
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Boundary-Layer Analyses of Differential-Diffusion Effects In Laminar Jet Diffusion Flames

Permalink
https://escholarship.org/uc/item/4bt7s0gb

Author
Nekkanti, Akhil

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4bt7s0gb
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Boundary-Layer Analyses of Differential-Diffusion Effects In Laminar Jet
Diffusion Flames

A thesis submitted in partial satisfaction of the

requirements for the degree

Master of Science

in

Engineering Science (Mechanical Engineering)

by

Akhil Nekkanti

Committee in charge:

Professor Antonio Sanchez, Chair
Professor Kalyanasundaram Seshadri
Professor Forman Williams

2018



Copyright

Akhil Nekkanti, 2018

All rights reserved.



The thesis of Akhil Nekkanti is approved, and it

is acceptable in quality and form for publication

on microfilm and electronically:

Chair

University of California San Diego

2018

iii



DEDICATION

To the scientific and research community for their relentless effort

towards the progress of mankind.

iv



EPIGRAPH

Anyone who has never made a mistake has never tried anything new.

—Albert Einstein

v



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Epigraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Burke-Schumann Approximation . . . . . . . . . . . . . . . . . 8
2.2 Steady Laminar Jet Diffusion Flames . . . . . . . . . . . . . . . 10
2.3 Analytical Solution for Special Cases . . . . . . . . . . . . . . . 13
2.4 Solution for x << 1 . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Modified Equations for Computation . . . . . . . . . . . . . . . 17

Chapter 3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1 Effect of Lewis Number . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Effect of Dilution . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Effect of Coflow Velocity . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Inverse Diffusion Flames . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Appendix A Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.1 Axisymmetric Results . . . . . . . . . . . . . . . . . . . . . . . . 36
A.2 Planar Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

A.2.1 Governing Equations (revisited) . . . . . . . . . . . . . . 38
A.2.2 Flame Shapes in Enthalpy Variable field . . . . . . . . . 39
A.2.3 Effect of Lewis Number . . . . . . . . . . . . . . . . . . . 40
A.2.4 Effect of Coflow Velocity . . . . . . . . . . . . . . . . . . 41
A.2.5 Effect of Dilution . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



LIST OF FIGURES

Figure 1: Schematic diagram of a coflowing laminar diffusion flame . . . . . . . . 2

Figure 2: The contour plots showing the variation of dimensionless temperatures
departures Zs− ξf as a function of Zs = 1/(S + 1) and coflow velocity
(U0) for LF = 0.3 (top) and for LF = 2.0 (bottom) . . . . . . . . . . . . 15

Figure 3: The contour plots showing the variation of dimensionless temperatures
departures Zs − ξf as a function of Zs = 1/(S + 1) and Lewis number
(LF) for U0 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 4: The flame shapes (upper plot) and dimensionless excess temperatures
Zs−ξf (lower plot) for different Lewis numbers with S = 1.0 in stagnant
air i.e U0 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 5: The flame shapes of LF = 0.3 (left) and LF = 2.0 (right) for different
fuel dilutions in stagnant air i.e U0 = 0.0 . . . . . . . . . . . . . . . . . 23

Figure 6: The dimensionless excess temperatures Zs − ξf of LF = 0.3 (left) and
LF = 2.0 (right) for different fuel dilutions in stagnant air i.e U0 = 0 . . 23

Figure 7: The flame shape of LF = 0.3 (upper plot) and LF = 2.0 (lower plot)
in the excess enthalpy variable field with S = 1 and U0 = 0. In the
colored region ξ > Zs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 8: The Z, ξ profiles at different axial locations with S = 1 and U0 = 0 for
LF = 0.3 (left) and LF = 2.0 (right) . . . . . . . . . . . . . . . . . . . 26

Figure 9: The temperatures profiles at different axial locations with S = 1 and
U0 = 0 for LF = 0.3 (left) and LF = 2.0 (right) . . . . . . . . . . . . . 26

Figure 10: The flame shapes of LF = 0.3 (left) and LF = 2.0 (right) for different
coflow velocities with with S = 1 . . . . . . . . . . . . . . . . . . . . . 28

Figure 11: The dimensionless excess temperatures Zs − ξf of LF = 0.3 (left) and
LF = 2.0 (right) for different coflow velocities with S=1 . . . . . . . . . 28

Figure 12: The flame shapes of inverse diffusion flame of LF = 0.3 (left) and
LF = 2.0 (right) for different fuel dilutions with coflow to jet velocity
ratio of U0 = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



Figure 13: The dimensionless excess temperatures Zs−ξf of inverse diffusion flame
of LF = 0.3 and LF = 2.0 for different fuel dilutions with coflow to jet
velocity ratio of U0 = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 14: The flame shapes of inverse diffusion flames in the enthalpy variable
field for LF = 0.3 and 2.0 with S = 1 and U0 = 1 . . . . . . . . . . . . . 31

Figure 15: The Z, ξ profiles of inverse diffusion flames at different axial locations
with S = 1 and U0 = 1.0 for LF = 0.3 and LF = 2.0 (right) . . . . . . 32

Figure 16: The temperatures profiles of inverse diffusion flames at different axial
locations with S = 1 and U0 = 1.0 for LF = 0.3 (left) and LF = 2.0
(right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 17: The flame shapes for LF = 0.3 (left) and LF = 2.0 (right) with U0 = 1.0 36

Figure 18: The dimensionless excess temperatures Zs − ξf for LF = 0.3 (left) and
LF = 2.0 (right) with U0 = 1.0 . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 19: The flame shapes of LF = 0.3 (upper plot) and LF = 2.0 (lower plot)
in enthalpy variable field for S = 2 and U0 = 1.0. In the colored region
ξ > Zs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 20: Isosurfaces for S = 1 and U0 = 1 for normal (a) and inverse (b) con-
figurations, including the isosurface ξ = ZS which coincides with the
flame surface when LF = 1.0 . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 21: The variation with the fuel Lewis number LF of the flame shape (upper
plots) and dimensionless flame-temperature departure ZS − ξf (lower
plots) for: Normal Diffusion flames with S = 1 and U0 = 0; Inverse
Diffusion flames with S = 1 and U0 = 1. . . . . . . . . . . . . . . . . . 40

Figure 22: The variation with the Coflow Velocity U0 of the flame shape (upper
plots) and dimensionless flame-temperature departure ZS − ξf (lower
plots) for S=1 LF = 0.3 and LF = 2.0. . . . . . . . . . . . . . . . . . . 41

Figure 23: The variation with the dilution parameter S of the flame shape (upper
plots) and dimensionless flame-temperature departure ZS − ξf (lower
plots) for U0 = 1 LF = 0.3 and LF = 2.0. . . . . . . . . . . . . . . . . . 43

Figure 24: The variation with the dilution parameter S of the flame shape (upper
plots) and dimensionless flame-temperature departure ZS − ξf (lower
plots) for Inverse Diffusion Flames with U0 = 1 (a) LF = 0.3 and (b)
LF = 2.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

viii



ACKNOWLEDGEMENTS

I owe my deepest gratitude to my advisor Professor Antonio Sanchez. I’m thankful

to him for giving me opportunity to work in his group. I am extremely grateful for the

valuable time he has spent in advising me. His continuous guidance, encouragement and

support at all the levels of this work has enabled me to develop a better understanding

of the subject and has helped me grow as a researcher.

I am also thankful to Dr. Wilfred Coenen, who’s constant inputs have enhanced my

skills in numerical modeling. His guidance and suggestions in programming have helped

me a lot and I am grateful to him.

Last but not the least, I would also like to thank my parents who supported my

decision to further my education.

ix



VITA

2016 B. Tech. in Mechanical Engineering, Indian Institute of Technology,
Ropar

2016-2017 Project Assistant, Indian Institute of Science, Bangalore

2017-2018 M. S. in Engineering Science (Mechanical Engineering), University
of California San Diego

PUBLICATIONS

N Akhil, AL Sanchez, FA Williams, Explanations of influences of differential diffusion on
flame-temperature variations in usual and inverse jet flames, (submitted) Combustion and
Flame

RK Maurya, N Akhil. ”Numerical investigation of ethanol fuelled HCCI engine using
stochastic reactor model. Part 1: Development of a new reduced ethanol oxidation mech-
anism” . Energy Conversion Management. 118, 2016

RK Maurya, N Akhil. ”Numerical investigation of ethanol fuelled HCCI engine using
stochastic reactor model. Part 2: Parametric study of performance and emissions char-
acteristics using new reduced ethanol oxidation mechanism.” . Energy Conversion Man-
agement. 121, 2016

RK Maurya, N Akhil. ”Development of a new reduced hydrogen combustion mechanism
with NOx and parametric study of hydrogen HCCI combustion using stochastic reactor
model” . Energy Conversion Management. 132, 2017

RK Maurya, N Akhil. ”Comparative study of the simulation ability of various recent
hydrogen combustion mechanisms in HCCI engines using stochastic reactor model”. In-
ternational Journal Hydrogen Energy. 42, 2017

x



ABSTRACT OF THE THESIS

Boundary-Layer Analyses of Differential-Diffusion Effects In Laminar Jet
Diffusion Flames

by

Akhil Nekkanti

Master of Science in Engineering Science (Mechanical Engineering)

University of California, San Diego, 2018

Professor Antonio Sanchez, Chair

Theoretical and numerical studies of laminar jet diffusion flames have been conducted

in the limit of infinitely fast chemistry for unity oxygen Lewis number LO = 1, providing

information on flame shapes and flame temperatures for different reactant-feed dilution,

fuel Lewis number LF, and coflow-to-jet velocity ratios U0. Shvab-Zel’dovich coupling

functions are used to write the conservation equations for planar and axisymmetric jet

flames in the boundary-layer approximation. Specific consideration is given to the mixing-

layer solution near the injector rim, where differential-diffusion effects are seen to result

in the expected superadiabatic/subadiabatic temperature for LF smaller/larger than 1.

