UC Irvine
ICS Technical Reports

Title

The (preliminary) Id report: an asynchronous programming language and computing
machine

Permalink

https://escholarship.org/uc/item/4bd7g4sh

Authors

Arvind
Gostelow, Kim P.
Plouffe, Wil

Publication Date
1978

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/4bd7q4sb
https://escholarship.org
http://www.cdlib.org/

THE (PRELIMINARY) Id REPORT:
AN ASYNCHRONOUS PROGRAMMING
LANGUAGE AND COMPUTING MACHINE*

by

Arvind
Kim P. Gostelow
Wil Plouffe

Technical Report #114
y
Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92717
May 10, 1978

@ Copyright - 1978.

Dataflow Architecture Project.

Preface

inls report has been a long time in the making, and as a result
geveral moaiiications (anu some extensive improvements) hnave
accumulatea in our personal notes. mnowever, to incluade them now ana
to re-integrate tne language woula only daelay this report further.

b0 in tne interest of providing some aocument on Ia, these
changes anu improvements will be reservea for an updateda version of
tne language. At that point we will be able to remove the qualifier
“pPreliminary" from the title.

Your comments ana criticisms are welcomed.

A
KG
WP

Table of Contents

BERERRE o - o fa T et le e et S SR R st PR ER i
Introduction .. o o & e e s eiliay i e niner e s SRR SRR 1
Elementary Programming in Dataflow §
The Base Language and the Unravelling Interpreter 34
Programming with Streams PR G . 3)
Resource Managers o e e ete et e R S S

Programmer-defined Data Types, Extensionality,
and Environments . . . o e w0 e e gt SRR R O

References . . . o e e et g e T g SR)

ii

1. Introauction

The purpose of this work is to capture what one intuitively
feels 1is the enormous potential of LSI technology to produce large
numbers of small processors to be the building blocks for a 1large
general-purpose computer. A characterization of the kind of
computer we have in mind 1is the following: The machine would
consist of a large number (possibly hundreds or even thousands) of
small asynchronously operating processors. Each processor accepts
and performs a small task generated by a program, produces partial
results, and then sends these partial results to other processors in
the system. Thus the many processors would cooperate towards the
common goal of completing the overall computation. A natural
concomitant effect of such behavior woula be increasing speeds of
computation as new processor moaules are aaded to the machine.

Many computer architects have imaginea machines that might
exnlopit such pehavior ana 'thereby utilize this new technology. But
1n trying to ulscover why no such machine has as yet demonstrated
reai Euccess 1n this endeavor, we became convincea that the real
proolems are not related simply to devising an appropriate bus and
machine interconnection scheme, or to designing a machine which, for
example, can efficiently manipulate arrays or interchange numbers.
Rather, the difficulties are due to one of the fundamental bases of
computer design: the von Neumann model. Indeed, more than 30 years
have passed since John von Neumann first laid down the model that
virtually all machines and languages have taken ever since. The von
Neumann model has become so ingrained in our thinking that we rarely
even consider it, let alone question it, but it 1is precisely here
that we fina the source of the real problems that have prevented the
creation of the kind of machine just described.

Two particularly troublesome attributes of the von Neumann
moael are |Dennis73, GIM174, Sutnerlana77, etc]:

1. centralizea sequential control
2. memory celis.

Seguential control 1is troublesome since it prohibits the
asynchronous behavior ana distributea control that we consider
essential to the machine we wish to devise. It also burdens tnhe
programmer with the need to explicitly specify (or to employ an

2.

analyzer to determine) exactly where concurrency is to occur. The
second point, the memory cell, presents a difficulty since its
existence forces the programmer to consider not only what value |is
being computed, but also where that value is to be kept. This
places aduitional buraen on the programmer and presents particularly
tnorny problems in program verification. Furthermore, the
introauction of asnycnrony into a programming system makes memory
celis even less tolerable; we illustrate why this is so by an
extreme case: the glopbal variable. We imagine a situation where
soie otnerwise asynchronous processor modules are busy executing
tasks, put these tasks require coordination through a common cell.
This <calls for rather complex synchronization controls to ensure
oraerly use of the global variable. Such controls are difficult to
design into a machine and may be very costly in execution time.
Synchronization controls are also tedious for programmers to use,
especially where large numbers of activities are to be coordinated.

