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Abstract

Accurately predicting the binding affinities of small organic molecules to biological macro-

molecules can greatly accelerate drug discovery by reducing the number of compounds that must 

be synthesized to realize desired potency and selectivity goals. Unfortunately, the process of 

assessing the accuracy of current computational approaches to affinity prediction against binding 
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data to biological macro-molecules is frustrated by several challenges, such as slow 

conformational dynamics, multiple titratable groups, and the lack of high-quality blinded datasets. 

Over the last several SAMPL blind challenge exercises, host-guest systems have emerged as a 

practical and effective way to circumvent these challenges in assessing the predictive performance 

of current-generation quantitative modeling tools, while still providing systems capable of 

possessing tight binding affinities. Here, we present an overview of the SAMPL6 host-guest 

binding affinity prediction challenge, which featured three supramolecular hosts: octa-acid (OA), 

the closely related tetra-endo-methyl-octa-acid (TEMOA), and cucurbit[8]uril (CB8), along with 

21 small organic guest molecules. A total of 119 entries were received from 10 participating 

groups employing a variety of methods that spanned from electronic structure and movable type 

calculations in implicit solvent to alchemical and potential of mean force strategies using 

empirical force fields with explicit solvent models. While empirical models tended to obtain better 

performance than first-principle methods, it was not possible to identify a single approach that 

consistently provided superior results across all host-guest systems and statistical metrics. 

Moreover, the accuracy of the methodologies generally displayed a substantial dependence on the 

system considered, emphasizing the need for host diversity in blind evaluations. Several entries 

exploited previous experimental measurements of similar host-guest systems in an effort to 

improve their physical-based predictions via some manner of rudimentary machine learning; while 

this strategy succeeded in reducing systematic errors, it did not correspond to an improvement in 

statistical correlation. Comparison to previous rounds of the host-guest binding free energy 

challenge highlights an overall improvement in the correlation obtained by the affinity predictions 

for OA and TEMOA systems, but a surprising lack of improvement regarding root mean square 

error over the past several challenge rounds. The data suggests that further refinement of force 

field parameters, as well as improved treatment of chemical effects (e.g., buffer salt conditions, 

protonation states) may be required to further enhance predictive accuracy.

Introduction

Quantitative physical and empirical modeling approaches have played a growing role in 

aiding and directing the design of small molecule biomolecular ligands for use as potential 

therapeutics or chemical probes [1– 4, 23, 65]. The degree inaccuracy of these predictions 

largely determines how effective they can be in prioritizing synthesis of small molecule 

ligands [105]. Retrospective estimates have suggested that current methodologies are 

capable of achieving about 1–2 kcal/mol inaccuracy for well-behaved protein-ligand systems 

[6, 122], but more work remains to be done to extend the applicability domain of these 

technologies.

Assessment of how much of this inaccuracy can be attributed to fundamental limitations of 

the force field in accurately modeling energetics is complicated by the presence of numerous 

additional factors [78]. Proteins are highly dynamic entities, and many common drug targets

—such as kinases [115] and GPCRs [63]— possess slow dynamics with timescales of 

microseconds to milliseconds [62] that frustrate the computation of true equilibrium 

affinities. While there has been some attempt to curate benchmark sets of protein-ligand 

affinity data in well-behaved model protein-ligand systems that are believed to be mostly 

free of slow-timescale motions that would convolve convergence issues with forcefield 
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inaccuracies [78], other effects can complicate assessment of the accuracy of physical 

modeling benchmarks. Ionizable residues, for example, comprise approximately 29% of all 

protein residues [56], and large-scale computational surveys suggest that 60% of all protein-

ligand complexes undergo a change in ionization state upon binding [5], with several notable 

cases characterized experimentally [24, 25, 91, 111]. For physical or empirical modeling 

approaches that assume fixed protonation states throughout the complexation process, 

protonation state effects are hopelessly convolved with issues of force field inaccuracy.

Host-guest systems are a tractable model for assessing force field inaccuracies

Over the last decade, supramolecular host-guest complexes have emerged as a practical and 

useful model system for the quantitative assessment of modeling errors for the interaction of 

druglike small molecules with receptors. Supramolecular hosts such as cucurbiturils, 

cavitands, and cyclodextrins can bind small druglike molecules with affinities similar to 

protein-ligand complexes [84, 85, 99]. The lack of slowly relaxing conformational degrees 

of freedom of these hosts eliminates the potential for slow microsecond-to-millisecond 

receptor relaxation timescales as a source of convergence issues [78], while the small size of 

these systems allows many methodologies to take advantage of faster simulation times to 

rapidly assess force field quality. The high solubilities of these systems permit high-quality 

biophysical characterization of their interactions via gold-standard methods such as 

isothermal titration calorimetry (ITC) and nuclear magnetic resonance (NMR) [22, 38, 114 ]. 

Additionally, the stability of supramolecular hosts at extreme pH allows for strict control of 

protonation states in a manner not possible with protein-ligand systems, allowing 

confounding protonation state effects to be eliminated from consideration if desired [114]. 

Collectively, these properties have made host-guest systems a productive route for revealing 

deficiencies in modern force fields through blind community challenge exercises we have 

organized as part of the Statistical Assessment of the Modeling of Proteins and Ligands 

(SAMPL) series of blind prediction challenge [86, 88, 107, 127].

SAMPL host-guest challenges have driven advances in our understanding of sources of 
error

The SAMPL (Statistical Assessment of the Modeling of Proteins and Ligands) challenges 

are a recurring series of blind prediction challenges for the computational chemistry 

community [76, Drug Design Data Resource]. Through these challenges, SAMPL aims to 

evaluate and advance computational tools for rational drug design: By focusing the 

community on specific phenomena relevant to drug discovery—such as the contribution of 

force field inaccuracy to binding affinity prediction failures—isolating these phenomena 

from other confounding factors in well-designed test systems, evaluating tools prospectively, 

enforcing data sharing to learn from failures, and releasing the resulting high-quality 

datasets into the community as benchmark sets, SAMPL has driven progress in a number of 

areas over five previous rounds of challenge cycles [9, 34, 35, 43, 44, 81, 82, 86, 88, 93, 107, 

107, 108, 127].

More specifically, SAMPL host-guest challenges have provided key tests for modeling of 

binding interactions [78], motivating increased attention to how co-solvents and ions 

modulate binding (resulting in errors of up to 5 kcal/mol when these effects are neglected) 
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and the importance of adequately sampling water rearrangements [17, 78, 86, 127]. In turn, 

this detailed examination has resulted in clear improvements in subsequent SAMPL 

challenges [127], though host-guest binding remains difficult to model accurately [47], in 

part due to force field limitations (spawning new efforts to remedy major force field 

deficiencies [125]).

SAMPL6 host-guest systems

Three hosts were selected for the SAMPL6 host-guest binding challenge from the Gibb 

Deep Cavity Cavitand (GDCC) [36, 48, 79, 80] and the cucurbituril (CB) [31, 69, 83] 

families (Figure 1). The guest ligand sets were purposefully selected for the SAMPL6 

challenge. The utility of these particular host systems for evaluating free energy calculations 

has been reviewed in detail elsewhere [79, 80].

The two GDCCs, octa-acid (OA) [36] and tetra-endo-methyl-octa-acid (TEMOA) [33], are 

low-symmetry hosts with a basket-shaped binding site accessible through the larger 

entryway located at the top. These hosts also appeared in two previous SAMPL host-guest 

challenges—SAMPL4 [86] and SAMPL5 [127]—with the names of OAH and OAMe 

respectively with different sets of guests. OA and TEMOA differ by four methyl groups that 

reduce the size of the binding site entryway (Figure 1). Both hosts expose eight carboxyl 

groups that increase their solubility. The molecular structures of the eight guests selected for 

the SAMPL6 challenge for characterization against both OA and TEMOA are shown in 

Figure 1 (denoted OA-G0 through OA-G7). These guests feature a single polar group 

situated at one end of the molecule that tends to be exposed to solvent when complexed, 

while the rest of the compound remains buried in the hydrophobic binding site.

A second set of guest ligands were developed for the host cucurbit[8]uril (CB8). This host 

previously appeared in the SAMPL3 host-guest binding challenge [87], but members of the 

same family or analogs such as cucurbit[7]uril (CB7) and CBClip [128] were featured in 

SAMPL4 and SAMPL5 challenges as well. CB8 is a symmetric (D8h), ring-shaped host 

comprising eight identical glycoluril monomers linked by pairs of methylene bridges. Its 

top-bottom symmetry means that asymmetric guests have at least two symmetry-equivalent 

binding modes that can be kinetically separated by timescales not easily achievable by 

standard molecular dynamics (MD) or Monte Carlo simulations and may require special 

considerations, in particular in alchemical absolute binding free energy calculations [75]. 

The CB8 guest set (compounds CB8-G0 to CB8-G13 in Figure 1) includes both fragment-

like and bulkier drug-like compounds.

Some of the general modeling challenges posed by both families of host-guest systems have 

been characterized in previous studies. While their relatively rigid structure minimizes 

convergence difficulties associated with slow receptor conformational dynamics, both 

families have been shown to bind guest ligands via a dewetting processes—in which waters 

must be removed from the binding site to accommodate guests—in a manner that can 

frustrate convergence for strategies based on molecular simulation. In the absence of tight-

binding guest ligands, the octa-acid host experiences fluctuations in the number of bound 

waters on timescales of several nanoseconds [30]; a similar phenomenon was observed in 

alchemical absolute binding free energy calculations of CB7 at intermediate alchemical 
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states with partially decoupled Lennard-Jones interactions [101]. In addition, hosts in both 

families have been shown to bind ions that can compete with and lower the binding affinity 

of other guests in solution [37, 98, 109]. Depending on differences in concentration and 

composition, the effect on the binding free energy can be between 1–2 kcal/mol [85, 94, 98]. 

Sensitivity of the guest affinity to ion concentration has been observed also with 

computational methods [50, 89, 95], which suggests that careful modeling of the buffer 

conditions is in principle necessary for a meaningful comparison to experiments.

