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Abstract

Untargeted tandem mass spectrometry (MS/MS) is an essential technique in modern analytical 

chemistry, providing a comprehensive snapshot of chemical entities in complex samples and 

identifying unknowns through their fragmentation patterns. This high-throughput approach 

generates large datasets that can be challenging to interpret. Molecular Networks (MNs) have been 

developed as a computational tool to aid in the organization and visualization of complex chemical 

space in untargeted mass spectrometry data, thereby supporting comprehensive data analysis and 

interpretation. MNs group related compounds with potentially similar structures from MS/MS data 
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by calculating all pairwise MS/MS similarities and filtering these connections to produce a MN. 

Such networks are instrumental in metabolomics for identifying novel metabolites, elucidating 

metabolic pathways, and even discovering biomarkers for disease. While MS/MS similarity 

metrics have been explored in the literature, the influence of network topology approaches on 

MN construction remains unexplored. This manuscript introduces metrics for evaluating MN 

construction, benchmarks state-of-the-art approaches, and proposes the Transitive Alignments 

approach to improve MN construction. The Transitive Alignment technique leverages the MN 

topology to re-align MS/MS spectra of related compounds that differ by multiple structural 

modifications. Combining this Transitive Alignments approach with pseudo-clique finding, a 

method for identifying highly-connected groups of nodes in a network, resulted in more complete 

and higher quality molecular families. Finally, we also introduce a targeted network construction 

technique called induced transitive alignments where we demonstrate effectiveness on a real 

world natural product discovery application. We release this transitive alignment technique as a 

high-throughput workflow that can be used by the wider research community.

Graphical Abstract

The core of Transitive Alignment is to use the tandem mass spectrum of the intermedia nodes to 

re-align the spectra of two indirectly connected nodes within the molecular network

Introduction

Mass spectrometry is a key analytical technique for the characterization of complex small 

molecule biological samples1. Specifically, tandem mass spectrometry (MS/MS) is used 

extensively to measure small molecules by detecting the pattern of fragmentation of these 

molecules2. Modern mass spectrometry instrumentation can collect tens of thousands of 

MS/MS spectra in a single analysis in minutes. The ability to interpret these MS/MS spectra, 

i.e. annotate the chemical compounds that the measurements represent, or prioritize for 

downstream analysis are key challenges that can unlock new biological discoveries3–5.

Molecular Networking (MN) is a computational approach that aims to organize and 

visualize the diverse chemistry observed in untargeted mass spectrometry data. At its core, 

MNs aim to group different, yet structurally similar molecules together, using tandem 

mass spectrometry (MS/MS) data. The MN approach utilizes alignments between every 

pair of MS/MS spectra to achieve this, accounting for structural modifications between 

the molecules6–9. This alignment is referred to either as an aligned cosine or modified 

cosine method. The two distinct phases of MN construction are: 1) the full pairwise 
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comparison of all MS/MS in a dataset with the aligned cosine method, and 2) a pruning 

of these comparisons, which involves selectively removing potentially incorrect or redundant 

connections, to simplify the molecular network for analysis and visualization by chemists. 

While this first step has received significant research attention, the second (called topology 

filtering) has been neglected. The current state of the art of topology filtering employs 

heuristic methods that have not been rigorously evaluated6,7. Here, we address these 

shortcomings by introducing a method to evaluate the construction of MNs by introducing 

metrics that balance the completeness and accuracy of MNs.

Given the findings in our benchmarking, we identified key shortcomings in the state-of-

the-art topology filtering methods10–12. Specifically, topology filtration methods do not 

adequately complement a key weakness of the modified cosine method, i.e., modified cosine 

cannot align MS/MS spectra between compounds that differ by two or more modifications. 

This limitation results in small and potentially less inaccurate MNs. To overcome this 

challenge, we introduce a method called Transitive Alignments. The intuition of Transitive 

Alignments utilizes the network topology information to bridge two molecules that are not 

directly connected in the MN and may have multiple modifications at different sites. Our 

evaluation demonstrates that Transitive Alignments enhance the accuracy and completeness 

of MN construction.

