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STATISTICS IN MEDICINE, VOL. 15, 343-359 (1996) 

TUTORIAL IN BIOSTATISTICS 

DESIGNING STUDIES FOR DOSE RESPONSE 

WENG KEE WONG 
UCLA Department of Biostatistics. Los Angeles, CA 90024-1 772, U.S.A. 

AND 

PETER A. LACHENBRUCH 
FDAICBERIOELPS HFM-215, 1401 Rockville Pike, Rockuille, M D  20852, U.S.A. 

SUMMARY 
‘Dose response’ refers to the regression of a response on a stimulus. We review a number of options for 
doseresponse designs, and compare various designs which may be used in practice. We start with two group 
designs. Next, we introduce basic optimal approximate design theory for simple linear and quadratic 
regression illustrating different criteria of optimality and their effect on the allocation of the levels of the 
dose. Then we obtain the efficiencies of these optimal approximate designs and some simple designs which 
have intuitive appeal (symmetry, equal spacing of treatments, reduced numbers of observations at the 
highest and lowest doses). 

1. INTRODUCTION 

The regression of response on stimulus may be represented graphically as a curve [as in Figure 11. 
When the stimulus is in the form of a ‘dose’ (e.g., of a drug, or possibly of an applied force or some 
other source), this may be called a ‘dose response curve’. (Kotz and Johnson’). In its simplest 
form, a dose-response curve is a simple linear or polynomial regression. More complex 
‘dose-response’ curves may involve, for example, a transcendental function. Others may involve 
transformations of the dose in the regressions. For example, dose-response models often use the 
logarithm of dose. This function of the dose is called the dose metameter. In some cases, the 
response is quanta1 (yes/no) and the dose-response technique is a probit analysis or logit analysis. 
Figure 1 shows dose-response curves for linear and quadratic models. 

The determination of a threshold dose is also a dose-response problem (see Figure 1). Here the 
response is A below a dose xo and B above that point. That is, the model is E( Y Ix) = A if x < xo 
and E( Y Ix) = B if x 2 xo where E( Y Ix) is the expected value of the response Y given X = x. The 
model requires that we estimate the value of xo, A and B. In this tutorial paper we will consider 
the dose-response cases in which response and the dose are continuous and the regression 
functions are either simple linear or quadratic models, that is 

E ( Y l x )  = A + Bx 
or 

E ( Y ( x )  = A  + BX + CX’.  

We also assume throughout that x is coded so that 0 < x < 1. 

CCC 0277-671 5/96/040343-17 
0 1996 by John Wiley & Sons, Ltd. 
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Figure 1. Three dose response curves: linear, quadratic and threshold 

The steps in conducting a dose-response study (in idealized form) consist of the following: 

Assume a form or model for the curve (for example, linear, quadratic or threshold). 
Select the dose metameter (dose or log (dose)). 
Design the study so 'good' information is obtained; this includes obtaining estimates of the 
model coefficients with small standard errors and having the ability to test for model 
failures (such as testing for a quadratic model when a linear one has been assumed or 
testing for non-normal errors). 
Collect the data. 
Perform the analyses. For the simplest models, these include a linear regression, followed by 
model diagnostics such as testing for common variance (homoscedasticity), normality, and 
whether the model is linear or quadratic, and examining for outliers. 
Prepare a report describing the steps in the study, including the limitations of the study. 

The objective of this paper is to discuss design issues in a dose-response experiment. Specifi- 
cally, we consider the problem of allocating the dose, x, in [0,1] to estimate E( Y Ix) . We motivate 
these issues by simulating data from three designs and two dose-response functions. Each data set 
has 20 observations with a standard deviation of 2. In all cases, the data are normally distributed. 
The goal is to estimate the dose-response function, which may be linear or quadratic. The first 
design allocates half of the data at x = 0 and half at x = 1. The second design has one-quarter of 
the observations at four points, x = 0, x = 1/3, x = 2/3 and x = 1. These are examples of uniform 
designs which have equal spacing of the x values, and equal number of observations at each x. 
The third design has half of the data at x = 0 and half at x = 0.75. This design might be used if the 
investigator were concerned over possible toxic effects of the highest dose (at x = 1). The 
allocation of data is shown as histograms in Figure 2. The first response function is E(  Y 1 x) = 5x. 
The second response function is E (  Y Ix) = 1 lx - 6 2 .  This function was chosen to reach a maxi- 
mum inside the interval [0, 11. It also agrees with the linear function at 0 and 1. The data are given 
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Figure 2. Histogram of X values for three designs 

in Table I(a) and I(b) rounded by 5 digits (your analyses with these data should be similar, but not 
identical to ours). To distinguish the data of Table I(a) from that of Table Ib) we label the 
simulated dependent variable data in Table Ib) as W. 
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Table I. Data and analysis from three simulated dose-response studies 
(a) Data generated by Yi = 5xi + E,  where E is normal with p = 0 and u = 2 

Design 1 Design 2 Design 3 
X1 Y l  X 2  Y2 x3 Y 3  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0 - 3.69894 
0 0.88 58 1 
0 4.24483 
0 0.66185 
0 - 1'37427 
0 2.54575 
0 - 0.84730 
0 - 3.48385 
0 - 0'97389 
0 1.55282 
1 8.21102 
1 2,27225 
1 7.51096 
1 638050 
1 6.58215 
1 2.86575 
1 7.94210 
1 1.05613 
1 8.61141 
1 3.90077 