These effects are more pronounced for U0 = 0 and at intermediate values of Zs. The

xi



evolution of the temperature along the flame is found to exhibit an unexpected behav-

ior, in that irrespective of the dilution and coflow velocity the flame temperature always

transitions from superadiabatic to subadiabatic when LF < 1 and from subadiabatic to

superadiabatic for LF > 1. The variation with LF of the flame shape relative to the en-

thalpy field is reasoned as the cause for the observed transition. Additional computations

are performed for inverse diffusion flames with LO = 1 and LF 6= 1. These do not exhibit

reversed differential-diffusion behaviors, indicating that the diffusivity of the abundant

(co-flow) reactant is less critical than that of the deficient (central-jet) reactant.
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Chapter 1

Introduction

Combustion of gaseous fuels can be divided into premixed combustion and non-

premixed combustion. In a premixed combustion the fuel and oxidizer are mixed before

entering the reaction zone whereas in a non-premixed combustion the fuel and oxidizer are

initially separated and are mixed in the same region where reaction is initiated. Diffusion

plays a major role in the mixing of the fuel and oxidizer in non-premixed combustion and

hence it is also called as diffusion combustion. Burning of a fuel jet in ambient air and

candle flames are examples of diffusion flames. Applications of the diffusion flames include

diesel engines, gas turbines, rocket engines and heating devices or domestic applications.

This work deals with study of the flame shapes and flame temperatures of steady laminar

jet diffusion flames.

The laminar jet diffusion flame has fuel flowing through the inner nozzle and air

flowing through the outer annulus. The schematic of the laminar jet diffusion flame is

given in Fig 1. In diffusion flames the combustion occurs at the interface between the

fuel and air, where the burning of the fuel is controlled by the mixing process. The

chemical reaction rate is generally much faster than the diffusion rates of the gaseous

reactants. Accordingly, Burke and Schumann (BS) [1] suggested a flame sheet model that

uses the approximation that the chemical reaction is infinitely fast in the diffusion flame

and the reaction zone is infinitesimally thin. The Burke and Schumann model was able

to predict the flame shape and flame height with good accuracy. This model considers

a boundary-layer approximation by neglecting the axial diffusion and radial convection,
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which were addressed in a few studies by researchers [2] [3] [4] and had obtained more

accurate results. However these approaches involve more parameters, larger computation

power and become more complex to obtain conclusions. Due to this the boundary layer

approach has been preferred and is more useful [5].

Figure 1: Schematic diagram of a coflowing laminar diffusion flame

Researchers have used several methods and approximations for solving the Navier-

Stoke equations and the conservation equations for mixture fraction and enthalpy. Burke

and Schumann (BS) [1] considered a one dimensional flow with axial velocity and constant

density. Fay[6] have used a unity Prandtl number and unity Lewis number to simplify the

system of equations, to solving only the equations of motion. They obtained that the flame

temperature is the same as the adiabatic flame temperature. Klajan and Oppenheim [7]

assumed unity Prandtl, Schmidt numbers and along with few assumptions were able to

obtain an algebraic expression for flame height. Roper [8] had assumed an axial velocity

that is independent of the radial coordinate and was able to find an approximate solution

of the flame height for a unity Lewis and Schmidt number. With the assumption that the
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fuel is injected as a point source researchers [9], [10] have obtained self similar solutions.

Most of these works have neglected buoyancy effects while Roper[8] have treated in a

simplified way. Many experimental studies have considered the gravity effects. Edelman

et al. [11] have considered gravity effects with boundary-layer approximation and have

obtained that in the presence of gravity the flames are much shorter in comparison to

the zero gravity flames. Similar inferences were made by the experiments conducted by

few other researchers in [12, 13, 14]. Sato et al. [15] obtained an empirical correlations

of flame lengths with Reynolds number and Froude number. The work by Vazquez [5]

focused in the limit of very low stoichiometric mixture fractions Zs → 0 and studied the

effects of gravity and velocity of fuel and oxidizer stream. In this work it was reported that

the flame lengths are inversely proportional to the level of gravity and a theoretical flame

height was predicted that was in agreement with the experimental results. The results

also showed that the flame length decreases as the coflow-to-jet velocity ratio increases.

Li et al. [16] computed the flame heights in infinite atmosphere by considering the effects

of buoyancy and by numerically integrating the boundary-layer equation with a suitable

buoyancy scaling. They explored the effects of dilution and coflow velocities. They found

that the flame heights were larger for larger fuel flow rates.

All these studies have used the approximation of a unity Lewis Number, which is a

good approximation for the oxidizer that is air for most jet diffusion flames. However only

methane and methanol exhibit a unity Lewis number, whereas most other fuels show a

significant deviation from unity Lewis number. For a fuel with a unity Lewis number the

Burke Schumann approximated flame temperature (Tf ) is always equal to the adiabatic

flame temperature (TS) that is obtained by burning the fuel and oxidizer in stoichiometric

proportions at a constant pressure [17]. For non unity Lewis numbers Tf vastly differs

from TS and the differential-diffusion effects result in superadiabatic flame temperatures

for LF < 1 and subadiabatic flame temperatures for LF > 1 [18]. Though considerable

work [19, 20, 21, 22, 23, 24, 25, 26] has been done for non unity Lewis numbers, the work

involved the of finite-rate chemistry, only few literature [27, 28, 29] focuses on LF 6= 1

effects for Burke-Schumann type flames. The flame temperatures near the rim of the

injector are found to be superadiabatic/subadiabaitic for LF less than 1 / LF greater than

1. Pitsch [30] attributed this to the differential-diffusion effects that are more prominent
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near injector’s rim. These effects have also been shown by Bergmann et al. [31]. Pitsch

and Peters [32] have reported that the differential diffusion effects in hydrogen cause the

flame to shift towards the leaner (oxidizer) side. Whereas for fuels with Lewis number

greater than one the differential-diffusion effects shift the flame towards the fuel side. The

effects of differential-diffusion and Lewis number are not so straight forward, hence this

study is conducted to gain a better understanding of these effects in BS approximated

laminar jet diffusion flames.

Diluted combustion is important in fire safety for fire extinction and is also useful in

achieving higher fuel efficiency and lower emissions. Dilution is found to influence the

flame lengths, Burke and Schumann [1] were the first to report shortened flame lengths in

the case of fuel diluted with inert gases. Roper et al. [8] and Lee et al. [33] showed that

dilution of fuel resulted in decreased flame lengths. Environment concerns and stringent

emission regulations have led researcher to focus on methods to reduce soot and NOX

emissions. Researchers [34, 35, 36, 37, 38, 39, 40] observed that on diluting the fuel with

N2 resulted in lower soot formation. The reduction in soot was attributed to lowered

fuel concentration and lowered flame temperature. Another important emission is the

Nitrogen oxides (NOX) it was observed by researchers [41, 42, 43] that on increases the

velocity of the air stream the emission of (NOX) decreases drastically for hydrogen jets.

Chen and Driscoll [41, 42] have shown that the emission index of NOX varies with the

cube of the flame length and as the flame length decreases for larger coflow velocities of

air, the emission of (NOX) also decreases. The effect of coflow velocity on flame length was

shown by Dahm [44], who reported that larger coflow velocity would reduce the amount

of entertainment air required to dilute the fuel to stoichiometric proportions. In order to

get a better understanding of these effects, the flame shapes and flame temperatures for

different dilution and coflow velocities are analyzed.

Inverse diffusion flames (IDF) are similar to normal diffusion flames with the only

difference that the position of fuel and oxidizer are interchanged. IDF configuration also

play an important role in fire safety and space stations. The leaking of a oxygen jet caused

an accidental fire which threatened the lives of the crew members on the Mir space station

[45]. Researchers [46, 47, 48] have studied inverse diffusion flames as it would provide

greater insight of the soot process. Sidebottoem and Glassman [46] reported that the
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soot oxidation was absent in IDF and as a result the study of the soot formation would be

easier. The flame shape is an important characteristic in inverse diffusion flame and has

been studied by the researchers [47, 49, 50, 51]. Experiments done by Mikosfski et al. [49]

showed that flame heights increase as the air flow rate increase and increase as dilution

increases. However not much literature [46, 52] is available on the flame temperatures in

IDF. In this study the flame shapes and flame temperatures for different dilutions and

Lewis number in IDF are analyzed.