Experimental host-guest affinity measurements

A detailed description of the experimental methodology used to collect binding affinity data 

for OA, TEMOA, and CB8 host-guest systems is described elsewhere [90]. Briefly, all host-

guest binding affinities were determined via direct or competitive isothermal titration 

calorimetry (ITC) at 298 K. OA and TEMOA measurements were performed in 10 mM 

sodium phosphate buffer at pH 11.7±0.1 whereas CB8 guests binding affinities were 

measured in a 25 mM sodium phosphate buffer at pH 7.4. Phosphate buffer is a common 

choice of buffer for its relevance to biology, and can be prepared over a wide pH range for 

exerting control over protonation states. Binding stoichiometries were determined by 1H 

NMR spectral integration and/or by ITC. The ITC titration curves were fitted to a single-site 

model or a competition model for all guests, except for CB8-G12 (donepezil), for which a 

sequential binding model was used. The stoichiometry coefficient was either fitted 

simultaneously with the other parameters or fixed to the value verified by the NMR 

titrations, which is the case for the CB8 guest set, as well as for OA-G5, TEMOA-G5, and 

TEMOA-G7.

To determine experimental uncertainties, we added the relative error in the nonlinear fit-

derived association constant (Ka) or binding enthalpy (ΔH) with the relative error in the 

titrant concentration in quadrature [20]. We decided to arbitrarily assume a relative error in 

the titrant concentration of 3% after personal communication with Professor Lyle Isaacs who 

suggested a value inferior to 5% based on his experience. The minimum relative nonlinear 

fit-derived uncertainty permitted was 1%, since the fit uncertainty was reported by the ITC 

software as smaller than this in some cases. It should be noted that the error propagation 

strategy adopted here assumes that the stoichiometry coefficient is fitted to the ITC data in 

order to absorb errors in cell volume and titrand concentration; this approach is exact only 

for the OA/TEMOA sets with the exclusion of OA-G5, TEMOA-G5, and TEMOA-G7, and 

an underestimate of the true error for the remaining cases. The error was then further 

propagated to the binding free energies and entropies that were calculated from Ka and ΔH. 

The final estimated experimental uncertainties are relatively small, never exceeding 0.1 kcal/

mol.

The resulting experimental measurements with their uncertainties are reported in Table 1 and 

Figure 2. The dynamic range of the binding free energy ΔG spans 4.25 kcal/mol for the 

merged OA and TEMOA guest set, and 7.05 kcal/mol for CB8. The relatively wide cavity of 

CB8 enables binding stoichiometries different than 1:1. This is the case for three of the CB8 

guests, specifically CB8-G1 (tolterodine), CB8-G4 (gallamine triethiodate), and CB8-G12 

(donepezil). Curiously, while CB8-G12 was found to bind in 2:1 complexes (two guests 
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bound to the same host), the NMR experiments determined stoichiometries of 1:2 and 1:3 

for CB8-G1 and CB8-G4 respectively (one guest bound to multiple hosts). For the last two 

guests, the ITC titration curves fit well to a single set of sites binding model which indicates 

that the each of the binding events are equivalent. In Table 1 and Figure 2 we report the 

binding affinity of both the 1:1 and the 2:1 complex for CB8-G12, which are identified by 

CB8-G12a and CB8-G12b respectively, and the free energy of the 1:1 complex for CB8-G1 

and CB8-G4.

Methods

Challenge design and logistics

Challenge timeline—On August 24th, 2017, we released in a publicly accessible GitHub 

repository [51] a brief description of the host-guest systems and the experimental 

methodology, together with the challenge directions, and input files in mol2 and sdf formats 

for the three hosts and their guests. The instructions shared online included information 

about buffer concentrations, temperature, and pH used for the experiments. The participants 

were asked to submit their predicted absolute binding free energies and, optionally, binding 

enthalpies, along with a detailed description of the methodology and the software employed 

through the Drug Design Data Resource (D3R) website (https://drugdesigndata.org/about/

sampl6) by January 19th, 2018. We also encouraged the inclusion of uncertainties and/or 

standard error of the mean (SEM) of the predictions when available. The results of the 

experimental assays were released on January 26th in the same GitHub repository. The 

challenge culminated in a conference held on February 22–23, 2018 in La Jolla, CA where 

the participants shared lessons learned from participating in the challenge after performing 

retrospective analysis of their data.

Bonus challenge—Three molecules in the CB8 guest sets, namely CB8-G11, CB8-G12, 

and CB8-G13, were proposed to participants as an optional bonus challenge since they were 

identified in advance to present some atypical difficulties for molecular modeling. In 

particular, the initial experimental data suggested both CB8-G11 and CB8-G12 to bind with 

2:1 binding stoichiometry while CB8-G13 was deemed to be an especially challenging case 

for modeling due to the presence of a coordinated platinum atom, which is commonly not 

readily handled by classical force fields and usually requires larger basis sets for quantum 

mechanics (QM) calculations than those commonly employed with simple organic 

molecules. Further investigation after the start date of the challenge revealed an error in the 

calibration of a CB8 solution which affected the measurement of CB8-G11. After correcting 

the error, a 1:1 stoichiometry was recovered, and the experiment was repeated to validate the 

result. Unfortunately, the new data was obtained too late to send out a correction to all 

participants, so only six entries included predictions for this guest.

Preparation of standard input files—Standard input files for the three hosts were 

generated for the previous rounds of the SAMPL host-guest binding challenge and uploaded 

to the repository unchanged, while the guests’ atomic coordinates were generated from their 

SMILES string representation through the OMEGA library [46] in the OpenEye Toolkit 

(version 2017.Oct.b5) except for oxaliplatin (CB8-G13), which was generated with 
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OpenBabel to handle the platinum atom. The compounds were then docked into their hosts 

with OpenEye’s FRED docking facility [72, 73]. Stereochemistry of the 3D structures 

recapitulated the stereochemistry of compounds assayed experimentally; experimental 

assays for chiral compounds were enantiopure except OA-G5, which was measured as a 

racemic mixture. For this molecule, we picked at random one of the two enantiomers under 

the assumption that the guest chirality (for this guest with a single chiral center) would not 

affect the binding free energy to an achiral host such as OA and TEMOA since the system 

otherwise contains no chiral centers. This information was included in the instructions when 

the challenge was released. Guest mol2 files also included AM1-BCC point charges 

generated with the AM1-BCC charge engine in the Quacpac tool from the OpenEye toolkit 

[54, 55]. Figure 1 shows the protonation state of the molecules as provided in the input files, 

which reflects the most likely protonation state as predicted by Epik [41, 102] from the 

Schrödinger Suite 2017–2 (Schrödinger) at experimental buffer pH (11.7 for OA and 7.4 for 

CB8). This resulted in all molecules possessing a net charge, with the exception of 

oxaliplatin and the CB8 host, which have no acidic or basic groups. Specifically, the eight 

carboxyl groups of OA and TEMOA were modeled as deprotonated and charged. The 

instructions stated clearly that the protonation and tautomeric states provided were not 

guaranteed to be optimal. In particular, participants in the bonus challenge were advised to 

treat CB8-G12 with care as, in its protonated state, the nitrogen proton could be placed so 

that the substituent was axial or equatorial. The latter solution was arbitrarily adopted by the 

tools used to generate the input files for CB8-G12.

Statistical analysis of challenge entries

Performance statistics—We computed root mean square error (RMSE), mean signed 

error (ME), coefficient of determination (R2), and Kendall rank correlation coefficient (τ) 

comparing experimentally determined binding free energies with blinded participant free 

energy predictions.

The mean signed error (ME), which quantifies the bias in predictions, was computed as

ME = 1
N ∑

i = 1

N
ΔGi

exp − ΔGi
calc (1)

where ΔGi
exp  and ΔGi

calc  are the experimental measurement of the binding free energy and 

its computational prediction respectively for the i-th molecule, and N is the total number of 

molecules in the dataset. A positive ME reflects an overestimated binding free energy ΔG 

(or underestimated affinity Kd = e−βΔG × 1M .

Some of the methods appearing in SAMPL6 were also used in previous rounds of the same 

challenge to predict relative binding free energies of similar host-guest systems. In order to 

comment on the performance of these methods over sequential challenges, for which 

statistics on absolute free energies are not readily available, we computed a separate set of 

statistics defined as offset statistics, as opposed to the absolute statistics defined above, in 
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the same way they were reported in previous challenge overview papers. These statistics are 

computed identically to absolute statistics but by substituting ΔGi
calc  with

ΔGi, o
calc = ΔGi

calc − ME (2)

in the estimator expressions. The offset root mean square error computed from the ΔGi, o
calc

data points is termed RMSEo. It should be noted, however, that R2 and τ are invariant under 

a constant shift of the data points. For this reason, we will use the symbols R2 and τ both for 

the absolute and the offset correlation statistics.

Given the similarities of the two octa-acid hosts the set of their guest molecules, and that the 

large majority of the submitted methodologies were applied to both sets, we decided to 

report here the statistics computed using all the 16 predictions performed for OA and 

TEMOA (i.e., 8 predictions for each host). This merged set will be referred to as OA/

TEMOA set in the rest of the work. The only method used to predict the binding free 

energies of the TEMOA set but not of the OA set was US-CGenFF (see Table 2 for a 

schematic description of the methodology). We also decided to calculate separate statistics 

for the CB8 to highlight the general difference in performance between the predictions of the 

two host families. Statistics calculated on the two separate OA and TEMOA sets, as well as 

on the full dataset including CB8, OA, and TEMOA, are available on the GitHub repository 

(https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/Accuracy/).

We generated bootstrap distributions of the statistics and computed 95-percentile bootstrap 

confidence intervals of the point estimates by generating 100 000 bootstrap samples through 

random sampling of the set of host-guest pairs with replacement. When the submission 

included SEMs for each prediction, we accounted for the statistical uncertainty in 

predictions by adding, for each bootstrap replicate, an additional Gaussian perturbation to 

the prediction with a standard deviation indicated by the SEM for that prediction.