0 
0 
0 
0 
0 
0.33 
0.33 
0-33 
0.33 
0.33 
0.67 
0.67 
0.67 
0.67 
0.67 
1 
1 
1 
1 
1 

- 1.77029 
1.04965 

0.99879 
2.35421 
4.84129 
2.03856 
0.47213 
4.40601 
0.29701 
2.39918 
5.94551 
3.1361 6 
7.1 1803 

1.60837 
4.43 5 20 
3.62980 
3-1 6 162 
3.44190 

- 094450 

- 0.64908 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0.75 
0.75 
075 
0.75 
0.75 
075 
0.75 
075 
0.75 
0.75 

- 3.95725 
1.42738 
045690 
4.77256 

1.40287 
1.28237 
0.86857 

1.68386 
1.52494 
0.65396 
859038 
2.62081 
5.79675 
702660 
4.301 15 
5.18883 
4.42332 
5.01722 

- 1.48124 

- 0.98921 

(b) Data generated by Wi = l l x  - 6x2 + E,  where E is normal with p = 0 and Q = 2 

Design 1 Design 2 Design 3 
X1 W 1  x2 W 2  x3 w3 

1 0 - 1'77029 0 - 3'69894 0 - 0.92930 
2 0 1.04965 0 0.88581 0 - 0.36553 
3 0 - 0'09445 0 4.24483 0 - 0'27144 
4 0 0.99879 0 066185 0 - 1'70517 
5 0 2.35421 0 - 1'37427 0 1.43117 
6 0 3.19129 033 5.52235 0 - 2.25067 
7 0 038856 033 2.12930 0 - 053015 
8 0 - 1'17787 0.3 3 - 0.50725 0 - 1.74972 
9 0 2.75601 0.3 3 200270 0 - 2.18116 

10 0 - 1.35299 0.3 3 4.52942 0 3.14768 
11 1 4.049 1 8 0.67 7.88762 075 5.37605 
12 1 759551 0.67 1.94885 0-75 2.13208 
13 1 4.78616 0.6 7 7.18757 0.75 7.11342 
14 1 8.76803 0.6 7 6.05710 0.75 5.91360 
15 1 1.00092 067 6,25875 075 5.88210 
16 1 1.60837 1 2.86575 0.75 7.22348 
17 1 4.35200 1 7.94210 0.75 4.201 66 
18 1 3.62979 1 1.0561 3 0-75 1.1826 1 
19 1 3.1 61 62 1 8.61142 0.75 1.47634 
20 1 3.44190 1 3.90078 0.75 4.6 1303 
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Table I. (Continued) 

Correct model E (  Y 1 x) = 5x 
(c) Regression analysis of Y on XI (correct model) 

Source ss d.f. MS F(l, 18) = 22-24 
Number of obs = 20 

347 

Prob > F = 0-0002 
Model 155.794907 1 155794907 R-squared = 0.5526 
Residual 126.120725 18 7.00670695 Adj R-squared = 05278 
Total 281.915632 19 14'8376649 Root MSE = 2.647 

Y l  Coefficient Standard error t P > It1 [95% confidence interval] 

X i  5582023 1.183783 4.715 0ooO 3.094988 8.069058 
-cons - 0048719 0.8370607 - 0.058 0.954 - 1.807318 1.70988 

(d) Regression analysis of Y2 on X, (correct model - Less efficient allocation of X's) 

Source ss d.f. MS F(l ,  18) = 5.66 
Number of obs = 20 

Prob > F = 00287 
Model 24.6805628 1 24.6805628 R-squared = 0.2391 
Residual 78.5551996 18 4'36417775 Adj R-squared = 0.1968 
Total 103.235762 19 5.43346117 Root MSE = 2.0891 

Y2 Coefficient Standard error t P > It1 [95% confidence interval] 

x2 2.974769 1.25091 3 2.378 0-029 0.3466994 5.602839 
-cons 0.9110929 07806436 1.167 0.258 - 0.7289785 2.551164 

(e) Regression analysis of Y 3  on X 3  (correct model - design less efficient than given by X ,  
[(c) analysis]) 

Number of obs = 20 

Prob > F = 04015 
source ss d.f. MS F(l, 18) = 14.05 

Model 78.713809 1 78.713809 R-squared = 0.4384 

Total 179.539648 19 944945516 Root MSE = 2.3667 
Residual 100.825839 18 5.6014355 Adj R-squared = 0.4072 

Coefficient Standard error t P > It1 [95% confidence interval] Y3 

x3 5290287 1.41 1248 3.749 0~001 2.325364 8.255209 
-cons 0.546681 0.7484274 0.730 0.475 - 1.025707 2.119069 
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Table I. (Continued) 

Correct model: E( Y \x) = 1 l x  - 6x2 
(f) Regression analysis of W 1  on Xl and X :  (correct model, but design prevents estimating 
quadratic terms) 

Source ss d.f. MS F(1, 18) = 14.69 
Number of obs = 20 

Prob > F = 0.0012 
Model 64.9821823 1 64.9821823 Rmsquared = 0.494 
Residual 79.6091957 18 4.42273309 Adj R-squared = 0.4188 
Total 144.591378 19 7'61007252 Root MSE = 2.103 