Results

Evaluation of Network Topology Algorithms

We introduce two key metrics for evaluating the completeness and accuracy of MNs: the 

Network Accuracy Score and Molecular Network N20 (See Methods Network Accuracy 

Metric and Network Component Size Metric). Briefly, the Network Accuracy score 

measures the correctness (measured by Tanimoto structural similarity of the true 2D 

chemical structures) of the edges between MS/MS spectra in the filtered MN. The Molecular 

Network N20, in a single number is a measure of how large the components are in a 

MN. Specifically Molecular Network N20 measures the size of the smallest MN connected 

component, where the total number of nodes in larger components covers at least 20% of 

the unique MS/MS in the full molecular network. We benchmark, using these two metrics, 

a baseline unfiltered network and a commonly used heuristic approach, called the GNPS 

classic method7. Across a broad range of hyperparameters, we found that the GNPS classic 

method outperforms an unfiltered baseline (Figure 2). While an improvement over the 

unfiltered baseline, the default setting of the classic method in GNPS may not yield optimal 

results (See in Figure 2, the orange star represents the default parameter setting). There exist 

several other points that lie above and to the right, signifying more correct and larger MNs, 

of the default parameters. These correspond to other combinations of hyperparameters and 

subsequently offer guidance for tuning the hyperparameters of the GNPS classic method. 

Across several benchmark datasets that vary in complexity and size, we found that the top 

k neighbor parameter should be set ~15 for large network (Over 1k nodes) and ~5 for small 

network (less than 500 nodes) (SI Figure 2). These suggestions marginally improve the 

performance of MN construction by increasing N20 and Network Accuracy Score (moving 

to the upper right in Figure 2).
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We further explored traditional graph algorithms to understand how their performance 

relative to the above baselines. We hypothesized that cliques might offer an opportunity 

to find very accurate components in the MN. We implemented and benchmarked the 

pseudo-clique finding algorithm: CAST13 and found that this approach increases the 

Network Accuracy Score when networks are small in size (e.g., N20: <10) when compared 

to the GNPS Classic method (Figure 2 – Green Dots). However, the CAST method 

cannot achieve very large components and performance diminishes compared to the GNPS 

Classic method above N20 = 5. This limitation stems from the modified/aligned spectrum 

alignment method10–12 which struggles to align MS/MS of molecules that differ by multiple 

modifications occurring at different distinct locations between the two molecules (Figure 

3). When these multiple modifications occur, the aligned cosine will fail to connect these 

MS/MS spectra in a network, resulting in missing connections between molecules that have 

several modifications. These missing edges restricts the largest sizes of the cliques that can 

be found in the network graph (Figure 1.b).

To address this shortcoming, we introduce the Transitive Alignment method, which builds 

transitive consistency and reintroduces the missing edges back into the network due to 

multiple structure modifications. To capture these edges, Transitive Alignments enables two 

MS/MS spectra that differ by two or more modifications to be more fully aligned by using 

intermediate bridging molecules that facilitate the alignment. The key is that each of these 

bridging molecules only differs by a single modification to any neighbor, but together in a 

chain, can account for multiple modifications, with peaks aligning transitively through the 

bridges (see Methods Transitive Alignment Approach). In Figure 3, a practical illustration 

demonstrates the Transitive Alignment approach’s performance in real data. This example 

features molecules X, Y, and Z. Notably, molecules X and Y differ by a single modification, 

as do molecules Y and Z, while molecules X and Z differ by two structural modifications. 

Here we see that X and Y exhibit high structural and spectrum similarity (0.651 and 0.816 

respectively), as do Y and Z (0.918 and 0.908 respectively). However, X and Z’s exhibit 

inconsistent similarities (0.77 and 0.0951). This disrupts the anticipated pattern, where edges 

connect X to Y and Y to Z, but the transitive edge from X to Z is missing due to low 

spectrum similarity. Our Transitive Alignment method addresses by re-aligning the peaks 

from X to Z, through Y, raising the cosine score from 0.0951 to 0.872.

With Transitive Alignments introducing missing edges in the network, we re-introduce 

clique-finding with CAST on the resulting MN measured the performance. We found that 

the combination of CAST + Transitive Alignment method outperforms the baseline, GNPS 

Classic, and CAST in the NIH SPAC, FDA Pt2, and EMBL MCF datasets. Notably, within 

the NIH SPAC datasets, the CAST + Transitive Alignment shows the most significant 

improvement from the baseline compared to any other methods. For the NIH NP, NIH 

NP Rd2 positive, and PSU-MSMLS datasets, although CAST + Transitive Alignment still 

outperforms the CAST method, we found that CAST + Transitive Alignments struggles 

against the GNPS Classic method at larger N20 values.
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Molecular Networking Performance vs Structure Diversity Sparsity