Null model—In order to compare the results obtained by the participants to a simple model 

that can be evaluated with minimal effort, we computed the binding free energy predicted by 

MM-GBSA rescoring [40] using Prime [52, 53] with the OPLS3 forcefield [45] in the 

Schrödinger Suite 2018–1 (Schrödinger). We used the same docked poses provided in the 

input files that were shared with all the participants as the initial coordinates for all the 

calculations. All docked positions were minimized before being rescored with the OPLS3 

force field and the VSGB2.1 solvent model. The only exception to this was CB8-G4, which 

was manually re-docked into the host, as the initial structure contained steric clashes that 

could not be relaxed by minimization, causing the predicted binding free energy to spike to 

an unreasonable value of +2443 kcal/mol.

Results—We received 42 submissions for the OA guest set, 43 for TEMOA, and 34 for 

CB8, for a total of 119 submissions, from 10 different participants, 5 of whom uploaded 

predictions for the three compounds in the bonus challenge as well. Only two groups 

submitted enthalpy predictions, which makes it impractical to draw general conclusions 
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about the state of the field regarding the reliability of enthalpy predictions. Moreover, the 

predictive performance was generally poor (see Supplementary Figure 9). The results of the 

enthalpy calculations are thus not discussed in detail here, but they are nevertheless available 

on the GitHub repository.

Overview of the methodologies

Including the null model, 41 different methodologies were applied to one or more of the 

three datasets. In particular, the submissions included a total of 25 different variations of the 

movable type method exploring the effect of the input structures, the force field, the 

presence of conformational changes upon binding, and the introduction of previous 

experimental information on the free energy estimates. In order to facilitate the comparison 

among methods, we focus in this analysis on a representative subset of 7 different variations 

of the methodology. Supplementary Figure 7 and Supplementary Figure 8 show statistic 

bootstrap distributions and correlation plots for all the movable type free energy calculations 

submitted. As many of the methodologies are reported in detail elsewhere, in this section, 

we give a brief overview of the different strategies employed for the challenge to model the 

host-guest systems and estimate the binding free energies, and we leave the detailed 

descriptions of the various methodologies to the articles referenced in Table 2.

Modeling—The majority of the participants either used the docked poses provided in the 

input files or ran a separate docking program to generate the initial complex conformation 

for the calculations. In few cases, the starting configuration was found by manually placing 

the guest inside the host. Surprisingly, the most common solvent model used in classical 

simulations was still TIP3P [57], a water model parameterized by Jorgensen 35 years ago for 

use with a fixed-cutoff Monte Carlo code neglecting long-range dispersion interactions and 

omitting long-range electrostatics. The only other explicit water models used in this round of 

the challenge were the significantly more modern AMOEBA [96] and TIP4P-Ew [49] water 

models, which was used to sample conformations to evaluate at the QM level. Implicit 

solvent models were adopted only in MMPBSA and for the movable type and QM 

calculations. We observed more variability in the treatment of buffer salt concentrations 

despite the known importance of this element in affecting the binding predictions, which 

may reflect a lack of standard practices in the field. Some entries modeled the buffer ionic 

strength explicitly with Na+ and Cl- ions while others included only the neutralizing 

counterions or used a uniform neutralizing charge. One of the participating groups submitted 

multiple variants of the SOMD method either utilizing only neutralizing counterions or 

including additional ions simulating the ionic strength at experimental conditions, which 

makes it possible to directly assess the effect of this modeling decision on the selected host-

guest systems.

Most methods employing classical force fields used GAFF [121] or GAFF2 (still under 

active development) with AM1-BCC [54, 55] or RESP [12] charges, which were usually 

derived at the Hartree-Fock or MP2 level of theory. Other approaches made use of the 

AMOEBA polarizable model [96], CGenFF [28] or force matching [120] starting from 

CGenFF parameters. The movable type calculations utilized either the KECSA [129] scoring 

algorithm or the more recently developed GARF [11]. Several submissions employed QM 
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potentials at the semi-empirical PM6-DH+ [64, 100] or DFT level of theory either modeling 

the full host-guest system or in hybrid QM/MM approaches that treated quantum 

mechanically the guest only. DFT calculations employed B3LYP [13], B3PW91 [13], or 

TPSS [116] functionals and often the DFT-D3 dispersion correction [42].

Sampling and free energy prediction—All the challenge entries used MD to sample 

host-guest conformations; uses of docking were limited to preparation of initial bound 

geometries for subsequent simulations. This was also the case also for QM and movable type 

calculations, where samples generated from MD were in some cases clustered prior to 

quantum chemical energy evaluations. In a few cases, enhanced sampling techniques were 

used; in particular, the entries identified by DDM-FM and DDM-FM-QMM used 

Hamiltonian Replica Exchange (HREX) [113] as part of their double decoupling method 

(DDM) calculation [39] while Replica Exchange with Solute torsional Tempering (REST) 

[68, 71] was employed in FSDAM to generate from equilibrium the starting configurations 

for the fast switching protocol. Many groups used the double decoupling or the double 

annihilation method with purely classical force fields or with hybrid QM/MM potentials and 

either Bennett acceptance ratio (BAR) [15, 103] or the multistate Bennett acceptance ratio 

(MBAR) [104] to estimate free energies for the aggregated simulation data. Other classes of 

methodologies applied to this dataset include umbrella sampling (US) [119], movable type 

[130], MMPBSA [110], and free energy predictions based on QM calculations.

The repeat appearance of hosts chosen from the octa-acid and cucurbituril families as test 

systems for the SAMPL binding challenge, which reflects the continuous contribution of 

experimental data from the Gibb and Isaacs laboratories, led some groups to take advantage 

of previously available experimental data to improve their computational predictions. 

Several entries (e.g., SOMD-D, US-GAFF-C, and MovTyp-GE3L) were submitted with a 

linear1 correction of the form

ΔG corrected = a ⋅ ΔG calc + b (3)

where the slope and offset coefficients (i.e., a and b respectively) were trained on data 

generated for previous rounds of the challenge. In some of the movable type calculations 

(e.g., MovTyp-GE3O), the coefficient a was fixed to unity and the training data used to 

determine a purely additive bias correction. Relatedly, RFEC-GAFF2 and RFEC-QMMM, 

which included predictions for the OA and TEMOA guest sets, calculated the relative 

binding free energy between the compound and determined the offsets necessary to obtain 

absolute free energy using binding measurements of similar OA and TEMOA guests.

Submission performance statistics

As mentioned above, we present here the statistics obtained by the challenge entries on the 

CB8 dataset and the merged OA and TEMOA dataset with the exception of US-CGenFF, for 

which we received a submission for the TEMOA set only. Moreover, since only a minority 

1Technically, this is an affine transformation in the general case since b ≠ 0 for some of the corrections employed by participants, but 
we will refer to it as linear here.
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of entries had predictions for the bonus challenge, we excluded CB8-G11, CB8-G12, and 

CB8-G13 when computing the statistics of all the methodologies in order to compare them 

on the same set of compounds. Table 3 reports such statistics with 95-percentile confidence 

intervals and Figure 4 show the statistics bootstrap distributions. Some of the methods were 

used to estimate the binding free energy of only one between the OA/TEMOA and the CB8 

sets, and, as a consequence, some of the table entries are missing. For the methodologies that 

made predictions of the bonus compounds, we report the statistics obtained including them 

separately in Table 4. While it is difficult to isolate methods and models that performed very 

well across datasets and statistics, a few patterns emerged from comparing the different 

entries.

Challenge entries generally performed better on OA/TEMOA than CB8—In 

general, the CB8 guest set proved to be more challenging than the OA/TEMOA set both in 

terms of error and correlation statistics. It is rarely the case that the same method scored 

better statistics on the former set, and only MovTyp-GT1N does so with statistical 

significance while the opposite can be observed relatively often. Figure 5-A shows the root 

mean square error (RMSE) and mean signed error (ME) with 95-percentile bootstrap 

confidence interval computed for each molecule using the ten methods that scored best in 

RMSE statistics in the merged OA/TEMOA set or the CB8 set (excluding the bonus 

challenge), which formed a set of 14 different techniques employing GAFF and GAFF2 

[121], CGenFF [120], force matching [28], AMOEBA [96], and QM/MM potentials using 

DFT(B3LYP) [13] or PM6-DH+ [64, 100]. These top ten methods performed poorly on 

eight out of the eleven CB8 compounds, and while confidence intervals for all the statistics 

are generally large, they also performed significantly worse on several CB8 guests than the 

OA/TEMOA ligands they accurately predicted affinities for. This loss of accuracy seems to 

be fairly consistent across models and methodologies, but the data is not sufficient to 

determine the exact cause of this behavior (e.g., force field parameters, the generally larger 

dimensions of the CB8 guests, protonation states). However, the results of the related 

SAMPL6 SAMPLing challenge does suggest that properly accounting for slow 

conformational dynamics for some of the CB8 guests may require longer simulation times 

than for the OA compounds [51], which may have contributed to poorer performance over 

the OA set. Moreover, explicitly modeling the buffer salt concentration in SOMD 

significantly reduced the difference in error on the two guest sets (compare SOMD-C with 

SOMD-C-nobuffer), albeit without a commensurate improvement in correlation statistics, so 

the issue of missing chemical effects may also have role.

The same trend appears when examining the performance of methods in correctly predicting 

the tightest binder of the three guest sets Figure 5-B. About 61% and 66% of the methods 

correctly ranked OA-G2 and TEMOA-G4 as the tightest complexes in their respective sets, 

while CB8-G8 was correctly classified in only about 43% of the cases. In particular, the 

latter observation is interesting when considering that the binding free energy of G8 to CB8 

is 3.5 kcal/mol greater than the second tightest binder (G7), despite the structural similarities 

between both guests. It is also worth mentioning that SOMD method was the only 

methodology that correctly ranked the tightest binder of the three separate guest sets, 
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although the prediction that G8 was the highest affinity guest for CB8 did not hold when 

buffer salt conditions were modeled explicitly.