W 1  Coefficient Standard error t P > It1 [95% confidence interval] 

x1 3605057 0.9405034 3.833 0001 1.629133 5.580981 
x: (dropped) 
-cons 0634291 0.6650363 0.954 0353 - 07628985 2'03148 

(9) Regression analysis of W 2  on X2 and X $  (correct model) 

Source ss d.f. MS F(1, 17) = 6.13 
Number of obs = 20 

Prob > F = 00099 
Model 91.3522269 2 45'6761134 R-squared = 0.4191 
Residual 126624177 17 744848097 Adj R-squared = 03508 
Total 217.976403 19 11.4724423 Root MSE = 2.7292 

W 2  Coefficient Standard error t P > It1 [95% confidence interval] 

x2 13.30121 5.757084 2.310 0.034 1.154823 25,44759 
x: - 8'105359 5.520267 - 1.468 0160 - 19.7521 3.541387 
-cons - 0.0883785 1.188492 - 0.074 0.942 - 2'595878 2.419121 

(h) Regression analysis of W 3  on X 3  and X $  (correct model but design prevents estimating 
quadratic terms) 

Source ss d.f. MS F(1, 18) = 32.37 
Number of obs = 20 

Prob > F = O.oo00 
Model 127606753 1 127.606753 R-squared = 0.6426 
Residual 709579032 18 3.94210573 Adj R+quared = 06228 
Total 198.564656 19 104507714 Root MSE = 1.9855 

w3 Coefficient Standard error t P > I tl 195% confidence interval] 

X.1 6.735821 1.183908 5.689 O W 0  4.248523 9223119 
X$ (dropped) 
-cons - 0540429 0.6278619 - 0.861 0.401 - 1.859518 0.7786599 
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The regressions computed from the three designs are given in Tables I(c) to I@). The first 
response model, E (  Y Ix) = 5x, is the correct model for the computer output in Tables I(c), (d) and 
(e). The second response model, E( Y Ix) = 1 l x  - 6x2 is the correct model for the output in Tables 
I(f), (9) and (h). The output is taken from STATA.2 Most standard statistical software packages 
produce similar output. 

From Table I@), the coefficient B is estimated as 5.58 (1.18) where (1.18) is the standard error. 
From I(d), the estimate of B is 2.97 (1.25) and from I(e), the estimate is 5.29 (1.41). These are close 
to the correct value of 5 (none is significantly different from 5). From Tables I ( f )  and I@), where 
the correct model is E ( Y J x )  = l l x  - 6x2, we note that the quadratic coefficient C cannot be 
estimated since there are only two doses which are given to the subjects. To fit a quadratic model 
at least three distinct values of x are needed. The estimates fit a straight line between dose x = 0 
and dose x = 1 (or x = 0.75). Since E (  Y Ix = 1) = 5, and E (  Y I x = 0) = 0, the slope is again 5, and 
the estimates 3.61 (094) and 6.74 (1-18) reflect that (from Tables I(f)  and I@)). The only design of 
the three which allows us to estimate C, (Table I(g)) gives 13.30 (5.76) as the estimate for B and 
- 8.11 (5.52) as the estimate for C. Neither estimate is significantly different from this parameter, 

which are B = 11 and C = - 6, at the 0.05 significance level. The first and third designs do not 
permit estimation of some parameters. We note that the N/2 at 0 and N/2 at 1 is optimal for 
a simple linear regression with an intercept. It is not optimal for the model E( Y Ix) = 5x when the 
intercept is known to be 0. We see in these examples that the choice of design for a particular 
dose-response model is extremely important. 

Determining patterns of dose responses is an important part of new drug evaluation. This may 
consist of a simple comparison of two levels (placebo and drug at some level), or may consist of 
placebo (dose x = 0) and multiple levels of the drug. We describe some of the design options the 
researcher has, and provide some guidance on choices. We consider first the equivalence of the 
two-group design and a two-dose design, and note some properties when the higher dose in the 
two-group design is less than the maximum dose in a dose-response design. We then review 
optimal designs and give the efficiencies of several candidate designs for the simple linear and 
quadratic regression models. For regression notation, we use capital letters (A, B, C) to denote the 
parameters, and lower case letters (a, b, c) to indicate their estimates. We assume normal errors 
with mean zero and variance o2 throughout. In all cases, we can use standard multiple regression 
software packages to estimate the parameters A, B, C and o. 

2. EQUIVALENCE O F  TWO-GROUP DESIGN WITH DOSE-RESPONSE STUDIES 

The two group design is equivalent to a linear regression with doses at two levels. The usual 
two-sample t-test for equality of means is equivalent to the test that the regression slope 
coefficient is zero. Assume that half of the observations are allocated to each dose (that is, equal 
sample sizes in each group). If the doses are coded 0 (placebo) and 1 (dose given) then the 
difference between treatments is (pl - po), where pi is the mean response at the ith dose level. In 
the dose-response model, we assume the maximum dose given is coded as 1, with intermediate 
doses placed at values between 0 and 1. The usual analysis of this design is a regression (possibly 
polynomial). The two-group design is a special case of a dose response with only two levels. 
Denote the mean response in group i as ji. It is easy to show that the estimate of the slope is 
b = ( j l  - yo). This leads to the test of the coefficient being ,/N(yl - jj0)/2s, where N is the total 
sample size and s2 is the regression mean squared error. This statistic is the two-sample t-test 
statistic. Simple modifications yield the unequal allocation case. 

