
UC Berkeley
UC Berkeley Previously Published Works

Title
The genetic architecture of sporadic and multiple consecutive miscarriage

Permalink
https://escholarship.org/uc/item/4bt0x4hz

Journal
Nature Communications, 11(1)

ISSN
2041-1723

Authors
Laisk, Triin
Soares, Ana Luiza G
Ferreira, Teresa
et al.

Publication Date
2020

DOI
10.1038/s41467-020-19742-5
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4bt0x4hz
https://escholarship.org/uc/item/4bt0x4hz#author
https://escholarship.org
http://www.cdlib.org/


ARTICLE

The genetic architecture of sporadic and multiple
consecutive miscarriage
Triin Laisk et al.#

Miscarriage is a common, complex trait affecting ~15% of clinically confirmed pregnancies.

Here we present the results of large-scale genetic association analyses with 69,054 cases

from five different ancestries for sporadic miscarriage, 750 cases of European ancestry for

multiple (≥3) consecutive miscarriage, and up to 359,469 female controls. We identify one

genome-wide significant association (rs146350366, minor allele frequency (MAF) 1.2%, P=
3.2 × 10−8, odds ratio (OR)= 1.4) for sporadic miscarriage in our European ancestry meta-

analysis and three genome-wide significant associations for multiple consecutive miscarriage

(rs7859844, MAF= 6.4%, P= 1.3 × 10−8, OR= 1.7; rs143445068, MAF= 0.8%, P= 5.2 ×

10−9, OR= 3.4; rs183453668, MAF= 0.5%, P= 2.8 × 10−8, OR= 3.8). We further inves-

tigate the genetic architecture of miscarriage with biobank-scale Mendelian randomization,

heritability, and genetic correlation analyses. Our results show that miscarriage etiopatho-

genesis is partly driven by genetic variation potentially related to placental biology, and

illustrate the utility of large-scale biobank data for understanding this pregnancy

complication.
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M iscarriage is defined by the World Health Organization
(WHO) as the spontaneous loss of an embryo or fetus
weighing <500 g, up to 20–22 weeks of gestation1.

Recurrent miscarriage, which is considered to be a more severe
phenotype, is currently defined as two or more miscarriages1,
although previous definitions also include three or more (con-
secutive) miscarriages2,3. It is acknowledged that using two mis-
carriage as the definition of recurrent miscarriage is at least in
part to facilitate research, improve shared decision making with
patients and provide them psychological support, rather than
because of more specific evidence that this defined a unique
phenotype1, leaving open the question where to draw the line for
separating different miscarriage phenotypes from a biological
point of view.

Miscarriage is the most common complication of pregnancy4,5

and the majority of miscarriages, both sporadic or recurrent6,7,
happen in the first trimester7,8. Miscarriage is associated with
excessive bleeding, infection, anxiety, depression9, infertility10,
and an increased lifetime risk of cardiovascular disease11,12.

The risk of miscarriage increases with maternal age4, and has
been associated with a range of causes; embryo and oocyte
aneuploidy, parental chromosomal abnormalities, maternal
thrombophilias, obesity, and endocrine and immunological dys-
regulation6 but causal underlying factors remain largely
unknown. Miscarriage has a genetic component13,14, with most
studies focusing on associations of maternal genetic variants with
recurrent miscarriage. A recent systematic review illustrates the
small sample sizes of these studies (vast majority <200 cases) and
the heterogeneous definition of cases, and as a consequence
identified largely inconsistent results15.

To discover and map the maternal genetic susceptibility and
underlying biology of miscarriage, we combined genome-wide
association study (GWAS) results of up to 69,054 cases from
different ancestries (European, Chinese, UK South-Asian, UK
African, African American, Hispanic American, UK Caribbean)
for sporadic miscarriage, and subsequently the results of 750 cases
of European ancestry for more severe multiple consecutive mis-
carriage in the largest genetic study of miscarriage to date.
Although there is a continuous discussion on where to draw the
line for classifying miscarriages as recurrent, we aimed to capture
the more severe end of the phenotypic distribution and to dif-
ferentiate severe cases from sporadic miscarriage, and potentially
identify any differences in the underlying genetic architecture for
these two conditions3,7,16,17, and thus defined sporadic mis-
carriage as 1–2 miscarriages and multiple consecutive miscarriage
as having had ≥3 self-reported consecutive miscarriages7,18, or the
International Classification of Diseases (ICD-10) diagnosis code
N96 for habitual abortion (Supplementary Note 1).

We identify one genome-wide significant association for
sporadic miscarriage and three genome-wide significant associa-
tions for multiple consecutive miscarriage. We further investigate
the genetic architecture of miscarriage with biobank-scale Men-
delian randomization (MR), heritability, and genetic correlation
analyses. Our results show that miscarriage etiopathogenesis is
partly driven by genetic variation potentially related to placental
biology and illustrate the utility of large-scale biobank data for
understanding this pregnancy complication.

Results
GWAS meta-analysis. We first performed a trans-ethnic GWAS
meta-analysis for sporadic miscarriage, including genotype data
for 69,054 cases and 359,469 female controls (Fig. 1, Supple-
mentary Data 1 and 2). Association summary statistics were
aggregated using trans-ethnic meta-regression implemented in
the MR-MEGA software19 for GWAS meta-analysis. After post

GWAS filtering for variants present in at least half (n= 11) of the
21 datasets, the trans-ethnic GWAS meta-analysis of 8,664,066
variants revealed a genome-wide significant locus on chromo-
some 7 (lead signal rs10270417, MAF= 1.7%, Pmeta= 6.0 × 10−9;
Supplementary Data 3, Supplementary Fig. 2), driven by the
Kadoorie Chinese-ancestry cohort (OREUR= 1.0 (0.9–1.0);
ORKadoorie= 86.1 (21.1–350.3)). However, since it is known that
the software used for cohort-level association testing in the China
Kadoorie biobank (BOLT-LMM) can overestimate significance
for rare SNPs (MAF < 1%) if the case fraction is <10%20

(MAFKadoorie= 0.04%, case fraction 8.9%), and the variant was
absent from other Chinese-ancestry cohorts (BGI and UKBBCHI)
due to low MAF, the variant was not taken forward for further
analysis and interpretation. A population-specific effect cannot be
ruled out but would require local replication.

We also performed a European ancestry only meta-analysis using
METAL21, in 49,996 sporadic miscarriage cases and 174,109 female
controls. After filtering for variants present in more than half of the
13 European ancestry cohorts (9,088,459 SNPs), we detected one
genome-wide significant locus on chromosome 13 (rs146350366,
MAF= 1.2%, Pmeta= 3.2 × 10−8, OR= 1.4 (1.2–1.6); Fig. 2, Sup-
plementary Data 3, Supplementary Fig. 3).

Next, we performed a European ancestry only meta-analysis
aggregating summary statistics in 750 multiple consecutive
miscarriage cases and 150,215 controls from three participating
cohorts (UKBB, EGCUT, ALSPAC), using Stouffer’s Z-score
method implemented in METAL21, as the effect estimates from
different cohorts were not directly comparable. Meta-analysis
results were filtered to keep variants with an average MAF ≥
0.5%, cohort-level MAF ≥ 0.1%, and that were present in at least
two cohorts (n= 8,956,145). Four of the genome-wide sig-
nificant signals (on chromosomes 2, 9, 11, and 21) were present
in all three cohorts and had the same direction of effect (Fig. 3,
Supplementary Data 3). Next, we applied the Firth test for
significant variants to control for case-control imbalance, and
to obtain uniform cohort-level association statistics and a
summary effect estimate. This left us with three genome-wide
significant signals: on chromosome 9 (rs7859844, MAF= 6.4%,
Pmeta= 1.3 × 10−8, PFirth= 2.0 × 10−9, OR= 1.7 (1.4–2.0)),
chromosome 11 (rs143445068, MAF= 0.8%, Pmeta= 5.2 ×
10−9, PFirth= 1.8 × 10−10, OR= 3.4 (2.4–5.0)), and 21
(rs183453668, MAF= 0.5%, Pmeta= 2.8 × 10−8, PFirth= 2.5 ×
10−9, OR= 3.8 (2.4–5.9)). The signal on chromosome
2 (rs138993181, MAF= 0.6%, Pmeta= 1.6 × 10−8), did not
remain significant after the Firth test (PFirth= 1.7 × 10−7,
OR= 3.6 (2.2–5.8)) (Supplementary Fig. 4a–d) and was not
taken further for functional annotation analysis.

To clarify the potential genetic overlap between miscarriage
phenotypes, we performed a cross-phenotype look-up of the
associated loci. All the multiple consecutive miscarriage loci
were statistically not significant in the spontaneous miscarriage
analysis, and vice versa (see Supplementary Note 1). This
indicates the genetic basis of sporadic and multiple consecutive
miscarriage does not overlap, at least not for the reported loci,
and lends further support to our phenotype definitions.

No overlap with previously proposed candidate genes. To our
knowledge, no previous GWAS for recurrent or sporadic mis-
carriage have been carried out, but we checked the results for the
333 variants from a previous meta-analysis of published idio-
pathic recurrent miscarriage candidate gene associations15 in our
European ancestry meta-analyses for both sporadic and multiple
consecutive miscarriage. None of these variants were genome-
wide significant in either the sporadic or multiple consecutive
miscarriage analysis, and only 14 (4.2%) and 11 (3%) were
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nominally significant (P < 0.05) in the respective analyses (Sup-
plementary Data 4), which is less than expected by chance (5%).
Two genome-wide linkage scans, one of 44 recurrent miscarriage
cases and 44 controls and the other of 38 sibling pairs affected by
idiopathic recurrent miscarriage, reported loci on 6q27, 9q33.1,
Xp22.122 and 3p12.2, 9p22.1 and 11q13.413 as associated with
idiopathic recurrent miscarriage but none of the multiple con-
secutive or sporadic miscarriage associations identified in our
much larger analysis overlap with these previously reported
associations.

