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Abstract

Crucial transitions in cancer—including tumor initiation, local expansion, metastasis, and 

therapeutic resistance—involve complex interactions between cells within the dynamic tumor 

ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods 

now provide an opportunity to interrogate this complexity at unprecedented resolution. The 

Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer 

Moonshot Initiative, will establish a clinical, experimental, computational, and organizational 

framework to generate informative and accessible three-dimensional atlases of cancer transitions 

for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy 

organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a 

single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating 

them with clinical outcomes should help identify novel predictive biomarkers and features as well 

as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The 

resulting tumor atlases should have a profound impact on our understanding of cancer biology and 

have the potential to improve cancer detection, prevention, and therapeutic discovery for better 

precision-medicine treatments of cancer patients and those at risk for cancer.

Cancer forms and progresses through a series of critical transitions—from pre-malignant to 

malignant states, from locally contained to metastatic disease, and from treatment-

responsive to treatment-resistant tumors (Figure 1). Although specifics differ across tumor 

types and patients, all transitions involve complex dynamic interactions between diverse pre-

malignant, malignant, and non-malignant cells (e.g., stroma cells and immune cells), often 

organized in specific patterns within the tumor microenvironment. Morphological, genetic, 

and epigenetic diversity of pre-malignant and malignant cells, even from the same tumor, is 

crucial for cancer development, adaptation to new metastatic sites, and resistance to 

treatment. Interactions with non-malignant cells in the tumor microenvironment also play 

critical roles in driving disease progression. Tumor cells can remodel their environment to 

promote their growth, enable tissue invasion to nearby or distant sites, or evade immune 

clearance. Conversely, diverse immune and stromal cells can either restrict or promote tumor 

growth and progression depending on the context.

The genomic revolution in cancer has led to the identification and pursuit of numerous 

genetic drivers of malignancy (The Cancer Genome Atlas Research Network et al., 2013; 

The International Cancer Genome Consortium, 2010), but these efforts have relied, by 

necessity, on bulk profiling of advanced tumors, most commonly at a single point in time, 

with limited information about patient treatment and outcomes (Figure 2). This has made it 

difficult to capture the intricate cellular, spatial, and temporal dimensions of tumorigenesis 

and their role in disease progression and dissemination. Recent advances in single-cell and 

multiplexed spatial analysis of tissue allow us to interrogate this complexity at 

unprecedented resolution (Angelo et al., 2014; Buenrostro et al., 2015; Chen et al., 2016a; 

Chen et al., 2016b; Du et al., 2019; Gaublomme et al., 2019; Gierahn et al., 2017; Giesen et 

al., 2014; Goltsev et al., 2018; Habib et al., 2017; Kang et al., 2018; Lee et al., 2014; Lin et 

al., 2018; Macosko et al., 2015; Moffitt et al., 2016a; Moffitt et al., 2016b; Shalek et al., 

2013; Ståhl et al., 2016; Stoeckius et al., 2018; Trombetta et al., 2014; Vickovic et al., 2016). 

As a result, it is now possible to systematically identify subcellular structures, cell types, cell 
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states, and different genetic clones in a tumor and to relate them spatially to each other and 

to the overall tumor. This should allow us to better understand tumor evolution and 

heterogeneity with the promise of improved diagnostics and therapeutics.

The Human Tumor Atlas Network (HTAN) was established by the National Cancer Institute 

(NCI) as part of the Cancer Moon-shot Initiative, tasked with the ambitious goal of making a 

decade’s worth of progress in cancer prevention, diagnosis, and treatment in just 5 years 

(https://ccr.cancer.gov/research/cancer-moonshot). HTAN will generate three-dimensional 

(3D) atlases of cancer transitions for a diverse set of pre-cancers and established tumors. 

Transitions will span tumor evolution from pre-malignancy to malignancy, from primary 

tumor to metastasis, and from pre-treatment to post-therapeutic response (Figure 1). 

Analogous to geographical information systems such as Google Maps, these interactive 

atlases should depict evolving tumor ecosystems in multiple dimensions across space and 

time to enable generalization and abstraction from individual tumor instances to their overall 

principles. The hope is that visualizing the structure, composition, and multiscale 

interactions at distinct points in tumor evolution will help identify novel predictive 

biomarkers and therapeutically relevant cell types, cell states, and cellular interactions and 

suggest new avenues for effectively targeting them. To construct even preliminary atlases, 

we must overcome substantial clinical, experimental, computational, and organizational 

challenges. To maximize the atlases’ impact and applicability, we also plan to develop robust 

yet flexible strategies for data integration, visualization, and sharing.

Here, we introduce the concept of a dynamic, multiparametric 3D tumor atlas, its potential 

to affect basic and translational research, and the experimental and computational strategies 

for its construction. We also discuss HTAN’s organization and opportunities for engagement 

and collaboration with complementary initiatives.

