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Abstract
The theory of the effective elastic response of biphase composite
materials, with arbitrary second-phase geometry, concentration, and
orientation distribution, is formulated in terms of the average
inclusion strain concentrator for an entirely uniform body undergoing a
uniform eigenstrain in a non-dilute family of morphologically identical
internal regions (inclusions). Admissibility criteria for approximate
inclusion strain concentrators are formulated. The relation of the
present approach with the traditional one, based on the inhomogenity
average strain concentrator, is investigated, and the current
homogenization approaches are confirmed to be generally inadmissible.
Finally, a family of fully admissible concentrators is proposed,

together with the corresponding effective stiffness tensors.



1. INTRODUCTION

The ‘effective’ or ‘equivalent’ stiffness tensor C of a composite

material is defined through the relation
¢g=Ce (1)

where ¢° is a homogeneous deformation applied at the boundary and o is
the resulting average stress.

For a biphase composite, consisting of a matrix of stiffness gm,
containing a volumetric concentration o of inhomogeneities, or fibers,

of stiffness gf, the effective stiffness may be exactly expressed as
c=c"+a<ic-c")a > (2)

where the pointed brackets denote orientational averaging, weighted by
a fiber orientation probability density function (Ferrari & Johnson,

1989). In equation (2), the (average) strain concentration tensor A was

introduced. This is defined by the equation:

€e =B ¢ (3)

where ¢° is as in (1), a superscript f refers to the fiber

phase, and overbars denote spatial averaging.

Eshelby (1957) showed the strain concentrator for the limit case



of a composite consisting of a single anisotropic ellipsoidal

inhomogeneity in an infinite matrix to be

I =[1+E(C) (ec-¢) ] (4)

where I is the fourth rank symmetric identity tensor, and E is defined
in eq. (8) below.

At non-dilute volumetric fiber concentrations, T is no longer an
appropriate concentrator. The determination of the adequate
concentrator A is essential, for the purpose of homogenization, in view
of the fact that, once the fiber orientation profile and the tensor A
are known, the homogenization problem is reduced to a mere
computational exercise, according to (2). However, this tensor is not
generally available, in the case of arbitrary fiber spacings and
concentration levels. The need thus arises for introducing estimates
for A.

While the appropriateness of such estimates and the associated
effective medium theories must be assessed experimentally, on a
case-to-case basis, some physical considerations may guide the choice
of the approximate expressions for the strain concentrator A. In
particular, the following are necessary conditions for the general
validity of any homogenization scheme:

Requirement 1: The effective stiffness C must be diagonally

symmetric. This ensures reversibility of any composite deformation in



the linear elastic range.

Requirement 2: In the power series expansion of C in terms of a,
the first order term must be < (gf- gm ) T >. Requirement 2 ensures the
recovery of Eshelby’s exact solution at dilute concentrations.

Requirement 3: At the unitary fiber concentration 1limit, the
effective stiffness prediction must be independent of the matrix
properties.

Requirement 4: The effective moduli associated with C must comply
with the variational bounds. Examples of such bounds are those obtained
by Hashin and Shtrikman (1963) for macroscopically isotropic
composites with isotropic phases.

No currently available homogenizing approach complies with all of
these admissibility criteria, for arbitrarily specified second-phase
geometry, anisotropy, and orientation distribution. In particular:
Voigt’s (1928) assumption A = I violates Requirements 2 and 4, while
Eshelby’s (1957) assumption A = T violates Requirements 3 and 4. The

Mori-Tanaka approach (1973), based on the assumption

-1
A=7T [(l~a) I + a <T>] (5)
complies with the Requirements 1 and 3 if and only if the
inhomogeneities are perfectly aligned, or consist of isotropic material
(Ferrari, 1991).

In the present paper, effective medium theory is reformulated in



the context of an equivalent eigenstraining poly-inclusion problem. In
the new formulation, the poly-inclusion strain concentrator ﬁ, defined
in (9), replaces A as the independent wvariable of the homogenizing
scheme. This affords a considerably simplified analytical statement of
the physical admissibility requirements. Subsequently, a family of
fully admissible homogenization approaches is explicitly identified,

and some examples are discussed.