In the context of dose response the two-group design can be expanded. Thus far, we assumed 
that the maximum dose in the two-group design was 1. In such cases, the two-group design with 
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Table 11. Sample size needed to detect B/a = 1 (a = 0.05, 1 - fl  = 0.9) 

K 2 3 4 5 6 7 8 9 10 
N 43 64 76 85 91 95 99 101 104 
n 22 22 19 17 16 14 13 12 11 

n is the number needed per dose. Thus, nK > N 
Bla = (PI - P o Y U  

half of the observations at each level is the optimum one for a linear regression E (  Y I x )  = A + Bx 
(in the sense that var(b) is minimized). It may, however, be important to have fewer than half of the 
observations at the placebo or high dose levels (for example, for increasing the chance of receiving 
a hoped for effective treatment or for ethical reasons such as reducing the risk of side-effects), so 
the investigator might wish to place some observations at 0, some at 1, and the remainder at 
intermediate doses. The experimenter may even unbalance the design by making the number of 
observations at each dose unequal. Similarly, the 0 dose might be increased to xo. This would not 
be a placebo controlled study, but would still be able to demonstrate effectiveness of x at x = 1 if 
there were an increasing response for increasing x. In the phase I11 drug approval context, 
regulatory agencies expect some of the dose to be at the level for which approval is sought. Thus, 
a dose-response study with doses at 0, 0.5 and 1.0 would not suffice for an approval at 0.75. 
Generally, dose-response studies are done in phase 11. We will examine some examples of these 
when we consider the efficiencies of the designs in later sections. 

Assume bivariate observations, (y, x), are taken, where x is the dose given and y is the response 
to the drug. The dose begins at 0 (placebo) and has a largest value of 1 (this can always be handled 
by appropriate scaling). With K equally spaced doses, we have values of x at 0, 1/(K - l), 
2/(K - l), . . . , ( K  - 2)/(K - l), 1. If we assume a straight-line model, we have 

E ( Y I x ) = A + B x  

where B is the amount of increase in E( Y 1 x) for a one unit increase in the dose, x .  That is, B is still 
p1 - po, the mean difference between the drug at x = 1 and the placebo at x = 0. The variance of 
Y given x is a’, and var(b) = a’/Z(xi - 2)’. 

With an equal number of observations and equal spacing between them, the denominator of 
var(b) is o’N(K + 1)/[12(K - l)] where N is the total sample size and N = nK, and n is the 
sample size per group. This is another example of a uniform design. For testing Ho: 
B = pl - po = 0 against a two-sided alternative H1: B # 0, the sample size needed to detect 
a slope of B is given by 

N = 12(K - l)(Z1-o,Z + 21-,)’aZ/[B2(K + l)] 
where a is the significance level, and B is the probability of a type I1 error and 2, is the upper 
100 x th percentile of the standard normal distribution. 

One can use the above formula to compute the needed sample size. For example, to detect 
B/a = 1 ((pl - po)/a = 1) with a = 0.05, and 1 - B = 0.9, the required sample sizes are given in 
Table 11. The sample sizes are rounded to integer values. In practice the sample size N should be 
increased so they are divisible by I(. 

When K > 2, the multiple x values permit us to examine curvature or a polynomial response. 
The equally spaced doses are not necessarily the optimally spaced x values for such fits. In 
practice, if there is confidence that the model is not much wrigglier than a quadratic, the value of 
K should not be much higher than 3 or 4 because of the considerably larger sample size 
requirements. 
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Table 111. Equivalent maximum two-group dose for K equally spaced doses 

K 2 3 4 5 6 10 
Dose 1 .o 0.816 0.745 0.707 0.683 0.638 

For the case with K = 2 and x = 0 and 1, the above produces the sample size for a two-group 
design with equal number observations in each group, 

N = 4(21 + 21 -p)’a’/(~1 - PO)’ 

with the required sample size in each group as N/2. This is the usual formula for the two-sample 
problem. 

Given the above, the investigator can consider several issues. First, if the investigator is certain 
that the response is linear and the maximum dose is the one which will be administered to 
patients, the optimal two-group design allocates half of the sample to the 0 (placebo) dose and half 
to 1 and no multiple dosage design (K > 2) is more efficient in the sense that no other design can 
have a smaller variance of b. However, the high dose may have some toxicity which the 
investigators want to avoid. The alternatives are to reduce the high dose to a lower dose at x < 1 
or to conduct a study with multiple doses so that fewer patients receive the highest dose. If we 
compare a dose-response study that has equal allocation to equally spaced doses between 0 and 
1 (a uniform design) to a two-group design at 0 and x, can the dose-response design have 
a smaller variance of b than the two-group design where the slope B is still p1 - po and the total 
sample size N does not exceed that of the two-group design? (Answer: Yes). Where does the 
dose-response design begin to be better? (Answer: it depends on x). How does the number of 
doses relate to the maximum level (x) in the two-group case? (Partial answer: if x < 1 / 4 3  any 
multiple point design wins). How do the variances of b and c compare when the doses are evenly 
spaced versus optimal design placement? (Answer: see below). It is sometimes proposed to have 
fewer observations at dose = 0 and dose = 1 for ethical reasons (fewer patients at dose = 0 to 
have more patients receiving something, fewer at dose = 1 to have less potential toxicity). What 
is the effect of reducing the number of observations at the extreme doses on the variances of the 
parameter estimates? (Answer: the increase in variance can be pretty bad). 