3D Atlases of Critical Transitions in Cancer

We envision tumor atlases as comprehensive, generalized catalogs of cell states, types, and 

programs and cell-state transitions and that these will incorporate the physical positions of 

tumor cells in relation to each other, the supporting stroma, and the extracellular matrix. To 

encompass the heterogeneous nature of tumors within and across patients, our atlases will 

generalize underlying features and programs that are unique or shared by multiple tumors 

and relate these molecular features to functional and clinical data elements and patient 

outcomes. HTAN atlases will represent different tumor types, disease sites, genders, and 

patient ethnicities. Because mechanisms of tumorigenesis are diverse and not all tumor types 

or metastatic sites can be sampled in the same way, the information available in specific 

atlases will vary.

Broadly, first-generation atlases are likely to comprise interactive 2D and 3D visualizations 

of sets of similar tumors and associate key molecular and cellular features with clinical data 

elements and patient outcomes (Figure 3). The Cancer Genome Atlas (TCGA) identified 

cancer drivers by finding mutations that significantly recur in tumors against a background 

of variation between individual patients while accounting for the context of characteristic 

histologic tumor features and limited clinical information (The Cancer Genome Atlas 
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Research Network et al., 2013). Second-generation tumor atlases will need to achieve a 

similar level of abstraction from multi-parametric datasets to meaningfully represent the 

combined genetic, molecular, ultrastructural, cellular, and histological features that 

characterize a specific tumor stage and type. To accomplish this goal, HTAN tumor-atlas 

generation is expected to involve five interdependent steps: (1) collection of longitudinal 

data from diverse modalities across multiple spatial scales ranging from subcellular (<250 

nm) to cell-cluster (~50 μm) resolution; (2) basic processing and quality control of each data 

modality to ensure accuracy and reproducibility; (3) identification of cell types, states, and 

positions for annotating tumor composition; (4) identification of features for describing cell-

cell interactions, intercellular communication, cell neighborhoods, and mesoscale spatial 

motifs; and (5) integration of experimental and clinical datasets into a comprehensive atlas 

(Figure 3).

HTAN atlases will be constructed around clinical transitions for multiple adult and pediatric 

malignancies (Figures 1 and 4)—although not all transitions can feasibly be studied in all 

tumor types. Because understanding tissue architecture is a major goal, HTAN will focus 

mostly on solid tumors, particularly those that represent critical unmet needs in oncology. 

These correspond to tumor types with poor prognosis, including triple-negative breast 

cancer, high-grade glioma, glioblastoma, high-risk neuroblastoma, pediatric sarcoma, high-

risk acute lymphoblastic leukemia, and pancreatic ductal adenocarcinoma; pre-malignancies 

in breast, lung, hematologic, prostate, and colorectal cancers and cutaneous melanoma (both 

hereditary and sporadic); primary and metastatic lung and pancreatic cancer; and drug-

resistant metastatic breast cancer, metastatic melanoma, and metastatic colorectal carcinoma 

(Figure 4).

Once constructed, HTAN atlases should facilitate clinical predictions by using features or 

biomarkers—such as molecular levels, cellular composition, or in situ structural and 

molecular patterns—that correlate with and ideally predict relevant clinical transitions, 

including treatment response (Figure 5A). Moreover, multiparametric insights from atlases 

are expected to guide future investigations into the basic biological processes that underlie 

malignant transformation (Figure 5B). A user should be able to query an atlas by using data 

from a new specimen without the need for the full battery of measurements (Figure 5C). For 

example, one could use a new specimen measured only with hematoxylin and eosin (H&E) 

staining or single-cell RNA-seq (scRNA-seq) to obtain predictions for other layers (e.g., the 

location of specific cells and molecules in the H&E stain or the origin of scRNA-seq profiles 

within a histology section). As a result, one mode of testing can connect genomics and 

histopathology and help to glean a wealth of spatiomolecular information. Finally, HTAN 

efforts should inform future charting efforts by the broader scientific community; drive the 

development of image quantification analytics such as TCGA did for genome-scale 

sequencing analysis; help integrate data across tumors, healthy tissue, and other disease 

states; and enable additional tumor specimens to be compared with this reference dataset or 

added to it with relative ease.
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The Promise of Tumor Atlases for Improving Clinical Care

HTAN atlases will illuminate at least three translational aspects of malignancy that could not 

be fully addressed by previous large-scale cancer genomics programs (e.g., TCGA and the 

International Cancer Genome Consortium [ICGC]) (Figure 2). First, the tumor 

microenvironment and its constituent cellular interactions—accessible to HTAN through 

spatial and single-cell approaches—represent remarkable targeting opportunities for therapy 