In benchmarking the performance of CAST + Transitive Alignments vs GNPS Classic 

method, we found that the network density of the underlying data modulated their relative 

performance. Specifically, the network density measures how many neighbors each MS/MS 

has in the unfiltered MN, standing in as a proxy for the underlying compound structural 

density. We found in general as the network density decreases (increased sparsity), we 

observe a drop in performance of the CAST + Transitive Alignment method relative to 

other methods (Figure 4, SI Figure 1). This observation is held across different datasets 

(Table 1), and within the same dataset. We artificially subsampled the dense datasets (FDA 

Pt2, NIH SPAC, EMBL MCF) to create more sparse versions of the data. We varied the 

subsampling from 0.5 (keeping half the nodes) to 1 (keeping all the nodes), and we observe 

the performance of CAST + Transitive Alignment decreases (SI Figure 3). Additionally, we 

also observe that the relative performance of CAST + Transitive Alignment compared to 

GNPS Classic decreases with lower density (SI Figure 4). Specifically, we found the N20 

intersection point where CAST + Transitive Alignment and GNPS Classic become equal 

Network Accuracy Score reduces from 50 to 20 as the subsampling rate decreases from 1 to 

0.5.

MS2DeepScore MN construction evaluation

We additionally considered an alternative approach where the modified cosine score was 

replaced by MS2DeepScore14. We retrained an MS2DeepScore model without the specific 

benchmarking datasets. Using this retrained MS2DeepScore model, we found that the 

MS2DeepScore MN outperforms the baseline unfiltered modified cosine similarity (Figure 

2). Further, when the GNPS Classic method is applied, the MS2DeepScore MN yields 

better results in the NIH SPAC and NIH NP datasets compared to a GNPS Classic MN 

yet underperforms in the remaining datasets featured in our benchmarking analysis (SI 

Figure 1). In the NIH SPAC datasets, within the N20 range from 2 to 10, the best Network 

Accuracy Score achieved by cosine baseline is 0.65, whereas MS2DeepScore based MN 

can reach a Network Accuracy Score of 0.84 in that range. However, the performance of 

MS2DeepScore based MN still falls short of the CAST + Transitive Alignment approach. 

Throughout the N20 range that all the methods are available (from 2 to 30) the scatter plot of 

CAST + Transitive Alignment consistently surpasses that of the MS2DeepScore based MN 

(Figure 2).

Classification Consistency in MNs

We investigated whether the clusters (connected components in the MN) produced by 

network filtering algorithms are consistent, i.e., whether the molecules in the same 

component are from the same compound class. We measured this by calculating the 

purity15,16 of connected components across the MN by using the “superclass” classification 

from ClassyFire17,18. We benchmarked using the datasets NIH SPAC, NIH NP, FDA PT2, 

and NIH NP Rd2 and found that MS2DeepScore outperformed the GNPS Classic method 

(a higher ratio of correctly classified clusters across all N20 ranges). However, the CAST 

+ Transitive Alignment method outperforms both across a wide range of N20 values. In 

this classification consistency measure, we find that CAST performs similarly to CAST + 
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Transitive Alignment, however, the CAST can only be applied across a very narrow range 

of N20 values. While the Transitive Alignments approach extends the applicability of CAST 

across a wider range of N20 values (generally up to N20=~15), MS2DeepScore can achieve 

significantly larger MNs at the cost of reduced superclass consistency (Figure 5).

Impact of Transitive alignment in natural product discovery application

For a natural products discovery program, identifying all compounds analogous to a 

molecule of interest is valuable, either for complete understanding of its biosynthetic 

pathway or to explore the full range of in-built structure-activity-relationship (SAR). When 

relying on cosine similarity and GNPS classic topology, these biosynthetically related 

molecules can often be split across different molecular families or components. To showcase 

the utility of transitive alignment in terms of real-world natural product applications, we 

demonstrate transitive alignments on an untargeted metabolomics experiment on a fungal 

extract. The overarching goal in this study was to find all structural variants of porritoxin 

compounds to facilitate isolation for SAR from a fungal strain Alternaria sp., DF978Z0035. 

Using the GNPS Classic Topology method with default parameters, four molecules that 

were expected to be in the same family appeared in three distinct components (Figure 6.a). 