If the corresponding maximum dose given in the two-group design is x = 0.5 (for example, 
500 mg in a 1000 mg maximum dose study), the change in mean response would be half that of the 
maximum. The sample size required (Table I1 for K = 2) would be multiplied by 4, and 172 
patients (86 per group) would be required. This is larger than a dose-response design with 10 
levels of drug, and one would clearly prefer a dose-response design. If the maximum dose for 
two-group dose design is 0.75, then the number of patients required would be 76 (38 per group) 
and the two group design would require about as many subjects as a dose-response design with 
four dosages (at 0,0*33,0-67 and 1). A two-group study and a dose-response study will have the 
same sample size if the formulae for N are equal. Some algebra shows that a two-group study 
where the drug is given at dose x will have the same sample size requirement as a dose-response 
study with K doses equally spaced from 0 to 1 if x2 = (K + 1)/[3(K - l)]. This leads to Table 111 
as a table of equivalent sample size studies. 

This can be interpreted to mean that if the maximum dose in the two-group study is 0.745, 
a four level study with doses at 0, 0.33, 0.67 and 1 will provide estimate of B with the same 
precision. Assuming equal spacing, we can show that the equivalent dose is never less than 0.577 
(1/,/3). These results suggest that 3 to 5 levels in a dose-response study will provide most of the 
gain when the two group dose is less than the maximum dose in the dose-response study. When 
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the dose to be studied in the two-group study is the maximum dose that would be administered in 
a dose-response study, the dose-response study does not provide a gain in power or precision of 
estimate. If the maximum dose in a two-group study is less than 0.8, an increase in power can 
usually be realized with a dose-response study. 

Dose-response (regression) designs enable us to compare the response to different drug levels 
and evaluate the responses for possible curvature. If we assume a quadratic response, 
E(  Y Ix) = A + Bx + Cx2, we can find optimal designs which minimize var(c), var(y(x)) for a given 
x, or the generalized variance (the determinant of the covariance matrix of the estimates). Here, 
y(x) is the predicted value of y given x. These designs will provide estimates of the curvature (that 
is, the quadratic coefficient) and also allow us to estimate the linear dose-response. We next 
discuss these concepts. 

3. CONSIDERATIONS IN CHOOSING DESIGNS 

A major advantage that dose-response studies have over two-group studies is their ability to 
examine departures from linear response. For example, by plotting the responses against the 
doses we can examine (visually) if there are large departures from the assumed linear 
dose-response relationship. It is also possible to test formally this relationship using the pure 
error term when there are replicated observations at the different doses. This is fully explored in 
such texts as Rawlings3 or Neter et al? (In submissions to regulatory agencies, this should usually 
be indicated in the analysis plan submitted with the study proposal.) 

Similarly, all of the powerful diagnostic tools of regression analysis (for example, residual 
analysis, influence statistics, normal probability plots) are available to the investigator (see 
Rawlings3 or Neter et af.4). While one could argue that these are also available in the two-group 
design (it is a special case of the dose-response study with K = 2), residual analysis is not able to 
detect curvature in this case, and influence is the same for all observations when equal allocation 
is used. 

If we assume that the model is quadratic, 

E(Y1x) = A + BX + CX’ 

the variances of the coefficients are found by inverting the X X  matrix where X is the design 
matrix (see, for example, Neter et ~ 1 . ~ ) .  The first column of X is a column of 1s. The next columns 
are the values of x and x2. To find the X X  matrix for the quadratic regression model, we define 

F = (I:xi)/N, S = (XXZ)/N, T = (Zx?)/N, Q = (I:xf)/N 

(standing for first, second, third and fourth (quartic) powers, respectively). The covariance matrix 
is 

I: = 02(X’X)-’ = 0 2 / [ N ( S Q  + 2FTS - S3 - T 2  - Q F 2 ) ]  S T  - FQ Q - S2 SF - T ] S Q - T 2  S T - F Q  F T - S 2  

[ F T - S 2  S F - T  S - F 2  

giving 

var(a) = a 2 [ S Q  - T 2 ] / [ N ( S Q  + 2FTS - S3 - T 2  - Q F 2 ) ]  

var(b) = c2 [Q - S 2 ] / [ N ( S Q  + 2 F T S  - S 3  - T 2  - QF’)] 

var(c) = a2[S - F 2 ] / [ N ( S Q  + 2FTS - S 3  - T 2  - Q F ’ ) ] .  
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From the covariance matrix, the optimal design for estimating any one of the parameters can be 
found by minimizing the variance of its estimate. However, the optimization problem is usually 
a complicated one. For example, if interest is only in B, the problem becomes how to allocate 
observations in the closed interval [0,1] so that the quantity 

(Q - S2)/[N(SQ + 2FTS - S 3  - TZ - QF')] 

is minimized subject to the constraint that the number of observations at the xI)s sum to N. The 
solution to this and related problems is generally difficult. For this reason, we use an alternative 
approach using approximate optimal design theory. 