(Binnewies et al., 2018; Galon and Bruni, 2019; Sharma et al., 2017). Second, whereas most 

previous efforts focused on primary tumors with limited treatment and outcome data (Beane 

et al., 2019; Shain et al., 2015), HTAN emphasizes longitudinal sampling (including pre-

cancers, advanced tumors, metastases, and treatment responses) alongside collection of 

comprehensive clinical data. Together, these will inform detection, prevention, and treatment 

strategies (Srivastava et al., 2018). Third, the integration of spatial methods will help link 

cancer genomics and histopathology, the two primary means of diagnosing cancer and 

informing therapy. As a result, predictive biomarkers based on HTAN’s integrative, 

multimodal analyses could outperform genetic or histological biomarkers alone. For 

example, they might include compositions and arrangements of cancer and non-cancer cell 

neighborhoods or spatial heterogeneity in transcriptional, epigenetic, or mutational states 

along with features from H&E and immunohistochemistry staining. Machine-learning (ML) 

approaches could make it possible to relate such features to more traditional measures of 

tumor state, thus bridging the gap between established diagnostic methods and 

spatiomolecular information.

In the context of pre-malignancies, HTAN-defined biomarkers could help stratify lesions 

that are likely to progress and thus benefit from therapy, and they could inform positive 

prognoses for which treatments can be reduced or avoided. Moreover, they will help users to 

identify and assess the efficacy of new prevention strategies, enable early detection, and 

potentially promote more effective and less invasive screening contexts. In cancers such as in 
situ ductal carcinoma, the most common histologically recognized form of early breast 

cancer, HTAN-identified genomic alterations and cellular compositions associated with 

progression and outcome could inform prognosis and intervention strategies. Similar 

approaches can be taken in colorectal and skin cancers.

For established cancers, HTAN data could help to identify patients at risk for local invasion 

or metastasis, facilitate the detection of recurrence, and distinguish between aggressive and 

slow-growing tumors. Cancer models, signatures, and bio-markers based on atlas data are 

further expected to define targets for intervention and to predict treatment responses and 

potential resistance mechanisms, including the role of the tumor microenvironment. 

Genomics alone cannot reveal all aspects of complex resistance mechanisms. HTAN atlases 

of cancer transitions will help to define the range and spatial distribution of clonal variation 

within or across tumors and could guide treatment design for tumors that are likely to 

progress. For example, adjuvant therapy is currently effective in only 5%–20% of common 

breast, colon, and lung cancers, and predictive markers for invasion and metastasis could 

obviate the need for adjuvant therapy in a substantial subset of patients. Another example is 

the Immunoscore (Galon and Bruni, 2019), which accounts for the spatiotemporal interplay 
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of numerous different immune cell types in the tumor and is used for predicting relapse in 

early-stage colon cancer.

All HTAN atlases will provide spatially resolved immunopheno-types and are therefore 

likely to inform response and resistance to immuno-oncology drugs. Knowing which cells 

express immune checkpoint receptors and their ligands, and where in a tumor juxtracrine 

signaling can occur, is particularly helpful for the design of new combination therapies. For 

example, a resistance program expressed by malignant cells, associated with T cell exclusion 

and cold immune niches, predicts clinical responses to anti-PD-1 therapy in melanoma and 

can be reversed by CDK4/6 inhibitors (Jerby-Arnon et al., 2018).

HTAN atlases should allow for more precise treatment of cancer patients or those with 

increased cancer risk and the tailoring of first-line therapies to reduce the risk of resistance 

and recurrence. They will also help in the development of new strategies for patients whose 

tumors are unlikely to respond to existing treatments.

How to Build a Tumor Atlas

Because building 3D tumor atlases requires the integration of clinical, experimental, 

computational, and organizational frameworks, HTAN efforts span a wide range of activities 

from sample collection and tool development for cellular and spatial profiling to data 

analysis, atlas visualization, and querying. HTAN is committed to openly disseminating the 

clinical data, experimental methods, computational tools, standards, and multimodal data 

that it generates through these efforts.

Biospecimen Collection and Clinical Annotation

To ensure the broadest impact and usage, HTAN will obtain high-quality samples from 

ethnically diverse populations. Samples will be extensively annotated so that they capture 

detailed and harmonized clinical data elements, including demographic information and 

treatment history. Most samples will be prospectively collected, and in select cases, multisite 

sampling will be used for acquiring matched combinations of normal tissues, pre-cancer 

lesions, primary tumors, and metastases. To study resistance to therapy, HTAN will profile 

pre- and post-treatment samples in several tumor types (Figure 4), including, in some cases, 

matched pre- and post-samples from the same patient.