Even when more relaxed parameters were used (minimum network cosine 0.5 and minimum 

network matched peaks 4), these four compounds remained in three components. For these 

specific nodes of interest, we applied a targeted version of transitive networking, called 

transitive induced networking. Transitive induced networking creates a network from a 

specified source node, incorporating only nodes within a maximum hops distance (indicates 

how many structure modifications from the source node), and meeting transitive alignment 

score criteria (See Methods Transitive Induced Network). When we applied transitive 

networking on Argyrotoxin A (node 255, 3 max hops, 0.3 max transitive alignment score), 

all four molecules were grouped together in a single component (Figure 6.b). The transitive 

alignment was able to bridge all these molecules and increase their alignment scores, e.g. 

Argyrotoxin A (node 255, m/z 295.118) was connected to molecule X12535623 (node 210, 

m/z 283.154), and porritoxinol (node 260, m/z 297.133). Originally these nodes had a cosine 

similarity of 0.11 and 0.07, respectively, but transitive alignments were able to elevate the 

score to 0.55 and 0.57, respectively (SI Table 2 and SI Figure 6). This qualitative example 

demonstrates that the transitive alignment approach has created a more complete molecular 

family while maintaining accuracy, which can greatly improve the efficiency of analog 

analysis during compound isolation and structure elucidation.

Discussion and Conclusion

This manuscript introduces benchmarking metrics to evaluate the molecular network 

topology filtering algorithms and evaluates the state of the methods on over six public 

MS/MS library datasets. We show that the GNPS Classic method performs better than 

the unfiltered baseline. Clique-finding algorithms can improve the construction of MNs in 

situations with small component sizes. However, these algorithms fail when attempting 

to form extensive components. Given these insights, we introduce and demonstrate 

that Transitive Alignments enhance the creation of MNs, while also acknowledging the 

limitations of this method. Firstly, Transitive Alignment relies on the presence of a high 

density of single modifications; in their absence, creating large and consistent networks is 
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not possible. Secondly, Transitive Alignments might face challenges when aligning MS/MS 

spectra of structurally related compounds with a significant difference in fragmentation 

mechanism. This may drastically alter MS/MS intensity, causing low aligned cosine scores, 

resulting in no putative connections for Transitive Alignments to build upon.

However, it is important to note that while a high density of single modifications can 

improve the performance of Transitive Alignments, it is not necessary for all single 

modifications to be present in the dataset for Transitive Alignments to be effective. The 

key-path concept of Transitive Alignments can tolerate missing intermediates as long as 

there is at least one path to form a connected component as a spanning tree. Further, we 

hypothesize that the completeness of data can be enhanced when analyzed from multiple 

samples within a dataset.

While we have demonstrated that the transitive alignment approach does improve the 

accuracy of MN construction, we note that there still exists a gap between what we can 

achieve and the upper bound true performance. This is hypothesized due to both limitations 

in structural similarity algorithms and how MS/MS fragmentation serves only as a proxy 

for structure. In Figure 2, we note the gap between the best performing practical network 

construction method (using Transitive Alignment + CAST) and the theoretically perfect 

network accuracy is less than 5% in low N20 value (overall MN component size is small) 

and for high N20 value (methods that try to form larger components) the practical maximum 

network accuracy score can only reach 50–70% of the ground truth network accuracy score.

It should also be noted that while Tanimoto similarity is the most frequently used way 

to compare molecular fingerprints, there are other metrics such as Dice similarities are 

occasionally used14. We also evaluated our benchmarking results using Dice similarity. As 

shown in SI Figure 5, the benchmarking results for the FDA Pt2 and NIH SPAC libraries 

reveal that the overall trend and networking performance of different network filtering 

methods remain consistent across both Tanimoto and Dice similarity metrics.

While we focus here on topology filtering to enhance the performance of modified cosine, 

we recognize the availability of other scoring metrics (MS2DeepScore included here) that 

aim to address the multiple modifications challenge. Specific examples including SIMILE19 

and Core Structure Search8 were not evaluated here. However, looking forward, we envision 

that new topology filtering algorithms that are specific and complementary to a scoring 

metric will arise. Our analysis shows that the state-of-the-art techniques have not reached 

the upper bound of performance. We estimated that upper bound using the true chemical 

structures (Figure 2) and even with these advances introduced in this manuscript, there is 

a significant gap in performance. We hope that the benchmarking framework introduced 

here will provide a foundation to compare new combinations of similarity metrics and 

topology filtration algorithms to drive the community towards achieves the estimated 

optimal performance for MN construction.
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Methods

Network Accuracy Metric

The metric we designed to measure accuracy is called the Network Accuracy Score. To 

compute this score, we first calculate the Component Accuracy Score. Suppose we have 

two nodes u and v, in a certain component, and they are connected by an edge, denoted 

as edgei, resulting from the raw pairwise construction network topology. We define the 

score_edgei as the structural similarity between molecules u and v that are connected by i. 