Linear corrections fit to prior experimental data can reduce error without 
improving correlation—Nine of the entries represented in Figure 4 incorporate fits to 

prior experimental data with the goal of either improving the computationally-predicted 

affinities or determining the offset necessary to convert relative free energy estimates into 

absolute binding affinities. It should be noted that a constant offset or multiplicative factor 

modifying all data points cannot alter the R2 statistic besides correcting an inverse 

correlation, and they can change τ only if the transformation is such that the ranking of at 

least two data points is switched, which a single linear transformation with positive slope 

cannot do. However, since some of the entries fit distinct correction terms for OA and 

TEMOA guests, correlation statistics for the combined OA/TEMOA set were affected (see, 

e.g., Supplementary Figure 8 results for SOMD-C and SOMD-D, MovTyp-GE3N and 

MovTyp-GE3S). We can thus observe the effects of the linear transformations trained on 

experimental data on both the error and correlation statistics.

The corrections were generally successful in reducing RMSE. Among the top 10 methods 

scoring the lowest RMSE on the OA/TEMOA set, seven employ a correction. Moreover, 

when considering multiple submissions of the same technique that differ only in whether a 

fit to prior experimental data was included, the entry with the lowest RMSE incorporates 

experimental data in every case. However, the results are less consistent when considering 

the CB8 guest set. The trend is the same for the SOMD, US-GAFF, and MovTyp 

submissions that used the KECSA potential, but it is reversed for the majority of the 

MovTyp submissions employing the GARF energy model (see also Supplementary Figure 

8). It should be noted that many of the MovTyp corrections were trained on a dataset that 

pooled binding measurements of OA, TEMOA, and CB8 guests, so it is possible that the 

approach failed to generalize when the methodology was affected by a systematic error of 

opposite sign on the OA/TEMOA and CB8 sets (see Figure 3). The methods that scored best 

(in terms of lowest RMSE) are US-GAFF-C for OA/TEMOA, and SOMD-D-nobuffer for 

CB8; excluding methods utilizing fits to experimental data, US-CGenFF and MovTyp-

GT1N have the lowest RMSE on the OA/TEMOA and CB8 sets, respectively.

On the other hand, integrating prior experimental data did not appreciably impact correlation 

statistics, and the same methods with or without experimental correction show very similar 

R2 and τ bootstrap distributions. It is true that the initial performance of these methods 

without the experiment-based correction on the separated OA and TEMOA sets was 

relatively similar, thus leaving a small margin of improvement for this type of correction to 

reduce the data variance around the regression line and increasing R2. However, comparing 

the statistics computed pooling together the OA/TEMOA and CB8 predictions, which 

displayed very different correlation statistics, did not show any significant improvement 

(data not shown). In fact, R2 for the SOMD-C calculations decreased from 0.47 [0.09,0.78] 

to 0.18 [0.01,0.48] when incorporating the experimental correction in SOMD-D, despite the 

expected drop in RMSE, and a similar observation can be made for SOMD-D-nobuffer and 

the τ statistic.
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GAFF/AM1-BCC and TIP3P consistently overestimated the host-guest binding 
affinities—Several entries used GAFF to parameterize the host-guest systems with AM1-

BCC charges and TIP3P water molecules (i.e., SOMD, US-GAFF, DDM-GAFF) so it is 

possible to make relatively general observations about the performance of this model. 

Firstly, if we ignore the submissions that employ an experiment-based correction, every 

single method in this group predicted tighter binding than what supported by experiments 

with both the OA/TEMOA and the CB8 sets. This observation extends to MMPBSA-GAFF 

as well, which still used GAFF but with RESP charges and the implicit PBSA solvent 

model, but many of the methodologies that entered the challenge display a similar 

systematic error (see also ME in Figure 5), although GAFF is the only force field that was 

independently adopted by multiple groups and used with various classes of techniques.

Secondly, while error statistics vary substantially among GAFF entries, the correlation 

statistics are quite similar. Most of these are among the best-performing methods for the OA/

TEMOA set, with τ ranging between 0.7–0.8, despite showing poor correlations on the CB8 

set. The main exception to this pattern is given by DDM-GAFF, which shows moderate 

correlations for both datasets. The reason for this is not entirely clear, as the methodology 

adopted for DDM-GAFF entry is very similar to SOMD-C-nobuffer. Their main difference 

appears to lie in their treatment of long-range electrostatics, with SOMD using reaction field 

electrostatics [117] and DDM-GAFF using PME [29], as well as the use of restraints, with 

SOMD employing a single flat-bottom restraint to keep the guest in the host’s cavity and 

DDM-GAFF restraining the relative orientation of the guest by means of harmonic 

restraining potentials applied to one distance, two angles, and three torsions.

Models accounting for polarization did not perform significantly better than 
point charge models—Several of the entries adopted explicit model of electrostatic 

polarization through either QM potentials or the AMOEBA force field. Two groups 

submitted predictions obtained both a point-charge force field that were corrected with the 

free energy of moving to a QM/MM potential. This is the case of RFEC-QMMM and DDM-

FM-QMMM, both of which included only the guest in the QM region using PM6-DH+ and 

DFT(B3LYP) respectively. In both cases, when compared to the pure MM model, the 

correlation slightly increased, although this difference was not statistically significant. 

Notably, RFEC-QMMM and DDM-FM-QMMM scored the top τ for the OA/TEMOA and 

CB8 set respectively.

On the other hand, calculations based on the polarizable AMOEBA force field or pure QM 

potentials were generally outperformed by point charge force-fields and QM/MM models in 

terms of correlation with experimental data. However, when limiting the comparison to 

methods that did not include a linear correction fitted on previous experimental data, 

SQM(PM6-DH+), DFT(TPSS)-D3, and in particular DDM-AMOEBA obtained a relatively 

low RMSE in spite of their poor correlation with experimental data. It is of interest to note 

that SQM(PM6-DH+) and DFT(TPSS)-D3 performed similarly. Indeed, the two 

methodologies were submitted by the same group and differ only by the potential function 

used to compute the energy of the complex on a set of configurations sampled with MD. 

SQM(PM6-DH+) scored a slightly lower RMSE and DFT(TPSS)-D3 obtained slightly 

higher correlation statistics, but the difference is not statistically significant in either case. 
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The data, however, seems to suggest opposite tendencies of the two models in regard to the 

bias, with SQM(PM6-DH+) and DFT(TPSS)-D3 overestimating and underestimating the 

binding affinity of the OA/TEMOA guest set respectively. Similarly, DFT(B3PW91) and 

DFT(B3PW91)-D3 differ exclusively by the addition of the dispersion correction, which, 

surprisingly, significantly worsen the error for both guest sets.

Comparison to null model—The vast majority of the entries statistically outperformed 

the MMGBSA calculation we used as a null model. Surprisingly, while the null model 

correlation on the CB8 set was objectively poor (R2 = 0.0 [0.0, 0.5], τ = −0.1 [−0.6, 0.5]), 

the R2 and τ statistics obtained by the MMGBSA null model on the OA/TEMOA set was 

comparable to more expensive methods and, in fact, surpassed many of the challenge entries 

(Table 3). Nevertheless, the MMGBSA null model was in general poorly accurate in terms 

of RMSE. We note the difference of our null model with the MMPBSA-GAFF, which 

generally performed better than MMGBSA on the OA/TEMOA guest set but similarly or 

slightly worse on the CB8 set. Besides differences in solvent model (i.e., Generalized Born 

and Poisson-Boltzmann respectively), the former used OPLS3 to rescore a single docked 

pose, while the second one used GAFF and molecular dynamics to collect samples that were 

subsequently clustered for the purpose of rescoring.

Bonus challenge

The platinum atom in CB8-G13 required particular attention during parameterization as this 

atom is not customarily handled by general small molecule force fields. Even in the case of 

DFT(B3PW91) and DFT(B3PW91)-D3, the configurations used for the QM calculations 

were generated by classical molecular dynamics requiring empirical parameters. In general, 

all the participants to the bonus challenge relied on DFT-level quantum mechanics 

calculation to address the problem. In MMPBSA-GAFF, DFT(B3PW91), and 

DFT(B3PW91)-D3, Mulliken charges were generated from DFT(B3LYP), which were 

subsequently used to determine AM1-BCC charges. A different approach was adopted in 

DDM-FM-QMMM in which the platinum was substituted by palladium, and the 

conformations necessary to the force matching parameterization procedure were obtained by 

MNDO(d) dynamics.

All groups participating to the bonus challenge submitted 1:1 complex predictions also for 

CB8-G11 and CB8-G12, for which the initial experimental data suggested the possibility of 

2:1 complexes (two guests simultaneously bound to one host). This later turned out to be 

correct only for CB8-G12, and several groups reported to have computationally tested the 

hypothesis for CB8-G11 with the correct outcome. DDM-AMOEBA was used to estimate 

affinity of both the 1:1 and 2:1 complexes, but in the end the first one was used in the 

submission as the two predicted binding free energies differed by only 0.1 kcal/mol. 

Accordingly, we used the experimental measurement determined for the first binding event 

to compute the statistics (CB8-G12a in Table 1).

Summary statistics incorporating bonus challenge compounds are reported in Table 4. 

Although the RMSE generally improves in most cases, it should be noted that this effect 

varies greatly across the three molecules, and this improvement is mainly due to CB8-G11, 
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whose predictions are regularly much closer to the experimental measurement than the 

estimates provided for the other two compounds.

Comparison to previous rounds of the SAMPL host-guest binding challenge

Since previous rounds of the host-guest binding challenge featured identical or similar hosts 

to those tested in SAMPL6, it is possible to compare earlier results and observe the 

evolution of methodological performance.