To study the transition from pre-cancer to cancer, HTAN investigators will leverage 

retrospectively banked frozen or formalin-fixed paraffin-embedded (FFPE) biopsies or tissue 

re-sections procured from primary tumors with adjacent pre-cancer components not 

accessible in screening settings. They will also prospectively collect longitudinal samples of 

advanced or adjacent pre-cancerous lesions. Where possible, longitudinal cohorts will follow 

cases where pre-invasive lesions progress to carcinoma.

To study the metastatic transition, HTAN will procure biopsies and surgical resections from 

primary and metastatic sites. A proportion of sampled cases that return with recurrent cancer 

will enable the capture of matched metastatic tissue via biopsy or resection. Single-cell 

profiling can be applied for small biopsy specimens, and most imaging modalities currently 
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work well with needle cores, although fine-needle aspirates typically produce too much 

tissue distortion. To study the transition to therapeutic resistance, HTAN investigators will 

sample lesions both before and after treatment. Prospective longitudinal sampling will also 

be supplemented by rapid autopsies, which enable extensive sampling of primary and 

disseminated tumors at multiple sites from the same individual (Iacobuzio-Donahue et al., 

2019).

High-resolution single-cell and spatial assays require appropriate quality metrics for diverse 

sample types (resections, biopsies, and body fluids) and processing methods (fresh, frozen, 

and fixed) and harmonized collection of metadata. HTAN investigators will address several 

key challenges during specimen collection, including (1) the documentation of pre-analytic 

variables, such as the time from sample collection to profiling as well as photographic 

documentation of the samples; (2) stream lined handling of fresh, frozen, and fixed tissues 

by testing, benchmarking, and sharing protocols and standard operating procedures (SOPs); 

(3) the manipulation of a single tumor specimen for multiple assays by prioritizing 

technologies depending on sample size; (4) longitudinal sampling from the same 

individuals; and (5) obtaining cases that represent the spectrum of disease from a range of 

possible samples to profile.

Cellular and Spatial Profiling

Most HTAN centers have adopted a two-pronged approach that pairs the collection of 

single-cell profiles from dissociated specimens (transcriptome, multiplexed protein, genome-

wide chromatin accessibility, or methylation) with spatially resolved multiplexed assays for 

RNAs or proteins in tissue (Figure 3 and Box 1). The two types of approaches are 

complementary: whereas single-cell profiling methods often lack spatial resolution, spatially 

resolved methods currently either are low in sample throughput or multiplex fewer 

measurements. Some centers will record anatomical information longitudinally by using 

magnetic resonance imaging (MRI), computed tomography, or positron emission 

tomography (PET), and some will record tissue structure at very high resolution by using 

serial electron microscopy. Bulk genomic, epigenomic, proteomic, metabolomic, and 

lipidomic profiling will facilitate the integration of existing data from prior consortia (The 

Cancer Genome Atlas Research Network et al., 2013; The International Cancer Genome 

Consortium, 2010; Rudnick et al., 2016). Among the key challenges for HTAN is the 

development of techniques for single-cell and multiplex spatial profiling of specimens in 

FFPE blocks (Foley et al., 2019). In particular, most clinical samples of pre-cancers are 

preserved as FFPE blocks for diagnosis, but FFPE reduces the availability of 

macromolecules for genomic assays. Additional challenges include the need to develop, 

deploy, and disseminate new methodologies in a rapidly changing technology landscape, 

optimize tumor-type-specific protocols, and obtain multiple data types from the same 

sample. Benchmarking efforts across the network will help tackle these challenges. Such 

efforts include a series of trans-network projects across multiple centers with the goal of 

improving SOPs to maximize data reproducibility.
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Data Analysis and Atlas Building

Computational analysis is a fundamental component of HTAN tumor-atlas construction and 

iteratively guides study and experimental design. HTAN researchers will employ 

computational approaches to map between cellular and spatial profiles and multiscale 

histological and anatomical structures. They will further integrate these with clinical data 

across time to generate a coherent atlas that is broadly accessible and can be dynamically 

queried by the scientific community. HTAN researchers will also aim to predict the 

functional impact of cell-cell interactions and test these predictions with functional 

validation studies. A particular challenge in the assembly of tumor atlases is the seemingly 

idiosyncratic nature of each tumor. However, akin to the discovery of recurring driver 

mutations in cancer genome atlases, the goal of a tumor cell atlas is to find recurrent higher-

order features by using computational and statistical means to identify common attributes 

across tumors. At the same time, it will also be important to identify unique tumor features 

and to connect both common and unique features to clinical outcomes.