Heritability of miscarriage. While previous studies have shown
preliminary evidence that (recurrent) miscarriage has a genetic
predisposition13,14,22, the heritability of miscarriage and related
phenotypes has remained unquantified. We were unable to esti-
mate the heritability for multiple consecutive miscarriage robustly

due to a relatively small number of cases. However, we estimated
the traditional heritability of ‘ever having miscarried’ under a
classical twin model using the QIMR twin dataset, including 1853
monozygotic (MZ) and 1177 dizygotic (DZ) complete twin pairs
and 2268 individuals from incomplete pairs, and found a herit-
ability of 29% (95% CI 20–38%) for any miscarriage (Supple-
mentary Data 5). In parallel, we used the sporadic miscarriage
European ancestry GWAS meta-analysis summary statistics and
the LD Score regression (LDSC) method23 to calculate the SNP-
based heritability for sporadic miscarriage. We found the SNP-
based heritability estimate to be small, with h2= 1.5% (SE 0.4) on
the liability scale (assuming a population prevalence 20%).
Similar to other complex traits, our findings show the SNP-
heritability is substantially lower than the traditional heritability,
suggesting that other sources of genetic variation may have a
larger contribution.

QIMR

Ncases=1145
Ncontrols=5136

QIMREndo

Ncases=433
Ncontrols=1078

BGI

Ncases=8865
Ncontrols=126,290

Kadoorie Biobank

Ncases=4817
Ncontrols=49,033

EGCUT

Ncases=3368
Ncases_RM=113
Ncontrols=17,996

Lifelines

Ncases=1676
Ncontrols=5091

iPSYCH

Ncases=1173
Ncontrols=4812

MoBa (Harvest)

Ncases=1653
Ncontrols=3199

ALSPAC

Ncases=1473
Ncases_RM=216
Ncontrols=4475

UKBBEUR

Ncases=37,105
Ncases_RM=421
Ncontrols=127,670

UKBBSAS

Ncases=511
Ncontrols=1424

UKBBCAR

Ncases=390
Ncontrols=957

UKBBCHI

Ncases=132
Ncontrols=433

UKBBAFR

Ncases=273
Ncontrols=482

Partners

Ncases=58
Ncontrols=289

WHIHIPFX

Ncases=273
Ncontrols=708

WHIGECCO

Ncases=274
Ncontrols=609

WHIWHIMS

Ncases=411
Ncontrols=950

WHIGARNET

Ncases=954
Ncontrols=2096

SHAREAA

Ncases=2919
Ncontrols=4546

SHAREHA

Ncases=1151
Ncontrols=2195

Fig. 1 Overview of the included cohorts. Our trans-ethnic GWAS meta-analysis for sporadic miscarriage included data for 69,054 cases and 359,469
female controls, whereas our European ancestry only analysis included 49,996 sporadic miscarriage cases and 174,109 female controls. We also analyzed
data for 750 multiple consecutive miscarriage cases, all of European ancestry.
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Supplementary Data 2. Summary effect estimate from inverse variance fixed effects meta-analysis.
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Miscarriage genetically correlated with number of children. We
assessed pairwise genetic correlations (rg) between sporadic
miscarriage and 760 other traits (Supplementary Data 6) available
from the LD Hub24 and found 82 significant (FDR < 0.05) genetic
correlations with European-ancestry sporadic miscarriage analy-
sis. For example, significant genetic correlations were observed
with reproductive traits (number of children (rg= 0.69, se= 0.12,
FDR= 2.0 × 10−6) and age at first birth (rg=−0.40, se= 0.10,
FDR= 1.1 × 10−3)) (Supplementary Data 6). The positive genetic
correlation between sporadic miscarriage and number of children
is consistent with observational associations between sporadic
miscarriage and greater number of live births25, and with our own
observations from phenotype exploration analyses in the UKBB
(Supplementary Note 1, Supplementary Fig. 1). We also observed
significant correlations with traits related to smoking behavior,
mental health, and general well-being (Supplementary Data 6).

Miscarriage is associated with a variety of health outcomes. We
also examined phenotypic associations of sporadic and multiple
consecutive miscarriage with ICD-coded disease outcomes from
linked hospital episode statistics in the UKBB dataset, adjusting
for number of live births and woman’s age and using FDR cor-
rected P-values. We focused only on outcomes with at least one
observation among the cases, resulting in testing >6000 ICD
codes for sporadic and >1000 ICD codes for multiple consecutive
miscarriage. For sporadic miscarriage, the majority of associations
were related to pregnancy, childbirth and the puerperium (P-
values ranging between 9.9 × 10−79 and 4.4 × 10−2; Supplemen-
tary Data 7; Supplementary Fig. 5). Sporadic miscarriage was also
positively associated with a wide variety of diagnoses, including

asthma (P= 1.6 × 10−20, OR= 1.2 (1.19–1.3)), stillbirth (P=
5.1 × 10−5, OR= 74.3 (10.0–549.2)), depressive episodes (P=
1.4 × 10−7, OR= 1.2 (1.1–1.3)), irritable bowel syndrome (P=
3.5 × 10−9, OR= 1.3 (1.2–1.4)), intentional self-poisoning (P=
9.5 × 10−4, OR= 1.6 (1.2–2.0)) and negatively associated with
endometrial cancer (P= 9.9 × 10−3, OR= 0.8 (0.7–1.0)). Multiple
consecutive miscarriage was positively associated with tubu-
lointerstitial nephritis (P= 7.8 × 10−5, OR= 5.3 (2.3–12.0)),
infertility (P= 1.9 × 10−18, OR= 7.5 (4.8–11.7)), ectopic preg-
nancy (P= 6.7 × 10−17, OR= 25.4 (12.1–53.4)), and others
(Supplementary Data 8, Supplementary Fig. 5). Due to the defi-
nitions used to extract cases with three or more consecutive
miscarriages from self-reported data, this group has less children
compared to the other groups (Supplementary Note 1, Supple-
mentary Fig. 1, Supplementary Data 1) and thus represents a
miscarriage subphenotype with a more severe effect on fertility,
which could explain the correlation with infertility diagnosis.

Although it would be interesting to evaluate the observed
correlations on a genetic level, sufficiently sized datasets were not
available for the majority of these diagnoses on the LD Hub24 for
the UKBB (or published previously). However, we did see some
support from our genetic correlation analyses (Supplementary
Data 6) for depression (‘depressive symptoms’, FDR= 0.021, rg
= 0.32, se= 0.1) and asthma (self-reported asthma, FDR= 0.018,
rg= 0.24, se= 0.07).

Previously proposed risk factors for miscarriage include
smoking26, alcohol use27, and body mass index (BMI)28. To
explore the possible causal effect of smoking, alcohol, and BMI on
sporadic miscarriage, we used a two-sample MR approach29.
Summary statistics for alcohol use (drinks per week) and smoking
initiation (ever smoked regularly) were obtained from the most
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recent GWAS for these traits30 and for BMI were obtained from
Locke et al. (2015)31. Summary associations between each variant
included in the MR analyses and sporadic miscarriage were
obtained from the European-ancestry meta-analysis. We harmo-
nized the summary datasets and used inverse variance weighted
(IVW)32, weighted median (WM)33, and MR-Egger34 methods to
obtain a pooled estimate of the associations of genetic variants for
smoking, alcohol use and BMI with SM. Results from IVW
showed evidence of a causal association between smoking and SM
(OR 1.16, 95% CI 1.11; 1.22), which were consistent with results
from WM (OR 1.16, 95% 1.09; 1.24) but not with the point
estimate from MR-Egger (OR 0.95, 95% CI 0.79; 1.14), though the
95% confidence intervals overlap. The P-value for MR-Egger
intercept was 0.029, suggesting that IVW result is likely to be
biased by unbalanced horizontal pleiotropy. We did not observe
any consistent effect of BMI or alcohol use on SM (Supplemen-
tary Data 9; Supplementary Fig. 6). It is important to note that the
samples were not independent, and there was some overlap
between the risk factor and sporadic miscarriage GWAS samples,
especially with the alcohol analyses sample (the percentage of the
sporadic miscarriage samples that were in the exposure samples
were 10%, 16%, and 38% for BMI, smoking, and alcohol,
respectively). This might introduce bias in the results and inflate
type I error; MR-Egger estimates are more prone to bias due to
sample overlap than IVM and WM33. This may explain some of
the inconsistency that we see between the MR-Egger and other
results for alcohol and possibly those for smoking. Taking these
findings together, our analyses suggest that smoking may causally
increase the risk of SM, but we cannot exclude the possibility of
horizontal pleiotropy explaining some of this effect.

We also conducted a hypothesis generating phenome-wide MR
analysis of multiple consecutive miscarriage (using a per allele
genetic risk score from the GWAS significant SNPs) in relation to
17,037 diseases and health related traits using the PHESANT35

package in UKBB (n= 168,763) (Supplementary Fig. 7), but
identified no robust causal associations (Supplementary Fig. 8,
Supplementary Data 10).

Gene prioritization identifies links with placental biology. In
order to refine the list of candidate genes identified by eQTL and
chromatin interaction mapping, we used constraint measures
(pLI score36 and observed/expected (oe) ratio) from gnomAD
v2.1.137. The pLI score reflects the probability that a given gene is
loss-of-function (LoF) intolerant, with scores ≥0.9 reflecting
extreme intolerance to protein-truncating variation, which could
point to a reproductive disadvantage in heterozygous LoF cases36.
The oe ratio is the ratio of the oe number of LoF variants in that
gene. It is a continuous measure, where low oe values indicate the
gene is under stronger selection for that kind of variation com-
pared to a gene with higher values. The upper bound of the oe
90% CI < 0.35 is recommended for thresholding. The candidate
gene list was also compared to information on mouse phenotypes
based on two databases38,39, and against a recently published list
of genes potentially relevant to infertility or recurrent intra-
uterine death40.

For the sporadic miscarriage European ancestry meta-analysis
signal on chromosome 13, a total of five candidate SNPs and 47
potentially causal genes were suggested by chromatin interaction
data from 21 different tissues/cell types, while no significant
eQTL associations were detected using FUMA41 (Supplementary
Data 11 and 12). Of the protein-coding genes, FGF9 had the
highest pLI score (0.91) and lowest oe ratio (Supplementary
Data 15), indicating the gene is LoF intolerant, which is in line
with data from mouse models, where homozygous mutants
exhibit embryonic and preweaning lethality. Capture Hi-C data

from different cells (including trophoblast-like cells, Supplemen-
tary Data 12)42 showed connections between the GWAS meta-
analysis association signal and the FGF9/MICU9 locus (Fig. 4a).
FGF9 is needed for creating a favorable microenvironment for
embryo implantation/pregnancy maintenance, possibly either by
regulating angiogenesis or participating in recognizing competent
blastocysts via the maternal FGF9/embryonic FGFR2 axis43. If
this ‘embryo sensoring’ is compromised, implantation of low-
quality embryos can occur and potentially result in miscarriage44.
In addition, FGF9 plays a paracrine role in ovarian progesterone
production45, and has been found to be upregulated at the mRNA
level in the endometrium of women with miscarriage46.