The primary objectives of this study is to increase understanding and provide accurate

quantification of the effects of Lewis number, dilution, and coflow velocities on flame

shapes and flame temperatures in BS laminar jet flames including both normal (fuel jet

surrounded by oxidizer) and inverse (an oxidizer jet surrounded by fuel) configurations.
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Chapter 2

Problem Formulation

Diffusion flames are flames in non-premixed combustion systems. We consider a co-

flow burner in which the fuel and the air are provided by different gaseous feed streams,

with dilution by addition of an inert gas permitted in the fuel-feed stream for generality.

The subscripts F and A will be used to denote properties in the fuel and air streams,

respectively for example, UA and UF are the velocities in the air and fuel feed streams

while YO2A
= 0.232 and YF0

≤ 1 are the corresponding reactant mass fractions. The

following chemical reaction is used in modeling the non-premixed combustion.

CnH2n+2 +
3n + 1

2
O2 → nCO2 + (n + 1)H2O (2.1)

For hydrogen (n = 0) the chemical reaction is as follows

2H2 + O2 → 2H2O (2.2)

The reactions 2.1, 2.2 are stoichiometric equations for the oxidation of a saturated hydro-

carbon and hydrogen respectively. This chemical reaction implies that unit mass of fuel

reacts with s=8(3n + 1)/(7n + 1) units of O2 to produce (22n)/(7n + 1) units of CO2 and

9(n + 1)/(7n + 1) units of H2O. s is defined as the mass of oxygen required to completely

oxidize the fuel. The mass fraction of oxygen and fuel in the respective streams are de-

noted by YO2A
= 0.232 and YF0

. In a fuel-feed dilution the mass fraction of the fuel is less

than 1 (YF0
≤ 1.) The energy released is given by q=

1

2
(hoCnH2n+2

-hoCO2
-(n+1)hoH2O

)/(7n+1).

The mass of air required to oxidize a unit mass of the gaseous fuel stream to produce a
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stoichiometric mixture is given by S=sYF0
/YO2A

. Adiabatic combustion of the resulting

mixture at constant pressure would produce a final temperature Ts, given by

Ts − TA =
TF − TA
S + 1

+
qYF0

cp(S + 1)
(2.3)

where TA and TF denote the temperatures of air and fuel streams respectively. The two

parameters play a major role in non-premixed combustion are

S =
sY

F0

YO2A

and γ =
qYF0

cpTA(S + 1)
(2.4)

Typical values for S and γ in a hydrocarbon-air flame with undiluted fuel feed (i.e., Y
F0

=

1) initially at normal ambient temperature are Su = s/YO2A
≈ 15 and γ ≈ 6.5, the latter

corresponding to a peak temperature, TS ≈ 2,300 K.

In non-premixed combustion the fuel and oxidizer are mixed by diffusion and is the major

factor in determining the burning rate. In diffusion flame the chemical reaction rate is

much faster than the diffusion of the reactants and as a result of this the chemical reaction

occurs in a narrow zone near the interface of the fuel and air. The reaction rate can be

defined using the Arrhenius rate

ω = Be−
E
RT
ρYF
MF

ρYO2

MO2

(2.5)

where ρYF/MF and ρYO2
/MO2

are the molar concentrations of the fuel and oxidizer respec-

tively. Y is the mass fraction of the gas, ρ is the density of the gas, M is the molecular

mass, R is the universal gas constant, E is the activation energy and B is the pre-

exponential factor. B and E can be selected to reproduce the combustion characteristics

of a given hydrocarbon [53].

The Navier-Stokes (NS) equations of mass, momentum, and energy along with conserva-

tion equations for the different chemical species [54] are used to describe the non-premixed

combustion. The conservation species equations for the reaction (2.1) are

∂

∂t
(ρŶF ) +∇ ·

(
ρvŶF −

ρDT

LF

∇ŶF
)

= −ρB̂e−E/RT ŶF ŶO (2.6)

∂

∂t
(ρŶO) +∇ ·

(
ρvŶO − ρDT∇ŶO

)
= SρB̂e−E/RT ŶF ŶO (2.7)
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∂

∂t
(ρ
T

TA
) +∇ ·

(
ρv

T

TA
− ρDT∇

T

TA

)
= γ

(
1 + S

)
B̂e−E/RT ŶFŶO −

∇ · qR
cpTA

(2.8)

where the mass fractions are normalized using ŶF = YF/YF0
,ŶO = YO/YO2A

, the pre-

exponential factor is normalized as B̂ = ρYO2A
B/MO2

. In the equations (2.6), (2.7) (2.8)

v is the gas velocity DT is the thermal diffusivity, LF is the Lewis number of the fuel and

qR is the radiative heat flux. The initial and boundary conditions of the equation are

ŶF = 1 ŶO = 0 and T = TF in the fuel stream and ŶF = 0, ŶO = 1 and T = TA in the air

stream. For non-catalytic walls, the diffusion flux at the wall is zero n.∇ŶF = n.∇ŶO = 0.

The boundary condition for temperature at the wall surface generally requires the solution

of a conjugate heat conduction problem on the wall. The two limiting cases of practical

use T = Tw = constant for walls that are isothermal and n.∇T = 0 for adiabatic walls.

In the above equation a few assumptions have been made. Firstly in the energy equation

the specific heat is assumed to be a constant cp by ignoring the variations due to change

in temperature. Also it is assumed that the diffusion fluxes can be described by simple

Fick’s laws. Furthermore as N2 is a major component of air, diffusivities of the reactants

can be approximated by their binary diffusivities through N2. This approximation is even

more accurate for systems with N2 dilution of the fuel stream. The diffusivity of oxygen is

sufficiently close to DT and the approximation DO2
≈ DT is used. Also the Lewis number

of the oxidizer (i.e air) is approximately equal to 1 (LO=1).

2.1 Burke-Schumann Approximation

In a diffusion flame the rate of the chemical reaction is much faster than the rate of

diffusion of the reactants and due to this we assume that the Burke-Schumann limit

is applicable. In the Burke-Schumann Limit [1], the reaction (2.1) is modeled as an

infinitely fast reaction (i.e B → ∞). The Burke-Schumann Limit has two important

approximations. The first approximation is that the reaction zone is infinitesimally thin

(Σf=0) at the interface between the fuel and oxygen and is considered as a flamelet.

Secondly, the diffusion rate of fuel and oxidizer are in stoichiometric ratio at the flame

surface and as a result the concentrations of the fuel and oxygen become zero at the flame
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surface. The flame surface (Σf=0) separates a region of no fuel (i.e ŶF = 0 for Σ > Σf )

and a region of no oxidizer (i.e ŶO = 0 for Σ < Σf ). There is equilibrium on both sides of

the flame sheet which implies that ŶF ŶO = 0 at the the flame sheet. The chemical species

equations (2.6) and (2.7) can be combined using the Shvab-Zel’dovich coupling function

[55, 56] along with the mixture fractions variables

Z =
SŶF − ŶO + 1

S + 1
and Z̃ =

SŶF/LF − ŶO + 1

S/LF + 1
(2.9)

and the excess-enthalpy variable

ξ =
cp(T − TA) + (qŶF0

/S)(ŶO − 1)

cp(TF − TA)− qŶF0
/S

, (2.10)

which results in conservation equation

∂

∂t
(ρZ) +∇ · (ρvZ)− 1

Lm
∇ ·
(
ρDT∇Z̃

)
= 0, (2.11)

∂

∂t
(ρξ) +∇ · (ρvξ)−∇ · (ρDT∇ξ) = 0, (2.12)

where Lm = (S + 1)/(S/LF + 1) and the boundary conditions are Z = Z̃ = ξ = 1 in the

fuel stream and Z = Z̃ = ξ = 0 in the air stream. At the flame surface Σf (x, t) = 0

the mass fractions of both the fuel and oxidizer are simultaneously zero ŶF = ŶO = 0,

corresponding to values of the mixture fraction variables Z = Zs and Z̃ = Z̃s, with

Zs =
1

S + 1
and Z̃s =

1

S/LF + 1
. (2.13)

The equations (2.8) and (2.9) along with the chemical equilibrium condition ŶOŶF = 0

gives the following relations for the mixture fraction and enthalpy variables. ŶO = 0, ŶF = Z−Zs

1−Zs
= Z̃−Z̃s

1−Z̃s
for Z ≥ Zs

ŶF = 0, ŶO = 1− Z
Zs

= 1− Z̃
Z̃s

for Z ≤ Zs
(2.14)

{
T
TA
− 1 = TF−TA

TA
ξ + q

S
(1− ξ) for Z ≥ Zs

T
TA
− 1 = TF−TA

TA
ξ + q

S
( Z̃
Z̃s
− ξ) for Z ≤ Zs

, (2.15)

the relation between TF , TS (adiabatic flame temperature), TA and q/S, is given by

TS − TA
TA

=
TF − TA

TA

Zs +
q

S
(1− Zs) (2.16)
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The numerical solution is obtained by solving the equations (2.11) and (2.12) coupled

with the Navier-Stoke equations. In the integration, the relationships (2.14) and (2.15)

are employed to evaluate the temperature and composition in terms of Z and ξ, with

the equation of state used to compute the density. Additionally, expressions must be

provided for the transport properties in terms of the temperature and composition. The

distribution of ξf (x, t) on the flame surface Σf (x, t) = 0, to be obtained as part of the

solution, determines the flame temperature Tf according to

Tf − TA
TA

=
TF − TA

TA

ξf +
q

S
(1− ξf ). (2.17)

The solution simplifies greatly for LF = 1, when Z = Z̃ = ξ everywhere in the flow field.