The integration of multiple data modalities constitutes a major frontier in computational 

biology (Achim et al., 2015; Durruthy-Durruthy et al., 2014; Satija et al., 2015). Progress on 

similar problems in other computational domains could provide guidance (Jha et al., 2018; 

Ma et al., 2019; Wang et al., 2016). For example, new ML approaches leverage the unifying 

concept that cells lie on a low-dimensional manifold defined by related biological features 

(genome, epigenome, transcriptome, proteome, cell neighborhoods, etc.) and that similar 

cells neighbor each other (Argelaguet et al., 2019). Deep-learning approaches in particular 

are well suited to mapping this manifold because they do not require the important features 

to be defined beforehand, provide a natural means of integrating different feature types (e.g., 

single-cell data described as vectors and spatial data described as images), and are highly 

scalable (Amodio and Krishnaswamy, 2018; Liu et al., 2019; Lopez et al., 2019).

HTAN atlases will provide benchmarking data for ML algorithms currently in development 

(Goodfellow et al., 2017) to improve performance on tasks such as identifying cell-type and 

spatial features associated with clinical characteristics. The accuracy of ML-based cell-type 

calling can be tested through comparison of assignments made from H&E or 

immunohistochemistry with HTAN analysis of multiplexed imaging data and spatially 

resolved RNA expression data (Figure 5). These methods will be designed to help 

pathologists make more accurate assessments. We envision HTAN data as a treasure trove 

for the development of algorithmic approaches to mining spatially resolved ‘omic data, 

which could have potentially far-reaching implications in tumor biology. We expect the final 

atlas for each tumor type to consist of a set of recurrent structured features that characterize 

cell-type composition, cell states, cell-cell interactions, cell neighborhoods, and histological 

modules, as well as their relation to key temporal transitions.

Integrated atlas data will be made accessible through a dedicated HTAN portal, which will 

consist of a federated set of services and platforms spanning multiple technologies and tools. 

Initially, the platform will federate and extend the capabilities of the Sage Synapse platform, 

the cBioPortal for Cancer Genomics (https://www.cbioportal.org/; Gao et al., 2013), and the 

Cancer Digital Slide Archive. New computational tools developed by HTAN will also be 

integrated into the portal as they mature.
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Challenges and Possible Solutions

Building tumor atlases poses several overarching challenges. First, samples representative of 

multiple stages of tumor progression will typically come from different patients and thus 

require us to infer pathways and mechanisms of progression computationally.

Second, atlases will have heterogenous datasets, reflecting differences that are technical 

(e.g., sample processing times), biological (e.g., diverse patient groups, cancer tissue origin, 

and disease status), or in profiling modalities (e.g., single-cell or single-nucleus RNA-seq 

[sc/snRNA-seq], assay for transposase-accessible chromatin using sequencing [ATAC-seq], 

and distinct spatial profiling methods). Technical hurdles can be addressed with both batch 

correction methods developed for bulk genomics data (Büttner et al., 2019; Johnson et al., 

2007) and newer methods developed for single-cell genomics (Luecken and Theis, 2019). 

Merging samples with biological differences is more complicated because methods for 

merging these data-sets must balance between recognizing the cell types and states that are 

common across datasets and not overcorrecting or losing important biological differences 

(Barkas et al., 2019; Korsunsky et al., 2019; Lopez et al., 2019; Stuart et al., 2019; Welch et 

al., 2019). Trans-network efforts will help to improve the needed cell-type calling and 

alignment.

Third, assessing the predictive potential of HTAN requires a statistical power analysis for the 

number of individuals, cells, and fields of view needed for each tumor type. Although 

single-cell profiling studies might collect fewer tumors than TCGA, the single-cell 

resolution addresses compositional confounders (Smillie et al., 2019) and thus helps to 

reveal disease mechanisms. The power of HTAN datasets will increase by integration with 

prior bulk profiling studies in TCGA and ICGC through deconvolution (Jerby-Arnon et al., 

2018; Tirosh et al., 2016a; Tirosh et al., 2016b) as well as by transfer learning for training 

predictive models while borrowing parameters from a model that performs well on a similar 

task (Azizi et al., 2018; Wang et al., 2019; Yosinski et al., 2014).

Fourth, HTAN will need heterogenous data types (Box 1 and Figure 3) along with clinical 

data (Figure 3) in one coherent model. This can benefit from ML approaches, such as 

multido-main translation (Yang and Uhler, 2019), that rely on the assumption that all 

observations (e.g., expression, epigenomics, and histology) should reflect a single latent 

space and that learn a joint embedding of all data modalities, either unsupervised or 

supervised with clinical data. The result will be a general model that aims to predict—on the 

basis of cellular compositions, states, interactions, and histological organization—the 

relevant clinical outcomes.