4. A BRIEF REVIEW OF APPROXIMATE OPTIMAL DESIGN THEORY 

An optimal design is one which minimizes (or maximizes) some function of the covariances of the 
parameter estimates. There are many optimal design criteria. Often they lead to complicated (or 
intractable) expressions to optimize. As a way of dealing with the problem of complicated 
algebraic expressions (like the one above), Kiefer proposed the concept of approximate designs. 
Although there was controversy at the time, it is now an accepted way of solving a design 
problem. Generally, a design is defined by specifying the number of points (locations) in the 
interval where observations are taken, and the number (or proportion) of observations to be 
taken at each of these points. For example, if N is the total number of observations in the 
experiment, a design is defined by taking ni observations at specified points x, i = 1, 2, ... , k 
with C n i  = N. Alternatively, if t i  is the proportion of observations to be taken at xi  this is the 
same as taking N t i  = ni observations at xi. The concept of approximate designs extends this 
notion of design by allowing the N t i  to be non-integers. Consequently, approximate designs may 
require taking a fractional number of observations at a point. This is not a problem if N is large. 
In practice, we round to the nearest integer, subject to I n i  = N. 

The main advantages of considering approximate designs are: (i) the optimization problem is 
simplified; (ii) frequently, the approximate optimal design is close to the optimal d e ~ i g n . ~  Further 
background readings in this area are (in ascending order of difficulty) Atkinson and Donev; 
F e d o r o ~ , ~  and Pazman.* 

Define Q as the space of the design points, x i .  In the context of this article, t2 is the closed 
interval [0,1]. Let t be an approximate design (or simply a design from now on) giving 
probability mass ti at tha point xi ,  i = 1, 2, ... , K. The analogue of the X X  matrix for 5 is its 
information matrix definid by 

M(t) = xf(Xi) f(xi)'ti 

where x i  is the set of predictor variables. For example, consider the simple linear regression 
f(x)' = (1 x). If 5 is a design with equal allocation at x1 = 0 and xz = 1, we have t1 = 0.5 
and t2 = 05, and 

which is 1/N times the usual X X  matrix. 
Many practical optimality criteria are formulated in terms of M(5). As an illustration, Table IV 

lists some common criteria as convex functions, H(M(5)) of M(5) and reasons for using them. For 
ease of notation, we assume the underlying model for the first two criteria is quadratic, that is, 
f(x)' = (1 x x'). Generalizations to other models are straightforward. An optimal approximate 



3 54 W. K. WONG AND P. LACHENBRUCH 

Table IV. Criteria for optimal designs 

Optimality criterion Interest H (M(4) 

var(b) 
var (c) 
L-optimality 
D-optimality 
G-optimality 

Estimate B accurately {MtS)- 12.2 
Estimate C accurately {MIS)-1)3,S 
Estimate response at x = xo f(xo)'M(W f(x0) 
Estimate all parameters (A, B, C) - logIM(g)l 
Minimize max var(j(x)) max f (x)'M(t)- l f (x) 

X € Q  

The notation { } 2 , 2  and {1}3,3 refer to minimization of var(b) and var(c), respectrively, which are the second and third 
diagonal elements of M - 

design to is one for which min H(M(t)) = H(M(t")), where the minimization is taken over the set 
of all approximate designs on a. 

The verification of an optimal approximate design is straightforward in many cases (Fedorov'). 
For example, if interest is in estimating all parameters, a D-optimal design is appropriate (see 
below). For linear models one can check if a given design, 5, is D-optimal by verifying 

f (x ) 'M- l ( t ) f (x )<p  fo ra l lxER (2) 

where p is the number of parameters in the model. For simple and quadratic linear regression 
models p is equal to 2 and 3, respectively. This condition is easily verified in practice. Correspond- 
ing checking conditions for the other criteria are available in Fedorov.' As an illustration how (2) 
might be used, return to the simple linear regression example with H(M(()) = - log(lM(()I), then 
if 5" assigns equal numbers of observations at 0 and 1 the information matrix M(5") is as given in 
(1). After some algebra, the left hand side of (2) is seen to be 2(1-2x + 2x2). Since p = 2, the 
condition (2) is satisfied and to is D-optimal. Thus, the equal allocation design is D-optimal. 
Other optimal designs can be similarly verified. 

Under the assumption of normality of the errors, the D-optimality criterion seeks to minimize 
the volume of the confidence ellipsoid for the parameters. This is achieved by maximizing the 
determinant of the information matrix, I M-I(t)I or minimizing the generalized variance, that is, 
1M(()1 over the set of all approximate designs. When interest is in only one parameter (or the 
response at a particular point), minimizing the variance of the estimator is reasonable. This is the 
rationale behind the first three criteria in Table IV. Minimizing the variance of b is the most 
relevant goal for simple linear regression. Minimizing the variance of c is important in quadratic 
regression. Minimizing the variance of the response at a point is a goal which is obviously met by 
placing all observations at the point, but this strategy would eliminate all possibility of estimating 
regression coefficients. G-optimality minimizes the maximum variance of a predicted value over 
the interval [0,1]. Consequently, this criterion may be useful for estimating the response curve. 

