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Oxidative Phosphorylation
Impairment by DDT and DDE
Sarah E. Elmore and Michele A. La Merrill*

Department of Environmental Toxicology, University of California, Davis, Davis, CA, United States

There is increasing evidence supporting the characterization of the pesticide DDT and its

metabolite, DDE, as obesogens and metabolic disruptors. Elucidating the mechanism

is critical to understanding whether the association of DDT and DDE with obesity and

diabetes is in fact causal. One area of research investigating the etiology of metabolic

diseases is mitochondrial toxicity. Several studies have found associations between

mitochondrial defects and insulin resistance, cellular respiration, substrate utilization, and

energy expenditure. Although the mitotoxicity of DDT and DDE was established 20–40

years ago, it was not viewed in the light of the diseases faced today; therefore, it is prudent

to reexamine the mitotoxicity literature for mechanistic support of DDT and DDE as causal

contributors to obesity and diabetes, as well as associated diseases, such as cancer and

Alzheimer’s disease. This review aims to focus on studies investigating the effect of DDT

or DDE on mammalian mitochondrial oxidative phosphorylation. We illustrate that both

DDT and DDE impair the electron transport chain (ETC) and oxidative phosphorylation.

We conclude that there is reasonable data to suggest that DDT and DDE target specific

complexes and processes within the mitochondria, and that these insults could in turn

contribute to the role of DDT and DDE in mitochondria-associated diseases.

Keywords: mitotoxicity, electron transport chain, insulin resistance, obesity, DDT, DDE, pesticides

INTRODUCTION

The discovery of dichlorodiphenyltrichloroethane (DDT) as an efficient insecticide won Paul
Muller the Nobel Prize in the 1940s. Initially used to control vector-borne diseases, such as malaria,
its broad use as a pesticide quickly grew. However, DDT was banned in 1972 in the United States
due to adverse environmental effects. Although banned by many countries following the 2001
Stockholm Convention, DDT is still recommended for indoor residual spraying to control malaria
vectors by the World Health Organization (1) and as such, continues to be manufactured and
used. Current US FDA guidelines limit DDT and DDE levels to 0.05–5 ppm depending on the
commodity (2).

DDT and its metabolite dichlorodiphenyldicholorethylene (DDE) are both persistent organic
pollutants (POPs) due to their physiochemical properties, allowing for biomagnification and their
storage in the lipid-rich adipose tissue of mammals (3, 4). The environmental persistence of DDT
and DDE, combined with the fact that DDT is still manufactured and used in parts of the world
today, make DDT and DDE relevant public health concerns.

In a recent integrated systematic review and meta-analysis, p,p′-DDT and p,p′-DDE were
classified as “presumed” to be obesogenic for humans, based on prospective epidemiological
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observations integrated with experimental evidence of increased
rodent adiposity and impaired energy expenditure (5).
Numerous studies have suggested that exposure to DDT
and/or DDE are additionally associated with several diseases
linked to obesity, namely type 2 diabetes (T2D), Alzheimer’s
disease (AD), and cancer (6–11). However, the mechanism
of impairment by DDT or DDE which leads to these diseases
remains unresolved. One supporting mechanistic hypothesis
is that DDT and DDE are mitotoxicants. Indeed, the role of
POPs, including DDT and DDE, in mitochondrial dysfunction
and metabolic diseases, such as obesity and T2D has been
broadly reviewed (12–14). Furthermore, subtle mitochondrial
malfunctions appear to be involved in the pathogenesis of
insulin resistance, T2D, AD, and cancer. However, specific
mitochondrial targets of DDT or DDE have not been examined
across the existing literature to our knowledge.

The predominant function of mitochondria is the generation
of ATP by oxidative phosphorylation (OxPhos), but also includes
the generation and detoxification of reactive oxygen species,
apoptosis, regulation of calcium,metabolism, self-transportation,
and thermogenesis (15, 16). Thorough reviews of the methods
available to assess mitochondrial dysfunction are available
(15, 17).

