	based	on	the	instructional	
possibilities	of	virtually	unknown	intuitive	knowledge	(unknown,	that	is,	in	the	
broader	educational	and	cognitive	research	community).	While	these	intellectual	
pursuits	are	not	currently	very	prominent	in	educational	research,	I	recommend	
them	to	those	who	wish	to	pursue	anything	like	computational	literacy.	
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Reorganizing	the	intellectual	terrain	–	This	principle	creates	a	landmark	for	
deep	change	in	teaching	and	learning,	concomitant	to	the	more	general	focus	on	big	
cultural	changes.	Teaching	mathematics	will	and	should	look	very	different,	given	
any	literacy-scaled	change.	If	you	are	stuck	trying	to	optimize	current	instruction,	
say,	in	linear	algebra,	at	the	same	age	levels,	only	“using	computers,”	you	are	not	
playing	the	game	I	recommend.	Of	course,	as	I	remarked	earlier,	the	“self-evident”	
epistemology	of	the	times	will	get	in	the	way,	as	well	as,	on	occasion,	providing	
“hooks”	and	cultural	resonances	for	advance.	I	have	repeatedly	emphasized	that	
this	is	a	difficult	agenda.	However,	orienting	toward	big,	long	time-scale	rewards	is	
what	we	need	to	do.	
	
The	slogan	“a	literacy	needs	a	literature”	fits	just	here.	A	reorganized	intellectual	
terrain	will	show	up	in	new	landmark	documents	(textbooks,	or	newer	and	very	
different	interactive	forms),	or	in	a	revised	list	of	civilization’s	“great	ideas.”	The	
slogan	and	its	larger-scaled	recognition	of	major	content-specific	shifts	in	how	we	
think	about	particular	subject	matter,	and,	by	extension,	about	curriculum,	also	
warn	against	engaging	computation	without	respecting	and	engaging	the	great	
intellectual	accomplishments	of	our	civilization	beyond	that	directly	related	to	
computers.	
	
Revitalizing	the	ecology	of	learning	activities	–	I	am	deeply	troubled	by	the	fact	
that	much	of	our	mathematical	and	scientific	instruction	is	organized	around	small,	
impersonal,	and	denatured	problems.	I	am	equally	encouraged	and	motivated	by	
what	happened	in	our	motion	class.	Programming	computer	games	is	not	a	
sufficiently	broad	prototype	(it	doesn’t	describe	many	of	the	successful	activities	in	
our	motion	course),	but	adding	design	and	authentic	research	(where	“authentic	
means	both	“true	to	the	discipline”	and	also	“fitting	students’	interests	and	current	
conceptual	landscape”)	to	the	list	does	go	a	long	way.	
	
Here	is	one	place	where	engagement,	interest,	and,	by	necessary	extension,	
equity—respecting	important	diversity	in	classrooms—is	strongly	visible	in	the	
program.	Some	theoretical	work	concerning	engagement	in	our	motion	class	
appears	in	Azevedo,	diSessa,	and	Sherin	(2012).	Here	is	also	where	the	equivalent	
of	“writing	as	well	as	reading”	in	a	computational	literacy	(“writing”	=	
programming)	pays	strong	dividends.	Research	that	look	superficially	like	
computational	literacy	(new	representational	infrastructure,	perhaps	even	steps	
toward	significant	reformulation)	might	diverge	just	at	this	point.21		
																																																								
21	A	good	study	of	a	program	whose	rhetoric	looks	very	similar	to	the	way	that	I	
describe	our	mathematics	of	motion	class—for	example,	changing	representational	
infrastructure,	reformulation	(a	discrete	epistemology)	and	consequent	
democratizing	access	to	calculus—is	the	SimCalc	Project	(Kaput,	1994;	Stroup,	
2002).	That	project	also	undertook	to	bring	the	study	of	motion	into	the	computer	
age.	However,	in	terms	of	deeply	engaging	student	interests	and	creativity	in	
personally	motivated	activities,	SimCalc’s	tenor	is	quite	distinct.	SimCalc	also	
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Applying	the	Principles	
Using	these	principles	to	provide	helpful	comparative	analysis	of	competing	
perspectives	was	illustrated	here	by	considering	two	contemporary	trends	in	
computer-oriented	instruction.	The	first	may	well	be	the	most	important	
movement	in	a	decade	or	two	toward	big	changes	in	the	use	of	computers	in	
learning:	computational	thinking.	It	swamps	the	social	visibility	of	computational	
literacy,	and	its	connection	to	contemporary	MMVSSs	is	more	vivid.	
	
On	the	other	hand,	invoking	literacy	principles	puts	a	critical	light	on	
computational	thinking.	Perhaps	most	central	is	the	lack	of	orientation	toward	
domain-specific	adaptation.	At	least	three	of	my	principles	concern	this.	First,	re-
mediation	underscores	the	general	fact	that	any	representational	system	is	better	
adapted	for	some	things	and	less	so	for	others.	This	needs	to	be	explored	on	a	
domain-by-domain	basis,	and	work	must	be	done	to	adapt	what	is	done	with	
computational	representations	to	each	domain.	Our	success	in	teaching	vectors	
came	substantially	from	how	they	were	fit	into	the	medium,	even	if	we	benefitted	
from	more	generic	properties	of	computational	media.		
	
Similarly,	reformulation	is	also	a	domain-by-domain	issue.	One	needs	to	find	the	
productive	roots	of	different	ways	of	thinking	about	each	domain.	Certainly	there	
are	some	generalities,	but	so	far	as	I	have	seen	(and	a	lot	of	literature	agrees),	one	
needs	to	understand	how	learners	construe	particular	domains,	and	how	they	may	
profitably	construe	them	differently.	
	