2. THE EQUIVALENT EIGENSTRAINING POLY-INCLUSION PROBLEM.

To solve the problem of the single ellipsoidal inhomogeneity in an
infinite matrix subject to the uniform boundary strain eo, Eshelby
(1957) devised to substitute the inohomogeneity with an equal volume
of matrix material (the ‘inclusion’), subject to a uniform eigenstrain
e* of unknown amount. This unknown equivalent eigenstrain was then
calculated from the condition that the inhomogeneity and its equivalent
eigenstraining inclusion be equally stressed:

e+ ey =d ("+E& - ) ing (6)
Here, e is the strain perturbation due to Q. This procedure then
reduced the single inhomogeneity problem to the previously solved the
problem of a large homogenous body with uniform non-zero eigenstraining
in Q only.

Eshelby (1957) proceeded to determine that the strain in the



inhomogeneity is uniform, and given by

€ =¢ =1Tce (7)

in duality with the fact that the strain in the equivalent

eigenstraining inclusion is uniform, and given by

€ =€ =Ee + €. (8)

For the general poly-inhomogeneity case, relation (7) must be
approximated by (3). Similarly, the average inclusion strains for the
case of a non-dilute concentration of inclusions, undergoing the same
uniform eigenstrain e* and in the absence of mechanical loads is not

given by (8). In this context, the approximate expression

€ = é € (9)

is now introduced, in analogy with (3). By paralleling Eshelby’s
original developments, the poly-inclusion and the poly-inhomogeneity
problems are put in correspondence by imposing that the average
inhomogeneity stress and the average inclusion stress coincide.
Consequently, the inhomogeneity average strain in the non-dilute case

is



e =T e (10)
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where T is obtained from T by replacing E with E in (4).

3. ADMISSIBILITY CRITERIA - A FAMILY OF ADMISSIBLE CONCENTRATORS
In the following, the poly-inclusion strain concentrator E, rather
than A, is employed as the governing gquantity of the homogenization

scheme. The relation between these tensors is

E=@a'"- 50« -")te (12)

as is found by equating (2) and (11).

To analytically express the symmetry condition, requirement number

)

1 above, it is first realized that C is symmetric if and only if the

A

; f_ m ; 2
contraction (C - C ) T is. However, by the definition of T,

-y r= -y rre @™t - 7t -
(i +E ™™t ef-d™ g oef- )yt -
tef-MT e @y (13)



fe o m -1
Thus, it is concluded that C is symmetric if and only if E (C ) is.

Requirement number 2 is equivalent to imposing that the limit of E
as a approaches zero be Eshelby’s tensor E. Requirement number 3 may be
equivalently expressed by the condition that

=c"+<e-N g ™7 it (14)

c
=1

be matrix independent for all composites. Here, 91 and E1 denote the

unitary concentration limits of C and E, respectively. For a void
second-phase, (14) reduces to

A - A -~ -1
= cm<;+(g1—1) s M<E (E -1) s (15)

£, c i
In order for g1 to vanish, regardless of the matrix properties,

it is thus necessary that
- I) > =0. (16)

Since no quantity in (16) depends on gf, the holding of (16) for
all composites is equivalent to requirement 3. Further specialization
of (16) is possible, considering the special case of perfectly
second-phase alignment. In this context, the orientational averagings

may be deleted, and (16) is equivalent to



= >
[}
(@]

: (17)

For texture-independent E, requirément number 3 is thus equivalent to

imposing (17) for all composites.

The family of approximate poly-inclusion strain concentrators

It >

= f(a) E + g(a) 1 (18)
is now introduced. Here f(.) and g(.) are arbitrary functions of the
fiber concentration. The effective stiffness tensor, associated with
the general form (18) via eq. (11), may be expressed as

c=c"+a<c-™ )+ f@E € * g @ (19)

All E of the form (18) are in compliance with requirement 1, since

the contraction E (gm)_1, also known as the ’‘polarization tensor’, is

always symmetric (Walpole, 1981). The limit conditions, requirements 2

and 3 - equation (17) - are satisfied if and only if
lim f(a) = 1, 1lim f(a) = 0, lim g(a) = 0, lim g(a) = 0 (20)
a=->0 a->1 a =->0 a =->1

The simplest concentrator that complies with requirements 1-3 is



thus

= >
L[}

(1 = a)E. (21)

which is fully acceptable, for biphase composites with any second-phase

geometry, anisotropy, concentration, and orientation distribution, if

the associated moduli are in compliance with the appropriate bounds.
The family (18) comprises the classical homogenization schemes. In

particular, it may be concluded from (12) that the special case f = g

0 corresponds to Voigt’s approach, while f = 1, g = 0, corresponds to
Eshelby’s. Voigt’s method violates (20)1, and thus requirement 2, while
Eshelby’s violates (17), and thus requirement 3.