Accuracy improvements over SAMPL5 for OA/TEMOA were driven by fits to 
prior experimental data—SAMPL5 featured a set of compounds binding to both OA and 

TEMOA, which will be referred in the following as the OA/TEMOA-5 set to differentiate it 

from the combined OA/TEMOA set used in this round of the challenge. In the top row of 

Figure 6-A, we show median and fitted distributions of the RMSE and R2 statistics taken 

from the SAMPL5 overview paper [127] together with the results from SAMPL6. OA was 

used as a test system in SAMPL4 as well, but in this case, only relative free energy 

predictions were submitted so we cannot draw a direct comparison. Prediction accuracy 

displays a slight improvement of the median RMSE from the previous round from 3.00 

[2.70, 3.60] kcal/mol to 2.76 [1.85, 3.28] kcal/mol (95-percentile bootstrap confidence 

intervals of the medians not shown in Figure 6-A). However, this change seems to be 

entirely driven by the methods employing experiment-based fit corrections since removing 

them results in a median RMSE that is essentially identical to SAMPL5. The data raises the 

question of whether the field is hitting the accuracy limit of current general force fields.

On the other hand, the median R2 improved with respect to the last round from 0.0 [0.0,0.8] 

to 0.5 [0.4,0.8]. Even in this case, we observe a slightly lower SAMPL6 median R2 when 

ignoring methods incorporating experimental data, but this is likely due not to the correction 

itself but to the fact that the top performing methods were generally submitted with and 

without correction, thus reducing the number of data points with high R2. Indeed, as already 

discussed, no positive effect on correlation was evident from the inclusion of a trained linear 

correction. The improvement is particularly evident when considering only free energy-

based methodologies (e.g., alchemical and potential of mean force calculations). It should be 

pointed out out that the higher median R2 observed in SAMPL6 can, in principle, be 

explained not only by recent methodological advancements and the composition of the 

methods entering the challenge, but also by the particular set of assayed guests. While the 

first explanation is obviously the most desirable, the latter is a confounding factor when 

attempting to associate the results of the challenge to the progress of the community.

Since SOMD calculations entered the SAMPL5 challenge as well [19], we can compare 

directly the same statistics obtained by the method on the two guest sets to form an idea 

about the relative complexity of the two sets for free energy methods. To this end, we report 

in Table 5 the uncertainties of the absolute statistics in terms of the mean and standard 

deviations of the bootstrap distributions instead of their 95-percentile confidence intervals to 

allow a direct comparison to those published in the SAMPL5 overview paper. The results of 

the SOMD methods applied to the OA/TEMOA-5 were submitted with a restraint and long-

range dispersion correction, similarly to SOMD-C-nobuffer here, and without it, similarly to 
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SOMD-A-nobuffer here. The two methods were referred as SOMD-3 and SOMD-1 

respectively in the SAMPL5 overview. In both cases, the calculations used GAFF with 

AM1-BCC charges and TIP3P water molecules as well as a single flat-bottom restraint. The 

RMSE obtained by SOMD-C-nobuffer increased with respect to the statistic computed for 

SOMD-3 on OA/TEMOA-5 from 2.1 (2.1 ± 0.3) kcal/mol to 3.0 (3.0 ± 0.4) kcal/mol, where 

the number outside the parentheses is the statistic computed using all the data, and the 

numbers between parentheses are the mean and standard deviation of the bootstrap 

distribution. Incorporating experimental data into the prediction improved the error as 

SOMD-D-nobuffer obtained a RMSE of 1.6 (1.6 ± 0.3) kcal/mol. On the other hand, the 

Kendall correlation coefficient slightly increased on the SAMPL6 dataset from 0.4 (0.4 

± 0.2) to 0.7 (0.7 ± 0.4) while R2 remained more or less stationary from the already high 

value of 0.9 (0.7 ± 0.2) btained on OA/TEMOA-5. Very similar observations can be made 

for SOMD-A-nobuffer and SOMD-1. While the improved τ correlation does not rule out the 

possibility of system-dependent effects on R2, it is unlikely for the difference between the 

median R2 of SAMPL5 and SAMPL6 (amounting to 0.76) to be entirely explained by the 

different set of guests, and the improvement is likely due, at least in part, to the different 

methodologies entering the challenge. In particular, SAMPL5 featured several free energy 

methods that scored near-zero R2 on the OA/TEMOA-5 set, affecting considerably the 

SAMPL5 median statistic. One of these methods is BEDAM, which used the OPLS-2005 [8, 

58] force field and the implicit solvent model AGBNP2 [32], none of which entered the 

latest round of the challenge. However, the rest of these methods consist of double 

decoupling calculations carried out either with thermodynamic integration (TI) [60, 112] or 

HREX and BAR that employed CGenFF and TIP3P, which performed relatively well in 

SAMPL6 on OA/TEMOA. It should be noted that the TI and HREX/BAR methodologies in 

SAMPL5 made use of a Boresch-style restraint [18] harmonically constraining one distance, 

two angles, and three dihedrals. This is similar to the solution adopted in DDM-GAFF in 

SAMPL6, which also showed a relatively low R2 compared to the other free energy 

submissions in the same round of the challenge so it is natural to suspect that it may be 

particularly challenging to treat this class of host-guest systems with this type of restraint in 

alchemical calculations.

An improvement can also be observed for the movable type method, which was applied to 

the OA/TEMOA-5 set as well [10] using the KECSA 1 and KECSA 2 potentials. These two 

submissions, identified with MovTyp-1 and MovTyp-2 respectively in the SAMPL5 

overview paper, obtained similar statistics so we will use MovTyp-2 for the comparison. The 

SAMPL6 entry MovTyp-KT1N, which uses the KECSA energy model too, obtained a 

comparable RMSE of 2.9 (2.9 ± 0.2) kcal/mol against the 3.1 (2.9 ± 1.1) kcal/mol achieved 

by MovTyp-2 on OA/TEMOA-5, but, even in this case, the error becomes statistically 

distinguishable once the experimental-based correction is included (i.e., in MovTyp-KT1L), 

which decreases the RMSE to 1.0 kcal/mol. The correlation statistics generally compare 

favorably with respect to SAMPL5 with R2 moving from 0.0 (0.3 ± 0.3) to 0.5 (0.5 ± 0.2) 

and going from 0.1 (0.1 ± 0.3) to 0.3 (0.3 ± 0.2), although the uncertainties are too large to 

achieve statistical significance. Moreover, MovTyp-GE3N, which employs the more recently 

developed GARF energy model, obtained a better RMSE (1.8 (1.8 ± 0.4) kcal/mol) and 

comparable correlation statistics to MovTyp-KT1N.
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Finally, it seems appropriate to compare the performance of DFT(TPSS)-D3 on OA/

TEMOA to DFT/TPSS- c [21] in SAMPL5 and RRHO-551 [74] in SAMPL4 [86]. 

DFT(TPSS)-D3 an DFT/TPSS-c are very similar in that they both use the DFT-D3 approach 

to include dispersion correction, but while DFT(TPSS)-D3 generated an ensemble of 

configurations with MD, DFT/TPSS-c estimated the binding free energy from a single 

minimized structure. On the other hand, RRHO-551 does use MD for conformational 

sampling, but it employs DTF-D to correct for dispersion interactions, which was developed 

earlier than DFT-D3. As already mentioned, SAMPL4 featured a set of 9 OA guests [86], 

but only relative free energy predictions were submitted so absolute statistics are not 

available. Thus, in order to facilitate the comparison, we decided to report offset statistics for 

the subset of the SAMPL6 methods analyzed in this section in the same way they were 

computed in the previous two rounds of the challenge. The results are given in Table 5. The 

RMSE of the two models was relatively similar in SAMPL4 and SAMPL5: 5.8 ± 2.6 

kcal/mol for RRHO-551 and 5.3 (5.2 ± 0.8) kcal/mol for DFT/TPSS-c, where the estimate 

for RRHO-551 does not include the mean of the statistic bootstrap distribution, which was 

not reported in the SAMPL4 overview paper. However, the SAMPL6 DFT(TPSS)- D3 

calculations attained a lower error (2.6 (2.5 ± 0.4) kcal/mol) while maintaining a similar 

coefficient of determination of 0.5 (0.5 ± 0.2) against the 0.3 (0.4 ± 0.2) and 0.5 ± 0.2 of 

DFT/TPSS-c and RRHO-551 respectively.

The SAMPL6 CB8 system presents significant challenges to modern 
methodologies—A different perspective is offered by the history of the binding free 

energy predictions involving cucurbituril hosts. CB8 and the closely related CB7 appeared 

previously in SAMPL3 [87] together with an acyclic cucurbit[n]uril-type molecular 

container referred to as H1 [70]. Moreover, SAMPL5 featured another acyclic CB analogue 

called CBClip [128]. The 3D structures of the last two hosts are shown in Figure 6-B, while 

in Figure 6-A (bottom row), we show the distribution of RMSE and R2 computed from the 

binding free energy predictions submitted for SAMPL3 and SAMPL5 against these four 

hosts.

In general, both statistics appear to have deteriorated from SAMPL3 to SAMPL5. Even 

though H1 and CBClip are suffciently different for system-dependent effects to reasonably 

dominate the overall performance, the most marked difference appears from the comparison 

of the SAMPL6 predictions to those submitted for CB7 and CB8 in SAMPL3, which 

achieved a much greater R2 in spite of the smaller dynamic range of the binding affinity 

measurements and none of which involved simulation-based methods. The explanation for 

this inequality is likely to be found in the complexity of the guest sets rather than a 

methodological regression as SAMPL3 featured only two relatively simple fragment-like 

binders while the latest round of the challenge included compounds of moderate size and/or 

complex stereochemistry (e.g., gallamine triethiodate, quinine).

That the CB8 guests in SAMPL6 were particularly challenging is corroborated by the 

comparison between the performance of DDM-AMOEBA and the results obtained by 

BAR-560, which also uses the double decoupling method and the AMOEBA polarizable 

force field, on the CB7 guests in SAMPL4 [14]. In this case as well, only offset statistics are 

available for comparison as SAMPL4 accepted exclusively relative free energy predictions. 
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DDM-AMOEBA generally performed worse on the CB8 guest set featured in SAMPL6 with 

R2 decreasing from 0.6 ± 0.1 to 0.1 (0.3 ± 0.2) and RMSE increasing from 2.2 ± 0.4 to 3.2 

(3.0 ± 0.7). While the CB8 guest set featured in SAMPL6 highlights the limits of current 

free energy methodologies, it also uncovers new learning opportunities that can be exploited 

to push the boundaries of the domain of applicability of these technologies.