For the multiple consecutive miscarriage association signal on
chromosome 9, 53 candidate SNPs and a total of 50 candidate
genes were identified by chromatin interaction data: among them
protein-coding genes TLE1, TLE4, PSAT1, IDNK, GNAQ, RASEF,
SPATA31D1, and FRMD3 (Supplementary Data 13 and 14). Of
these, TLE1, TLE4, and GNAQ have pLI scores > 0.9 (Supplemen-
tary Data 15). Hi-C data42 showed interactions between the
associated locus and TLE1 (and between TLE1 and TLE4)
(Fig. 4b). Both TLE1 and TLE4 are repressors of the canonical
WNT signaling pathway, and participate in controlling placental
extravillous trophoblast motility47. Invasion of extravillous
trophoblast cells into maternal decidua is essential for proper
placenta formation, and dysregulation of this process has been
associated with several pregnancy complications, including
miscarriage48. Additionally, there is evidence TLE1/TLE4 may
also regulate gonadotropin-releasing hormone (GnRH) expression
and/or differentiation of GnRH neurons49, providing a potential
link with gonadotropin regulation. Further, a member of the same
family of proteins (Groucho/Transducin-Like Enhancer of Split),
TLE6 has been shown to be associated with early embryonic
lethality50 and is known to antagonize TLE1-mediated transcrip-
tional repression51. On chromosome 11, both rs143445068 and
rs140847838 were highlighted as potential candidate SNPs in the
associated region located in the intron of NAV2. Chromatin
interaction mapping highlighted another 17 candidate genes in the
locus, including DBX1, HTATIP2, E2F8, ZDHHC13, and
MRGPRX2 (Supplementary Fig. 10). Both NAV2 and E2F8 show
evidence of constraint, and furthermore, NAV2 is listed as one of
the candidate genes potentially relevant for infertility or recurrent
fetal death40 (Supplementary Data 15). However, there is also
strong evidence to support E2F8 as a potential candidate gene in
this locus, as it is required for placental development52 and fetal
viability, and speculated to suppress the invasiveness of extra-
villous trophoblasts in humans. The E2F transcription factor
family has also been proposed as a key regulator of placental genes
differentially expressed in recurrent pregnancy loss53. Finally, for
the association signal on chromosome 21, no other candidate
SNPs in addition to the lead signal rs183453668 were identified,
and a total of 10 candidate genes were suggested by chromatin
interaction data, including SIK1, U2AF1, CRYAA, HSF2BP, and
RRP1B (Supplementary Fig. 11). Of these, U2AF1 and SIK1 exhibit
intolerance to LoF (Supplementary Data 15), and SIK1 is
associated with early lethality in mouse and has also been shown
to play a role in trophoblast differentiation54.

We then tested for colocalization between multiple consecutive
miscarriage and plasma protein levels55 and expression levels in
49 different tissues56,57 using coloc58 (Supplementary Methods).
Colocalization can highlight potential mediating genes and tissues
by investigating the likelihood of a shared causal variant between
a disease and e.g. quantitative trait loci58. There was no evidence
for colocalization for any of the risk locus–gene/protein–tissue
combinations, potentially reflecting that the risk is mediated
through other genes than those investigated, or lack of data from
the relevant tissue or time-point.
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Discussion
In this study, we quantify the heritability of miscarriage and
identify four distinct susceptibility loci for sporadic and multiple
consecutive miscarriage. We acknowledge the fact that the defi-
nition we used for multiple consecutive miscarriage differs from
that currently used for recurrent miscarriage1. Our rationale
behind using a definition of at least three consecutive mis-
carriages (which was also the definition of recurrent miscarriage
in much of Europe at the time of the study2,3) was to capture the
more severe end of the phenotypic spectrum, which would allow
to better assess whether recurrent and sporadic events lie on the
same phenotypic spectrum. Our findings that the used sporadic
miscarriage definition is genetically (and phenotypically) corre-
lated with number of children, whereas the definition used for
extracting cases with three or more consecutive miscarriages from
self-reported data that resulted in a group that had less children
and showed correlations with infertility diagnosis confirms that
the used phenotype definitions captured the contrasting ends of
the phenotypic spectrum. Hopefully our study paves the way for

future similar studies into the genetics of miscarriage which could
provide further evidence for more informed classification of this
phenotype.

We found heritability of 29% (95% CI 20–38%) for any mis-
carriage and a considerably smaller SNP-based heritability for
sporadic miscarriage (h2= 1.5% (SE 0.4)). Our study design is
limited to interrogate maternal contribution to the genetic
architecture of the trait, and it is likely that paternal and fetal
contributions are responsible for a proportion of the heritability
gap. This also prevents us from investigating the parent–offspring
interaction and environmental effects, which have been shown for
pre-eclampsia59. Overall, it might be expected that genetic factors
increasing susceptibility to miscarriage are under negative selec-
tion due to their impact on reproductive fitness and hence these
will be rare. Up to two-thirds of miscarriages are unrecognized
and/or undiagnosed, particularly early miscarriages60, and thus
‘control’ women will include some misclassified as not having
experienced a miscarriage. This would be expected to attenuate
results towards the null and means larger numbers may be
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required to accurately quantify SNP-heritability and identify
genome-wide significant SNPs; this is likely to affect sporadic
miscarriage more so than recurrent miscarriage.

Our results confirm a partly genetic basis to both sporadic and
multiple consecutive miscarriage, that does not seem to overlap.
Mapping of potential candidate genes at associated loci identified
several genes (FGF9, TLE1, TLE4, E2F8, SIK1) with a plausible
biological role in placental biology and miscarriage etiopatho-
genesis. However, the involvement of other transcripts at these
loci cannot be ruled out and further functional studies are needed.
Similarly to other traits, our larger GWAS study fails to replicate
findings from previous smaller candidate gene studies13,15,22,
underlining the importance for future larger collaborations to
jointly dissect the genetic background of miscarriage.

The MR analyses suggest that smoking may causally increase
the risk of sporadic miscarriage, as has also been suggested by
epidemiological studies;26 however, this needs to be validated in
independent datasets and the effect of horizontal pleiotropy
cannot be ruled out. Finally, our analysis of health outcomes
associated with miscarriage confirms previous observations and
identifies several novel ones. For some of these diagnoses,
including irritable bowel syndrome, asthma, endometrial cancer,
self-harm, and ectopic pregnancy, similar epidemiologic asso-
ciations have been reported previously61–65, warranting further
investigation into underlying mechanisms.

In conclusion, our results show that miscarriage etiopatho-
genesis is partly driven by genetic variation potentially related to
placental biology, and illustrate the utility of large-scale biobank
data for understanding this pregnancy complication.

Methods
Study cohorts. Descriptive statistics of the cohorts included in the sporadic and
multiple consecutive miscarriage GWAS meta-analyses are presented in Supple-
mentary Data 1 and Supplementary Methods. Our analysis included
69,054 sporadic miscarriage cases, 750 multiple consecutive miscarriage cases and
up to 359,469 controls. All individuals gave informed consent at enrollment and
recruitment was monitored by relevant institutional ethics review boards.

Case definitions. Depending on the type of data available in individual cohorts,
miscarriage cases were identified as follows:

Sporadic miscarriage: 1 or 2 self-reported miscarriages, or ICD-10 codes O02.1
and O03 on 1 or 2 separate time-points (at least 90 days between episodes). As a
result, 26,044 sporadic miscarriage cases were identified from cohorts using only
self-report data, 1231 from cohorts using only electronic health record data, and
41,779 from cohorts where both self-reported and EHR data were available.

Multiple consecutive miscarriage: (i) five or more self-reported miscarriages, one
live birth, no pregnancy terminations, (ii) three or more self-reported miscarriages,
no live births, no pregnancy terminations, or (iii) three or more consecutive
miscarriages. The first two criteria were used to ensure the consecutive nature of
the miscarriages; and (iv) ICD-10 diagnosis code N96.

For a more detailed explanation why these definitions were chosen, please see
Supplementary Note 1, Supplementary Fig. 1 and Supplementary Table 1.

Where data allowed, we applied the following exclusion criteria to all cohorts
(the aim of these exclusions was to mainly examine associations with idiopathic
miscarriage cases and thereby increase the homogeneity of the analyzed
phenotype):

● women with early or late menarche (<9 or >17 years), which could indicate
underlying hormonal abnormalities

● women with any of diagnoses for conditions associated with increased
susceptibility to miscarriage (maternal chromosomal abnormalities, thyroid
conditions, neoplasms affecting endocrine glands, thrombophilias, disorders
affecting the endocrine system, congenital malformations of genital organs)

GWAS genotyping and imputation. Details on cohort-level genotyping, quality
control (QC), and imputation can be found in Supplementary Data 2.

Association analyses. Details on how association analyses were carried out on the
cohort level can be found in Supplementary Data 2. Cohort-level association
analyses had been performed using genotype data imputed to suitable reference
panels and adjusted for year of birth. Where available and appropriate, additional

cohort-specific covariates, such as principal components or genotyping array, were
used to correct for potential within-cohort stratification.

Meta-analysis. Central QC was conducted using EasyQC66. During central QC,
allele frequencies and alignment were compared against suitable reference datasets
(Haplotype Reference Consortium67, 1000 Genomes68) to detect potential strand
issues or large allele frequency deviations from the reference population. Mono-
morphic markers, and also markers with strand mismatch, poor imputation quality
(INFO score < 0.4) or an arbitrary minor allele count cut-off ≤ 6 were excluded
from each study prior to the meta-analysis. The results from individual cohorts
were meta-analyzed in parallel by two different analysts. All genome-wide sig-
nificant variants that passed the applied filters (see below) are listed in Supple-
mentary Data 3.