Given (5) and (12), the assumption of Mori-Tanaka may be expressed

as

(1 - )E +a (<I> T ' - I) (22)

itd >
1}
[e3]

Il

after some tensorial algebra. By enforcing equation (17) on (22), it is
concluded that the the term <T> T -1 I must identically vanish, in
order to avoid unphysical predictions at the unitary second-phase
concentration limit. Since, in general, T differs from <T>, it is
concluded that the scheme of Mori-Tanaka is not acceptable for
composites with arbitrary constitution.

Under special circumstances, the Mori-Tanaka scheme does yield a
matrix-independent effective stiffness at the unitary concentration

limit. In particular, this propert§0Ois satisfied for biphase composites



with isotropic phases, and for isotropic-matrix biphase composites with
perfectly aligned inhomogeneities (Ferrari, 1991). For the latter
composite type, an immediate proof is obtained by noting that, in
conditions of perfect alignment, the orientation averagings may be
dropped, and (22) reduces to (21), which ensures acceptability at the
unitary concentration limit.

In the form (21), the Mori-Tanaka assumption may be interpreted as

Jd >

the a-linear interpolation that satisfies the dilute (E = E) and

unitary concentration (ﬁ = 0) limits for the eigenstraining
poly-inclusion problem under fixed boundary conditions. When not
reducible to the form (27), the Mori-Tanaka theory is not applicable,
as shown above.

Returning to the general case, it is now recalled that any
stiffness of the form (19) is admissible, provided (20) is satified and
the relative moduli comply with the appropriate variational bounds. It
is not possible to obtain further general restrictions on f(.) and
g(.), based on such bounds, as the general optimal bounds on all
effective moduli, in terms of the second-phase geometry, concentration,

orientation distribution, and anisotropic moduli, are not explicitly

available. Thus, a special case of the theory is considered next.

4. CASE STUDIES

For a void second phase, equation (19) specializes to

C=c"{I+a<[f(@E + (g(a) -1) I 17" >} (23)

For isotropically distributed catities in an isotropic matrix, the



effective elastic response is isotropic. In terms of the matrix
properties and the void concentration, the optimal bounds on the
effective bulk and shear moduli k and u for this case are those

obtained by Hashin and Shtrikman (1963):

k 4(1 - a) n (1 - a) (8 + 9x)
0 € -—— £ ———emmee y 0 € === € mrmmeeeee e (24)
km 4 + 3ax pum 8 + 9x + 6a(x + 2)

Here, x denotes the matrix bulk-to-shear modulus ratio.

The normalized effective moduli corresponding to (23) are

k (¢ + h)(3x + 4) + 3fx u 5(a + h)(3x +4) + 6f(x + 2)
——— = ————— - —— e R e ————————— (25)
km F1 um F2

with the definitions

h=g-1; F1 =nh (3x +4) + 3fx ; F2 = 5h (3x+4) + 6f (x + 2) (26)

for the case of spherical voids. Equations (25-26) are conveniently
obtained from (23) by the symbolic computing methods introduced in
(Ferrari & Marzari, 1992).

Combining (24-26), and simplfying sign definite terms, the bounds
on f(.) and h(.) corresponding to the upper Hashin-Shtrikman bounds may

be expressed as

k 1 -« I (1 - a) (8 + 9x)
; mm= t mmmmre———————— <0 (27)



In view of the positivity of the normalized effective moduli and of the
numerators in (27), it follows that F1 and F2 are negative quantities.
With this, the bounds may be put in the form
3k (1 - a) = (3x + 4)g + 3fx = (1 - a) (3x + 4) (28)
6(1 - o) (x +2) < 5(3x + 4) g + 6f(x + 2) < 5(1 - a) (3x + 4) (29)
Elementary consideration show thét, for

(3x - 4) f(a) = O ' (30)

the bound (28)2 is redundant. Otherwise, (29)2 is. Similarly, (28)1 is

redundant for
(3x - 4) g(a) < O ' (31)
while otherwise (29)1 is. Thus, under the assumption that both £(.) and

g(.) be positive definite, the bounds reduce to (28) for x = 4/3, and

to (29) otherwise.
Further assuming that g(a) be identically zero - as done in the