We contend that the above two cornerstone principles of the von
Neumarin model (sequential control and_the memory cell) must be
rejected in order to obtain a useful general-purpose system composed
of large numbers of small processors. We offer evidence in the rest
of this paper in support of this contention. 1In place of these two
principles, we adopt a 'language that is everywhere asynchronous
except where synchronization is explicitly specifiea (i.e., no
sequential control), anu where values are tne subject of computation
ratner tnan the places where tnose values are kept (i.e., no memory
celis). An asynchronous language assumes computations are
unrelateu, ana tnus concurrent, unless otherwise specifiea. A
sequential or von Neumann language on the other hand requires
explicit specification (either by the programmer or by analysis of
the program) to identify those places where concurrent processing
may be initiated. The absence of memory cells ensures that only
simple control mechanisms are needed to coordinate access to data,
since races to "store" data will never occur. Such a semantic basis
should work well with a machine composed of many asynchronous
cooperating processors.

The principal arguments against the von Neumann model are not

original to these authors and have been noted by several researchers
[Dennis73, Sutherland77, etc.]. Essentially, the approach is one of

3'

avolding the aitiiculties currently plaguing multiprocessor aesign
ratner tnan suffering witn them. Rejecting von Neumann's model may
at tirst seem a raaical approach. However, a brief survey of much
of the current work in programming language design and software
methodology reveals that this 1is, in fact, taking place already,
albeit in a much disguised form and at a very slow pace. Consider
the drive towards structured programming. Often it can be viewed as
an attempt to produce programs that are more functional (as opposed
to procedural) in their operation. As an example, modern
programming practice suggests that returning results by modification
of global variables shared among subprograms is less desirable than
writing the subroutine as a function-type subprogram and returning
values as the result of a function call. The fact that this is not
even possible in many languages (particularly if more than one
result or an array of results is to be returned) is not the fault of
tne 1functional approach, ratner 1t 1is the fault of 1language
restrictions that do not allow the returning of such values. we can
also give several examples of the movement away from the von Neumann
mouel 1n tne tfielu of programing language design: We note that
LUCLIL has imposed many restrictions on PASCAL that make variables
inaccessiobie to procedures when those variables are declared outside
those procedures, the effect of which is to force procedures closer
to the iaeal of a matnematical function. Also, the current interest
in (abstract) data types [Shaw, Liskov, Guttag, etc.] points in a
direction away from the semantic base implied by a von Neumann
machine, since functionality (information hiding) appears essential
to both data and program abstraction. Finally, we can observe the
past few years work on the linguistic aspects of resource control
[Jones] where as we move from semaphores, to conditional critical
regions, and to monitors [Brinch-Hansen, Hoare74], we see movement
away from arbitrary specification of program synchronization
(semaphores) to more highly controlled and encapsulated
specifications (monitors). This movement is in the direction of
proviaing tne programmer with a more functional view of a
computation that involves resources. However, resource management
1s one of the areas in programming language aesign which has not yet
seen soiutions that go far enough in the direction of functionality
to proviae nard eviaence of this movement. We hope to convince the
reauer of what can be accomplished with a more functional approach

4.