For the trans-ethnic meta-analysis, we used the MR-MEGA software19,
adjusting for the first two principal components. After the meta-analysis, we
applied an additional filter for variants present in at least half (n= 11) of the
cohorts, to rule out spurious associations. This resulted in 8,664,066 variants, and a
genome-wide significant association on chromosome 7 (rs10270417). Indels were
not considered due to their lower quality. A closer inspection of the effect sizes for
the observed association in individual cohorts revealed the association was mainly
driven by one of the Chinese-ancestry cohorts (Supplementary Fig. 2c) where the
MAF was 0.04%. It is known that BOLT-LMM, used for analysis in the Kadoorie
cohort, can overestimate significance for rare SNPs (MAF < 1%) if the case fraction
is <10%20; therefore we performed additional analyses. The Kadoorie samples have
been collected from 10 different region centers, therefore we checked for batch
effects. Adding batch ID as a covariate did not have a significant impact on the
association statistics (original P-value 5.0 × 10−10, after adding batch ID as
covariate P= 2.2 × 10−15). To check possible confounding effect from samples
being collected from 10 different region centers, we performed separate analyses for
each region center, followed by meta-analysis. As the SNP is very rare, SNPTEST
failed to converge in five research center datasets; however, fixed effect meta-
analysis detected a similar effect direction in the remaining datasets, although with
significant differences in effect magnitude across different region centers (Pmeta=
4.8 × 10−4; Phet= 5.2 × 10−5) and a considerably larger P-value compared to the
BOLT-LMM results. Although the two methods (SNPTEST and BOLT-LMM) are
not directly comparable, given the absence of this variant in other Chinese ancestry
cohorts (BGI and UKBBCHI), the rs10270417 signal was not taken further for
functional annotation.

European-ancestry only sporadic miscarriage meta-analysis was carried out
with METAL21 using inverse variance fixed effects meta-analysis and single
genomic correction. Multiple consecutive miscarriage meta-analysis was conducted
using METAL21 and Stouffer’s (P-value-based effective sample size weighted)
method and single genomic correction. After the analysis, sporadic miscarriage
European ancestry meta-analysis results were additionally filtered to exclude
markers not present in at least half of the cohorts (n= 7). From the multiple
consecutive miscarriage meta-analysis results we excluded variants that were not
present in at least two cohorts, had an average MAF of <0.5%, and a MAF of <0.1%
in any of the three cohorts. From the genome-wide significant signals we selected
those with the same direction of effect in all three cohorts for further consideration.
Indels were not considered due to their lower quality. The quantile–quantile plots,
Manhattan plots, and locus zoom plots of the meta-analyses are shown in Figs. 2
and 3 and in Supplementary Figs. 3 and 4.

Look-up of variants previously associated with recurrent miscarriage. We
conducted a lookup in our summary statistics of all variants included in a recent,
extensive and systematic review/meta-analysis of published genetic association
studies in idiopathic recurrent spontaneous abortion15. The results of this lookup
are given in Supplementary Data 4.

Heritability analysis. The sporadic miscarriage GWAS European-ancestry meta-
analysis summary statistics and LDSC method23 were used for heritability esti-
mation. The linkage disequilibrium (LD) estimates from European ancestry sam-
ples in the 1000 Genomes projects were used as a reference. Heritability estimates
were converted to the liability scale using a population prevalence of 0.2 for
sporadic miscarriage. Using the UKBB SNP-Heritability Browser (https://nealelab.
github.io/UKBB_ldsc/h2_browser.html), we also did a look-up for different ver-
sions of the miscarriage phenotype or related phenotypes in the UKBB dataset and
observed similar heritability estimates for ‘Ever had stillbirth, spontaneous mis-
carriage or termination’ (h2= 0.04; s.e.= 0.007; population prevalence 31.7%) and
‘Number of spontaneous miscarriages’ (h2= 0.03; s.e.= 0.01).

Data from 1853 complete female MZ and 1177 DZ twin pairs and 2268 women
from incomplete or opposite sex twin pairs (mean year of birth 1954, range
1893–1989) from the QIMR dataset were used to estimate heritability under a
classical twin model, using a multifactorial threshold model in which discrete traits
are assumed to reflect an underlying normal distribution of liability (or
predisposition). Liability, which represents the sum of all the multifactorial effects,
is assumed to reflect the combined effects of a large number of genes and
environmental factors each of small effect69. All data analyses were conducted
using maximum-likelihood analyses of raw data within Mx70. Corrections for year
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of birth were included with the model, such that the trait value for individual
j from family i was parameterized as xij ¼ βage þ μ. The phenotypic data, which

were constrained to unity, were parameterized as σ2 ¼ σ2A þ σ2D þ σ2E or; σ2 ¼
σ2A þ σ2C þ σ2E , where, σ

2
A represents additive genetic effect (A); σ2D represents

non-additive genetic effects (D); σ2C represents shared environmental effects (C)
and σ2E represents non-shared or unique environmental effects (E). The covariance
terms were parameterized as CovMZs ¼ σ2A þ σ2D or σ2A þ σ2C andCovDZs ¼ 0:5σ2Aþ
0:25σ2D or 0:5σ2A þ σ2C .

The significance of variance components was tested by comparing the fit (minus
twice the log-likelihood) of the full model which included the effect to that of a
nested model in which the effect had been dropped from the model. The difference
in log-likelihoods follows an asymptotic chi-square distribution with the degrees of
freedom equal to the difference in estimated parameters between the two models.
The results of these analyses are summarized in Supplementary Data 5.

Genetic correlation analyses. The LDSC method23 implemented in LD-Hub
(http://ldsc.broadinstitute.org)24 was used for testing genetic correlations between
sporadic miscarriage and 760 traits (spanning reproductive, anthropometric, psy-
chiatric, aging, hematological, cardiometabolic, autoimmune, hormone, cancer,
smoking behavior, and traits from the UKBB), using the sporadic miscarriage
European-ancestry only GWAS meta-analysis summary statistics and data avail-
able within the LD Hub resource. False discovery rate (FDR) correction (calculated
using the p.adjust function in R) was used to account for multiple testing. Results of
the analysis are presented in Supplementary Data 6.

Associated phenotypes analysis. The UKBB has extensive phenotype data for
500K individuals, of which 273,465 are women. After applying the same QC cri-
teria that were applied to the subset of individuals used in the genetic association
analysis, extensive phenotype data was available for 220,804 women. Among these
there were 39,411 sporadic miscarriage cases and 133,545 controls, and 458 mul-
tiple consecutive miscarriage cases and 133,675 controls (defined using the criteria
applied to define cases and controls for the association analysis). We explored
differences in the prevalence of diseases between sporadic miscarriage cases and
controls and between multiple consecutive miscarriage cases and controls. Diseases
were identified from the UKBB linked Hospital Episode Statistics which provide
ICD10 diagnosis codes (UKBB data fields 41202 and 41204). First, for each hospital
diagnosis observed among the cases (defined by an ICD10 code; n= 6840 for
sporadic and n= 1323 for multiple consecutive miscarriage, respectively; excluding
those used to define the cases), we tested the difference in the proportion of cases
with the diagnosis with that among the controls (using a two-sample test for
difference in proportions when the number of “successes” and “failures” are greater
or equal to five for both populations; otherwise, Fisher’s exact test was applied
instead). A false discovery rate (FDR) multiple testing correction at level 10% was
applied to the P-values. For graphical representation (Supplementary Fig. 5),
diagnosis codes were grouped and colored by ICD10 chapters as follows: blood
(“Diseases of the blood and blood-forming organs and certain disorders involving
the immune mechanism”, D50-D89), circulatory (“Diseases of the circulatory
system”, I00-I99), congenital (“Congenital malformations, deformations and
chromosomal abnormalities”, Q00-Q99), digestive (“Diseases of the digestive sys-
tem”, K00-K93), ears (“Diseases of the ear and mastoid process”, H60-H95),
endocrine (“Endocrine, nutritional and metabolic diseases”, E00-E90), external
(“External causes of morbidity and mortality”, V01-Y98), eyes (“Diseases of the eye
and adnexa”, H00-H59), genitourinary (“Diseases of the genitourinary system”,
N00-N99), infection (“Certain infectious and parasitic diseases”, A00-B99), injury
(“Injury, poisoning and certain other consequences of external causes”, S00-T98),
musculoskeletal (“Diseases of the musculoskeletal system and connective tissue”,
M00-M99), neoplasms (“Neoplasms”, C00-D48), nervous (“Diseases of the nervous
system”, G00-G99), other (“Factors influencing health status and contact with
health services”, U04-Z99), perinatal (“Certain conditions originating in the peri-
natal period”, P00-P96), pregnancy (“Pregnancy, childbirth and the puerperium”,
O00-O99), psychiatric (“Mental and behavioral disorders”, F00-F99), respiratory
(“Diseases of the respiratory system”, J00-J99), skin (“Diseases of the skin and
subcutaneous tissue”, L00-L99), symptoms (“Symptoms, signs and abnormal
clinical and laboratory findings, not elsewhere classified”, R00-R99). To rule out the
confounding effect of woman’s age and parity, we then conducted multivariate
logistic regression adjusted for age and number of children for any diseases for
which there was statistical evidence of a difference between cases and controls, and
applied FDR 5% correction to the P-values (Supplementary Data 7 and 8).

MR analyses. We used a two-sample MR approach29 to explore the possible causal
effect of smoking, alcohol, and BMI on sporadic miscarriage. Summary statistics
for alcohol use (drinks per week) and smoking initiation (ever smoked regularly)
were obtained from the most recent GWAS for these traits30 and for BMI were
obtained from Locke et al. (2015)31. Summary associations between each variant
and sporadic miscarriage were obtained from the European-ancestry meta-analysis
filtered for variants present in at least half of the cohorts. We harmonized the

summary datasets and used IVW32, WM33, and MR-Egger34 methods to obtain a
pooled estimate of the associations of genetic variants for smoking, alcohol, and
BMI with sporadic miscarriage. Including only variants that reached genome-wide
significance in the exposure GWAS in our MR analyses, 369/378 variants asso-
ciated with smoking, 96/99 variants associated with alcohol use, and 97/97 variants
associated with BMI were present in our European-ancestry sporadic miscarriage
GWAS. The results of these analyses are presented in Supplementary Data 9.