Impaired cellular respiration (18–21) and mitochondrial
membrane potential (18, 20) have been observed in mammalian
mitochondria after exposure to DDT and DDE. DDE also
decreased membrane potential, ATP levels, and oxygen
consumption rates in human HepG2 cells (22). In this review,
we summarize the mechanistic evidence supporting these
mitotoxicities by focusing on studies investigating the effect
of DDT or DDE on OxPhos, specifically the complexes of
the ETC and the efficiency of coupling ATP synthesis to
the ETC. We illustrate that both DDT and DDE impair
specific complexes of the ETC that contribute to an overall
reduction in OxPhos (Table 1 and Figure 1). Although other
chemicals may interact with DDT or DDE in targeting
OxPhos, exploration of mixture effects is out of the scope of
this mini-review.

COMPLEX I

Complex I (Figure 1) is also known as the NADH dehydrogenase
complex or NADH:ubiquinone oxidoreductase. This enzyme
complex is responsible for accepting electrons from NADPH and
ultimately passing them to the next complex through ubiquinone
as protons are pumped across the inner mitochondrial
membrane. Systems that are impaired at this complex would
have a depression in mitochondrial potential and cellular
respiration resulting in one less proton (ATP) produced by the
energy transfer of the electron.

Pardini et al. (23) reported a depression of 0–15% of
baseline NADH dehydrogenase activity by 2.5 umol DDT/mg
of mitochondria from heavy beef heart. However, others
did not observe significant defects at Complex I in isolated
rat mitochondria at doses above or below that dose (18,
24). Based on the studies reviewed here, there is equivocal

evidence implicating a DDT impairment at Complex I.
Additional species and conditions are necessary to make a
further determination.

Pardini et al. (23) also reported a 5–20% depression of baseline
NADH dehydrogenase activity by 2.5 umol/mg of DDE in heavy
beef heart mitochondria. Yet Ferreira et al. (20) did not report any
changes at Complex I in rat mitochondria exposed to the same
range of DDE doses. Without additional evidence it is difficult
to reach a conclusion regarding the possible effects of DDE on
Complex I; additional studies are necessary to determine the
directionality of a DDE effect.

COMPLEX II

Complex II is contains the enzyme succinate dehydrogenase, also
known succinate-CoQ reductase. At this Complex, additional
electrons are delivered from the substrate succinate to a quinone
pool via flavin adenine dinucleotide (FAD). No protons are
transported across the intermembrane space, hence a defect at
Complex II would result in a depression of cellular respiration
but no change in proton motive force.

Moreno and Madeira (18) reported that Complex II is
insensitive to DDT. Conversely, Pardini et al. (23) observed
that succinate dehydrogenase enzymatic activity was reduced by
10–20% after heavy beef mitochondria were treated with DDT
and Nishihara and Utsumi (24) observed a 16% inhibition of
succinate dehydrogenase in rat mitochondria after treatment
with 50 uM of DDT. Given that Complex II does not contribute
to changes in mitochondrial membrane potential, the weak
defects by DDT reported here are unlikely to be responsible for
the decreased mitochondrial membrane potential observed in
mammalian mitochondria exposed to DDT and DDE (18, 20),
but may cause OxPhos impairment through reduced substrate
transfer from Complex I to Complex II (Figure 1).

Pardini et al. (23) also observed enzymatic depressions
at Complex II by DDE in heavy beef mitochondria. More
compelling yet, while Ferreira et al. (20) reported a depression
in respiration and membrane potential in the presence of the
Complex II substrate succinate at 10 nmol of DDE in isolated
rat mitochondria, this outcome was not observed when Complex
III substrates were used to bypass Complex II defects, e.g.,
ascorbate and the cytochrome c electron donator N,N,N′,N′-
Tetramethyl-pphenylenediamine dihydrochloride (TMPD). The
full restoration of respiration and membrane potential by
ascorbate and TMPD suggests that inhibition of Complex II
and inhibition of succinate translocation is the source of DDE
depression of mitochondrial respiration. This evidence supports
the inference that the inhibitory effects of DDE on Complex
II contribute to a limited capacity for ATP production through
substrate transfer rather than the proton gradient, to cause an
energy imbalance (Figure 1).

COMPLEX III

Complex III, also referred to as cytochrome b-c1, contains at
least 11 different polypeptide chains and functions as a dimer.
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FIGURE 1 | Summary of DDT and DDE effects on the electron transport chain and oxidative phosphorylation complexes. Degree of evidence is represented by weight

of line and corresponds to data presented in Table 1. Arrows indicate the direction of the electron flow. Q, ubiquinone; Cyt c, cytochrome c. *Evidence of a strong

effect but opposing directionality exists.