[AGP77]) by giving a concrete example later in this paper (Section
5). Lastly, we mention program verification, where some researchers
have noted the potential benefits of a language with semantics more
closely akin to mathematical 1languages. The concept of a memory
cell is not natural to mathematics, and can often complicate what
otherwise would be a simple proof of correctness [Guttag, Ashcroft &

Wauge76] .

ihe chief thrust of the above argument is that a proposal to
replace von Neumann's mouel witn a new semantic model is not
capricious. All too often i1n studies relateua to the above examples
1n language desiyn, remeaies for reducing the high cost of software
nave ignoreu tne arcnitectural base on which software and software
tools nave been aeveloped and continue to exist. The unstated
assumption is that von Neumann semantics will remain. Our position
is that if we are going to fully utilize the new technology of LSI
in the manner described above, we cannot retain the von Neumann
base. We furthermore believe that the semantic foundation we
requir'e coincides in the long run with the natural culmination of
much of the evolutionary movement ongoing in software engineering
and programming language design. However, by beginning with a new
semantic base rather than continuing to develop "restrictions" on
the old, we see a much smailer and more elegant semantics resulting
|Arvina & Gostelow77a] =-- an essential for future development.

One system that has been proposed in the past and which
incorporates new principles more compatible witn the needs we see,
1s uatarlow |Arvina & Gostelow77b, Dennis73, Kosinski73]. (Pure
LIs¢ |Mccarthybw] anu Reu languages |Backus73] were not chosen for
auoption because, even though their semantic bases are elegant and
runctional, neither caters to asynchronous operation.) The major
aeviation of "wata flow" semantics from von Neumann's principles of
"control flow" 1is that dataflow 1is asynchronous, and it has no
memory cells -- only values are the results of computations. A
aataflow program is a set of partially ordered operations on operand
values where the partial order is determined solely and explicitly
by the need for intermeaiate results; operationally:

l. a aataflow operation executes when and only when all of the
required operands become available, and

5

2. a dgatatflow operation is purely functional and produces no
side-efrects as a result of its execution.

Arguments in the past against uataflow have centered around the
lack of a nigher-lievel language, tne ability of people to program in
such a language (were it to exist), the inability to handle. database
problems, and efficiency. 1In this paper we provide definite answers
to some of these objections. We present a complete higher-level
dataflow language that incorporates all of the usual programming
concepts, as well as some new concepts not wusually found in
contemporary languages (for example, streams, functionals, and
non-deterministic programming). Also, the implementation of these
concepts (both o0ld and new) is often easier in dataflow than in
conventional languages due to the simplicity of dataflow semantics.
In this category we include procedure definition and manipulation,
programmer-defined aata types, and operator extensionality. The
ability to handle resource (database) problems is also a capability
of the language. Concerning the above noted objection of
"efficiency“, one must first of all not evaluate dataflow in terms
of a von Neumann implementation, for aataflow not only allows a new
kKina ot machine design but in fact requires it. It is most
important when consioeriqg dataflow languages that they be
consiaerea in tnelr own terms and not be forceda to fit into measures
valia only for other systems.

Two languages will be described here: a higher-level language
Id (for Irvine dataflow), and a base machine language that serves as
the semantic language of Id. 1In Section 2 we show how to write
elementary 1Id programs and we explain the meaning of these programs
in terms of their base language translations. In Section 3, we give
more details on how base language programs are interpreted by a
machine and how these programs achieve highly concurrent operation.
Streams are introauced in Section 4, while issues concerning
indeterminacy and resource managers are discussed in Section 5.
rrogrammer-defined data types and functionals are presented in
Section 6, while Section 7 summarizes the work and presents our

conclusions.

2. Llementary Programming in Dataflow:

i1a (ror Irvine datatiow) is a block-structurea
expression-oriented single-assignment language. A program in Ia is
a list of expressions. 1In this section we explain the four most
pasic kinus o0f Iu expressions -- blocks, conditionals, loops, and
proceaure applications -- by giving examples of each, and by giving
their translation into the base language. We use the base language
poth to aefine and to explain Id; the base language is also used as
the machine language to be directly executed by a dataflow computer.
Programs, however, are written only in Id. Thus the base dataflow
language 1is discussed only in the context of how that language
supports the higher-level Id constructs. We are less concerned with
how the base language operators behave in isolation than how they
behave in concert with one another in building these Id constructs.

Id variables are not typed. The internal representation of
values is simply self-identifying and type is thus associated with a
value and not with a variable. This matter is discussed later in
this 'section where we detail two particular value types: structure
values ana procedure uefinition values.