In	contrast,	computational	thinking	emphasizes	a	fairly	extreme	version	of	domain	
generality.	There	is	no	talk	whatsoever	about	reorganizing	domains	or	new	
literatures	coming	from	computational	thinking	advocates.	More,	rhetoric	
concerning	computational	thinking	emphasizes	a	kind	of	generality	(“educational	
benefits	of	being	able	to	think	computationally	…	enhance	and	reinforce	intellectual	
skills,	and	thus	can	be	transferred	to	any	domain”)	that	I	believe	is,	at	best,	
scientifically	suspect,	even	if	it	propels	the	movement	forward	via	MMVSS	cultural	
resonance.	
	
My	analysis	of	the	coding	movement	proceeded	similarly.	While	the	movement	
provides	a	solid	socially	widespread	impetus	that	is	critical	for	those	of	us	
concerned	with	computational	literacies	(although	some	of	its	powerful	memes	are	
suspect),	it	ignores—if	it	does	not	counter—most	of	the	concerns	that	define	
computational	literacy.	
	

																																																																																																																																																																			
articulately	chose	to	reject	using	computational	media	and	programming	in	favor	of	
specialized,	narrowly	targeted	and	non-student	penetrable	representations	(see	
Roschelle,	Kaput,	Stroup,	&	Kahn,	1998).	The	near-future	orientations	of	the	
SimCalc	Project	have	served	it	very	well.	However,	that	leaves	a	larger	agenda	
unaddressed.	
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This	might	be	the	place	to	consider	how	to	optimally	combine	the	energy	and	
insights	of	computational	thinking	and	coding	movements	with	the	insights	and	
directions	of	computational	literacy.	But,	given	the	length	of	this	essay,	that	is	a	
topic	for	the	future.	

“Practical”	Advice	
I	close	with	some	epigrammatic	and	action-oriented	syntheses	of	arguments	
presented	in	this	article	along	with	a	few	more	strategic	suggestions.	
	
Think	big;	orient	toward	the	best	that	you	can	imagine.	If	you	have	your	own	big	
picture,	seek	to	develop	it	empirically	and	theoretically,	and	to	test	it	seriously	
against	other	big	pictures	of	computers	in	mathematics	learning.	Being	strategic	
and	accountable	to	contemporary	memes	may	be	necessary	and	appropriate.	But	a	
clearer	vision	of	where	we	might	go,	beyond	our	current	state,	can	take	us	further.	
	
The	most	serious	impediment	to	anything	on	the	scale	of	computational	literacy	is	
the	blinding	obviousness	of	unquestioned	assumptions	about	the	present,	
accepting	that	what	is	now	will	always	be	so.	
	
Question	ready	epistemological	assumptions	about	what	is	necessary	to	teach	and	
what	is	beyond	reach	at	particular	ages,	or	what	fits	where	in	the	global	sequence	
of	topics	in	mathematics	education.	Background	“methods	for	teaching”	compared	
to	the	framing	and	approach	(e.g.,	cognitive	simplicity,	synergy	with	new	
representational	forms)	of	the	very	mathematics,	itself.		
	
Get	to	know	computational	media	as	deeply	as	you	can.	My	preference	is	learning	
programming	in	a	suitable	computational	medium—or	as	close	to	that	as	you	can	
get.	But,	in	any	case,	look	to	gain	acquaintance	with	the	most	epistemologically	rich	
computer	systems	you	can	find.	By	“epistemologically	rich,”	I	mean	having	
legitimate—but	likely	as-yet	unrealized—consequences	for	the	mathematics	we	
can	experience	and	might	teach.	I	learned	a	tremendous	amount	by	hanging	out	
with	computer	scientists	(several	years	in	MIT’s	Artificial	Intelligence	Laboratory,	
and	a	decade	in	the	Laboratory	for	Computer	Science),	but	I	wouldn’t	take	them	as	
authorities	on	what	computation	means	for	mathematics	education.	Cultivate	your	
computational	autonomy.	
	
Combining	the	last	two	points,	what	proved	extremely	productive	to	me	was	to	
pursue	both	possible	cognitive	simplicities	and	synergistic	re-mediations	in	order	
to	approach,	for	yourself,	mathematics	that	is	vague	for	you.	I	taught	myself	some	
core	parts	of	differential	geometry,	with	which	I	had	only	a	dim	impression,	in	a	
few	days	using	body	syntonic	approaches	to	the	topic.	I	discovered	some	number	
theory	that	I	had	never	learned	and	geometric	theorems	that	I	never	knew	existed	
by	playing	with	simple	turtle	programs.	This	is	a	new	world;	don’t	assume	it	is	just	
slightly	different	from—or	maybe	even	just	“an	approach”	to	teaching—“the	usual	
stuff.”	The	relationships	of	computation	to	any	of	these	specialties	requires	inquiry;	
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I	emphasized	the	multifaceted	nature	of	computational	literature.	There	is	no	single	
recipe	for	how	computation	changes	a	field	or	subfield.	
	
If	your	pursuits	take	you	in	different	directions	than	I	suggest	here,	that	will	enrich	
the	horizon	for	all	of	us.	If	they	parallel	or	extend	what	I	and	others	who	are	
focused	on	the	big	picture	have	already	done,	perhaps	we	can	converge	sooner	
than	might	be	expected.	
	
I	read	the	pursuit	of	a	protean	big	picture	for	computer	use	in	mathematics	
education	as	a	noble	and	largely	selfless	pursuit.	None	of	us,	nor	any	single	
subgroup,	can	change	civilization	by	ourselves.	But,	we	can	be	more-valuable-than-
average	and	more	than	unwitting	participants,	bringing	some	order	to	a	chaotic	
social	process	driven	by	unquestioned	but	questionable	assumptions	and	lack	of	
big-picture	aspirations.	
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