Fifth, there is an explosion in technological development, particularly for spatial assays 

measuring RNA and protein and for multiomic measurements, many of which have not been 

applied to tumor tissue. HTAN trans-network efforts will test and benchmark new 

technologies to assess the extent to which they can be used for profiling clinical samples.
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HTAN as a Community Resource

To ensure that its efforts have the broadest impact, HTAN is committed to open-access 

publication and the sharing of data, clinical information, metadata, experimental protocols, 

and computational tools with the broader scientific community. These commitments are 

consistent with the ambitious goals of the NCI Cancer Moonshot data-sharing and open-

access publication policy (https://www.cancer.gov/research/key-initiatives/moonshot-cancer-

initiative/funding/public-access-policy).

All HTAN-generated data will be available through a dedicated cloud-enabled data portal 

provided by the HTAN Data Coordination Center (DCC); this portal will have proper access 

controls as required by patient privacy concerns and be based on findable, accessible, 

interoperable, and reusable (FAIR) data principles and standards compatible with other 

Cancer Moonshot Initiatives (Wilkinson et al., 2016). The HTAN data portal will be directly 

available to the international scientific community and will facilitate the transfer of HTAN 

data to existing and planned data nodes within the wider NCI Cancer Research Data 

Commons ecosystem. Data tables will also be accessible and queryable with the use of NCI 

Cloud Resources. HTAN strives to provide compatibility with other relevant platforms, such 

as the Human Cell Atlas (HCA) Data Coordination Platform and the Human Bio-molecular 

Atlas Program (HuBMAP) High-Performance Integrated Virtual Environment portal. To 

maximize the accessibility and interoperability of HTAN data and tools, the DCC will work 

in collaboration with HTAN centers to develop and unify annotation standards for clinical 

data elements used across HTAN and to develop and unify metadata on biospecimens and 

assay-specific data types. Application program interfaces will ensure inter-operability of 

data-validation and -visualization tools, and the availability of source code on GitHub will 

make it possible for others to build on HTAN technology.

Given the diverse data types and dynamic technology landscape, HTAN centers will both 

build data pipelines based on existing algorithms and leverage new tools developed by both 

consortium members and the broader scientific community as they arise. They will also 

develop analytical tools and fast, interactive, multiscale visualization algorithms that 

integrate molecular and spatial data. For example, one HTAN center has already released 

web-based and desktop tools for rapid zooming and panning across multichannel tumor 

images obtained by cyclic immunofluorescence (CyCIF, https://www.cycif.org; Krueger et 

al., 2020; Lin et al., 2015; Lin et al., 2018).

Just as importantly, HTAN will share experimental protocols and SOPs by using both open-

access platforms such as protocols.io (Teytelman et al., 2016) and hands-on training by 

dedicated teams of HTAN researchers. To better disseminate knowledge about complex, 

multistep laboratory procedures, one HTAN pilot project (see below) has developed a 

“specialized work acquisition teams” model in which a group of experts from one laboratory 

travels to another to work side by side to fully, accurately, and quickly convey their 

experimental and computational know-how.
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Who Is Part of HTAN?

HTAN currently consists of a network of ten interdisciplinary research centers—five focused 

on pre-cancers and five studying more advanced tumors—working together along with the 

DCC. Each center focuses on one or more aspects of specific tumor types and transitions 

(Figure 4) and employs a subset of the experimental and analytical tools of the HTAN 

toolbox (Box 1). The centers coordinate through a joint steering committee with four 

working groups (policy, clinical and biospecimen, molecular characterization, and data 

analysis working groups). More information on funded HTAN research projects can be 

found on the NCI Cancer Moonshot website (https://www.cancer.gov/research/key-

initiatives/moonshot-cancer-initiative/implementation/human-tumor-atlas).

HTAN members are actively engaged with other complementary initiatives both at the NIH

—including HuBMAP (HuBMAP Consortium, 2019), the Brain Research through 

Advancing Innovative Neurotechnologies (BRAIN) Initiative (Ecker et al., 2017), the NCI 

Information Technologies for Cancer Research (ITCR), the Cancer Systems Biology 

Consortium (CSBC), and the Cancer Research Data Commons—and internationally, such as 

the HCA (Regev et al., 2017; Rozenblatt-Rosen et al., 2017) and the Global Alliance for 

Genomics and Health. HTAN will interact and synergize with these efforts to obtain a 

broader and more complete picture of the dynamic molecular and cellular states that drive 

cancers, their therapeutic responses, and/or resistance. The 3D maps of normal human 

organs are expected to serve as particularly valuable references for corresponding tumor 

atlases (Figure 2). Collaboration with atlas-building consortia for other diseases will further 

serve to address overlapping experimental and computational challenges (Figure 2). 

Likewise, work in the CSBC could provide much-needed experimental data for multiscale 

computational modeling of tumor biology.