Similarly to the OA/TEMOA guest set, simulation-based free energy methods display a 

higher median R2 than the global R2 computed from considering all the methods in the 

challenge, albeit a slightly higher RMSE as well. The pattern is consistent across the three 

rounds of the challenge, but the distributions of the statistics are too wide to draw 

statistically significant conclusions without collecting more data.

Discussion

As in previous years, the SAMPL host-guest binding challenge has provided an opportunity 

for the computational chemistry community to focus on a common set of systems to assess 

the state-of-the-art practices and performance of current binding free energy calculation 

methodologies. The value of the blind challenge does not lie exclusively in the comparison 

and benchmarking of different methods, but also in its ability to highlight general areas of 

weakness in the field as a whole on which the community can focus. The latter aspect, in 

particular, risks to become of secondary importance in retrospective studies. Moreover, the 

consistent use of octa-acid and cucurbiturils since SAMPL3, which took place in 2011, give 

us the opportunity to make general observations over a longer time span.

The variability in difficulty highlights the need to evaluate methodologies on the same 
systems

Several recurring themes have emerged from this and previous rounds of the challenge. 

Firstly, even for systems relatively simple as supramolecular host-guests, the performance of 

free energy methodologies and models can be heavily system-dependent. This is evident not 

only from the results of the same method applied to different guest sets, but also from the 

relative performance of the methods against different molecules. For example, most of the 

predictions employing GAFF obtained among the highest correlation statistics on the OA/

TEMOA set while ranking among the lowest positions on the CB8 set. This stresses the 

importance of using the same set of systems when comparing multiple methodologies, 

which, without any coordination between groups, is a difficult task to carry out on a 

medium-large scale given the amount of expertise and resources necessary to perform this 

type of studies.

A useful dataset should be large enough to have the statistical power to resolve differences in 

performance, and diverse enough for the distribution of the binding affinity to approximate 

the distribution of the population of interest and reflect how the method would perform on 

new data. At the same time, however, correlation statistics tend to increase with the dynamic 

range spanned by the data, and some methods, such as relative free energy calculations, 

often impose practical limits to the structural differences between compounds. For example, 

RFEC-GAFF and RFEC-QMMM submitted predictions only for the OA/TEMOA set,where 

the similarities between the guests are more prominent. These contrasting requirements, 
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together with practical problems connected to the availability of experimental data and 

resources, make crafting an appropriate dataset a very challenging task.

Force field accuracy is a dominant limiting factor for modeling affinity

A second consideration surfacing from previous SAMPL rounds as well is the tendency of 

classical methods to overestimate the binding affinities. Since the results of the related 

SAMPLing challenge support the claim that convergence for this class of systems is 

achievable [51], and considering that the RMSE has not improved significantly across 

rounds of the challenge, this seem to suggest that an investment of resources into improving 

the empirical parameters of force fields and solvent models could have a dramatic impact. It 

should be noted that, while these systems do not put to the test protein parameters, they rely 

on general force fields that are routinely used in drug and small molecule design.

Other missing chemical details may also be major limiting factors

However, the problem of missing details of the chemical environment such as salts and 

alternative protomers cannot be ruled out as a major determinant of predictive accuracy. 

Explicitly modeling the buffer salt concentrations in the SOMD-C predictions reduced the 

RMSE from 7.9 to 5.1 kcal/mol for two sets of simulations otherwise identical, and, 

curiously, it had the opposite effect of increasing the error statistics on the OA/TEMOA set. 

Despite the sensitivity of the free energy prediction to the presence of ions, a lack of 

standard best practices emerges from the challenge entries. Many participants decided to add 

only neutralizing counterions or use a uniform neutralizing charge, and others did not 

include information about how the buffer was modeled in the submitted method sections, 

which possibly reflects a generally minor role currently played by this particular aspect of 

the decision-making process during the modeling step in comparison to other elements (e.g., 

charges, force field parameters, water model).

Even at extreme pH, protonation state effects may still contribute

The possible influence of multiple accessible protonation states of the guest compounds on 

the binding free energy was left unexplored during the challenge, mirroring the widespread 

tendency in the free energy literature to neglect its effect, and participants largely used the 

most likely protonation states predicted by Epik that were provided in the input mol2 and sdf 

files. However, the pKa free energy penalties estimated by Epik for the second most 

probable protonation state of the CB8 guests in water at experimental pH (Table 6), which is 

obtained in all cases by the deprotonation of the charged nitrogen atoms as given in Figure 1, 

suggest that for several guests, and in particular for CB8-G3 and CB8-G11, the deprotonated 

state is accessible by paying a cost of a few kB T (where kB is Boltzmann’s constant and T is 

the absolute temperature), and a change in relative populations between the end states driven 

by the hydrophobic binding cavity may have a non-negligible effect on the binding affinity. 

Furthermore, even if the probability of having the carboxyl group of the octa-acid guests 

protonated at pH 11.7 is usually neglected, a previous study performed for SAMPL5 showed 

that modeling changes in protonation state populations upon binding resulted in improved 

predictive performance for a set of OA and TEMOA guests that, similarly to the latest round 

of the challenge, included several carboxylic acids and was measured at a similar buffer pH 

[118]. Experimentally, net proton gain or loss during complexation could straightforwardly 
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be assessed for highly soluble host-guest systems via isothermal titration calorimetry (ITC) 

in buffers with the same pH but different ionization heats for proton loss from solvent [7], a 

technique that has been used for protein-ligand systems [24, 25, 91, 111]. Similarly to buffer 

salts, there are few established practices in the community to treat multiple protonation 

states in free energy calculations [66], and further development and testing of force fields 

and solvent models with the goal of improving accuracy to experiments should consider 

these issues as ignoring them during the fitting procedure could push the error caused by 

missing essential chemicals (e.g., ions, protonation and tautomeric states) to other force field 

parameters with the risk of decreasing the transferability of the model.

Linear corrections fit to prior experimental measurements do not improve predictive utility

The experimental-based correction adopted by several groups introduces a new theme in the 

challenge which pertains to strategies that can be used to inject previous knowledge into 

molecular simulations. Force field parameters are in principle capable of incorporating 

experimental data, but an update of the model driven by binding free energy measurements 

or other ensemble observables is doubtlessly challenging and may involve calculations as 

expensive as the production calculations so this is normally not routinely viable, although 

previous studies indicated the validity and feasibility of such an approach [125, 126]. Other 

schemes that emerged in particular from the field of crystallographic structural refinement 

avoid modifying the force field parameters and instead add one or more biasing terms to the 

simulation to replicate experimental measurements that the underlying force field cannot 

reproduce [16, 123]. The simple linear corrections used independently by various 

participants in this round of the challenge had a positive impact on the error, but a very small 

effect in terms of correlation, which is often of central importance in the context of 

molecular design. However, the simplicity of its application, which is confined entirely to 

the post-processing step, was such that the participants were able to submit multiple entries 

with and without the correction.

Outlook for future SAMPL host-guest challenges

The SAMPL roadmap [77] outlines a proposal for subsequent host-guest challenges for 

SAMPL7–10. While the future of these blind exercises is uncertain given the absence of a 

sustainable funding source, we briefly review the likely future design of these host-guest 

challenges below.

In one line of exploration ([77], section 2.2), SAMPL7 proposes to explore variants of Gibb 

deep cavity cavitands (related to OA/TEMOA) in which carboxylate substitutent locations 

are modified, comparing multiple host variants against a set of guests to explore how well 

affinities and selectivities could be predicted. SAMPL8 would provide a second iteration of 

this experiment with novel guests and a trimethylammonium-substituted host variant to 

assess how algorithmic improvements from the first round could lead to improved 

performance. SAMPL9–10 would consider the effect of common biologically relevant salts, 

comparing the effects of NaCl and NaI on various host variants, while SAMPL11 would 

consider the effects of cosolvents that might compete for the binding site or modulate the 

strength of the hydrophobic effect.
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In another line of exploration ([77], section 2.1), SAMPL7–11 are also proposed to feature 

cucubituril variants, including methylated forms of CB8, glcoyuracil hexamer, and acyclic 

forms of CB[n]-type receptors. By comparing the constrained cyclic and less constrained 

acyclic forms of CB[n] hosts, the accuracy with which participants can model the energetics 

of receptor flexibility and receptor desolvation can be probed. SAMPL8–9 also plans to 

feature small molecule guests with pKa values between 3.8–7.4, which brings the possibility 

that host binding can induce substantial shifts in protonation state.

Finally, recent work by one of the authors has demonstrated how a library of 

monosubstituted -cyclodextrin analogues can be generated via a simple chemical route [59]. 

This strategy could ultimately lead to the attachment of chemical groups that resemble 

biopolymer residues, such as amino or nucleic acids, allowing interactions between small 

druglike molecules and biopolymer-like functional groups to be probed without the 

multifold challenges that protein-ligand interactions present. While development of this 

system is still ongoing, it is likely to make an appearance in upcoming SAMPL host-guest 

challenges.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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List of abbreviations

AM1-BCC Austin model 1 bond charge correction [54,55]

AMOEBA atomic multipole optimized energetics for biomolecular simulation 

[96]

B3LYP Becke 3-parameter Lee-Yang-Parr exchange-correlation functional 

[13]

B3PW91 Becke 3-parameter Perdew-Wang 91 exchange-correlation functional 

[13]

CGenFF CHARMM generalized force field [120]

COSMO-RS conductor-like screening model for real solvents [61]

DDM double decoupling method [39]
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DFT-D3 density functional theory with the D3 dispersion corrections [42]

FM Force Matching [28]

FSDAM Fast switching double annihilation method [92,97]

GAFF generalized AMBER force field [121]

HREX Hamiltonian replica exchange [113]

KECSA knowledge-based and empirical combined scoring algorithm [129]

KMTISM KECSA-Movable Type Implicit Solvation Model [131]

MD molecular dynamics

MMPBSA molecular mechanics Poisson Boltzmann/solvent accessible surface 

area [110]

MovTyp Movable Type method [130]

OPLS3 optimized potential for liquid simulations [45]

PBSA Poisson-Boltzmann surface area [106]

PM6-DH+ PM6 semiempirical method with dispersion and hydrogen bonding 

corrections [64,100]

RESP restrained electrostatic potential [12]

REST replica exchange with solute torsional tempering [68,71]

RFEC relative free energy calculation

QM/MM mixed quantum mechanics and molecular mechanics

SOMD double annihilation or decoupling method performed with Sire/

OpenMM6.3 software [27,Woods et al.]