Voigt, Eshelby, and Mori-Tanaka theories - the bounds reduce to
(1 -0a) < f(a) < (1 - a) U (x) (32)

where 13



U (X)) =  =———e= x = 4/3
3x
(33)
5 (3x + 4)
U (x) = 2|  memecoeceecacaoaoe— X = 4/3
6 (x + 2)

The region of admissibility corresponding to (32) is shown in
Figure 1. There, the gap between the upper and the lower bounds is seen
to be a decreasing function of «, for a given material, and to be
maximal at a = 0, i.e. at a concentration for which the moduli are
exactly predicted by (23). Thus, the uncertainty on £(.) and g(.) does
not transfer to the effective moduli, in this limit and, arguably, in
all sufficiently dilute conditions.

Figure 2 shows that the maximum bound gap at fixed concentration
peaks for x=4/3, and then asymptotically tends to zero for increasing
values of x.

From (32) it follows that Voigt‘’s assumption f(.) = 0 is not

admissible for any concentration levels, while the dilute approximation

f(.) = 1 does not violate the bounds if and only if
9x + 8
O £ ———me——— x < 4/3
5(3x + 4)
(34)
4

R — 14 x = 4/3.



3x + 4

To visualize: For x = 3, representing a high-modulus ceramic, (34)
shows that Eshelby’s homogenization scheme violates the variational
bounds for a larger than 31 %.

The Mori-Tanaka approach, in the context of the present case
study, corresponds to f(a) = 1 - a. Thus, the bound (32)2is identically
satisfied at all volume fractions and for all materials, and the

predictions actually coincide with the bound (32)1.

5. DISCUSSION - CONCLUSIONS

In Section 2, the theory of homogenization was reformulated in
terms of the poly-inclusion strain concentrator ﬁ. The admissibility
criteria, postulated in the introduction, were then re-established in
this context, and the family (18) of poly-inclusion strain
concentrators was introduced. Any member of this family, for which
restrictions (20) hold, is fuily admissible, once the appropriate
variational bounds on the associated moduli (19) are verified.

In this sense, homogenization based on any of the admissible
concentrators of the form (18) is an improvement over all of the
existing effective medium theories, since all of these violate one or
more of the stated admissibility conditions. The use of (18) is
essential especially for composites with a non-dilute concentration of
non-aligned or anisotropic inhomogeneities, since none of the ’'classic’
homogenizations schemes is applicable in such cases.

The homogenization approach based on (18) with g(.) = 0 permits an
efficient use of the variational bounds, since the bounds on each

effective modulus result in a restlkbSction on the single function f(.).



Expressing the effective moduli in terms of a single admissible f£(.)
also simplifies the experimental determination of the full elastic
response, as f(.) may be obtained from easily realizable tensile tests,

and then used to predict all other moduli.

ACKNOWLEDGEMENTS
The author thankfully acknowledges support from the National Science

Foundation, Award # ECS 9023714.

REFERENCES

Eshelby, J.D. 1957 "The determination of the elastic field of an
ellipsoidal inclusion, and related problems", Proc. R. Soc. A 241,

276-303.

Ferrari, M., 1991, "Asymmetry and the high concentration limit of the

Mori-Tanaka effective medium theory" Mech. of Mat., vol. 11 p. 251-256.

Ferrari, M., and Johnson, G.C., 1989, "The effective elasticities of
short-fiber composites with arbitrary orientation distribution,"

Mechanics of Materials, 8, 67-73.

Ferrari, M. and Marzari, N. 1992, "A Mori-Tanaka theory for short-fiber

composites: Application" ASME Jourl6En. Res. Tech. (to appear).



Hashin, Z. and Shtrikman, S. 1963, " A variational approach to the
elastic behavior of multiphase materials", J. Mech. Phys. Solids 11,

127.

Mori, T., and Tanaka, K., 1973, "Average stress in matrix and average
elastic energy of materials with misfitting inclusions," Acta

Metallurgica, 21, 571-574.

Voigt, W., 1928, Lehrbuch der Krystallphysik, Teubner Verlag, Leipzig.

Walpole, L.J. , 1981 "Elastic properties of composite materials:

Theoretical foundations" Adv. Appl. Mech. 21, 169 - 186.

17



=

o
1 X

FIG. 1 Domain of admissibility of the
function f for g=0. f(.) and g(.) are defined
in eq.(18). f= 384 for x<4/3, f=06x4  for
x>4/3.
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FIG. 2 Maximum gap between bounds as
a function of x.