Consequently, the flame value of ξ is simply ξf = Zs = 1/(S + 1) and the associated

flame temperature evaluated from (2.17) becomes Tf = TS, equal to the adiabatic flame

temperature that is defined in (2.16). However, when LF 6= 1, ξf differs from Zs and

as a result the flame temperature determined from equation (2.17) deviates from the

stoichiometric adiabatic value by an amount given by

Tf − TS
(q/S)TA + (TA − TF )

= Zs − ξf , (2.18)

As can be inferred from (2.18), since the characteristic temperature increase due to com-

bustion (q/S)TA is much larger than TA − TF for cases of practical interest, values of

ξf higher/lower than Zs correspond to subadiabatic/superadiabatic flame temperatures,

respectively.

2.2 Steady Laminar Jet Diffusion Flames

In a jet flame, the radial (or transverse for a planar configuration) pressure gradient is

negligible and only the axial momentum equation needs to be considered. Also the axial

velocity and length are much larger than the radial velocity and length and as a result

the axial diffusion can be neglected and this leads to a boundary-layer type equations.

The governing equations for laminar jet diffusion flames take the following form

∂

∂x
(ρu) +

1

rj
∂

∂r
(rjρv) = 0, (2.19)
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ρu
∂u

∂x
+ ρv

∂u

∂r
=

1

rj
∂

∂r
(rjµ

∂u

∂r
) (2.20)

ρu
∂Z

∂x
+ ρv

∂Z

∂r
=

1

Lm

1

rj
∂

∂r
(rjρDT

∂Z̃

∂r
) (2.21)

ρu
∂ξ

∂x
+ ρv

∂ξ

∂r
=

1

rj
∂

∂r
(rjρDT

∂ξ

∂r
) (2.22)

where j = 0 for planar geometry and j = 1 for axisymmetric geometry.

The reactive mixture is assumed to behave as a ideal gas mixture with constant molecular

mass. The thermal diffusivities are assumed to follow a power law of temperature. The

spatial changes in pressure are small so that the equation of state reduces to

ρT = ρATA, µ ∼ (T )σ and
DT

DTA

=
( T
TA

)σ+1

(2.23)

It is shown in [57] that ρ2DT = constant and this implies that σ = 1. The Howarth-

Dorodnitsyn transformation is applied by introducing a density weighted transverse co-

ordinate and a new transverse velocity(
r̄
)j+1

= (j + 1)

∫ r

0

rjρdr and v̄ =
(r
r̄

)j(
ρv +

u

rj
∂

∂x

∫ r

0

rjρdr
)

(2.24)

For planar configuration the Howarth-Dorodnitsyn variable are given below

ȳ =

∫ y

0

ρdy and v̄ =
(
ρv + u

∂

∂x

∫ y

0

ρdy
)

(2.25)

For axisymmetric configuration the Howarth-Dorodnitsyn variables are as follows

r̄2 =

∫ r

0

2ρrdr and v̄ =
r

r̄

(
ρv +

u

r

∂

∂x

∫ r

0

ρrdr
)

(2.26)

The equations (2.19),(2.20),(2.21),(2.22) are non-dimensionalized using the variables

ρ∗ =
ρ

ρA
, U =

u

UF
, r∗ =

r̄

a
, x∗ = x

DT

UFa
and V = v

a

DT

(2.27)

Substituting the Howard-Dorodnitsyn and the non-dimensional variables (and removing

the * ) continuity, momentum, mixture fraction and enthalpy equations are simplified and

take the form:
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∂U

∂x
+

1

rj
∂

∂r
(rjV ) = 0 (2.28)

U
∂U

∂x
+ V

∂U

∂r
=
Pr

rj
∂

∂r
(∆rj

∂U

∂r
) (2.29)

U
∂Z

∂x
+ V

∂Z

∂r
=

1

Lm

1

rj
∂

∂r
(∆rj

∂Z̃

∂r
) (2.30)

U
∂ξ

∂x
+ V

∂ξ

∂r
=

1

rj
∂

∂r
(∆rj

∂ξ

∂r
) (2.31)

∆ =
2

r2

∫ r

0

r′

ρ
dr′

∆ = 1 for a planar case. And for the axisymmetric case the approximation that ∆ = 1

is used for simplicity. The system of equations must be integrated along with the initial

conditions

x = 0

{
Z = Z̃ = ξ = U = 1 for r ≤ 1

Z = Z̃ = ξ = 0, U = U0 for r ≥ 1
(2.32)

And the boundary conditions are

x > 0

{
r = 0 : V = ∂U

∂r
= ∂Z

∂r
= ∂Z̃

∂r
= ∂ξ

∂r
= 0

r =∞ : Z = Z̃ = ξ = 0, U = U0

(2.33)

where U0 = UA/UF . The flame sheet is determined by the location at which Z=Zs or

Z̃ = Z̃s. If the velocities of the fuel and air streams are equal i.e U0 = 1 (as UA = UF )

the system of equation simplify greatly to the following equations:

∂Z

∂x
=

1

Lm

1

rj
∂

∂r
(rj

∂Z̃

∂r
) (2.34)

∂ξ

∂x
=

1

rj
∂

∂r
(rj

∂ξ

∂r
) (2.35)

The equations (2.34), (2.35) must be solved along with the following initial and boundary

conditions

x = 0

{
Z = Z̃ = ξ = 1 for r ≤ 1

Z = Z̃ = ξ = 0, for r ≥ 1
(2.36)
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x > 0

{
r = 0 : ∂Z

∂r
= ∂Z̃

∂r
= ∂ξ

∂r
= 0

r =∞ : Z = Z̃ = ξ = 0
(2.37)

2.3 Analytical Solution for Special Cases

Analytical solution is possible when the coflow velocities are the same i.e U0 = 1 and

the Lewis number of fuel is unity. LF = 1 implies that Z = Z̃ and the system of equations

reduces to the form

∂Z

∂x
=

1

rj
∂

∂r
(rj

∂Z

∂r
) (2.38)

∂ξ

∂x
=

1

rj
∂

∂r
(rj

∂ξ

∂r
) (2.39)

These parabolic equations must be solved along with the following initial and boundary

conditions.

x = 0

{
Z = ξ = 1 for r ≤ 1

Z = ξ = 0, for r ≥ 1
(2.40)

x > 0

{
r = 0 : ∂Z

∂r
= ∂ξ

∂r
= 0

r =∞ : Z = ξ = 0
(2.41)

In a planar case (j=0) introducing a self similar variable η = (y − 1)/
√

2x lead us to the

following solution

Z = ξ =
1

2

(
erf
(1− y

2x

)
+ erf

(y + 1

2x

))
(2.42)

In a axisymmetric case (j=1) the solution is given by the P - function [16, 51, 58].

Z = ξ =
1

2x
exp

{
− r

2

4x

}∫ 1

0

exp

{
−u

2

4x

}
I0

(ur
2x

)
udu (2.43)

Where I0 is zeroth order modified Bessel function of the first kind
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2.4 Solution for x << 1

For small x, a self similar solution is possible and both the planar and axisymmetric

configuration reduce to the same equation so in this section, y is used in place of r.

∂U/∂x ∼ 1/x and V ∼ 1/
√
x and we introduce a self-similar variable η = (y − 1)/

√
2x,

a stream function ψ and a normalized stream function F such that ψ =
√

2xF (η).

U =
∂ψ

∂y
= F ′(η) V = −∂ψ

∂x
=

1√
2x

(
ηF ′(η)− F (η)

)
(2.44)

The equations for momentum, mixture fraction and enthalpy in self-similar variable are

given below.