In this context, the Component Accuracy Score for a component is calculated as the sum of 

score_edgei values divided by the total number of edges within the component—expressed 

mathematically as:

Componentaccuracyscore =
∑i = 1

m scoreedgei
m ,

#(1)

suppose we have m edges in the component. With the Component Accuracy Score, we 

calculate the Network Accuracy Score. Network Accuracy Score looks at the whole 

network, considering both the number of nodes in a component and how accurate that 

component is. This formulation is mathematically represented as:

NetworkAccuracy_Score =
∑k = 1

n Componentaccuracyscorek ∗ numnodesk

Total_numnodes

#(2)

we have n number of components in the entire network.

Structure Similarity Calculation

To calculate the structure similarity score, we first convert the SMILES20 or InChI21 

representations of molecules into RDKFingerprint, similar to Daylight fingerprints, using 

RDKit22 (version 2023.09.2) with default settings: minimum path size of 1 bond, maximum 

path size of 7 bonds, fingerprint size of 2048 bits, number of bits set per hash of 2, minimum 

fingerprint size of 64 bits, and target on-bit density of 0.3. Then we use the Tanimoto23 

similarity metric to calculate the structure similarity for pairs of fingerprints.

Network Component Size Metric

To measure how big and comprehensive the constructed network is, we designed the Nth 

Number metric. It’s inspired by a widely utilized measurement in genomics called N5024. 

Drawing inspiration from the N50 concept, we adapted it to measure the size of components 

across an entire network. We sort the components by size from largest to smallest to 

calculate the Nth number. Then, add up nodes from the largest one until reach the N 

percentile of the entire network. The smallest number of nodes in the added component is 

the Nth number (i.e., the number of nodes in the last component that add up to reach the N 

percentile of the total number of nodes in the network). We’re not using the commonly used 
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50% threshold like in genomics because Molecular Networking has different characteristics. 

There are often a few significant parts and many smaller or single ones. We usually choose 

N20 because it captures the most important part of the features across most datasets.

Calculation of MS/MS Similarity

We calculated the modified cosine score in our experiments using the GNPS spectrum 

similarity method as the default setting7. The MS2 fragment ion tolerance is set to 0.5, the 

minimum matched peaks threshold is set to 3 and the maximum mass shift is set to 200.

Comparison Network Topology Algorithms

In this study, we focused on evaluating three fundamental methods: the baseline algorithm, 

the classic algorithm, and the CAST algorithm. We used our proposed metrics to assess 

their efficacy. Beyond examining existing approaches, we also introduced new algorithms 

to address identified challenges. Through this analysis, we aimed to provide a clear 

understanding of the strengths and limitations of each method, contributing to advancements 

in MN construction.

1. Baseline Algorithm

The Baseline algorithm served as a foundation to eliminate potential biases and 

establish a reference point. This approach benchmarked the performance of the 

raw pairwise construction. The raw pairs construction was generated within the 

GNPS platform using the default settings: ms2_tolerance (0.5), min_cosine (0.7), 

and min_matched_peaks (3). For our benchmarking for the Baseline algorithm, 

we changed one main parameter, min_cosine, from 0.4 to 0.9 in increments of 

0.1.

2. Classic Algorithm

The GNPS Classic Method6,7, operated as a Heuristic topology technique. This 

approach used the hyper-parameters of Top K and Max Component Size. This 

method consisted of two steps. The first step involved using the Top K nearest 

neighbors of each node, filtering out the low-scoring edges that exceed Top 

K. In the second step, the network was cut into components to meet the max 

component size criteria with the lowest scoring edges being removed first 

until the component was below the maximum component size. The default 

configuration for the GNPS Classic Method employed Top K set at 10 and Max 

Component Size set at 100. For our experiments, we adjusted Top K values from 

1 to 40 in increments of 2 and iterate over the Max component parameters from 2 

to 102 in increments of 5.