This complex accepts electrons from the substrate ubiquinone
and passes them cytochrome c, which carries its electron to
Complex IV (one electron per cytochrome c); ubiquinol—
cytochrome-c reductase catalyzes the chemical reaction. At this
Complex, protons are transferred to the inner membrane space,
contributing to membrane potential.

Nishihara and Utsumi (24) reported that DDT interfered with
electron transfer via a 39% inhibition of succinate-cytochrome c
reductase activity after treatment of rat-liver mitochondria with
50 uM DDT. The authors concluded that this defect originated
at the electron transfer between cytochrome b and c. This effect
was only observed when succinate was supplied as the substrate,
suggesting that the overall electron transfer defect resulted from
a combination of defects at Complex II and III of the ETC. In
support of DDT interference with activity between cytochromes
b and c, Moreno and Madeira (18) observed direct inhibition of
the ubiquinol-cytochrome c subunit of isolated rat mitochondria.

Cytochrome c oxidase activity was not impaired when TMPD
(serving as a Complex III substrate that bypasses Complex II
through its cytochrome c electron donation) was used as the
substrate after DDE exposure (20). This observation supports the
notion that Complex III machinery and function was intact and
working properly after DDE exposure.

COMPLEX IV

Complex IV, also known as cytochrome c oxidase, is the
segment where four electrons are removed from four molecules
of cytochrome c and transferred to oxygen to produce two
water molecules. Simultaneously, protons are moved from the

mitochondrial matrix to the inner membrane thus contributing
to the mitochondrial proton gradient.

Both Nishihara and Utsumi (24) and Moreno and Madeira
(18) reported that DDT did not affect the cytochrome c oxidase
segment of Complex IV.

Ferreira et al. (20) found that Complex IV of the ETC was not
affected by DDE.

ATP SYNTHASE (COMPLEX V)

ATP Synthase (ATPase), often referred to as Complex V, is the
final segment of the ETC. It transports a proton into the inner
mitochondrial space as energy to increase the proton gradient
which fuels the phosphorylation of ADP to ATP.

DDT appears to act on ATPase in every study that has
examined it, but the direction of effect is inconsistent (Table 1).
On one hand, several authors reported that DDT stimulated
ATPase activity in both rat liver and brain mitochondria after
DDT treatment (18, 21). Similarly, Ohyama et al. (19) reported
that DDT stimulated ATPase residing in intact mitochondria
yet they also observed an inhibitory effect of DDT on ATPase
from sonicated submitochondria particles. These results suggest
DDT can inhibit ATPase when ATPase is uncoupled from the
ETC. However, other studies of intact mitochondria suggest DDT
can inhibit ATPase even when coupled to ETC. For example,
Nishihara and Utsumi (24) evaluated isolated rat mitochondria
and found weak inhibition of ATPase by DDT starting at 10 uM,
with maximum inhibition (38% of control) observed with 200
uM DDT. Further, Moreno and Madeira (18) reported inhibited
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ATPase activity and decreased ATP synthesis in isolated rat
mitochondria exposed to low dose DDT.

These differing effects of DDT on ATPase across different
methods implemented by Moreno and Madeira may reflect
confounding effects by unreported experimental parameters,
such as temperature. For example, the motor protein that
couples ATP hydrolysis to mechanical rotation was recently
characterized by Wantanabe and Noji (25), who found that the
rotation of ATPase is highly temperature sensitive. However,
despite experimental differences, the consistent perturbation
of ATPase activity by DDT among the body of evidence
resulting from examination of the effects of DDT on ATPase
suggests that ATPase is a target of DDT toxicity and
may result in some sort of energy dissipation through
Complex V.

Similar to DDT, DDE appears to act on ATPase in most
studies reviewed here, but the direction of the DDE effect is
inconsistent (Table 1). For example, Ohyama et al. (19) reported
a stimulation of “latent” ATPase activity by DDE (4–20 ug/ml)
in isolated rat mitochondria and a DDE (30 ug/ml) inhibition
of ATPase when uncoupled from the ETC in submitochondrial
factions. Conversely, Ferreira et al. (20) did not observe any
ATPase defects when isolated mitochondria or submitochondrial
particles were exposed to 20 or 50 nmol DDE/mg. Once again,
it is reasonable to suggest that ATPase may be a target of DDE
toxicity and result in some sort of energy dissipation through the
enzyme complex.