PrF ′′′ + FF ′′ = 0 (2.45)

1

Lm
Z̃ ′′ + FZ ′ = 0 (2.46)

ξ′′ + Fξ′ = 0 (2.47)

And the boundary conditions are{
η = −∞ : F ′ = Z = Z̃ = ξ = 1, (F − η)−∞ → 0

η =∞ : F ′(∞)− U0 = Z = Z̃ = ξ = 0
(2.48)

At ηf , Z = Zs and the flame location yf = 1 + ηf
√

2x
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Figure 2: The contour plots showing the variation of dimensionless temperatures depar-
tures Zs − ξf as a function of Zs = 1/(S + 1) and coflow velocity (U0) for LF = 0.3 (top)
and for LF = 2.0 (bottom)

The temperature departure Zs−ξf represents the nature of the flame temperature. Values

of Zs−ξf at the injector rim (x << 1) are computed for different coflow velocities, dilutions

and Lewis numbers and are presented in Fig. 2. The temperature departures near the

injector rim give an indication of the differential diffusion-effects. Contour plot at the top

conveys that the flame temperatures are superadiabatic (Zs−ξf > 0) for LF = 0.3, whereas

subadiabatic flame temperatures (Zs − ξf < 0) are observed for LF = 2.0. For both the

Lewis numbers, |Zs − ξf | start increasing from zero at Zs → 0 reach a maximum at an

intermediate value of Zs and then decrease. LF = 0.3, exhibits a maximum temperature

departure of Zs−ξf = 0.25 at Zs = 0.4. This indicates that the flame temperature is 25%

times larger than the adiabatic temperature. Similarly for LF = 2.0, Zs − ξf = −0.15 is

15



observed at Zs = 0.2, which implies that for a dilution of S = 4 the flame temperatures

are subadiabatic by 15%. As the coflow velocity increases, for a particular dilution the

|Zs − ξf | decreases, implying a lesser prominence of the differential-diffusion effects. It

can be inferred from Fig. 2 that the differential-diffusion effects are more pronounced in

stagnant air (U0) for intermediate values of Zs.

Figure 3: The contour plots showing the variation of dimensionless temperatures depar-
tures Zs − ξf as a function of Zs = 1/(S + 1) and Lewis number (LF) for U0 = 0

Since the maximum variation in temperature departures is observed in stagnant air, the

temperature departures for different Lewis numbers at U0 = 0 is presented in Fig. 3. As

expected Zs−ξf > 0 for Lewis numbers lesser than one and Zs−ξf < 0 for Lewis numbers

greater than one. For Lf → 0 (at Zs = 0.75) , Zs − ξf ≈ 0.8 which indicates that flame

temperatures 80% greater than the adiabatic flame temperatures are encountered. As LF

increases from 0 to 1 the |Zs − ξf | decreases and on increasing beyond 1, the |Zs − ξf |
starts to increase again. For Lf = 3.0 at Zs = 0.14, Zs − ξf ≈ −0.2 indicating flame

temperature is subadiabatic by 20%. For LF → 0 the maximum temperature departures

occur at Zs = 0.75 whereas for LF = 3 the maximum temperature departures occur at

Zs = 0.1. This indicates that, with increase in Lewis number the value of Zs at which the

temperature departure is maximum decreases. This implies that the differential diffusion

effects are more pronounced at higher dilution for lower Lewis numbers, whereas for higher

Lewis numbers they are more dominant at lower dilutions.
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2.5 Modified Equations for Computation

The solution obtained for small x (x<<1) is used as initial condition for the solving

the conservation equations. However the location of flame is not known, to make the

numerical computation simpler, a re-scaled coordinate is introduced, R = r/rf (x) where

rf (x) is the flame location that changes with x. The coordinates are changed from (x, r)

→ (x,R) and in the new coordinates the flame location is always at R = 1. The continuity

and momentum equations in the new coordinates are

∂U

∂x
− R

rf

∂rf
∂x

∂U

∂R
+

1

rf

1

Rj

∂

∂R
(RjV ) = 0 (2.49)

U
∂U

∂x
− U R

rf

∂rf
∂x

∂U

∂R
+
V

rf

∂U

∂R
=
Pr

r2f

1

Rj

∂

∂R
(Rj ∂U

∂R
) (2.50)

The boundary conditions are {
R = 0 : V = ∂U

∂R
= 0

R =∞ : U = U0

(2.51)

The mixture fraction equation can be separated into two domains [0, 1] and [1,∞]

with Z̃ = Z̃s as the boundary condition at the interface of the two domains. Using the

relation between Z and Z̃ from the equation (2.14) the equation for the domain [0 1] is

U
∂Z̃

∂x
− U R

rf

∂rf
∂x

∂Z̃

∂R
+
V

rf

∂Z̃

∂R
=

1

LFr2f

1

Rj

∂

∂R
(Rj ∂Z̃

∂R
) (2.52)

and the boundary conditions are{
R = 0 : ∂Z̃

∂R
= 0

R = 1 : Z̃ = Z̃s
(2.53)

The equation for the domain [1,∞] is

U
∂Z̃

∂x
− U R

rf

∂rf
∂x

∂Z̃

∂R
+
V

rf

∂Z̃

∂R
=

1

r2f

1

Rj

∂

∂R
(Rj ∂Z̃

∂R
) (2.54)

the boundary conditions are Z̃ = Z̃s at R = 1 and Z̃ = 0 at R → ∞. The equations

(2.49) (2.50) (2.51) (2.52) along with their boundary conditions are solved numerically,
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the following condition is applied to find rf .

∂Z̃

∂R

∣∣∣
1−

=
∂Z̃

∂R

∣∣∣
1+

(2.55)

Once rf is found the temperature at the flame can be computed by solving the following

enthalpy equation and evaluating ξ at R=1

U
∂ξ

∂x
− U R

rf

∂rf
∂x

∂ξ

∂R
+
V

rf

∂ξ

∂R
=

1

r2f

1

Rj

∂

∂R
(Rj ∂ξ

∂R
) (2.56)

and the boundary conditions are{
R = 0 : ∂ξ

∂R
= 0

R =∞ : ξ = 0
(2.57)
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Chapter 3

Results and Discussion

The results obtained from modeling are presented in this section. The effect of three

parameters namely the Lewis number (LF), fuel dilution (S) and the coflow velocity (U0)

are discussed. Mainly two Lewis numbers LF = 0.3 and LF = 2 are considered. LF =

0.3 represents the properties of hydrogen and LF = 2.0 corresponds to that of heavy

hydrocarbons. Five different fuel dilutions are examined for each Lewis number. Four

different coflow-to-jet velocity ratios U0 = 0 (stagnant air), 0.5, 1 and 2 are selected.

The effect of these parameters on flame shapes and temperature departures (Zs− ξf ) are

analyzed. The shape of the flame is characterized mainly by the flame length and flame

width. Flame length is defined as the axial distance from the exit of the injector to the

location where Z = Zs (or Z̃ = Z̃s) on the axis. Flame width is defined as the maximum

radial distance between the axis of symmetry and the flame location. All the results

presented in this section are for an axisymmetric configuration, the planar configuration

results are presented in Appendix.

3.1 Effect of Lewis Number

To investigate the effect of Lewis number, the flame shapes and flame temperatures

of five Lewis numbers LF = 0.3, 0.75, 1.0, 2.0 and 3.0 are computed and presented in

Fig. 4. The flame shapes shown in the upper plot of Fig 4 reveal that for smaller LF the

flame is radially outward and as LF increases the flame width decreases and the flame
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length increases. Lewis number is the ratio of thermal diffusivity to mass diffusivity and

as Lewis number increases the mass diffusivity decreases. When mass diffusivity is larger,

the flame diffuses to larger distances which results in larger flame width. For larger LF

the mass diffusivity is reduced, so the diffusion is slower and the fuel diffuses to smaller

radial distances resulting in smaller flame widths. As the diffusion is slower the flame

would require larger axial distance to diffuse that results in larger flame lengths.

The temperature departures along the flame for various Lewis numbers are shown

in the lower plot of Fig. 4. The initial flame temperatures for LF less than one/equal

to one/greater than one are superadiabatic/adiabaitc/ subadiabaitc respectively. For

LF = 1.0, the rate of heat transfer is equal to the rate of mass transfer and as a result

the flame temperature is adiabatic, whereas for LF = 0.3 the smaller rate of heat transfer

leads to a superadiabatic flame temperature and inversely for LF > 1.0 the larger rate

of heat loss gives rise to a subadiabatic flame temperature. For Lewis numbers smaller

than one the flame temperatures downstream become subadiabatic, whereas for Lewis

number greater than one the flame temperatures undergo transition from subadiabatic to

superadiabatic. As expected for Lewis number equal to one Zs − ξf = 0 along the entire

flame, indicating that the flame temperature is always adiabatic i.e Tf = TS. This is

because for LF = 1, ξf = Zs = 1/(S + 1). However for LF > 1, ξf is initially greater than

Zs and decreases along the flame and eventually decreases to a value lower than Zs. In

the case of LF < 1, ξf increases along the flame that results in the transition from super

to subadiabatic flame temperatures. The point where the transition occurs is the point

where the flame of a given Lewis number intersects the flame shape of LF = 1.
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Figure 4: The flame shapes (upper plot) and dimensionless excess temperatures Zs− ξf
(lower plot) for different Lewis numbers with S = 1.0 in stagnant air i.e U0 = 0 .

3.2 Effect of Dilution

Diluting the fuel with inert gasses such as nitrogen significantly effects the soot for-

mation as reported by many researchers [37, 40, 59], hence it is necessary to understand

the effects of fuel dilution on flame structure and flame temperature. For a Lewis num-

ber (LF) of 0.3, the different values of S considered are S = 0.5, 1.0, 2.0, 8.0 and 34.5,

where S = 0.5, 1.0, 2.0 represent extremely diluted fuels and S = 8 , 34.5 correspond to

undiluted hydrogen-air mixture and undiluted hydrogen respectively.