SQM semi-empirical quantum mechanics

TIP3P transferable interaction potential three-point [57]

TPSS Tao, Perdew, Staroverov, and Scuseria exchange functional [116]

US umbrella sampling [119]

VSGB2.1 VSGB2.0 solvation model refit to OPLS2.1/3/3e [67]
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Figure 1. Hosts and guests featured in the SAMPL6 host-guest blind challenge dataset.
Three-dimensional structures of the three hosts featured in the SAMPL6 challenge dataset 

(OA, TEMOA, and CB8) are shown in stick view from top and side perspective views. 

Carbon atoms are represented in gray, hydrogens in white, nitrogens in blue, and oxygens in 

red. Guest ligands for each complex are shown as two-dimensional chemical structures 

annotated by hyphenated host and guest names. Protonation states of the guest structures 

correspond to the predicted dominant microstate at the experimental pH at which binding 

affinities were collected, and matches those provided in the mol2 and sdf input files shared 
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with the participants when the challenge was announced. The same set of guests OA-G0 

through OA-G7 was used for both OA and TEMOA hosts. The gray frame (lower right) 

contains the three CB8 guests that constitute the bonus challenge.
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Figure 2. Overview of experimental binding affinities for all host-guest complexes in the 
SAMPL6 challenge set.
Binding free energies (ΔG) measured via isothermal titration calorimetry (ITC) are shown 

(1lled circles), along with experimental uncertainties denoting standard error of the mean 

(black error bars), for OA (yellow), TEMOA (green), and CB8 (blue) complexes.
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Figure 3. Free energy correlation plots obtained by the methods on the three host-guest sets.
Scatter plots showing the experimental measurements of the host-guest binding free energies 

(horizontal axis) against the methods’ predictions on the OA (yellow), TEMOA (green), and 

CB8 (blue) guest sets with the respective regression lines of the same color. The solid black 

line is the regression line obtained by using all the data points. The gray shaded area 

represent the points within 1.5 kcal/mol from the diagonal (dashed black line). Only a 

representative subset of the movable type calculations results are shown. See Supplementary 

Figure 7 for the free energy correlation plots of all the movable type predictions.
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Figure 4. Bootstrap distribution of the methods performance statistics.
Bootstrap distributions of root mean square error (RMSE), mean signed error (ME), 

coefficient of determination (R2) and Kendall rank correlation coefficient (τ). For each 

methodology and statistic, two distributions are shown for the merged OA/TEMOA set 

(yellow, pointing upwards) and the CB8 set excluding the bonus challenge compounds (blue, 

downwards). The black horizontal box between the two distributions of each method shows 

the median (white circle) and interquartile range (box extremes) of the overall distribution of 

statistics (i.e., pooling together the OA/TEMOA and CB8 statistic distributions). The short 

vertical segment in each distribution is the statistic computed using all the data. The 

distributions of the methods that incorporate previous experimental data into the 

computational prediction are highlighted in gray. Methodologies are ordered using the 

statistics computed on the OA/TEMOA set, unless only data for the CB8 set was submitted 

(e.g., DDM-FM), in which case the CB8 set statistic was used to determine the order. Only a 
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representative subset of the movable type calculations results are shown. See Supplementary 

Figure 8 for the bootstrap distributions including all the movable type submissions.
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Figure 5. Free energy error statistics by molecule and tightest binders ranking.
(A) Root mean square error (RMSE) and mean signed error (ME) computed using the ten 

methodologies with the lowest RMSE on the merged OA/TEMOA and CB8 datasets 

(excluding bonus challenge compounds) for all guests binding to OA (yellow), TEMOA 

(green), and CB8 (blue). Error bars represent 95-percentile bootstrap confidence intervals. 

(B) Ranking of the tightest binder of each host-guest dataset for all methods. Methods that 

correctly predicted OA-G2, TEMOA-G4, and CB8-G8 to be the tightest binders of the OA 

(yellow), TEMOA (green), and CB8 (blue) guest sets respectively are marked by a colored 

cell. A gray cell is shown when the method incorrectly predicted the tightest binder, and a 

white space is left if no submissions were received for that method and guest set. The 

methods are ordered by the number of correctly ranked tightest binders in the three guest 

sets.
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Figure 6. CB analogues and distribution of RMSE and R2 achieved by methods in SAMPL3 and 
SAMPL5.
(A) Probability distribution fitting of root mean square error (RMSE, left column) and 

coefficient of determination (R2, right column) achieved by all the methods entering the 

SAMPL6 (yellow), SAMPL5 (green), and SAMPL3 (purple) challenge. Statistics for 

SAMPL4 are not shown in the panel because the subject of the challenge was confined to 

relative binding affinity predictions. The markers on the x-axis indicate the medians of the 

distributions. Distributions are shown for all the methods entering the challenge (solid line, 

square marker), excluding the SAMPL6 entries that used previous experimental data (dotted 

line, triangle marker), or isolating alchemical and potential of mean force methodologies 

that did not use an experiment-based correction (dashed line, circle marker). The RMSE axis 

is truncated to 14 kcal/mol, and a few outlier submissions are not shown. The data shows an 

essentially identical median RMSE and an increased median correlation on the combined 

OA/TEMOA guest sets (top row) with respect to the previous round of the challenge. The 

comparison of the results to different sets of guests binding few cucurbit[n]uril and 

cucurbit[n]uril-like hosts appearing in SAMPL3 and SAMPL5 (bottom row) shows instead a 
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deteriorated performance in the most recent round of the challenge, which is likely explained 

by the major complexity of the SAMPL6 C8 guest set. (B) Three-dimensional structures in 

stick view of the CBClip (top) and H1 (bottom) hosts featuring in SAMPL5 and SAMPL3 

respectively. Carbon atoms are represented in gray, nitrogens in blue, oxygens in red, and 

sulfur atoms in yellow. Hydrogen atoms are not shown. (C) Box plot comparing the range of 

the binding affinity experimental measurements used as references for the host-guest 

systems entering the SAMPL3 (purple), SAMPL4 (light blue), SAMPL5 (green), or 

SAMPL6 (yellow) challenges. The gray data points represent the measurements for the 

single host-guest entries. The the inter-quartile range and the median represented by the 

rectangular box were obtained by linear interpolation. The whiskers span the entire dynamic 

range of reported experiemntal measurements.
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Table 1.
Summary of ITC and NMR measurements for the SAMPL6 host-guest dataset.

Guest identifiers (ID), association constants (Ka), binding free energies (ΔG), enthalpies (ΔH), entropies at 

room temperature (TΔS) and stoichiometric ratios (n) as determined by ITC and NMR assays are reported for 

all compounds featured in the challenge. All quantities are reported as point estimates ± statistical error 

obtained by error propagation. For Ka and ΔH, the reported uncertainties incorporate both the uncertainty in 

the ITC enthalpogram least-squares fit and an assumed 3% uncertainty in titrant concentration. A minimum 

least-squares fit uncertainty of 1~ was assumed for fit errors reported by instrumentation as < 1%.ΔG and TΔS 
and their uncertainties were obtained from the first two quantities. Some of the compounds in the CB8 guest 

set can be bound by their hosts with stoichiometries different than 1:1. For CB8-G1 and CB8-G4, which can 

form 1:2 (two hosts bound to the same guest) and 1:3 complexes with CB8, respectively, we report the 

thermodynamic quantities of only one of the equivalent binding events —the value used to calculate the 

statistics for challenge entries. For CB8-G12, we report the measurements of both the 1:1 (CB8-G12a) and the 

2:1 (CB8-G12b) bound complexes. The original data can be found at https://github.com/MobleyLab/SAMPL6/

tree/master/host_guest/Analysis/ExperimentalMeasurements/experimental_measurements.csv. Eventual 

updates or corrections to the data will be made available at the same URL, and anyone wishing to reuse the 

data should refer there.