ETC UNCOUPLING

In Complex V, ATPase is responsible for “coupling” the proton
gradient of the ETC to ATP synthesis. This process can be
uncoupled when uncoupling protein leaks protons back into
the inner mitochondrial matrix generating heat rather than
producing ATP. Conversely, non-canonical uncoupling can
occur in the absence of electron flow and ATPase inhibition,
when for other reasons, ATP synthesis cannot take place. These
reasons include exposure to uncoupling agents, such as FCCP or
CCCP, or to physical force, such as osmotic shock, that dissipates
the pH or membrane potential of the mitochondria (26).

The literature suggests that DDT does not uncouple OxPhos.
Moreno andMadeira (18) reported that only large concentrations
of DDT caused extensive proton leak. This is consistent with
the uncoupled OxPhos by high doses of DDT observed by
Ohyama et al. (19) and by Nishihara and Utsumi (24). Given the
lipophilicity of DDT, these observations of uncoupled OxPhos
following high dose exposure to DDT likely reflect nothing more
than non-specific destruction of the mitochondrial membrane.

Similar to DDT experimental outcomes, Ferreira et al.
(20) observed partial uncoupling of OxPhos in isolated rat
mitochondria at high doses of DDE (>80 nmol/mg protein).
Ohyama et al. (19) came to a similar conclusion after reporting
uncoupling activity that resulted in stimulation of State 4
respiration. Ferreira and Ohyama suggest that this effect is likely
due to disruption of the mitochondrial inner membrane by the
high, non-biologically relevant, doses of DDE used.

SUMMARY OF RESULTS AND
DISCUSSION OF THE RESEARCH GAPS

The in vitro studies, primarily in rodent mitochondria, discussed
in this review clearly demonstrate the toxic effects of DDT and
DDE on Complex II and Complex V of the ETC. Toxicity
to Complex II appears to result from substrate disruption.
Indeed, given there is no proton transport by Complex II,
if DDT and DDE target Complex II, the resulting Complex
II perturbation does not explain the reported effects on
reduced membrane potential. Instead, we suspect that disruption
to ATPase activity by DDT and DDE may contribute to
defects associated with mitochondrial respiration and membrane
potential. Although inconsistencies in the effects of DDT and
DDE on ATPase remain to be resolved, it is important to note
that ATPases vary in their sensitivity to DDT depending on
temperature (19); this could contribute to different results across
systems tested.

Early work presented by Byczkowski (21) suggest
mitochondrial uncoupling was the mode of action for DDT
mitotoxicity, however it appears this was only the case when
DDT or DDE levels exceeded 50 nmol/mg; doses at or above this
level often coincided with mitochondrial swelling, an indicator
of mitochondrial dysfunction resulting from mitochondrial
permeability (27).

Through this review, several mechanistic gaps of DDT and
DDE mitotoxicity became apparent. First, given most studies
investigated mitochondria from rats and their livers, there is
a need for the demonstration of consistency of DDT and
DDE mitotoxicity across multiple species and tissues. Given
mitochondrial functions vary by cell type and the emerging
relationships between DDT, mitochondrial-dense brown adipose
tissue, and obesity [e.g., (28)], this is a tissue in need of
characterization. Additionally, given the evidence supporting a
role of substrate perturbation in Complex II toxicity caused by
DDT and DDE, whole cell and/or ETC substrate studies should
be conducted. Lastly, the direction of DDT and DDE effects on
ATPase function should be resolved at doses more relevant to
the human condition. In the meta-analysis of prospective human
studies associating DDTs with obesity, Cano-Sancho et al. (5)
found internal concentrations of DDT and DDE to be between
0.001 and 10 ng DDTs/mL. Based on lipid weight conversion
as described by Cano-Sancho et al. (5), these obesogenic levels
correspond to∼0.001–30 nM of DDT or DDE for in vitro dosing.
We further suggest that temperature and perhaps pressure be
systematically controlled in this endeavor to resolve discrepancies
in the DDT and DDE effect at ATPase.