The flame shapes in stagnant air U0 = 0 for LF = 0.3 and LF = 2.0, are shown in

left and right plots of Fig. 5 respectively. It is observed that as the dilution increases
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(or S decreases) the flame length decreases. As S decreases the Z̃s increases and this

higher value of Z̃s would be achieved earlier. Linan et al. [17] have reported that for

highly diluted fuels (S of the order 1) the flame length is of order Ld and Z̃ decreases

axially as Ld/x, where Ld (Ld = Re a) is the jet development length. However for

undiluted fuels (large S) the flame length is of the order SLd. Diluted fuels exhibited

lower flame height and width whereas much larger values were observed for undiluted

fuels. This is because diluted fuels have smaller amount of fuel which would undergo

combustion in shorter duration leading to smaller flame lengths and flame width whereas

for larger S (lower Zs) the combustion occurs over a larger area and resulting in a larger

flame. For undiluted fuels the diffusion is slower and a larger length is require for the

Z̃ to decay to the value Z̃s. Roper [8] and Sunderland [14] have attributed the reduced

mass diffusivities for larger flame lengths. As a consequence greater radial convection is

observed for undiluted fuels which in-turn explains the radially outward nature of flame.

For LF = 2.0, the five dilutions considered are S = 0.5, 1, 2, 3.43 and 15. S = 0.5, 1.0, 2.0

represent extremely diluted fuels and S = 3.43 and 15 represent the heavy hydrocarbon-

air mixture and undiluted heavy hydrocarbons respectively. A similar trend is observed

in flame shapes for LF = 2.0, as the dilution increases the flame length and flame width

decrease attributed to the lower fraction of fuel that has to undergo combustion. The

flame shapes obtained for LF = 2.0 are elongated and exhibit larger flame lengths than

the corresponding LF = 0.3 due to their smaller mass diffusivities.
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Figure 5: The flame shapes of LF = 0.3 (left) and LF = 2.0 (right) for different fuel
dilutions in stagnant air i.e U0 = 0.0

Figure 6: The dimensionless excess temperatures Zs− ξf of LF = 0.3 (left) and LF = 2.0
(right) for different fuel dilutions in stagnant air i.e U0 = 0

The temperature departures Zs− ξf along the flame for LF = 0.3 and LF = 2.0 are shown

in the left and right plot of Fig. 6. The flame temperature for LF = 0.3 is maximum at the

exit of the injector and decreases from there onwards. For all the different dilutions the

initial value Zs − ξf is positive which indicates a superadiabatic flame temperature. The

differential diffusion of hydrogen results in the faster diffusion of H2 towards the oxidizer

side and this results in an increased mass fraction of hydrogen at lower values of Z (outside

the flame) and a decreased mass fraction of hydrogen at higher values of Z (inside the

flame) [32] which causes the flame to shift towards the side of the oxidizer resulting in

superadiabatic flame temperatures. The flame temperature decreases in direction of flow
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this is because the excess enthalpy variable at the flame (ξf ) increases and consequently

Zs − ξf decreases. The temperature departures keep decreasing and at a certain location

the flame temperature undergoes transition from superadiabatic to subadiabatic. The

transition from superadiabatic to subadiabatic flame temperatures is observed irrespective

of the values of S, however as S increases the transition is delayed. This implies that a

larger potion of the flame is subadiabatic for smaller S and a smaller portion of the flame

is subadiabatic for larger S. For S = 8 and 34.5, subadiabatic temperatures are observed

only near the tip of the flame. The initial values of the temperature departures Zs − ξf
observed for LF = 2.0 are smaller than zero which increases in the direction of flow. The

differential diffusion of hydrocarbons has an inverse effect to that of the hydrogen which

results in subadiabatic temperature at the injector rim [32]. As we move along the flame,

the temperature increases and subsequently a superadiabatic temperature is achieved.

The transition from subdiabatic to superadiabatic flame temperatures is observed for all

S and for heavy hydrocarbon-air mixtures (S = 15) the flame is superadiabatic only near

the tip. The flame shapes for LF = 0.3, and LF = 2.0 in the excess enthalpy variable field

are shown in Fig 7. The colored region represents ξ > Zs whereas outside it ξ < Zs, so

when the flame lies in the colored region then it is subadiabatic and when it lies outside the

colored region it is superadiabaic. The equation (2.30) is independent of Lewis number of

fuel so when the flame is outward as in the case LF = 0.3, ξ is lower than Zs. This results

in positive values for the temperature departures, which correspond to superadiabatic

flame temperatures. Moving downstream the transition from super to subadiabatic takes

place at the location where the flame shape crosses the curve ξ = Zs (the flame shape

of LF = 1.0). Subsequently the enthalpy variable is greater than the Zs that gives rise

to subadiabatic flame temperatures. The flame shape for LF = 2.0 is radially inward

and inside the curve ξ = Zs so the excess enthalpy variably is greater than Zs which

causes subadiabatic temperatures. However as we move downstream the flame shape of

LF = 2.0 crosses the curve ξ = Zs, at this location the sign of the temperature departures

is reversed and now Zs − ξf > 0, resulting in superadiabaitc temperatures.
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Figure 7: The flame shape of LF = 0.3 (upper plot) and LF = 2.0 (lower plot) in the
excess enthalpy variable field with S = 1 and U0 = 0. In the colored region ξ > Zs

The unexpected behaviour of transition between superadiabatic /subadiabatic is fur-

ther emphasized by the profiles of Z, ξ for S = 1 in Fig. 8. For LF = 0.3 the value of ξf

increases as we move along the flame and at x = 0.25, Zs = ξf , this is the location at the

which the flame temperature undergoes transition from super to subadiabatic. However

the value of the excess enthalpy variable at the flame for LF = 2.0 decreases and conse-

quently Zs− ξf increases. For LF = 2.0, the transition from sub to superadiabatic occurs

at x = 0.37.
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Figure 8: The Z, ξ profiles at different axial locations with S = 1 and U0 = 0 for LF = 0.3
(left) and LF = 2.0 (right)

Figure 9: The temperatures profiles at different axial locations with S = 1 and U0 = 0
for LF = 0.3 (left) and LF = 2.0 (right)

The temperature profiles at different axial locations are shown in Fig. 9. For LF = 0.3,

the flame moves towards the fuel side rapidly, where the oxygen available for combustion is

reduced, which results in the decrease of the flame temperature. The flame temperature

keeps decreasing in the axial direction and eventually there comes a point (x = 0.32)

where the maximum temperature is no longer at the flame but is on the oxidizer side.

This observation is a consequence of the differential-diffusion effects of H2 However there

is no such observation for LF = 2.0. The maximum temperature is always at the flame for

all axial locations. As explained by researchers [18] the peak temperature is at the flame

because the heat loss is positive on both sides of the flame. This implies that differential-
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diffusion effects are not large enough to displace the peak temperatures to the fuel side

for heavy hydrocarbons. Larger differential-diffusion effects are present for LF = 0.3 that

cause the peak temperature to be displaced towards side the oxidizer. This indicates that

the differential diffusion effects for LF = 0.3 are greater than LF = 2.0 for S = 1.

3.3 Effect of Coflow Velocity

In this section the effect of coflow velocities on flame shapes and temperature departures

are analyzed. An advantage of a larger coflow air velocity is its ability to reduce the

Nitrous oxide (NOx) levels [41, 42, 43] so it is important to understand the effects of

coflow velocity. Four different coflow to jet velocity ratios U0 = 0.0, 0.5, 1.0, 2.0 are

considered. The Fig 10 shows the flame shapes for LF = 0.3 (left plot) and LF = 2.0

(right plot) with S = 1. The flame is the largest in stagnant air conditions (U0 = 0) and

as the velocity of air increases the flame length and the flame width decreases. For larger

coflow to jet velocity ratios (U0), the velocity of the coflowing air causes a confinement

effect, which increase as the velocity of air increases. Greater confinement effect, results

in a smaller flame width and flame length. In case of smaller U0 the diffusion is slower

and the fuel would advect to larger distances downstream which results in larger flame

lengths. Dahm [44] and Chen et al. [28] reported that larger coflow velocity would reduce

the amount of entertainment air required to dilute the fuel to stoichiometric proportions.