In consideration of the challenges that HTAN faces, two feasibility pilot projects were 

initiated prior to its launch: the Pre-Cancer Atlas Pilot Project (PCAPP) and the Human 

Tumor Atlas Pilot Project (HTAPP). These projects were designed to develop and advance 

the standardization of key protocols, procedures, metadata schemata, and tools for use by 

HTAN. Data and protocols generated by the pilot projects are being shared both within 

HTAN and with the broader community. For example, PCAPP has generated SOPs and 

guidelines for generating FFPE blocks for optimal spatial profiling, an imaging panel for 

pre-cancer samples, and protocols for low-input profiling of DNA and RNA from small 

FFPE samples (Foley et al., 2019). HTAPP has developed a sc/snRNA-seq toolbox for 

systematic processing of various fresh and frozen tumor samples (Slyper et al., 2019) and a 

cloud analysis pipeline (Li et al., 2019).

Outlook

By building a framework for integrating cellular and spatial molecular profiling of tumors 

during key clinical transitions, HTAN provides an opportunity to refine our fundamental 

concepts of malignancy and is poised to have a profound impact on translational medicine 

(Figure 6). HTAN atlases span multiple scales, and we expect their high-resolution view of 

clinically relevant transitions to highlight new aspects of the development and evolution of 
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malignancy, metastatic disease, therapeutic response, and resistance—including both tumor-

specific and universal mechanisms.

In pre-cancers, HTAN should help identify the genetic, epigenetic, and environmental 

factors involved in the earliest steps of malignancy, such as non-cell-autonomous factors 

distinguishing successful from unsuccessful immune surveillance. In later stage cancers, 

atlases should help us to understand the difference between immune-infiltrated and cold 

tumors; the drivers of metastasis, which could be more readily discernable with spatial data 

than with purely genomic data; and the impact of tumor heterogeneity and ecosystems on 

therapeutic response and resistance. A better understanding of these mechanisms will inform 

new predictive models and prognostic biomarkers, signatures, and diagnostics that can 

ultimately be deployed at point of care to improve the outcomes of cancer patients. It will 

also improve the development of preventive strategies, therapeutic agents, and drug 

combinations that can effectively target these processes at multiple steps in the malignant 

process.

HTAN atlases will be shared community resources that accelerate both exploratory and 

hypothesis-driven research. The network will provide protocols, software, and best-practice 

guidelines to promote the development and deployment of technologies that we believe will 

have a profound impact on the study of human tumors, including open standards in histology 

and histopathology. HTAN’s collaborative nature will establish a model within our scientific 

community for the integration of efforts and data. We hope that HTAN will give rise to a 

foundational resource that will improve the understanding, diagnosis, monitoring, and 

treatment of cancer patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1.

Toolbox Used for Building 3D Tumor Atlases across Scales

The HTAN toolbox includes molecular, spatiomolecular, histological, and anatomical 

profiling.

Molecular Profiling

Single-Cell Profiling

(1) Single-cell or single-nucleus RNA sequencing (sc/snRNA-seq). Massively parallel sc/

snRNA-seq methods allow quick and cost-effective profiling of gene expression from 

tens of thousands of single cells or nuclei (Habib et al., 2017; Macosko et al., 2015). For 

snRNA-seq, frozen tissue samples can be accrued over time and then multiplexed for 

reducing costs and limiting potential batch effects (Gaublomme et al., 2019; Kang et al., 

2018). HTAN centers will use several profiling methods, including approaches based on 

plates (Patel et al., 2014; Shalek et al., 2013; Tirosh et al., 2016a; Trombetta et al., 2014; 

Wallrapp et al., 2017), droplets (Habib et al., 2017; Macosko et al., 2015), microwells 

(Gierahn et al., 2017), and combinatorial indexing (Rosenberg et al., 2018; Vitak et al., 

2017). This methodological breadth ensures that the optimal platform can be used by a 

given center according to considerations such as tissue type, accessibility, required scale, 

and level of expertise. (2) To examine gene regulation, HTAN centers will also profile 

epigenomic features such as chromatin accessibility and DNA methylation by using 

single-cell epigenomics approaches (Buenrostro et al., 2015). (3) HTAN centers will also 

quantify proteins from single cells by using cellular indexing of transcriptomes and 

epitopes by sequencing (CITE-seq) (Stoeckius et al., 2017) to confirm and complement 

the sc/snRNA-seq data.

Bulk Profiling

For a subset of samples, HTAN researchers will apply bulk characterization methods, 

including (1) whole-exome sequencing to characterize the mutations, copy-number 

alterations, and clones in the tumor; (2) bulk RNA-seq to provide transcriptome 

annotations and help determine whether any major cell subset is disproportionally lost in 

dissociation; (3) epigenomic profiling as a control for all the cell types present in a 

sample; (4) proteomics measurements by reverse-phase protein array and mass 
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spectrometry; and (5) metabolomics. Many of these assays have been used for profiling 

tumors in other consortia and will facilitate the integration of existing legacy data with 

HTAN data.