We conducted a (hypothesis generating) MR phenome-wide (PheWAS)
analysis of multiple consecutive miscarriage (using a per allele genetic risk score
from the four GWAS significant SNPs; rs7859844, rs143445068, rs138993181,
rs183453668) in relation to 17,037 outcomes using the PHESANT35 package in
UKBB (n= 168,763) (Supplementary Fig. 7). The analysis was adjusted for year of
birth and the top 10 PCs. Overall, the MR-PheWAS did not show any evidence of
causal effects (Supplementary Fig. 8). Only three outcomes reached Bonferroni-
corrected levels of statistical significance (P < 2.93 × 10−6), including one outcome
related to alcoholism and one related to post-traumatic stress disorder. However,
both of these were single items from instruments that included 11 items (alcohol
use questionnaire) and 21 items (post-traumatic/traumatic event questionnaire),
respectively, with none of the other items reaching suggestive thresholds of
statistical significance. The third outcome to show association below this P-value
threshold was a job coding (scenery designer or costume designer) that is one of
which lies in 42-item employment history category (MR analyses did not suggest
effects on any other jobs in this list).

Functional annotation. The FUMA platform designed for prioritization, annota-
tion, and interpretation of GWAS results41 was used for functional annotation of
association signals from the GWAS meta-analyses (Supplementary Methods).

To narrow down potential candidate genes, we first extracted SNPs in high LD
(r2 > /= 0.8) with the lead signals and overlapped those with chromatin data
(ChIPseq for histone modifications and DHS for chromatin accessibility, both
indicative of regulatory elements) using HaploReg. We then used Hi-C chromatin
interaction datasets to visualize topologically associated domains (TADs) in the
region and Capture Hi-C data for various tissues to further explore interactions
within the TAD domain. Data was visualized using the 3D Genome Browser42

(http://3dgenome.org) using the datasets available via the browser71,72. TADs are
relatively conserved across different tissue types and define the boundaries for
potential genomic interactions73. In the main text (Fig. 4), visual representations
are shown for single tissues to show representative signals at a given locus and to
illustrate chromatin architecture (promoter–enhancer interactions) at the locus, to
infer possible target genes(s). The visual representations do not infer/confirm
possible target tissues for the association.

For sporadic miscarriage, we used the summary statistics of our EUR-ancestry
meta-analysis. A total of five candidate SNPs were identified (r2 ≥ 0.6 with
rs146350366) in the associated locus on chr13, all of them intergenic
(Supplementary Data 11). Of these, rs188519103, located 6.9 kb 5′ of SNORD36
had the lowest RegulomeDB score (4—evidence of transcription factor binding and
DNase peak). Potential candidate genes were mapped using eQTL and chromatin
interaction data (Supplementary Data 12).

In the multiple consecutive miscarriage analysis, we had three associated loci
with consistent effect direction in all three cohorts. For the signal on chromosome
9, 53 candidate SNPs were identified by FUMA (Supplementary Data 13). Of these,
rs12004880 had a RegulomeDB score of 3a (“TF binding+ any motif+DNase
peak”), while four SNPs had a CADD score of >12.37, indicating potential
pathogenicity74. A total of 50 candidate genes were proposed (Supplementary
Data 14), among them protein-coding TLE1, TLE4, PSAT1, IDNK, GNAQ, RASEF,
SPATA31D1, and FRMD3. On chromosome 11, rs143445068 (RegulomeDB score
3a) and rs140847838 were highlighted as potential candidate SNPs in the associated
region located in the intron of NAV2. Chromatin interaction mapping proposed
another 17 candidate genes, including DBX1, HTATIP2, E2F8, ZDHHC13,
MRGPRX2. Hi-C map in ovaries from the 3D Genome Browser42 is shown in
Supplementary Fig. 10. Finally, for association signal on chromosome 21, no other
candidate SNPs in addition to the lead signal rs183453668 were identified, and a
total of 10 candidate genes were suggested by chromatin interaction data. Hi-C
map in ovaries and Capture Hi-C data visualization in endothelial progenitors are
shown on Supplementary Fig. 11.

To further narrow down the list of potential candidate genes, we used measures
of constraint (pLI score36 and oe ratio) from gnomAD v2.1.137 and data on mouse
phenotypes from the International Mouse Phenotype Consortium39 (https://www.
mousephenotype.org) and the Mouse Genome Informatics database38 (http://www.
informatics.jax.org/phenotypes.shtml). In brief, the pLI score reflects the
probability that a given gene is LoF intolerant and pLI scores ≥0.9 reflect extreme
intolerance to protein-truncating variation, which could point to a reproductive
disadvantage in heterozygous LoF cases36. The oe ratio is the ratio of the oe
number of LoF variants in that gene. It is a continuous measure, where lower oe
values indicate the gene is under stronger selection for that kind of variation
compared to a gene with higher values. The upper bound of the oe 90% CI < 0.35 is
recommended for thresholding. In mouse phenotype data, we first and foremost
looked at potentially early (embryonic/prenatal/preweaning) lethal phenotypes. We
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also compared our candidate genes against a recently published carefully curated
list40 of genes potentially relevant to infertility or recurrent intra-uterine death,
which were selected based on scores of genetic constraint, murine phenotypic
information, and the cell ‘essentialome’, i.e. genes, that are essential for human
cell lines.

Using this approach, in each locus the most likely candidate genes were
considered to be those that either show evidence of evolutionary constraint and are
therefore relevant for reproductive fitness or are associated with an early lethal
phenotype in mice (Supplementary Data 15). Previous publications showing
evidence the gene is linked with either placental function, embryo viability,
pregnancy maintenance, or miscarriage/pregnancy loss were also considered when
prioritizing potential candidate genes.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GWAS meta-analysis summary statistics that support the findings of this study are
available for download from http://www.geenivaramu.ee/tools/misc_sumstats.zip . The
analyses in this manuscript included data from UK Biobank, http://www.ukbiobank.ac.
uk/, under applications 17805, 11867, and 16729; Estonian Biobank, https://www.
geenivaramu.ee/en; ALSPAC (http://www.bristol.ac.uk/alspac/); China Kadoorie Biobank
(http://www.ckbiobank.org/). All QC and GWAS meta-analyses were carried out with
standard tools and pipelines. The analyses in this paper also use data from the 3D
Genome Browser, http://promoter.bx.psu.edu/hi-c/; GTEx, https://gtexportal.org/home/;
International Mouse Phenotype Consortium, https://www.mousephenotype.org; Mouse
Genome Informatics database; http://www.informatics.jax.org/phenotypes.shtml; GWAS
atlas, https://atlas.ctglab.nl.

Code availability
Cohort-level analyses were carried out with SNPTEST v2.5.0, BOLT-LMM v2.3.2,
EPACTS 3,3, plink 1.9, RAREMETALWORKER, Mach2dat. Before central meta-
analysis, data quality control was conducted using Easy QC software (v17.6). Central
meta-analysis was conducted using the MR-MEGA (0.1.5; https://genomics.ut.ee/en/
tools/mr-mega) and METAL (version released on 2011-03-25; https://genome.sph.
umich.edu/wiki/METAL_Documentation) software. Follow-up analyses were in part
carried out using FUMA (1.3.1; http://fuma.ctglab.nl/), using data from ANNOVAR (17-
07-2017) and GWAS catalog (e91_r2018-02-06). Gene-based testing was carried out with
MAGMA 1.06 implemented in FUMA. Functional annotations of variants were obtained
from HaploReg 4.1. SNP heritability and genetic correlations were calculated using LDSC
software (1.0.0) and LDSC software implemented in LD-Hub (http://ldsc.broadinstitute.
org/), respectively. Colocalization analyses were performed using R versions 3.4.3 and
3.5.1 (https://www.r-project.org/), the coloc R package and the coloc.abf() function and
LocusCompareR (http://www.locuscompare.com/) was used for visualization. MR-
PheWAS was conducted using the PHESANT R package. Fig. 1 was created using the
maps package in R. All other analyses were carried out in the R environment.

Received: 16 September 2019; Accepted: 23 October 2020;

References
1. Bender Atik, R. et al. ESHRE guideline: recurrent pregnancy loss. Hum.

Reprod. Open 2018, hoy004, https://doi.org/10.1093/hropen/hoy004 (2018).
2. Jauniaux, E., Farquharson, R. G., Christiansen, O. B. & Exalto, N. Evidence-

based guidelines for the investigation and medical treatment of recurrent
miscarriage. Hum. Reprod. 21, 2216–2222 (2006).

3. Recurrent Miscarriage, Investigation and Treatment of Couples (Green-top
Guideline No. 17). https://www.rcog.org.uk/en/guidelines-research-services/
guidelines/gtg17/. Accessed 2nd 2020.

4. Nybo Andersen, A. M., Wohlfahrt, J., Christens, P., Olsen, J. & Melbye, M.
Maternal age and fetal loss: population based register linkage study. BMJ 320,
1708–1712 (2000).

5. Wang, X. et al. Conception, early pregnancy loss, and time to clinical
pregnancy: a population-based prospective study. Fertil. Steril. 79, 577–584
(2003).

6. Larsen, E. C., Christiansen, O. B., Kolte, A. M. & Macklon, N. New insights
into mechanisms behind miscarriage. BMC Med. 11, 154 (2013).

7. Jauniaux, E., Farquharson, R. G., Christiansen, O. B. & Exalto, N. Evidence-
based guidelines for the investigation and medical treatment of recurrent
miscarriage. Hum. Reprod. 21, 2216–2222 (2006).

8. Goldhaber, M. K. & Fireman, B. H. The fetal life table revisited: spontaneous
abortion rates in three Kaiser Permanente cohorts. Epidemiology 2, 33–39
(1991).

9. Cumming, G. P. et al. The emotional burden of miscarriage for women and
their partners: trajectories of anxiety and depression over 13 months. BJOG
114, 1138–1145 (2007).

10. Coulam, C. B. Association between infertility and spontaneous abortion. Am.
J. Reprod. Immunol. 27, 128–129 (1992).

11. Wagner, M. M., Bhattacharya, S., Visser, J., Hannaford, P. C. & Bloemenkamp,
K. W. M. Association between miscarriage and cardiovascular disease in a
Scottish cohort. Heart 101, 1954–1960 (2015).