2.1 Block expressions: 7To evaluate tne two roots of a quaaratic
eyuation we can write the following list of expressions or program:

(-b+sqgrt(b”~2-4*a*c))/(2*a),
(-b-sqrt(b"2-4*a*c))/(2*a) (2.1)

Any program can be written as a list of expressions in Id, however
it 1is often more convenient for a programmer to break a computation
into. pireces, identify certain partial results, and then use those
partial results to compute a final answer. Thus we can rewrite
(2.1) as the block expression

(x <- sqrt(b"2-4*a*c);
y <= 2%*a
return (-b+x)/y, (-b=x)/y) (2.2)

Expressions (2.1) and (2.2) each require three inputs
(a, b, and ¢) and produce two (ordered) outputs. Expression (2.2)
compiles into the base language expression shown in Figure 2.l1. The
reader shoula refer to Figure 2.1 ana to expression (2.2) while
notiny the followiny: An assignment statement serves to name the

- ————————— —————————— ————— - ——— ——— ———— ———— ———— —— ———————————————

ie
_i
|

2

Figure 2.1

Compilation of the block expression (2.2)

8.

output(s) ot an expression. The name 1itself 1is called an Id
variable. Variables are used to specify interconnections among
operators (the boxes in Figure 2.1). Assignment statements in a
block are separated by semicolons and can always be commuted without
affecting the result of the expression. The inputs to a block
expression are exactly those variables that are referenced but not
assigned within that block. The return clause is the last item in a
block and specifies the (ordered) outputs of that block.

From the above, it is most important to realize that an 1Id
assignment is not an operator as it is in other languages; it is a
specification to tne compiler to label an output. 1In Id, a variable
can wve assigned exactly once witnin 1its scope. This single
assignment rule makes the connection snhown in Figure 2.2 impossible.

ine single-assignment rule guarantees to us that once defined, an
instance of a variable never changes in value. This obviates the
neea for aisparate sections of the machine to coordinate the
upaating of memory cell variables, since there are no cells to
update. In this respect Id variables are more like the variables of
mathematics than of conventional programming languages, i.e., they
stanu for values rather than act as containers of values. One
problem with most languages that follow the single-assignment rule
is that the programmer ﬁust often invent many names for distinct
variables. 1Id avoids this problem by limiting the scope of names to
the block in which they are defined. Hence, variables x and y are
not visible outside the block expression (2.2). Furthermore, if the
same names X and y were also assigned outside (2.2) they would not
be visible inside (2.2) and hence would not affect the computation
within that block. Expression (2.3) further illustrates this
scoping rule.
(a<=1; b <= 1; c <= =2;
X,y <= (x <= sqgrt(b"2-4*a*c);
y <= 2%*a

return (-b+x)/y,(-b-x)/y)
return x,y) (2.3)

when expression (2.3) is evaluated the values of x and y in the
inner block will be 3 anu 2, respectively, while the values of x and
y in the outer block will be 1 and -2. Unlike ALGOL, the scoping
rules of 1Ida prevent assignments to global variables from an inner
block since assignment to a variable automatically defines its scope

Figure 2.2
An illegal connection

Figure 2.3a
Execution of a dataflow operator

J\:

Figure 2.3b

Behavior of a fork

10.

to be that of the innermost block in which that assignment occurs,
and assignment can occur only once in that scope. Use of the same
variable name in two different blocks is not a violation of the
single-assignment rule since the 'scopes do not overlap -- one name
1s simply being usea to label two distinct outputs.

values in the base language are carried by tokens that flow
along lines. According to tne first principle of dataflow, an
operator may execute when and only when all 1its required input
tokens have arrivea. An operator executes by absorbing all input
tokens, computing a result, and producing an output token that
carrles that result as its value. Operator execution is illustrated
in Figure 2.3a. Note that the operators internal to the block
expression of Figure 2.1 will start executing as soon as any tokens
on lines a, b, or ¢ arrive.