3. CAST Algorithm

The Modified CAST Algorithm13, performed pseudo clique identification via 

random optimization. The CAST algorithm started with the node which had the 

highest degree, then greedily grows the component from the nodes around it until 

it could no longer maintain the pseudo clique structure, or the average similarity 

(affinity) of the component fell below the set threshold. The primary parameter 
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was the average similarity score threshold for components. Following this, the 

algorithm recursively processed all other nodes in the network until each node 

was assigned to its respective pseudo-clique. For the CAST algorithm, we swept 

through the threshold parameter range from 0.7 to 0.95 in increments of 0.01.

MS2DeepScore Retraining/Calculations

We retrained an MS2DeepScore model following the methods in the original 

MS2DeepScore publication14. Our approach involved adhering to the same preprocessing 

and datasets as described in the MS2DeepScore paper, except for excluding our 

benchmarking datasets (FDA Pt2, NIH SPAC, NIH NP, NIH NP Rd2 Positive, EMBL 

MCF, PSU-MSMLS — See Table 1) during the training stage. 500 structures were 

held out at random from the training set to use as validation data, with stereochemistry 

being ignored. This resulted in 62,664 training, 3,265 validation, and 43,585 test MS/MS 

spectra. Consistent with the publication, the MS2DeepScore model was trained using 

Jaccard similarities on RDKit Daylight Fingerprint and the Adam optimizer25,26 to 

minimize the mean squared error (MSE) loss. A batch size of 32 and a learning rate of 

0.001 were employed. Once retrained, we constructed the all-pairwise network using the 

MS2DeepScore. We filtered the MS2DeepScore network by sweeping a minimum similarity 

threshold from 0.4 to 0.99 in 0.01 increments.

Optimal Network Topology (structure similarity baseline)

The optimal network topology method is considered as the upper bound or ground truth for 

the construction of a MN on a certain dataset that we can achieve. It is built by calculating 

all pairwise actual structure similarity (see methods Structure Similarity Calculation) score 

instead of cosine score of the network and then set different filtering threshold parameter 

during benchmark from 0.4 to 0.9 in increments of 0.1 as we did for the baseline method.

Transitive Alignment Approach

To address the issue outlined in the introduction section, as illustrated in Figure 7, we draw 

inspiration from proteomics27 and propose the Transitive Alignment approach. The process 

of Transitive Alignment approach is outlined in Figure 1.c. First, Transitive Alignment 

algorithm uses the single source shortest path (SSSP) algorithm28 to determine all paths 

with the fewest hops between two MS/MS that are not directly connected in the network. 

In the next step, within the fewest hops paths find the one with highest sum of cosine 

similarity scores—a crucial path that we call the “key-path.” After finding the key path (e.g., 

A-D1-D2-B in Figure 1.c), we calculate the shifted peak sets of A-D1, D1-D2, and D2-B. 

We then leverage the connectivity transitivity of these three sets. For example, if peak i in 

A aligns with peak j in D1, and peak j in D1 aligns with peak k in D2, we can deduce that 

peak i in A can align with peak k in D2. This information is used to realign the peaks from 

A and B. This process captures the essence of our algorithm—using the intermediate nodes 

to readjust the relationship between two indirectly connected nodes, effectively dealing with 

challenges that arise from scenarios with multiple modifications.
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CAST + Transitive Alignment Approach

In order to explore how Transitive Alignment Approach could benefit other filtering 

algorithms in MN construction, we proposed the CAST + Transitive Alignment Approach. 

The main process consists of three parts. First, we implemented the Transitive Alignment 

to reconstruct the MN based on the raw pairwise network. Then, we applied the CAST 

algorithm on this reconstructed MN to get the filtered MN. Finally, we conducted a modified 

greedy Maximum Spanning Tree (MST)29 refinement to each component of the filtered MN 

to enhance the interpretability and clarity. For the CAST + Transitive Alignment approach, 

we swept through the threshold parameter, ranging from 0.7 to 0.95 in increments of 0.01, in 

the same manner as the CAST algorithm.

Benchmarking Datasets and Scoring Methods

Our investigation begins with the application of our proposed metrics across a diverse array 

of datasets, specifically 6 GNPS reference MS/MS libraries in Table 1.

We calculate Network Density30 as the ratio of observed edges to the total potential edges 

within a network, offering a measure of interconnectedness. It’s mathematically defined 

as 2 E / V V − 1 , where E  is the number of edges and V  represents the 

cardinality of vertices. This metric is computed based on the raw pairwise network topology.

Random Sampling Method

We initially sampled the network based on node count, applying different sample rates from 

0.5 to 0.9 in increments of 0.2 to simulate various levels of network sparsity. Subsequently, 

we subjected these sampled networks to the same benchmarking protocol, allowing us to 

systematically analyze the impact of network sparsity on algorithmic performance while 

maintaining a controlled experimental setting. For each sample rate, we conducted the 

experiment 10 times and calculated the mean results.