As U0 increases the radial convection decreases that contributes in the reduction of the

flame width. The flame shapes exhibit similar trends for LF = 0.3 and LF = 2.0. The

only difference being LF = 2.0 show slightly elongated flame shapes i.e larger flame length

and smaller flame width which is a result of their smaller mass diffusivities.
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Figure 10: The flame shapes of LF = 0.3 (left) and LF = 2.0 (right) for different coflow
velocities with with S = 1

Figure 11: The dimensionless excess temperatures Zs−ξf of LF = 0.3 (left) and LF = 2.0
(right) for different coflow velocities with S=1

The temperature departures in Fig 11 indicate that on increasing the coflow velocity

the transition from super to subadiabatic flame temperature for LF = 0.3 and sub to

superadiabatic flame temperatures for LF = 2.0 takes place earlier. Flows with higher

U0 exhibit a larger fraction of the flame that has a subadiabatic/superadiabatic flame

temperature for LF = 0.3 and LF = 2.0 respectively. Differential diffusion effects are

greater for smaller U0 that result in a larger value of |Zs− ξf | near the rim of the injector

(x = 0). With increase in coflow velocity the flame moves more rapidly towards the fuel

side which causes the flame temperature to undergo transition at an earlier downstream

location. It is also observed that for smaller U0 the difference in flame temperature at
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the injector exit and the flame tip is greater, a possible reason for this is the larger flame

length.

3.4 Inverse Diffusion Flames

Inverse diffusion flames are similar to normal diffusion with the only difference that

the air stream and fuel stream are interchanged, now air flows through the central tube

and fuel flows in the annulus. The governing equation for the inverse diffusion flames are

(2.28), (2.29) , (2.30) and (2.31) that must be integrated along with the following initial

and boundary conditions

x = 0

{
Z = Z̃ = ξ = U − U0 = 0 for r ≤ 1

Z = Z̃ = ξ = 1, U = 1 for r ≥ 1
(3.1)

x > 0

{
r = 0 : V = ∂U

∂r
= ∂Z

∂r
= ∂Z̃

∂r
= ∂ξ

∂r
= 0

r =∞ : Z = Z̃ = ξ = 1, U = 1
(3.2)

The relations in (2.14) and (2.15) can be used in combination to solve the above equations.

The resulting flame shapes and temperatures departures for LF = 0.3 and LF = 2.0 are

presented in Fig. 12 and Fig 13 respectively for coflow-to-jet velocity ratio of unity i.e

U0 = 1. Fig. 12 shows that as dilution increases the flame length and flame width

increases. In inverse diffusion flames the oxidizer is deficient and fuel is abundant. When

the dilution is low there is sufficient amount of fuel and oxidizer which would undergo

combustion faster. Increase in dilution would decrease the amount of fuel, and as the

deficient reactant is the oxidizer the combustion between smaller quantities of fuel and

oxidise would take longer time and over a larger area. Accordingly the flame length and

width would be larger for higher dilution. Also for lower dilution, the mixing of fuel and

oxidizer is faster and the fuel is burned faster leading to smaller flame lengths whereas

for larger dilution the mixing of flame and air is slower and the combustion would take

more time leading to larger flames. Mathematically this can be seen as follows, Z has

to increase to the value of Zs on the axial location and for larger dilution Zs is larger,

hence Z achieves Zs at a later axial location. Sze et al [60] have explained the degree of

entrainment as a major factor in determining the flame length and as the entrainment
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increases the mixing and the fuel would be burned in a premixed mode and this would

result in a faster combustion and smaller flame lengths.

Figure 12: The flame shapes of inverse diffusion flame of LF = 0.3 (left) and LF = 2.0
(right) for different fuel dilutions with coflow to jet velocity ratio of U0 = 1.0

Figure 13: The dimensionless excess temperatures Zs − ξf of inverse diffusion flame of
LF = 0.3 and LF = 2.0 for different fuel dilutions with coflow to jet velocity ratio of
U0 = 1.0

The temperature departures of LF = 0.3 and LF = 2.0 are shown in left and right plots

of Fig. 13 respectively. The temperature departures indicate that the flame temperatures

are always superadiabatic for LF = 0.3. The flame temperatures increase downstream and

reach a maximum at the tip of the flame. Whereas for LF = 2.0 the flame temperatures

are always subadiabatic and decrease along the flame and are minimum at the flame tip.

This is in contrast to the nontrivial behaviour observed in normal diffusion flames. This
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suggests that the diffusivity of the deficient reactant in the central-jet is more important

than the diffusivity of the abundant (coflow) reactant.

Figure 14: The flame shapes of inverse diffusion flames in the enthalpy variable field for
LF = 0.3 and 2.0 with S = 1 and U0 = 1 .

The flame shapes for LF = 0.3, and 2.0 are shown in Fig. 14. The curve ξ = Zs

corresponds to the flame shape of LF = 1.0. The excess enthalpy variable inside the flame

of LF = 1.0 (ξ = Zs) is smaller than Zs (i.e ξ < Zs) and is larger in the region outside

ξ > Zs. The entire flame of Lewis number two lies in the region ξ > Zs and Lewis number

0.3 in the region ξ < Zs. This implies that for LF = 0.3,the temperatures departures is

always greater than zero and for LF = 2.0 the temperatures departures are always less

than zero. This results in superadiabatic temperatures for LF = 0.3 and subadiabatic

temperatures for LF = 2.0. This is further confirmed by the profiles of Z, ξ for LF = 0.3

and 2.0 in Fig 15. ξ profiles for LF = 0.3 reveal that ξf decreases along the axial direction

and consequently Zs−ξf increases, which leads to higher flame temperatures near the tip.

In contrast, the ξf increases for LF = 2.0 resulting in a decrease of flame temperatures

downstream. The temperature profiles at three different axial locations for S = 1 are

shown in Fig. 16. They show that the maximum temperature is always at the flame

location. The flame temperature increases along the axial direction for LF = 0.3 and

as a result the maximum flame temperatures is observed at the flame ti. Whereas the

flame temperatures decreases downstream in case of LF = 2.0 and consequently the flame
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temperature is lowest at the flame tip.

Figure 15: The Z, ξ profiles of inverse diffusion flames at different axial locations with
S = 1 and U0 = 1.0 for LF = 0.3 and LF = 2.0 (right)

Figure 16: The temperatures profiles of inverse diffusion flames at different axial loca-
tions with S = 1 and U0 = 1.0 for LF = 0.3 (left) and LF = 2.0 (right)
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Chapter 4

Conclusion

Numerical computations of laminar jet diffusion flames were carried out by applying

the Burke-Schumann limit for different dilutions (S), Lewis number (LF) and coflow-to-

jet velocity ratios (U0). Differential-diffusion effects are found to be more pronounced in

stagnant air (U0 = 0) and diminish as U0 increases. These effects are found to be maximum

at intermediate values of stoichiometric mixture fraction Zs = 1/(S + 1) corresponding

to S values of order unity. It is inferred from Fig. 2 that for S ≈ 1.5, superadiabatic

temperature increment of 25% is observed for LF = 0.3, whereas for S ≈ 4, subadiabatic

temperature decrements of 14% are experienced for LF = 2.0. As LF → 0 superadiabatic

temperatures of about 80% are observed at S ≈ 0.33 and for LF = 3.0 , subadiabatic

temperatures of 20% is encountered at S ≈ 6. From these observations it can be concluded

that as the Lewis number increases the differential-diffusion effects are more pronounced

at lower dilutions (i.e larger values of S).

Larger Lewis number resulted in larger flame length and smaller flame width attributed

to their reduced mass diffusivities. Fuel dilution decreased the flame length and flame

widths. Dilution decreased the fraction of fuel that resulted in smaller flames. For LF < 1

on moving downstream the superadiabatic flames temperatures underwent transition to

subadiabatic, whereas for LF > 1 in the flow direction the flames temperatures evolved

from subadiabatic to superadiabatic flame temperatures. This change in nature of the jet-

flame temperature has been reported for the first time. While in other configurations such

as flame vortices, this non-trivial behaviour was restricted to small values of S (S < 1),
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for jet flames the subadiabatic/superadiabtic transition occurs irrespective of the value

of S. Under these conditions the peak temperatures are displaced and no longer occur

at the flame sheet. Results in Figs 10 and 11 show that as coflow velocity increases the

confinement effect causes a decrease in the flame length and flame width. The transition

in flame temperatures takes place earlier and a larger fraction of the flame length exhibits

the superadiabatic/subadiabatic nature.

Inverse diffusion flames were modeled for LF 6= 1 and different fuel feed dilutions.