Figure 2.3b shows that whenever a token encounters a fork while
traversing a line, the token replicates and follows all branches of
the fork. 1In this way a single result may be sent asynchronously as
1nput' to many different operators. Clearly, several operators may
be enabled at any given time and the order of execution of those
operators daoes not affect the final result, that is, the computation
1s determinate |Patil70, Arvind & Gostelow77a].

lne reaaer shnould note that a constant in Id aoes not represent
a value, but rather a function that produces that value as its
output regyaraless of the value of its input. But since a dataflow
operator will not execute wuntil its input is present, some token
must aiways be sent to a constant function to indicate that an
output value 1is needed. Any input 1line used for signaling a
constant function is callea a trigger. The value of a token on a
trigger 1line is unimportant, only its presence is significant. As
will become clearer later, the choice of which 1line to use as a
trigger affects only the execution asynchrony of an expression and
not the final results.

Reflecting on the basic principles of dataflow given in Section
1, we see that 1Id is asynchronous because (sub-) expressions are
independent of one another and may be executed in any order, or at
the same time, unless otherwise constrained by an explicit neea for
partial results. Expressing the need for partial results is easy:

. 5

just write tne variapble name. ‘This approach is the inverse of the
usual methoa of obtaining asynchrony or parallelism in conventional
languages which requires either an analysis of the problem or the
use of parallel programming constructs (e.g., cobegin-coend). Also,
Id does not present the concept of a memory cell to the programmer
since the value of a variable cannot be updated. The purpose of a

variable is solely to allow the programmer to name partial results
which he may later reference in other expressions. It 1is the
single-assignment rule that removes the possiblity of a race and
implies that Id programs are determinate (unless, of course, some
operator is used which internally is nondeterministic).

2.2 Conaitional expressions: Consider the Ia conditional expression

(if p(x) then f(x) else g(x)) (2.4)

ana 1ts base lanyuage translation in Figure 2.4. Whenever a token
arrives on line x tne predicate p is evaluated to produce a boolean
value. It tne preaicate is true then the token from x 1is sent by
the SWILCH operator to box f, otnerwise it is sent to box g. Figure
Z.5a shows tne behavior of the SWITCH operator for the case of a
true valuea boolean input. Also, Figure 2.5b shows that if one of
the output lines of a SWITCH is not used, and if according to the
boolean input that branéh is to be taken, then the input token is
simply absorbed. The CE) operator is used in base language program
graphs in exactly three situations: to mark the merging of two
branches of a conditional expression (as in Figure 2.4), to mark the
formation of a loop (Section 2.3), and to produce stream output from
a loop (Section 4). As with the SWITCH and Qa, we will see that
many base language operators do not result in legal programs if
interconnected arbitrarily. Since we intend to program in Id ana
not in the base language, we do not give rules for forming all
possible legal base language programs. The emphasis here 1is on
specifying tne semantics of syntactically correct Ia programs in
terms of legal base language programs. The operational meaning of a
legal base language program will be aefinea more precisely in

Section 3.

A conditional expression neeus all of its inputs for execution
regaruless of the branch to be taken. For example, the expression

(if p(x) then f(x) else g(x,y)) (2.5)

X

r—===cclecec cae o o cc ca=

SWITCH p
T F

| S R [pe— -—---J

Figure 2.4
Compilation of the conditional expression (2.4)

12.

X3.

CHtagde e G)

Figure 2.5a
The SWITCH operator for a true input

u
false ;

Figure 2.5b
The case for a SWITCH whose output

is not utilized

14.

i
1
1
|
|
]
|
|
I
)
|
1
|
|
|
|
|
1
]
|
|
|
]
)
1
)
]
{
)

AR R VTG KD R -

Figure 2.6

Compilation of the conditional expression (2.5)

15

will always require an input token from y, but whenever p(x) is true
that token is simply absorbed and is not used. Figure 2.6 gives the
base language translation of expression (2.5) and clearly shows that
a token 1is always absorbed from y. The reason a token is always
absorbed is to maintain the proper oraer of tokens flowing along all
lines, and regardless of whether an Id expression is a block, a
conaltional, or any other kind of expression, one token is absorbed
from each input ana one token is proauced for each output on each
execution of that Ia expression. Note than an entire expression

penaves simiiar to a primitive box.