To evaluate the usefulness of a design, we use the idea of design efficiency. This is a number 
between 0 and 1 and has the interpretation that its reciprocal measures the number of times the 
design has to be replicated for it to do as well as the optimal design. The efficiency is the ratio of 
the criterion of the optimal design to the value of the criterion for the proposed design. For 
example, if we want to estimate the parameter B using design 5, the efficiency of t is given by 
varOpt(b) fvardb) . For the quadratic model, the optimal design (t3 in Table V) to minimize var(c) 
places Nf4 points at 0, Nf4 points at 1 and N/2 at 1 f2. The D-optimal design (t2 in Table V) places 
N / 3  at each of these points.' Thus, for t3 the variances of a, b and c are 402/N, 72aZ/N, and 
6402/N,  respectively, and for t2 the variances are 302/N, 78a2/N and 7202/N.  These are a2/N 
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times the diagonal elements of the inverse of the information matrices for t2 and t3. Therefore, the 
efficiency of the design t2 for the estimation of C is var,,(c)/var,,(c) = 64/72 = 0.889. These 
calculations are illustrated more fully in Section 5. 

Sometimes this simple definition of efficiency must be modified to maintain its interpretation. 
For instance, consider D-optimality for a linear model with p parameters. If the D-optimal design 
is tD, we have IM(<D)I 3 IM(t)l for all 5, so that in order for t to do as well as tD, t must be 
replicated, say r times. Since IM(<D)I = Ir M(t)I = rplM(t)l, this implies r = { IM(<)l/lM((D)l 
and so the D-efficiency of 5 is defined by { lM(t)l/lM(tD)l ' I p .  For the two designs, t2 and t3, it can 
be verified that the D-efficiency of the design r3 relative to t2 is 

{lM(t3)1/M(<2)1}'/3 = {432/512}'/3 = 0.945 

As a further example consider the case when N = 2k + 1, f(x)' = (1 x), R = [0, 13 and there is 
interest in three designs: 

rl places k/(2k + 1) of its mass at 0 and the rest at 1; 
r2 places k/(2k + 1) of its mass at 1 and the rest at 0; 
r3 places 1/(2k + 1) of its mass at 1/2, k/(2k + 1) at 0 and k/(2k + 1) at 1. 

With N = 7 (k = 3) graphically these three designs look like 

X X 

x x  x x  X X 

x x  x x  X X 

x x  x x  x x x  

0 1  0 1  0 0.5 1 
l-1 l-2 l-3 

It is easy to verify that IM(rl)l = IM(T,)I = k(k + 1)/(2k + 1)' and IM(T3)I = k/[2(2k + l)], so 
that IM(T1)( - IM(T3)I = k/[2/(2k + l)'] > 0 for all positive integers. As k becomes larger, the 
D-efficiency of T3 approaches that of rl or r2. For example, if k = 3, the efficiency is [(2k + 1)/ 
(2k + 2)]'/' = 0.9354. For k = 5 ( N  = 1 l), the efficiency is 0.9574. 

Kieferg gave a general bound for the D-efficiency of a design which has a non-singular 
information matrix, M. He showed that if M- '(r) exists, then the D-efficiency is always greater 
than or equal to 

exp( 1 - max( f (x)'M- f (x)/p). 
X En 

Applying this to Tz we have its D-efficiency is at least exp( - 1/2k). For k = 10 (N = 21) this 
lower bound is 0-95. The D-efficiency approaches 1 quickly. 

Our consideration of D-efficiency has been limited to the case where interest is in all the 
parameters. When nuisance parameters are present, techniques exist for estimating a subset of the 
model parameters. The analogous expressions for the checking condition (2) are invariably more 
c~mplicated.~ 

5. CASE STUDIES FOR SIMPLE LINEAR AND QUADRATIC REGRESSION 

We now study five dose-response designs and evaluate their efficiencies (see Table V). The dosage 
levels are 0,1/3,1/2,2/3,1 and the five designs offer different allocations to each. Because some 
dosages have no observations allocated to them, these are not five level designs in the usual sense. 
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Table V. Candidate designs for dose-response studies 

Design Dosage 
0 113 112 213 1 

Table VI. Design efficiencies for some designs for the linear and quadratic models on [0, 11 

Design var (b) var(c) L-optimal 
el e2 var(ylxo = 1) 

e3 

D-optimal G-optimal 

e4 e5 
Generalized variance max(var(y(x)) 

Simple linear regression: y = A + Bx + E 

5 2  0.6667 NA 0.4000 
5 3  0.5000 NA 0.3333 
5 4  0.5556 NA 0.3571 
5 5  0.4074 NA 02895 

5 1  1QO00 NA 0.5000 1 ~oooo 
0.8165 
0.7071 
07454 
0.6383 

Quadratic regression: y = A + Bx + Cx2 + E 
5 1  l~oooo 0~0000 0~5000 O.oooO 
5 2  00128 0.8889 0,3333 1~oooO 
5 3  0.0139 1QOOO 0.2500 0.9449 
5 4  00113 0.7901 0.2632 0.9048 
5 5  0.0099 0,7023 01833 07845 

1 ~oooo 
0.8000 
0.6667 
0.7143 
0.5790 

0OOOO 
1 ~oooo 
07500 
0.7895 
0.5500 

As mentioned above, design t1 is the optimal design for estimating B for the simple linear 
regression model, and is, in fact, optimal for other purposes as well (see Table VI). Design t2 is 
optimal for jointly estimating all parameters in the quadratic model (that is, D-optimal). It is 
appealing also because it assigns an equal number of subjects to three dosages uniformly spaced 
between 0 and 1. Design t3 is optimal for minimizing the variance of c in the quadratic model. 
Design t4 has equal allocation to dosages uniformly spaced between 0 and 1, and is motivated by 
its simplicity and ease of explanation to clients. Designs t2 and t4 are special classes of uniform 
designs mentioned earlier. Besides being easy to construct, uniform designs also are robust when 
there is uncertainty in the regression model (Wiens"). Design t5 is motivated by the ethical 
considerations of having fewer observations at the placebo and maximum doses. 