The results showed that as the fuel dilution increased the flame length and flame width

increased. For LF < 1 the flame temperatures are maximum at the tip of the flame,

whereas for LF > 1 they are minimum at the flame tip. The flame temperature increased

along the axial direction and remained superadiabatic/subadiabatic over the entire flame

length for LF = 0.3/2.0. The unexpected behavior of the flame temperature is not present

in inverse diffusion flames.
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Appendix A

Additional Results

In this section additional results are presented. These include the results of different

dilutions for a unity coflow to jet velocity ratio U0 = 1 for axisymmetric configuration. In

addition to this, the results for a planar case are also presented. The planar case results

comprises of the effect of Lewis number, dilution, coflow velocity and inverse diffusion

flames. Similar trends are observed for the planar configuration as the axisymmetric

configuration and hence very little explanation is given here. For a better and detailed

explanation refer to the results and discussion (chapter 3).
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A.1 Axisymmetric Results

Figure 17: The flame shapes for LF = 0.3 (left) and LF = 2.0 (right) with U0 = 1.0

Figure 18: The dimensionless excess temperatures Zs−ξf for LF = 0.3 (left) and LF = 2.0
(right) with U0 = 1.0
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Figure 19: The flame shapes of LF = 0.3 (upper plot) and LF = 2.0 (lower plot) in
enthalpy variable field for S = 2 and U0 = 1.0. In the colored region ξ > Zs
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A.2 Planar Case

A.2.1 Governing Equations (revisited)

∂U

∂X
+
∂V

∂Y
= 0 (A.1)

U
∂U

∂X
+ V

∂U

∂X
= Pr

∂2U

∂Y 2
(A.2)

U
∂Z

∂X
+ V

∂Z

∂Y
=

1

Lm

∂2Z̃

∂Y 2
(A.3)

U
∂ξ

∂X
+ V

∂ξ

∂Y
=

∂2ξ

∂Y 2
(A.4)

The system of equations must be integrated along with the initial conditions

X = 0


|Y | ≤ 1 : U = 1

{
N : Z = Z̃ = ξ = 1

I : Z = Z̃ = ξ = 0

|Y | ≥ 1 : U = U0

{
N : Z = Z̃ = ξ = 0

I : Z = Z̃ = ξ = 1

(A.5)

And the boundary conditions are

X > 0


Y = 0 : V = ∂U

∂Y
= ∂Z

∂Y
= ∂Z̃

∂Y
= ∂ξ

∂Y
= 0

|Y | =∞ : U = U0

{
N : Z = Z̃ = ξ = 0

I : Z = Z̃ = ξ = 1

(A.6)

N stands for normal diffusion flames and I stands for inverse diffusion flames.

38



A.2.2 Flame Shapes in Enthalpy Variable field

Figure 20: Isosurfaces for S = 1 and U0 = 1 for normal (a) and inverse (b) configurations,
including the isosurface ξ = ZS which coincides with the flame surface when LF = 1.0

Fig. 20 shows the flame shapes of LF = 0.3 and LF = 2.0 in enthalpy variable field. In

the colored (green) region is the flame temperature is superadiabatic. In Normal diffusion

flame it is observed that for LF < 1 the flame temperature is initially superadiabatic and

downstream it becomes subadiabatic whereas LF > 1 the flame temperature undergoes

transition from subadiabatic to superadiabatic temperatures. Whereas for Inverse dif-

fusion flames n such transition is observed, for Lewis number lesser than one the flame

temperatures is always superadiabatic and for Lewis number greater than one the flame

temperatures is always subadiabatic. This is because in inverse flames the fuel is in the

outer annulus and diffuses into the flame and when is diffusivity is high all the fuel is
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completely diffused into the flame and a superadiabaitc temperature is observed and as

a result LF = 0.3 has always superadiabaitc temperature and vicecersa for LF = 2.0.

A.2.3 Effect of Lewis Number

Figure 21: The variation with the fuel Lewis number LF of the flame shape (upper
plots) and dimensionless flame-temperature departure ZS − ξf (lower plots) for: Normal
Diffusion flames with S = 1 and U0 = 0; Inverse Diffusion flames with S = 1 and U0 = 1.

Fig. 21 depicts the flame shapes and temperatures departures for various Lewis number

in both the normal and inverse configurations. As Lewis number increases the flame

length increases which is due to reduced mass diffusivity. The temperature departures

along the flame for various Lewis numbers are shown in the lower plot of Fig. 21. The

initial flame temperatures for LF less than one/equal to one/greater than one are supera-

diabatic/adiabaitc/ subadiabaitc respectively. For LF = 1.0, the rate of heat transfer is

equal to the rate of mass transfer and as a result the flame temperature is adiabatic.

Wheras for LF = 0.3 the smaller rate of heat transfer leads to a superadiabatic flame

temperature and inversely for LF > 1.0 the larger rate of heat loss gives rise to a sub-

adiabatic flame temperature. In normal configurations for Lewis numbers smaller than

40



one the flame temperatures downstream become subadiabatic, whereas for Lewis number

greater than one the flame temperatures undergo transition from subadiabatic to supera-

diabatic. However in inverse configuration this non trivial behaviour is not observed. As

expected for Lewis number equal to one Zs − ξf = 0 along the entire flame, indicating

that the flame temperature is always adiabatic i.e Tf = TS. This is because for LF = 1,

ξf = Zs = 1/(S + 1).

A.2.4 Effect of Coflow Velocity

Figure 22: The variation with the Coflow Velocity U0 of the flame shape (upper plots)
and dimensionless flame-temperature departure ZS − ξf (lower plots) for S=1 LF = 0.3
and LF = 2.0.

Fig. 22 represents the flame shapes and temperatures departures for different co-flow

velocities. With increase in Coflow velocity ratio the flame length decreases. For larger

coflow to jet velocity ratios (U0), the velocity of the coflowing air causes a confinement

effect, which increases as the velocity of air increases. Greater confinement effect, results

in a smaller flame width and flame length. In case of smaller U0 the diffusion is slower and

the fuel would advect to larger distances downstream which results in larger flame lengths.
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The temperature departures in the lower plot of Fig 22 indicate that on increasing the

coflow velocity the transition from super to subadiabatic flame temperature for LF = 0.3

and sub to superadiabatic flame temperatures for LF = 2.0 takes place earlier. Flows with

higher U0 exhibit a larger fraction of the flame that has a subadiabatic/superadiabatic

flame temperature for LF = 0.3 and LF = 2.0 respectively. Differential diffusion effects are

greater for smaller U0 that result in a larger value of |Zs− ξf | near the rim of the injector

(x = 0). As coflow velocity increases the flame moves more rapidly towards the fuel

side which causes the flame temperature to undergo transition at an earlier downstream

location. It is also observed that for smaller U0 the difference in flame temperature at

the injector exit and the flame tip is greater, a possible reason is due to the larger flame

length.
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A.2.5 Effect of Dilution

Normal Diffusion Flames

Figure 23: The variation with the dilution parameter S of the flame shape (upper plots)
and dimensionless flame-temperature departure ZS − ξf (lower plots) for U0 = 1 LF = 0.3
and LF = 2.0.

The flame shapes (upper plots) in Fig 23 are plotted as log (Y) vs log (X) and the

dimensionless flame temperature departures are plotted as ZS− ξf vs log (X) . The figure

shows that as the dilution increases the flame length and width decrease pertaining to the

lower amount of fuel present.

The temperature departures Zs− ξf along the flame for LF = 0.3 and LF = 2.0 are shown

in the lower plots Fig. 23. The magnitude of the flame temperature for LF = 0.3 is

maximum at the exit of the injector and decreases from there onwards. The temperature

departures keep decreasing and at a certain location the magnitude of flame temperature

undergoes transition from superadiabatic to subadiabatic for LF = 0.3 and subadiabatic to

superadiabatic for LF = 2.0 . This transition in flame temperatures is observed irrespective

of the values of S, however as S increases the transition is delayed. This implies that for

LF = 0.3 (LF = 2.0) a larger potion of the flame is subadiabatic (superadiabatic) for
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smaller S and a smaller portion of the flame is subadiabatic (superadiabatic) for larger

S. For S = 34.5 (in LF = 0.3) and S=15 (in LF = 2.0), subadiabatic and superadiabatic

temperatures are observed only near the tip of the flame.

Inverse Diffusion Flames

Figure 24: The variation with the dilution parameter S of the flame shape (upper plots)
and dimensionless flame-temperature departure ZS−ξf (lower plots) for Inverse Diffusion
Flames with U0 = 1 (a) LF = 0.3 and (b) LF = 2.0.

The flame shapes(upper plots) and tmepratures departures (lower plots) for different fuel

feed dilutions are shown in Fig. 24 for coflow-to-jet velocity ratio of unity i.e U0 = 1. the

upper plots show that as dilution increases the flame length and flame width increases. In

inverse diffusion flames the oxidizer is deficient and fuel is abundant. When the dilution is

low there is sufficient amount of fuel and oxidizer which would undergo combustion faster.

Increase in dilution would decrease the amount of fuel, and as the deficient reactant is the

oxidizer the combustion between smaller quantities of fuel and oxidise would take longer

time and over a larger area. Accordingly the flame length and width would be larger for

higher dilution whereas they would be smaller for lower dilution. Mathematically this
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can be seen as follows, Z has to increase to the value of Zs on the axial location and for

larger dilution Zs is larger, hence Z achieves Zs at a later axial location. Sze et al [60] have

explained the degree of entrainment as a major factor in determining the flame length and

as the entrainment increases the mixing and the fuel would be burned in a premixed mode

and this would result in a faster combustion and smaller flame lengths. The temperature

departures indicate that the flame temperatures are always superadiabatic for LF = 0.3.

The flame temperatures increase downstream and reach a maximum at the tip of the

flame. Whereas for LF = 2.0 the flame temperatures are always subadiabatic and decrease

along the flame and are minimum at the flame tip. This is in contrast to the nontrivial

behaviour observed in normal diffusion flames. This suggests that the diffusivity of the

deficient reactant in the central-jet is more important than the diffusivity of the abundant

(coflow) reactant.
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