12. Maino, A. et al. Pregnancy loss and risk of ischaemic stroke and myocardial
infarction. Br. J. Haematol. https://doi.org/10.1111/bjh.14043 (2016).

13. Kolte, A. M. et al. A genome-wide scan in affected sibling pairs with idiopathic
recurrent miscarriage suggests genetic linkage. Mol. Hum. Reprod. 17,
379–385 (2011).

14. Christiansen, O. B., Mathiesen, O., Lauritsen, J. G. & Grunnet, N. Idiopathic
recurrent spontaneous abortion: evidence of a familial predisposition. Acta
Obstet. Gynecol. Scand. 69, 597–601 (1990).

15. Pereza, N., Ostojić, S., Kapović, M. & Peterlin, B. Systematic review and meta-
analysis of genetic association studies in idiopathic recurrent spontaneous
abortion. Fertil. Steril. 107, 150–159.e2 (2017).

16. Practice Committee of the American Society for Reproductive Medicine.
Definitions of infertility and recurrent pregnancy loss: a committee opinion.
Fertil. Steril. 99, 63 (2013).

17. Zegers-Hochschild, F. et al. The International Committee for monitoring
assisted reproductive. Hum. Reprod. 24, 2683–2687 (2009).

18. Kolte, A. M. et al. Terminology for pregnancy loss prior to viability: a
consensus statement from the ESHRE early pregnancy special interest group.
Hum. Reprod. 30, 495–498 (2015).

19. Mägi, R. et al. Trans-ethnic meta-regression of genome-wide association
studies accounting for ancestry increases power for discovery and improves
fine-mapping resolution. Hum. Mol. Genet. 26, 3639–3650 (2017).

20. Loh, P.-R., Kichaev, G., Gazal, S., Schoech, A. P. & Price, A. L. Mixed-model
association for biobank-scale datasets. Nat. Genet. 50, 906–908 (2018).

21. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis
of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

22. Wang, L., Wang, Z. C., Xie, C., Liu, X. F. & Yang, M. S. Genome-wide
screening for risk loci of idiopathic recurrent miscarriage in a Han Chinese
population: a pilot study. Reprod. Sci. 17, 578–584 (2010).

23. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases
and traits. Nat. Genet. 47, 1236–1241 (2015).

24. Zheng, J. et al. LD Hub: a centralized database and web interface to perform
LD score regression that maximizes the potential of summary level GWAS
data for SNP heritability and genetic correlation analysis. Bioinformatics
btw613 https://doi.org/10.1093/bioinformatics/btw613 (2016).

25. Cohain, J. S., Buxbaum, R. E. & Mankuta, D. Spontaneous first trimester
miscarriage rates per woman among parous women with 1 or more
pregnancies of 24 weeks or more. BMC Pregnancy Childbirth 17, 437 (2017).

26. Pineles, B. L., Park, E. & Samet, J. M. Systematic review and meta-analysis of
miscarriage and maternal exposure to tobacco smoke during pregnancy. Am.
J. Epidemiol. 179, 807–823 (2014).

27. Sundermann, A. C. et al. Alcohol use in pregnancy and miscarriage: a
systematic review and meta-analysis. Alcohol. Clin. Exp. Res. 43, 1606–1616
(2019).

28. Aune, D., Saugstad, O. D., Henriksen, T. & Tonstad, S. Maternal body mass
index and the risk of fetal death, stillbirth, and infant death: a systematic
review and meta-analysis. JAMA 311, 1536–1546 (2014).

29. Pierce, B. L. & Burgess, S. Efficient design for Mendelian randomization
studies: subsample and 2-sample instrumental variable estimators. Am. J.
Epidemiol. 178, 1177–1184 (2013).

30. Liu, M. et al. Association studies of up to 1.2 million individuals yield new
insights into the genetic etiology of tobacco and alcohol use. Nat. Genet. 51,
237–244 (2019).

31. Locke, A. E. et al. Genetic studies of body mass index yield new insights for
obesity biology. Nature 518, 197–206 (2015).

32. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization
analysis with multiple genetic variants using summarized data. Genet.
Epidemiol. 37, 658–665 (2013).

33. Bowden, J. et al. Consistent estimation in Mendelian randomization with
some invalid instruments using a weighted median estimator. Genet.
Epidemiol. 40, 304–314 (2016).

34. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with
invalid instruments: effect estimation and bias detection through Egger
regression. Int. J. Epidemiol. 44, 512–525 (2015).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19742-5 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5980 | https://doi.org/10.1038/s41467-020-19742-5 | www.nature.com/naturecommunications 9

http://www.geenivaramu.ee/tools/misc_sumstats.zip
http://www.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/
https://www.geenivaramu.ee/en
https://www.geenivaramu.ee/en
http://www.bristol.ac.uk/alspac/
http://www.ckbiobank.org/
http://promoter.bx.psu.edu/hi-c/
https://gtexportal.org/home/
https://www.mousephenotype.org
http://www.informatics.jax.org/phenotypes.shtml
https://atlas.ctglab.nl
https://genomics.ut.ee/en/tools/mr-mega
https://genomics.ut.ee/en/tools/mr-mega
https://genome.sph.umich.edu/wiki/METAL_Documentation
https://genome.sph.umich.edu/wiki/METAL_Documentation
http://fuma.ctglab.nl/
http://ldsc.broadinstitute.org/
http://ldsc.broadinstitute.org/
https://www.r-project.org/
http://www.locuscompare.com/
https://doi.org/10.1093/hropen/hoy004
https://www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg17/
https://www.rcog.org.uk/en/guidelines-research-services/guidelines/gtg17/
https://doi.org/10.1111/bjh.14043
https://doi.org/10.1093/bioinformatics/btw613
www.nature.com/naturecommunications
www.nature.com/naturecommunications


35. Millard, L. A. C., Davies, N. M., Gaunt, T. R., Davey Smith, G. & Tilling, K.
Software application profile: PHESANT: a tool for performing
automated phenome scans in UK Biobank. Int. J. Epidemiol. 47, 29–35
(2017).

36. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans.
Nature 536, 285–291 (2016).

37. Karczewski, K. J. et al. The mutational constraint spectrum quantified from
variation in 141,456 humans. Nature 581, 434–443 (2020).

38. Bult, C. J. et al. Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 47,
D801–D806 (2019).

39. Muñoz-Fuentes, V. et al. The International Mouse Phenotyping Consortium
(IMPC): a functional catalogue of the mammalian genome that informs
conservation. Conserv. Genet. 19, 995–1005 (2018).

40. Dawes, R., Lek, M. & Cooper, S. T. Gene discovery informatics toolkit defines
candidate genes for unexplained infertility and prenatal or infantile mortality.
NPJ Genom. Med 4, 8 (2019).

41. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional
mapping and annotation of genetic associations with FUMA. Nat. Commun.
8, 1826 (2017).

42. Wang, Y. et al. The 3D Genome Browser: a web-based browser for visualizing
3D genome organization and long-range chromatin interactions. Genome Biol.
19, 151 (2018).

43. Šućurović, S., Nikolić, T., Brosens, J. J. & Mulac-Jericevic, B. Spatial and
temporal analyses of FGF9 expression during early pregnancy. Cell. Physiol.
Biochem. 42, 2318–2329 (2017).

44. Teklenburg, G. et al. Natural selection of human embryos: decidualizing
endometrial stromal cells serve as sensors of embryo quality upon
implantation. PLoS ONE 5, e10258 (2010).

45. Drummond, A. E., Tellbach, M., Dyson, M. & Findlay, J. K. Fibroblast growth
factor-9, a local regulator of ovarian function. Endocrinology 148, 3711–3721
(2007).

46. Othman, R. et al. Microarray profiling of secretory-phase endometrium from
patients with recurrent miscarriage. Reprod. Biol. 12, 183–199 (2012).

47. Meinhardt, G. et al. Wnt-dependent T-cell factor-4 controls human etravillous
trophoblast motility. Endocrinology 155, 1908–1920 (2014).

48. Burton, G. J. & Jauniaux, E. Placental oxidative stress: from miscarriage to
preeclampsia. J. Soc. Gynecol. Investig. 11, 342–352 (2004).

49. Rave-Harel, N., Miller, N. L. G., Givens, M. L. & Mellon, P. L. The Groucho-
related gene family regulates the gonadotropin-releasing hormone gene
through interaction with the homeodomain proteins MSX1 and OCT1. J. Biol.
Chem. 280, 30975–30983 (2005).

50. Alazami, A. M. et al. TLE6 mutation causes the earliest known human
embryonic lethality. Genome Biol. 16, 240 (2015).

51. Marçal, N. et al. Antagonistic effects of Grg6 and Groucho/TLE on the
transcription repression activity of brain factor 1/FoxG1 and cortical neuron
differentiation. Mol. Cell. Biol. 25, 10916–10929 (2005).

52. Ouseph, M. M. et al. Atypical E2F repressors and activators coordinate
placental development. Dev. Cell 22, 849–862 (2012).

53. Sõber, S. et al. RNA sequencing of chorionic villi from recurrent pregnancy
loss patients reveals impaired function of basic nuclear and cellular
machinery. Sci. Rep. 6, 38439 (2016).

54. Msheik, H. et al. Transcriptomic profiling of trophoblast fusion using BeWo
and JEG-3 cell lines. Mol. Hum. Reprod. 25, 811–824 (2019).

55. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558,
73–79 (2018).

56. GTEx, Consortium et al. Genetic effects on gene expression across human
tissues. Nature 550, 204–213 (2017).

57. Kikas, T., Rull, K., Beaumont, R. N., Freathy, R. M. & Laan, M. The effect of
genetic variation on the placental transcriptome in humans. Front. Genet. 10,
550 (2019).

58. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of
genetic association studies using summary statistics. PLoS Genet. 10, e1004383
(2014).

59. McGinnis, R. et al. Variants in the fetal genome near FLT1 are associated with
risk of preeclampsia. Nat. Genet. 49, 1255–1260 (2017).