Table VI shows the efficiencies of the five designs for the five optimality criteria. For any design, 
t, we will refer to these efficiencies as e,(<),e2(t), etc. We note that none of these designs is 
L-optimal (that is, minimizes the variance of y at xo = 1). It is immediate that the L-optimal 
design places all observations at the point xo = 1. This design is useless for the other criteria, since 
it has zero efficiency for them. 

Several interesting results are evident. If the simple linear regression model holds, design t1 has 
design efficiencies of 1 except for e3(tl). Thus, design tl is useful as it achieves several goals in the 
study, including, but not limited to, the first, fourth and fifth criteria. Unfortunately, this design is 
inefficient when the quadratic model holds. Its efficiencies are ez(tl) = e4(t1) = es(tl) = 0 and 
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Table VII. Dosage levels for optimal estimation of polynomials (naive 
choices in parentheses) 

Degree X-values 

3 0 0.2764 0.7236 1 
(0 0.3333 0.6667 1) 

(0 0.2500 0.5000 0.7500 1) 

(0 0.2000 0.4000 0.6000 0.8000 1) 

4 0 0.1727 0.5000 0.8273 1 

5 0 0.1175 0.3574 06426 0.8825 1 

e3(t1) = 0.5. While design t1 estimates B with the smallest variance (in the quadratic model) it 
estimates C and A with maximal variance (Preitschopf and Pukelsheim' I). The practical implica- 
tion is serious since design provides no information about C when the quadratic model holds. 
Interestingly, if we modify design tl  to, say, t:, so that half of the observations are taken at 0 and 
half at x (0 < x < l ) ,  then 

el((:) = x2 

e , ( [ : )  = x2/(2x2 - 4x + 4) 

e4(4T) = x 

e5(<:) = x2/(x2 - 2x + 2) 

under the simple linear regression model. 
The other entries in Table VI can be interpreted similarly. For the quadratic model, design 

t2 gives a variance of c 1.125 ( = 1/0.8889) times that of design 5,. This was the example noted 
earlier. This means that design t2 requires 12-5 per cent more observations to attain the same 
variance for c as design 5,. 

These computations demonstrate the importance of considering the efficiency of a design. 
A poor choice of a design wastes resources, while a carefully designed experiment can furnish 
more information with fewer resources. A poorly designed experiment could also, in an extreme 
case, produce little or no information after the experiment is run. Such would be the case if one 
wished to estimate C and design el was used. 

We have restricted attention to simple linear regression and quadratic regression models. 
Similar ideas apply to polynomial models of degrees higher than 2. For example, when a poly- 
nomial of degree 3,4 or 5 is used to model the dose-response relationship and interest is in all the 
parameters, the approximate D-optimal designs take equal proportions at the dosage levels given 
in Table VII. The uniform design on K + 1 points are chosen as i /K ,  i = 0, ... , K. The optimal 
points are close to the naive choices and so the naive choices should pay only a slight penalty in 
the design criteria costs. Optimal designs for polynomials of higher degrees and optimal designs 
for estimating subsets of the parameters are available in F e d ~ r o v . ~  

Finally, we comment that if we consider approximate designs uniformly spaced on K points, 
there is no advantage in considering values of K greater than 4 for the simple linear regression 
model and K greater than 7 for the quadratic regression model (see Fedorov' for details). 
Table VIII shows that large values of K can result in substantial decreases in efficiency. For both 
these criteria, the efficiency decreases as K increases. Where possible one should avoid designs 
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Table VIII. Efficiency of a uniform design on K points for a quadratic model 

Criterion K 
3 4 5 6 7 

var(b) 08889 0.7901 0.7000 0-6372 0.5926 
Generalized variance 0.9449 0.9048 0.8390 0.7946 0.7631 

with excessive numbers of points. This is true both from the viewpoint of optimal design and from 
the logistics of conducting the experiment. 

6. SUMMARY AND RECOMMENDATIONS 

We have described dose-response designs and illustrated them with simple (artificial) examples. 
The dose-response design generally provides more information than the two-group design (with 
half of the points at 0 and half at 1) unless the response is linear. It places fewer points at  the 
highest and lowest dose levels and provides information about non-linear response. There is only 
a small drop in efficiency in the designs as we move from the optimal, symmetric design to the 
uniform design. Designs which deliberately reduce the number of points at the extremes (dose = 0 
and dose = 1) lose efficiency rapidly, and we do not generally recommend them. The approach 
and analysis we adopted here is based on optimal approximate design. The primary reason for 
doing this is that the design problem is simplified and the optimal approximate design that results 
provides a useful guide to the practitioner. There are many applications of the theory of optimal 
approximate design in practice and they are increasing. Some recent biomedical applications of 
these ideas can be found in Hoel and Jennrich,” Dunn,13 Hatzis and Larntz,14 Atkinson et al.,” 
and Kitsos et a1.16 
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