Consistency measurement with ClassyFire

To evaluate the component sets of MN produced by filtering algorithms are chemically 

meaning, we conducted an approach by calculating the ratio of correctly classified 

component in the whole MN under the “superclass” level given by ClassyFire17,18. Whether 

a component is correctly classified is defined by if the purity of the component is above 

the setting threshold (we set to 0.7 in our experiment). Suppose we have a component 

contains n molecules in it, the most frequent annotation type is C by ClassyFire, the purity is 

calculated by number of the most frequent annotation type C counts k divided by the number 

of molecules in the component. It can be mathematically expressed as:

purity = k
n

#(3)

The correctly classified component count for i-th component is expressed as:
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correctly classified componenti = 0, purity < 0.7
1, purity ≥ 0.7

#(4)

So, the ratio of correctly classified component is the number of correctly classified 

component divided by the total number of components exist in the MN, which can be 

expressed as:

ratio of correctly classified component =
∑1

n Correctly classified componenti

# components

#(5)

Transitive Induced Networking

To create induced networks using the transitive alignment approach, we require a target node 

S that is present in the molecular network, max hops, and minimum transitive alignment 

score threshold from the user. From node S, induced networking employs the transitive 

alignment approach to realign all nodes not directly linked to it using the path derived 

from the SSSP algorithm with the maximum number of hops in the original raw pairwise 

edges and adds in transitive edges that are above the minimum transitive alignment score 

threshold. Subsequently, leveraging the network topology from the previous step, we induce 

the network starting from the node S. During this induction process, a Breadth First Search 

(BFS) node traversal from node S is carried out first within the specified maximum number 

of hops (which indicates the maximum number of potential structure modifications). The 

nodes visited during this traversal are denoted as the node set C. In the final step, we extract 

the subnetwork formed by the nodes that satisfy two requirements: their existence within 

node set C, and the transitive alignment scores between them and node S are above the set 

threshold.

Corteva Mass Spectrometry Experimental Methods

Corteva fungal strain DF978Z0035 was cultured in CF25ST for two weeks and extracted 

with EtOAC. Aliquot of the extract was dried down and redissolved in MeOH. Untargeted 

mass spectrometry data was acquired on an Thermo ID-X Tribrid mass spectrometry with 

Thermo Vanquish UPLC system (San Jose, CA). HPLC settings: Waters Cortecs column, 

1.6 μm, 2.1 X 50 mm, solvent A = 0.1% formic acid in water, B = 0.1% formic acid in 

acetonitrile, flow rate 0.4 ml/min. Two uL of extract in MeOH was injected and eluted 

with 5% B for 1 min, followed by linear gradient to 100% B in 10 min. DDA settings: 

MS1 resolution 60000 (profile), MS2 resolution 30000 (centroid); scan range 150 – 2000 

m/z, cycle time 0.6 second, dynamic exclusion times 1 and exclusion duration 2.5 second. 

Normalized collision was conducted in HCD (20, 40 and 60).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. Construction of Molecular Networking and Transitive Alignment Overview
a) Constructing Molecular Networks involves two steps: first, computing pairwise similarity 

scores to form the foundational network, and then applying a filtering algorithm to enhance 

clarity and meaningful connections. b) In this example, the CAST algorithm can only 

identify small Cliques––Clique A and B––in the original raw pairwise MN. The missing 

edges (dashed red edges) are caused by multiple modifications which can cause clique 

finding algorithms to produce very small cliques. By adding back edges, the initial Clique A 

and B can reform into a clique double in size, forming Clique C in the green dashed box. c) 

The schematic of the Transitive Alignments. First, to align MS/MS spectra A and B, we find 

all single source shortest paths between A and B (called the key path). If there are many key 

paths, we choose the one with maximum sum of cosine score along the path. Next, we use 

each intermediate node along the key path to realign the MS/MS peaks of A and B.
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Figure 2 –. 
Benchmarking results for topology of Pharmacologically Active Compounds in the NIH 