IMPLICATIONS FOR DISEASE ETIOLOGY

An increasing number of studies suggest a strong role for DDT
and/or DDE in the etiology of human disease including obesity,
T2D, AD, and cancer. Based on this review, mitotoxic effects
targeting OxPhos appear to be a likely consequence of DDT or
DDE exposure which could contribute to the pathogenesis of
such diseases.
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Obesity is the result of disturbances in energy balance.
Rates of obesity are rising in humans and other animals,
including primates and rodents serving as experimental controls,
feral rodents, and domestic dogs and cats (29) suggesting an
etiology beyond overeating and/or inactivity. One source of
disturbance in energy metabolism is mitochondrial dysfunction,
given the organelle’s central role in ATP production and
energy expenditure including consequences on lipid and glucose
metabolism (30–32). Moreover, the term obesogen has been
coined for toxicants that cause such disturbances. Based on
meta-analysis of human prospective studies and bioassays,
DDT and DDE have been presumed to be obseogens (5).
Developmental DDT exposure increased rodent obesity in
subsequent generations, where it impaired thermogenesis and
decreased energy expenditure while reducing RNA coding for
mitochondrial control of thermogenesis and energy expenditure
in mice (28, 33).

Similar to obesity trends, the prevalence of T2D has
risen dramatically in countries of all incomes (34). T2D is
characterized by defects in both insulin action and insulin
secretion with emerging evidence that mitochondria dysfunction
causes both (35). For example Petersen et al. (36) used 13C and
31P magnetic resonance spectroscopy to demonstrate that insulin
resistance could be accompanied by a reduction in mitochondrial
oxidative activity and mitochondrial ATP synthesis (36). This
mechanism is consistent with work in rodents that demonstrated
impaired insulin secretion and action after exposure to DDT
(28, 37), and in humans, DDE is associated with T2D (9).
The elevated T2D risk observed could arise from decreased
mitochondrial membrane potential, ATP levels, and oxygen
consumption rates in insulin responsive hepatocytes after DDE
exposure (22).

AD is the sixth leading cause of death in the U.S. (38)
with poorly understood causes. Its link to mitochondrial activity
has recently been explored in a mouse model for familial AD
where an age-dependent decrease in mitochondrial complex-II
activity starting at 9 months was observed (39). In a separate
study of human hippocampal tissues from non-AD controls and
AD cases, genes involved in OxPhos were significantly down
regulated in subjects with AD including genes involved in both
complexes II and V (40). Indeed mitochondrial dysfunction may
cause energy failures in neurons to induce synaptic dysfunction
underlying cognitive impairment (40). The dysregulation of
Complexes II and V by DDT and DDE in the pathogenesis of

AD is consistent with two molecular epidemiology studies which
found an association between elevated DDE serum levels and AD
(8, 41).

In many regards, cancer is a disease of mitochondrial
dysfunction characterized by a metabolic shift to anaerobic
conditions including mutations in genes encoding mitochondrial
proteins (42). DDT has been listed by the California
Environmental Protection Agency as an agent causing cancer
(43) and classified as “probably carcinogenic to humans” (Group
2A) by the IARC (10, 11), although little has been reported on
the mode of DDT’s carcinogenic action. Defects in succinate
dehydrogenase (complex II), among other mitochondrial
enzymes, are associated with both familial and sporadic forms of
cancer (42, 44) which is consistent with the effects of DDT and
DDE on Complex II reviewed here. DDT and DDE mitotoxicity
could hence contribute to at least two key characteristics of
cancer (45): (1) through interruption of mitochondrial OxPhos
(KC: “induces oxidative stress”) and (2) affecting cellular nutrient
supply by altering ATP synthesis (KC: “alters cell proliferation,
cell death, or nutrient supply”).

CONCLUSION

In summary, there is strong evidence for OxPhos impairment
at Complexes II and V by DDT and DDE which in turn
could cause or contribute to the etiology of diseases, such as
obesity, T2D, AD, and cancer. Future work should consider
the experimental details mentioned in this review when
investigating the role of DDT and DDE as Complex II and
Complex V mitotoxicants as a potential mechanistic causes
of these diseases and ideally, use that knowledge to develop
therapeutic treatments.
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