60. Wilcox, A. J. et al. Incidence of early loss of pregnancy. N. Engl. J. Med. 319,
189–194 (1988).

61. Khashan, A. S. et al. Increased risk of miscarriage and ectopic pregnancy
among women with irritable bowel syndrome. Clin. Gastroenterol. Hepatol.
10, 902–909 (2012).

62. Ticconi, C. et al. Ectopic pregnancy in women with recurrent miscarriage.
J. Obstet. Gynaecol. Res. 44, 852–860 (2018).

63. Ali, A. T. Reproductive factors and the risk of endometrial cancer. Int. J.
Gynecol. Cancer 24, 384–393 (2014).

64. Blais, L., Kettani, F.-Z. & Forget, A. Relationship between maternal asthma, its
severity and control and abortion. Hum. Reprod. 28, 908–915 (2013).

65. Weng, S.-C. et al. Do stillbirth, miscarriage, and termination of pregnancy
increase risks of attempted and completed suicide within a year? A
population-based nested case-control study. BJOG An. Int. J. Obstet. Gynaecol.
125, 983–990 (2018).

66. Winkler, T. W. et al. Quality control and conduct of genome-wide association
meta-analyses. Nat. Protoc. 9, 1192–1212 (2014).

67. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype
imputation. Nat. Genet. 48, 1279–1283 (2016).

68. 1000 Genomes Project Consortium et al. A global reference for human genetic
variation. Nature 526, 68–74 (2015).

69. Neale, M. C. & Cardon, L. R. Methodology for Genetic Studies of Twins and
Families. (Springer Netherlands, 1992).

70. Neale, M. C, Boker, S. M., Xie, G., Maes, H. H.Mx: Statistical Modeling. VCU Box
900126, Richmond, VA 23298: Department of Psychiatry. 6th Edition (2003).

71. Schmitt, A. et al. A compendium of chromatin contact maps reveals spatially
active regions in the human genome. Cell Rep. 17, 2042–2059 (2016).

72. Javierre, B. M. et al. Lineage-specific genome architecture links enhancers and
non-coding disease variants to target gene promoters. Cell 167, 1369–1384.e19
(2016).

73. Dixon, J. R. et al. Chromatin architecture reorganization during stem cell
differentiation. Nature 518, 331–336 (2015).

74. Kircher, M. et al. A general framework for estimating the relative
pathogenicity of human genetic variants. Nat. Genet. 46, 310–315 (2014).

Acknowledgements
T.L. is supported by European Commission Horizon 2020 research and innovation
program (project WIDENLIFE, grant number 692065); Estonian Ministry of Education
and Research (grants IUT34-16, PUT IUT20-60, PUTJD726, and MOBTP155); Enter-
prise Estonia (grant EU49695). J.C.C. is funded by the Oxford Medical Research Council
Doctoral Training Partnership (Oxford MRC DTP) and the Nuffield Department of
Clinical Medicine, University of Oxford. S.L. is supported by a Novo Nordisk Post-
doctoral Fellowship run in partnership with the University of Oxford. C.M.L. is sup-
ported by the Li Ka Shing Foundation, WT-SSI/John Fell funds, Oxford, NIHR Oxford
Biomedical Research Centre, Oxford, Widenlife and NIH (5P50HD028138-27). D.F.C. is
supported by grants from the National Institutes of Health (R01HD078641,
R01MH101810, and P51OD011092). R.M. is funded by Estonian Ministry of Education
and Research (grant PRG687). T.F. is supported by the NIHR Biomedical Research
Centre, Oxford. S.E.M. and J.N.P. were supported by NHMRC applications APP1103623
and APP1084325. Partners HealthCare Biobank is supported by NHGRI grant
U01HG008685. This study was funded by EU H2020 grant 692145, Estonian Research
Council Grant IUT20-60, IUT24-6, and European Union through the European Regional
Development Fund Project No. 2014-2020.4.01.15-0012 GENTRANSMED and 2014-
2020.4.01.16-0125. Data analyses were carried out in part in the High-Performance
Computing Center of University of Tartu. This study was funded by The Lundbeck
Foundation, Denmark. This research has been conducted using the Danish National
Biobank resource, supported by the Novo Nordisk Foundation. Computation used the
Oxford Biomedical Research Computing (BMRC) facility, a joint development between
the Wellcome Centre for Human Genetics and the Big Data Institute supported by
Health Data Research UK and the NIHR Oxford Biomedical Research Centre. Financial
support was provided by the Wellcome Trust Core Award Grant Number 203141/Z/16/
Z. The views expressed are those of the author(s) and not necessarily those of the NHS,
the NIHR or the Department of Health. We thank the study subjects for their valuable
participation. We thank the twins and their families for their participation in the QIMR
study. We acknowledge with appreciation all women who participated in the QIMR
endometriosis study. We are extremely grateful to all the families who took part in the
ALSPAC study, the midwives for their help in recruiting them, and the whole ALSPAC
team, which includes interviewers, computer and laboratory technicians, clerical workers,
research scientists, volunteers, managers, receptionists and nurses. The authors wish to
acknowledge the services of the Lifelines Cohort Study, the contributing research centers
delivering data to Lifelines, and all the study participants. A full list of acknowledgements
is provided in the Supplementary Note 2.

Author contributions
T.L., A.L.G.S, T.F., J.N.P., J.C.C, S.La., J.B., C-Y.C., K.L., S.Liu, and A.R. carried out data
analysis; H.S., Z.C., D.F.C., B.J., L.L., N.G.M., B.N., R.N., R.G.W., S.E.M., R.M., D.A.L.,
and C.M.L. coordinated cohort-level analyses; M.L., I.Y.M., J.S., M.S.A., L.Y., C.B., S.D.G.,
J.B-G., Ø.H., D.M.H., X.J., S.J., J.J., C.K., V.K., P.A.L., A.D.B., O.M., M.N., T.W., A.M., G.
W.M., A.P.M., P.B.M., P.R.N., D.R.N., M.L., S.S., A.S., K.Z., I.G.; and D.A.L. provided
and/or processed (phenotype) data; T.L., A.L.G.S., R.M., D.A.L., and C.M.L. drafted the
manuscript; All authors contributed to the final version of the manuscript.;

Competing interests
D.A.L. has received support from Roche Diagnostics and Medtronic Ltd for biomarker
research unrelated to that presented here. The other authors have no competing interests.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19742-5

10 NATURE COMMUNICATIONS |         (2020) 11:5980 | https://doi.org/10.1038/s41467-020-19742-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-19742-5.

Correspondence and requests for materials should be addressed to T.L. or C.M.L.

Peer review information Nature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

Triin Laisk 1,2,3,48✉, Ana Luiza G. Soares 4,5,48, Teresa Ferreira6,48, Jodie N. Painter 7,48,

Jenny C. Censin 6,8, Samantha Laber6,8, Jonas Bacelis 9, Chia-Yen Chen10,11,12, Maarja Lepamets2,13,

Kuang Lin14, Siyang Liu15,16, Iona Y. Millwood14,17, Avinash Ramu18, Jennifer Southcombe19,

Marianne S. Andersen20, Ling Yang14,17, Christian M. Becker 19, Anders D. Børglum 21,22,23,

Scott D. Gordon 7, Jonas Bybjerg-Grauholm 21,24, Øyvind Helgeland25,26, David M. Hougaard 21,24,

Xin Jin15,27, Stefan Johansson 26,28, Julius Juodakis 29, Christiana Kartsonaki14,17, Viktorija Kukushkina2,13,

Penelope A. Lind 7, Andres Metspalu 2, Grant W. Montgomery 30, Andrew P. Morris 2,8,31, Ole Mors21,32,

Preben B. Mortensen21,33, Pål R. Njølstad 26,34, Merete Nordentoft21,35, Dale R. Nyholt 36,

Margaret Lippincott37, Stephanie Seminara37, Andres Salumets1,3,38,39, Harold Snieder 40,

Krina Zondervan 8,19, Thomas Werge 21,41,42, Zhengming Chen 14, Donald F. Conrad18, Bo Jacobsson 9,25,

Liming Li 43, Nicholas G. Martin 7, Benjamin M. Neale 10,11,12, Rasmus Nielsen 44,45,

Robin G. Walters 14,17, Ingrid Granne19,49, Sarah E. Medland 7,49, Reedik Mägi2,49,

Deborah A. Lawlor 4,5,46,49 & Cecilia M. Lindgren 6,8,47,49✉

1Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia. 2Estonian Genome Center, Institute
of Genomics, University of Tartu, Tartu, Estonia. 3Competence Centre on Health Technologies, Tartu, Estonia. 4MRC Integrated Epidemiology Unit
at the University of Bristol, Bristol, UK. 5Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK. 6Big Data Institute, Li
Ka Shing Center for Health for Health Information and Discovery, Oxford University, Oxford, UK. 7QIMR Berghofer Medical Research Institute,
Herston, QLD, Australia. 8Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK. 9Department of Obstetrics and Gynecology,
Sahlgrenska University Hospital Östra, Gothenburg, Sweden. 10Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston,
MA, USA. 11Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. 12Broad Institute of MIT and
Harvard, Cambridge, MA, USA. 13Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. 14Clinical Trial Service Unit &
Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK. 15BGI-Shenzhen, Shenzhen,
518083 Guangdong, China. 16Bioinformatics Centre, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark. 17Medical
Research Council Population Health Research Unit (PHRU), University of Oxford, Oxford, UK. 18Department of Genetics, Washington University in
St. Louis, Saint Louis, MO, USA. 19Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, UK. 20Department of
Endocrinology, Odense University Hospital, Odense, Denmark. 21iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research,
Aarhus, Denmark. 22Department of Biomedicine and Center for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. 23Center for
Genomics and Personalized Medicine, Aarhus University and University Hospital, Aarhus, Denmark. 24Department for Congenital Disorders,
Statens Serum Institut, Copenhagen, Denmark. 25Department of Genetics and Bioinformatics, Health Data and Digitalisation, Norwegian Institute
of Public Health, Oslo, Norway. 26KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen,
Norway. 27School of Medicine, South China University of Technology, Guangzhou, 510006 Guangdong, China. 28Department of Medical Genetics,
Haukeland University Hospital, N-5021 Bergen, Norway. 29Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska
Academy, University of Gothenburg, Gothenburg, Sweden. 30University of Queensland, St Lucia, QLD, Australia. 31Department of Biostatistics,
University of Liverpool, Liverpool, UK. 32Psychosis Research Unit, Aarhus University Hospital – Psychiatry, Aarhus, Denmark. 33National Centre for
Register-Based Research, Aarhus University, Aarhus, Denmark. 34Department of Pediatrics, Haukeland University Hospital, Bergen, Norway.
35Copenhagen University Hospital, Mental Health Center Copenhagen, Mental Health Services in the Capital Region of Denmark, Copenhagen,
Denmark. 36School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia. 37Reproductive
Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA. 38Institute of Bio- and Translational Medicine, University of Tartu, Tartu,
Estonia. 39Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland. 40Department of
Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands. 41Institute of Biological Psychiatry, MHC