Small Molecule Repository data. The x-axis signifies the N20 number, where a larger value 

is more favorable, while the y-axis represents the network accuracy score—higher values 

are desirable. Hence, the ideal trend for improvement and optimization is characterized by a 

curve that trends toward the upper right corner. Each scatter point for the baseline denotes 

outcomes obtained under a specific min_cosine parameter setting. Similarly, each scatter 

point for the GNPS Classic method reflects results from varying combinations of top k and 

max component parameters. For CAST and CAST + Transitive Alignment, each scatter 

point corresponds to a certain threshold parameter setting (See Methods Comparison 

Network Topology Algorithms and CAST + Transitive Alignment Approach). We observe 

that all methods surpass the baseline in this dataset. The Classic method shows modest 

gains, while another pseudo clique identification algorithm, the CAST algorithm, excels at 

lower N20 values but lags the Classic method at higher N20 values. Notably, the CAST + 

Transitive Alignment method demonstrates the most substantial improvement compared to 

other methods. Benchmarking results for all the datasets see in SI Figure 1.
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Figure 3 –. The effectiveness of the Transitive Alignment method.
a) The spectra and peak alignment of molecules X and Z using shifted peak alignment. b) A 

subgraph of molecules X, Y and Z extracted from the MN. The molecular structures of X, Y 

and Z are structurally similar, yet X and Z have an unexpectedly low modified cosine score 

of 0.0951, which does not align with their observed structural similarity. c) The MS/MS 

peak alignment of molecules X, Y and Z using Transitive Alignment approach. The shifted 

peak alignment method only aligns 3 peaks from X to Z in subgraph a, while the Transitive 

Alignment approach can align all top 6 (sorted by intensity) peaks from X to Z (c).
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Figure 4 –. 
Benchmarking results for Classic, CAST, CAST + alignment on different sparsity datasets. 

a) Results from NIH NP library, the network density for this dataset is 0.0206. b) Results 

from NIH SPAC library, the network density of this datasets is 0.0425. We can observe that 

in a low sparsity network, the improvement from applying Transitive alignment to CAST is 

larger than that in a high sparsity network.
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Figure 5 —. 
Ratio of correctly classified clusters with N20 for different MN construction algorithms. 

A cluster’s classification correctness is determined by its purity being over 0.7. This is 

shown for (a) NIH SPAC, (b) NIH NP, (c) FDA-Pt2, and (d) NIH NP Rd2 positive, 

comparing the performance of Classic, MS2DeepScore, CAST, and CAST + Transitive 

Alignment methods. The x-axis represents N20, and the y-axis represents the ratio of 

correctly classified clusters. Across all datasets, the CAST method generally achieves the 

highest performance for small N20 values but declines as N20 increases.
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Figure 6 –. 
Demonstration of transitive alignment creating more complete molecular networks of 

known similar molecules. Here we show an example of a fungal strain Alternaria sp 
(DF978Z0035) producing porritoxins class of molecules. Originally, four known members 

of this family of molecules were present in 3 components (a). With transitive alignments, all 

four are grouped into the same molecular family (b).
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Figure 7 –. 
Shifted alignment for single and multiple modifications. a) Molecules X and Y, alongside 

their respective MS/MS spectra. Molecule Y has one modification, Δ, compared to X. 

Suppose the precursor mass of A is denoted as M, and for molecule B, it becomes M 

+ Δ. If we do not align the shifted peaks of the MS/MS data to calculate cosine scores 

of X and Y, it can yield low results because of mismatched fragmentation peak masses. 

However, the single modification should yield a high spectrum similarity score, accurately 

reflecting structural similarity. To overcome this hurdle, the common way is to aligns 

peaks in the MS/MS spectrum of molecule Y with those in molecule X if they are shifted 

within or near the precursor mass difference Δ. While shift alignment adeptly addresses 

single modifications, the complexity magnifies when dealing with multiple modifications. b) 

Molecules X and Z have a double modification with distinct masses, Δ and γ on different 

sites. This resulted in a total mass difference (Δ + γ) that complicates straightforward 

alignment, leading to inconsistencies in transitivity.
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Table 1 –

Features of the 6 datasets we benchmarked, which were selected to cover a wide range of sizes and network 

densities. The full name and description of each dataset are in SI Table 1.

Abbreviation Library name # of nodes # of edges Network Density Instrument

FDA Pt2 513 10921 0.0831 qTof

NIH SPAC 1201 30669 0.0425 qTof

NIH NP 1093 12342 0.0206 qTof

NIH NP Rd2 Positive 7170 488865 0.0190 qTof

EMBL MCF 548 9915 0.0661 Orbitrap

PSU-MSMLS 476 1501 0.0132 qTof
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