ID Ka (M−1) ΔG (kcal/mol) 
(a) ΔH (kcal/mol)

T ΔS (kcal/mol) 
(b) n

OA-G0 (147 ± 7) × 102 −5.68 ± 0.03 −4.8 ± 0.2 0.8 ± 0.2 1

OA-G1 (26 ± 1) × 102 −4.65 ± 0.02 −5.5 ± 0.2 −0.9 ± 0.2 1

OA-G2 (140 ± 6) × 104 −8.38 ± 0.02 −12.1 ± 0.5 −3.7 ± 0.5 1

OA-G3 (62 ± 2) × 102 −5.18 ± 0.02 −7.5 ± 0.3 −2.4 ± 0.3 1

OA-G4 (164 ± 7) × 103 −7.11 ± 0.02 −6.9 ± 0.3 0.2 ± 0.3 1

OA-G5 (233 ± 9) × 10 −4.59 ± 0.02 −5.3 ± 0.2 −0.7 ± 0.2 1

OA-G6 (44 ± 2) × 102 −4.97 ± 0.02 −5.3 ± 0.2 −0.3 ± 0.2 1

OA-G7 (36 ± 1) × 103 −6.22 ± 0.02 −7.4 ± 0.3 −1.2 ± 0.3 1

TEMOA-G0 (28 ± 1) × 103 −6.06 ± 0.02 −7.8 ± 0.4 −1.8 ± 0.4 1

TEMOA-G1 (24 ± 2) × 103 −5.97 ± 0.04 −8.2 ± 0.6 −2.3 ± 0.6 1

TEMOA-G2 (98 ± 4) × 103 −6.81 ± 0.02 −9.3 ± 0.4 −2.5 ± 0.4 1

TEMOA-G3 (128 ± 9) × 102 −5.60 ± 0.04 −8.9 ± 0.4 −3.2 ± 0.4 1

TEMOA-G4 (51 ± 2) × 104 −7.79 ± 0.02 −8.9 ± 0.4 −1.1 ± 0.4 1

TEMOA-G5 (113 ± 5) × 10 −4.16 ± 0.02 −8.0 ± 0.3 −3.8 ± 0.3 1

TEMOA-G6 (91 ± 5) × 102 −5.40 ± 0.03 −6.2 ± 0.2 −0.8 ± 0.2 1

TEMOA-G7 (107 ± 4) × 10 −4.13 ± 0.02 −8.3 ± 0.3 −4.2 ± 0.3 1

CB8-G0 (81 ± 6) × 103 −6.69 ± 0.05 −4.2 ± 0.2 2.5 ± 0.2 1

CB8-G1
(c) (40 ± 3) × 104 −7.65 ± 0.04 −5.0 ± 0.2 2.6 ± 0.2 0.5

CB8-G2 (41 ± 4) × 104 −7.66 ± 0.05 −6.5 ± 0.3 1.2 ± 0.3 1

CB8-G3 (53 ± 5) × 103 −6.45 ± 0.06 −2.5 ± 0.1 4.0 ± 0.2 1

CB8-G4
(c) (51 ± 4) × 104 −7.80 ± 0.04 −9.8 ± 0.4 −2.0 ± 0.4 0.33

CB8-G5 (99 ± 9) × 104 −8.18 ± 0.05 −3.2 ± 0.1 5.0 ± 0.1 1

J Comput Aided Mol Des. Author manuscript; available in PMC 2019 November 10.

https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/
https://github.com/MobleyLab/SAMPL6/tree/master/host_guest/Analysis/


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rizzi et al. Page 40

ID Ka (M−1) ΔG (kcal/mol) 
(a) ΔH (kcal/mol)

T ΔS (kcal/mol) 
(b) n

CB8-G6 (13 ± 1) × 105 −8.34 ± 0.05 −5.7 ± 0.2 2.6 ± 0.2 1

CB8-G7 (21 ± 4) × 106 −10.0 ± 0.1 −6.5 ± 0.3 3.5 ± 0.3 1

CB8-G8 (83 ± 6) × 108 −13.50 ± 0.04 −14.4 ± 0.6 −0.9 ± 0.6 1

CB8-G9 (23 ± 3) × 105 −8.68 ± 0.08 −4.6 ± 0.2 4.0 ± 0.2 1

CB8-G10 (10 ± 1) × 105 −8.22 ± 0.07 −2.00 ± 0.08 6.2 ± 0.1 1

CB8-G11 (50 ± 4) × 104 −7.77 ± 0.05 −2.11 ± 0.08 5.7 ± 0.1 1

CB8-G12a (167 ± 9) × 105 −9.86 ± 0.03 −9.2 ± 0.4 0.7 ± 0.4 1

CB8-G12b
(146 ± 6) × 103 (d) −7.05 ± 0.02 −4.8 ± 0.2 2.2 ± 0.2 2

CB8-G13 (161 ± 8) × 103 −7.11 ± 0.03 −6.8 ± 0.3 0.3 ± 0.3 1

(a)
Point estimate and uncertainties computed from the Ka measurements by error propagation.

(b)
All experiments were performed at 298 K.

(c)
The thermodynamic quantities given here represent the binding free energy and enthalpy of one of the 1/n equivalent binding events.

(d)
Units of M-2.
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Table 2.
Summary of methodologies used by the participants in the SAMPL6 host-guest challenge.

When a method uses multiple models (e.g., MM is used to generate the conformations to evaluate at the QM 

level in DFT(TPSS)-D3), only the energy and solvation models used for the final free energy prediction are 

listed. COSMO-RS: conductor-like screening model for real solvents [61]; DDM: double decoupling method 

[39]; FM: Force Matching [28]; FSDAM: Fast switching double annihilation method [92, 97] KMTISM: 

KECSA-Movable Type Implicit Solvation Model [131]; MD: molecular dynamics; MovTyp Movable Type 

method [130]; PBSA: Poisson-Boltzmann surface area [106]; REST: replica exchange with solute torsional 

tempering [68, 71]; RFEC: relative free energy calculation; QM/MM: mixed quantum mechanics and 

molecular mechanics; SOMD: double annihilation or decoupling method performed with Sire/OpenMM6.3 

software [27, Woods et al.]; SQM: semi-empirical quantum mechanics; US: umbrella sampling [119]; 

VSGB2.1: VSGB2.0 solvation model refit to OPLS2.1/3/3e [67] Source: https://github.com/MobleyLab/

SAMPL6/tree/master/host_guest/Analysis/Submissions

Method ID 
(a) Sampling Energy model

Solvation

Model 
(b)

Experimental

fit correction 
(c)

SAMPL6
reference

DDM-AMOEBA (A) MD AMOEBA AMOEBA (E) no

DDM-FM (A) HREX; MD Force-Matching/RESP TIP3P (E) no

DDM-FM-QMMM (A) HREX; MD Force-Matching/RESP;
 DFT(B3LYP) TIP3P (E) no

DDM-GAFF (A) MD GAFF/AM1-BCC TIP3P (E) no

DFT(B3PW91) MD; clustering DFT(B3PW91) SMD (I) no

DFT(B3PW91)-D3 MD; clustering DFT(B3PW91)-D3 SMD (I) no

DFT(TPSS)-D3 MD DFT(TPSS)-D3 COSMO-RS (I) no

FSDAM (A) REST; MD GAFF2/AM1-BCC TIP3P (E) no

NULL docking OPLS3 VSGB2.1 (I) no

MMPBSA-GAFF MD; clustering GAFF/RESP PBSA (I) no

MovTyp-GE3N
(d) MD; clustering GARF KMTISM (I) no

MovTyp-GE3O MD; clustering GARF KMTISM (I) offset

MovTyp-GE3L MD; clustering GARF KMTISM (I) linear

MovTyp-GT1N MD; clustering GARF KMTISM (I) no

MovTyp-GT1L MD; clustering GARF KMTISM (I) linear

MovTyp-KT1N MD; clustering KECSA KMTISM (I) no

MovTyp-KT1L MD; clustering KECSA KMTISM (I) linear

RFEC-GAFF2 (A)
(e) MD GAFF2/RESP TIP3P (E) offset

RFEC-QMMM (A) MD GAFF2/RESP; PM6-DH+ TIP3P (E) offset

SQM(PM6-DH+) MD PM6-DH+ COSMO-RS (I) no

SOMD-A (A)
(f) MD GAFF/AM1-BCC TIP3P (E) no

SOMD-A-nobuffer (A) MD GAFF/AM1-BCC TIP3P (E) no

SOMD-C (A) MD GAFF/AM1-BCC TIP3P (E) no

SOMD-C-nobuffer (A) MD GAFF/AM1-BCC TIP3P (E) no

SOMD-D (A) MD GAFF/AM1-BCC TIP3P (E) linear

SOMD-D-nobuffer (A) MD GAFF/AM1-BCC TIP3P (E) linear
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Method ID 
(a) Sampling Energy model

Solvation

Model 
(b)

Experimental

fit correction 
(c)

SAMPL6
reference

US-CGenFF MD CGenFF TIP3P (E) no

US-GAFF MD GAFF/AM1-BCC TIP3P (E) no

US-GAFF-C MD GAFF/AM1-BCC TIP3P (E) linear

(a)
Alchemical calculations are flagged by (A). All of these are absolute free energy calculations except for the RFEC entries.

(b)
(E) and (I) denote explicit and implicit solvation models respectively.

(c)
The corrections based on previous experimental data either apply only an additive term (offset) or both an additive term and a multiplicative 

factor (linear).

(d)
Only a subset of the 25 movable type variations are included here. The four-letter suffix of each movable type submission is to be interpreted as 

following: first letter indicates the force field (G: GARF; K: KECSA), the second letter input structures (E: ensemble of structures from MD 
sampling; T: lowest energy structure during movable type scoring), the third letter is the number of states (1: only the complex is considered, 3: 
includes also the energy scores of host and guest in solution), and the fourth letter the type of experimental correction (L: linear; O: offset; N: no 
correction).

(e)
Both RFEC-GAFF2 and RFEC-QMMM report the results of relative free energy calculations. The offsets were determined from experimental 

data for similar OA or TEMOA guests.

(f)
SOMD submissions denoted with the nobuffer suzzix include only the neutralizing counterions while the others add extra ions to model the 

buffer salt concentration. SOMD-A has no corrections. SOMD-B adds corrections for missing long-range dispersion interactions and for the flat-
bottomed restraint to bring the ligand to standard state concentration. SOMD-D includes a linear correction fit to previously-available experimental 
data.
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Table 6.
pKa free energy penalties predicted by Epik for the second most likely protonation state of 

the CB8 guests.

In all cases, the second most probable protonation state predicted by Epik can be obtained by removing the 

nitrogen proton of the dominant state. The estimated free energy penalties to access the deprotonated state are 

reported in kcal/mol and units of kB T ± where kB is the Boltzmann’s constant and T is the absolute 

temperature, taken to be 298 K (i.e., the temperature at experimental conditions). For all the other compounds, 

including the octa-acid guests, Epik was not able to find a second protonation state within a tolerance of 3 pH 

units.

Complex pKa penalty

[kcal/mol] [kBT]

CB8-G0 2.86 4.82

CB8-G1 2.67 4.50

CB8-G2 3.20 5.40

CB8-G3 1.41 2.37

CB8-G11 2.76 4.65

CB8-G12 1.58 2.66
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