Spatiomolecular Profiling

HTAN centers will deploy multiplexed in situ RNA and protein assays that could rely on 

imaging, sequencing, spatial coding, and computational inference. These technologies 

fall into two broad categories: (1) approaches that quantify specific nucleic acids (Chen et 

al., 2015; Chen et al., 2016a; Moffitt et al., 2016a; Moffitt et al., 2016b) or proteins 

(Angelo et al., 2014; Giesen et al., 2014; Goltsev et al., 2018) by using targeted nucleic 

acid probes or antibodies, respectively, and (2) those that profile RNA by using 

sequencing (Lee et al., 2014; Ståhl et al., 2016; Vickovic et al., 2016). These methods 

have a trade-off between multiplexing capacity and spatial resolution, and currently most 

genome-wide methods do not reach single-cell resolution. In some cases, sub-cellular 

profiling will be performed.

Histological and Anatomical Profiling

Hematoxylin and eosin (H&E) staining of tissue sections will inform the histology of the 

tumor tissue and will be complemented by longitudinal but lower-resolution 

technologies, such as MRI and PET, for anatomical imaging. Together, these methods 

will provide information about tissue architecture and a connection to common assays 

deployed in clinical care.
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Figure 1. Crucial Transitions in Cancer
HTAN aims to generate 3D atlases of three critical transitions in cancer: tumor initiation 

(from pre-cancerous lesions to local malignancy), expansion (from local malignancy to 

metastasis), and progression to a therapy-resistant state through intrinsic (purple) or acquired 

(yellow) resistance mechanisms. These transitions involve complex interactions between 

pre-malignant, malignant, and/or non-malignant cells within the tumor ecosystem.
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Figure 2. HTAN Is Complementary to Previous Large-Scale Cancer Genomics Initiatives and 
Ongoing Atlas Efforts
HTAN will illuminate aspects of malignancy that could not be fully addressed by previous 

large-scale cancer genomics programs and is complementary to ongoing atlas building 

efforts across healthy and disease tissues.

Rozenblatt-Rosen et al. Page 21

Cell. Author manuscript; available in PMC 2021 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Building 3D Human Tumor Atlases
HTAN centers will measure data modalities at multiple scales of resolution, from molecular 

to ultrastructural to cellular to histological to anatomical (when possible), and will collect 

relevant clinical information from patients with tumors under study. These modalities will be 

used for profiling samples according to the capabilities of each HTAN center. Most centers 

will use both molecular and spatial profiling methods to generate data. Data that pass 

HTAN-defined basic processing and quality control will be utilized for interrogating cell-

type composition, cell-cell interactions, and spatial structures (left panels). Atlases will then 

be constructed through the integration of these data modalities measured across time (right 

panel).
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Figure 4. Key Tumors Studied by the Consortium
HTAN centers will generate 3D atlases of human tumors spanning different tissue types 

across adult and pediatric tumors from patients with pre-cancer, primary tumors, and 

metastases, as well as resistant tumors before and after treatment. Projected ranges for the 

number of samples to be profiled over the 5-year HTAN period are depicted for each center 

and tumor type. In some cases, multiple samples will be profiled from the same patient. 

HTAN includes the following centers: Children’s Hospital of Philadelphia (CHOP), Dana-

Farber Cancer Institute (DFCI), Oregon Health & Science University (OHSU), Washington 

University in St. Louis (WUSTL), Duke University School of Medicine, Pre-Cancer Atlas 

Pilot Project (PCAPP), Human Tumor Pilot Project (HTAPP), Vanderbilt University Medical 

Center (VUMC), Stanford University, Boston University (BU), Memorial Sloan Kettering 

Cancer Center (MSCKK), and Harvard Medical School (HMS).
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Figure 5. What We Can Learn from the Atlases and How to Query Them
(A and B) HTAN centers will combine clinical outcome and measurement data to (A) 

capture shared and unique characteristics and features across tumors—or subsets of tumors

—and (B) associate them with “structural” features such as genes, molecules, cells, cellular 

interactions and structures, and histology. (C) By identifying features that correlate with 

clinical transitions and disease states, responses to treatment, and/or structural and molecular 

traits, tumor atlases will facilitate clinical and structural predictions according to query 

datasets.
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Figure 6. HTAN Will Have a Profound Impact on Cancer Biology and Medicine
The translational promise of a tumor cell atlas ranges from basic understanding of disease 

mechanisms, diagnosis, prognosis, treatment monitoring, drug development, biomarker 

discovery, and patient stratification and will ultimately facilitate an era of precision 

medicine.
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