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19742-5 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:5980 | https://doi.org/10.1038/s41467-020-19742-5 | www.nature.com/naturecommunications 11

https://doi.org/10.1038/s41467-020-19742-5
https://doi.org/10.1038/s41467-020-19742-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0003-1501-9030
http://orcid.org/0000-0003-1501-9030
http://orcid.org/0000-0003-1501-9030
http://orcid.org/0000-0003-1501-9030
http://orcid.org/0000-0003-1501-9030
http://orcid.org/0000-0003-2763-4647
http://orcid.org/0000-0003-2763-4647
http://orcid.org/0000-0003-2763-4647
http://orcid.org/0000-0003-2763-4647
http://orcid.org/0000-0003-2763-4647
http://orcid.org/0000-0002-4992-2458
http://orcid.org/0000-0002-4992-2458
http://orcid.org/0000-0002-4992-2458
http://orcid.org/0000-0002-4992-2458
http://orcid.org/0000-0002-4992-2458
http://orcid.org/0000-0001-6625-6074
http://orcid.org/0000-0001-6625-6074
http://orcid.org/0000-0001-6625-6074
http://orcid.org/0000-0001-6625-6074
http://orcid.org/0000-0001-6625-6074
http://orcid.org/0000-0002-2450-732X
http://orcid.org/0000-0002-2450-732X
http://orcid.org/0000-0002-2450-732X
http://orcid.org/0000-0002-2450-732X
http://orcid.org/0000-0002-2450-732X
http://orcid.org/0000-0002-9870-9581
http://orcid.org/0000-0002-9870-9581
http://orcid.org/0000-0002-9870-9581
http://orcid.org/0000-0002-9870-9581
http://orcid.org/0000-0002-9870-9581
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-7623-328X
http://orcid.org/0000-0001-7623-328X
http://orcid.org/0000-0001-7623-328X
http://orcid.org/0000-0001-7623-328X
http://orcid.org/0000-0001-7623-328X
http://orcid.org/0000-0003-1705-4008
http://orcid.org/0000-0003-1705-4008
http://orcid.org/0000-0003-1705-4008
http://orcid.org/0000-0003-1705-4008
http://orcid.org/0000-0003-1705-4008
http://orcid.org/0000-0001-5928-3517
http://orcid.org/0000-0001-5928-3517
http://orcid.org/0000-0001-5928-3517
http://orcid.org/0000-0001-5928-3517
http://orcid.org/0000-0001-5928-3517
http://orcid.org/0000-0002-2298-7008
http://orcid.org/0000-0002-2298-7008
http://orcid.org/0000-0002-2298-7008
http://orcid.org/0000-0002-2298-7008
http://orcid.org/0000-0002-2298-7008
http://orcid.org/0000-0001-5600-974X
http://orcid.org/0000-0001-5600-974X
http://orcid.org/0000-0001-5600-974X
http://orcid.org/0000-0001-5600-974X
http://orcid.org/0000-0001-5600-974X
http://orcid.org/0000-0002-3887-2598
http://orcid.org/0000-0002-3887-2598
http://orcid.org/0000-0002-3887-2598
http://orcid.org/0000-0002-3887-2598
http://orcid.org/0000-0002-3887-2598
http://orcid.org/0000-0002-3718-796X
http://orcid.org/0000-0002-3718-796X
http://orcid.org/0000-0002-3718-796X
http://orcid.org/0000-0002-3718-796X
http://orcid.org/0000-0002-3718-796X
http://orcid.org/0000-0002-4140-8139
http://orcid.org/0000-0002-4140-8139
http://orcid.org/0000-0002-4140-8139
http://orcid.org/0000-0002-4140-8139
http://orcid.org/0000-0002-4140-8139
http://orcid.org/0000-0002-6805-6014
http://orcid.org/0000-0002-6805-6014
http://orcid.org/0000-0002-6805-6014
http://orcid.org/0000-0002-6805-6014
http://orcid.org/0000-0002-6805-6014
http://orcid.org/0000-0003-0304-6728
http://orcid.org/0000-0003-0304-6728
http://orcid.org/0000-0003-0304-6728
http://orcid.org/0000-0003-0304-6728
http://orcid.org/0000-0003-0304-6728
http://orcid.org/0000-0001-7159-3040
http://orcid.org/0000-0001-7159-3040
http://orcid.org/0000-0001-7159-3040
http://orcid.org/0000-0001-7159-3040
http://orcid.org/0000-0001-7159-3040
http://orcid.org/0000-0003-1949-2298
http://orcid.org/0000-0003-1949-2298
http://orcid.org/0000-0003-1949-2298
http://orcid.org/0000-0003-1949-2298
http://orcid.org/0000-0003-1949-2298
http://orcid.org/0000-0002-0275-9905
http://orcid.org/0000-0002-0275-9905
http://orcid.org/0000-0002-0275-9905
http://orcid.org/0000-0002-0275-9905
http://orcid.org/0000-0002-0275-9905
http://orcid.org/0000-0003-1829-0766
http://orcid.org/0000-0003-1829-0766
http://orcid.org/0000-0003-1829-0766
http://orcid.org/0000-0003-1829-0766
http://orcid.org/0000-0003-1829-0766
http://orcid.org/0000-0001-6423-105X
http://orcid.org/0000-0001-6423-105X
http://orcid.org/0000-0001-6423-105X
http://orcid.org/0000-0001-6423-105X
http://orcid.org/0000-0001-6423-105X
http://orcid.org/0000-0001-5079-2374
http://orcid.org/0000-0001-5079-2374
http://orcid.org/0000-0001-5079-2374
http://orcid.org/0000-0001-5079-2374
http://orcid.org/0000-0001-5079-2374
http://orcid.org/0000-0001-5873-7089
http://orcid.org/0000-0001-5873-7089
http://orcid.org/0000-0001-5873-7089
http://orcid.org/0000-0001-5873-7089
http://orcid.org/0000-0001-5873-7089
http://orcid.org/0000-0003-4069-8020
http://orcid.org/0000-0003-4069-8020
http://orcid.org/0000-0003-4069-8020
http://orcid.org/0000-0003-4069-8020
http://orcid.org/0000-0003-4069-8020
http://orcid.org/0000-0003-1513-6077
http://orcid.org/0000-0003-1513-6077
http://orcid.org/0000-0003-1513-6077
http://orcid.org/0000-0003-1513-6077
http://orcid.org/0000-0003-1513-6077
http://orcid.org/0000-0003-0513-6591
http://orcid.org/0000-0003-0513-6591
http://orcid.org/0000-0003-0513-6591
http://orcid.org/0000-0003-0513-6591
http://orcid.org/0000-0003-0513-6591
http://orcid.org/0000-0002-9179-0321
http://orcid.org/0000-0002-9179-0321
http://orcid.org/0000-0002-9179-0321
http://orcid.org/0000-0002-9179-0321
http://orcid.org/0000-0002-9179-0321
http://orcid.org/0000-0003-1382-380X
http://orcid.org/0000-0003-1382-380X
http://orcid.org/0000-0003-1382-380X
http://orcid.org/0000-0003-1382-380X
http://orcid.org/0000-0003-1382-380X
http://orcid.org/0000-0002-6793-2262
http://orcid.org/0000-0002-6793-2262
http://orcid.org/0000-0002-6793-2262
http://orcid.org/0000-0002-6793-2262
http://orcid.org/0000-0002-6793-2262
http://orcid.org/0000-0002-4903-9374
http://orcid.org/0000-0002-4903-9374
http://orcid.org/0000-0002-4903-9374
http://orcid.org/0000-0002-4903-9374
http://orcid.org/0000-0002-4903-9374
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark. 42Department of Clinical Medicine, University of Copenhagen, Copenhagen,
Denmark. 43Department of Epidemiology & Biostatistics, Peking University Health Science Centre, Peking University, Beijing, China. 44Department
of Integrative Biology, University of California Berkeley, Berkeley, CA, USA. 45Centre for GeoGenetics, Natural History Museum of Denmark,
University of Copenhagen, Copenhagen, Denmark. 46Bristol National Institute of Health Research Biomedical Research Centre, Bristol, UK.
47Program in Medical and Population Genetics, Broad Institute, Boston, MA, USA. 48These authors contributed equally: Triin Laisk, Ana Luiza G.
Soares, Teresa Ferreira, Jodie N. Painter. 49These authors jointly supervised this work: Ingrid Granne, Sarah E. Medland, Reedik Mägi, Deborah A.
Lawlor, Cecilia M. Lindgren. ✉email: triin.laisk@ut.ee; cecilia.lindgren@bdi.ox.ac.uk

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19742-5

12 NATURE COMMUNICATIONS |         (2020) 11:5980 | https://doi.org/10.1038/s41467-020-19742-5 | www.nature.com/naturecommunications

mailto:triin.laisk@ut.ee
mailto:cecilia.lindgren@bdi.ox.ac.uk
www.nature.com/naturecommunications

	The genetic architecture of sporadic and multiple consecutive miscarriage
	Results
	GWAS meta-analysis
	No overlap with previously proposed candidate genes
	Heritability of miscarriage
	Miscarriage genetically correlated with number of children
	Miscarriage is associated with a variety of health outcomes
	Gene prioritization identifies links with placental biology

	Discussion
	Methods
	Study cohorts
	Case definitions
	GWAS genotyping and imputation
	Association analyses
	Meta-analysis
	Look-up of variants previously associated with recurrent miscarriage
	Heritability analysis
	Genetic correlation analyses
	Associated phenotypes analysis
	MR analyses
	Functional annotation

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