Ia also provIdes syntax for writing conditionals in statement
form. The meaning of the conditional statement (2.6) is given by
the conditional expression (2.7).

(if p(x) then y <- f(x); 2'<- 1 else y <= g(x)} 2 <~ 0) (2.6)
y,z <- (if p(x) then £(x),1 else g(x),0) (2.7)

In a conditional expression the then clause and the else clause must
contain an ‘equal number of expressions. Thus the following is

illegal
Y,z <- (if p(x) then f(x),1 else g(x)) **jllegal**

A case-expression (case-statement) may be written as a nest of
if-then-else expressions (statements).

2.3 Loop expressions: Like most conventional languages, looping

constructs are 1important for writing interesting programs in Ia.
All looping constructs in Id are expressions consisting of four
parts: an 1nitial part, a preaicate to decide further iteration, a
loop boay, and a iist of expressions to be returnea as the value of
the 1loop. Consider the 1loop expression (2.8). It represents a
program to compute the smallest i such that the sum of all integers
from 1 through i exceeds some number s.
(initial i <- 1;
sum <- 1
while sum<s do
new 1 <- i+l;
new sum <- sum+i
return 1) (2.8)

AU wWN =

An Id loop is a set of recurrence relations, where new values
are specified in terms of o0ld values and initial values. For

l6.

1
L
> D S
=3 D —/
> D
i
T F
old i
1 D~
4
new i

new sum

new s

Figure 2.7
Compilation of the loop expression (2.8)

173

example, a set of recurrence equations for computing the above
values of 1 ana sum are

1,41 = Ay ok where ij] =

sumj4] = sumy + i sumj

n =

1

Ia aiffers only in that a stopping condition is specified and those
final values of interest are written in the return clause of the
loop. Thus the statements in the loop body specify that new value
instances of i and sum are to be created at each iteration.
However, any reference to a recurrence variable in the body of a
loop refers to the "old" value of that variable unless the reference
is preceded by the word "new". Thus the i in line 5 of (2.8) does
not refer to the value new i computed in line 4. (The value of new
i coula be referenced in line 5 by writing new i instead of just i.)
Tne translation of expression (2.8) into the base language is given
in Figure 2.7. Note tnat changing the order of statements in the
lLoop pody atfects neither the results nor the base language
translation. (The reader will have to wait until Section 3 to
unders$tana the meanings of the D, D-1, L, and L-1 operators. These
operators do not aftect the values of the tokens passing through
them, ana tor the sake of dicussion at this point we can treat these
operators as as laentity fynctions.)

we would like to emphasize that the assignment statements new
i<-i+l and new sum<-sum+i do not violate the single-assignment rule.
Since i on the left-hand side is new i and the i on the right-hand
side 1is o0ld i, we really have two distinct lines in the base
language program. One is tempted to think of i and sum as memory
cells whose values are being updated, but as pointed out earlier, a
dataflow variable never represents a memory cell. Also, any
assignment statement whose left-hand side is a variable that is not
assigned an initial value is not considered a recurrence statement.
Such variables are actually partial results used within a given
iteration but not carried over to any subsequent iteration.
Expression (2.9) anu 1its translation given in Figure 2.8 further
clarify tnese points.
(.2nitial 4 '<~'1l; sum <~ @

wnile i<n do
new i <- i+l;

¥ <="£(1)3
new sum <- sum+y
return sum) (2.9)

AU WN -~

18.

new sum
S

L
Y
1 0
v 2
L
- D k
P £ n
sum
e i L"é
1 = i
:
new i

new n

L

Figure 2.8
Compilation of the loop expression (2.9) where
many instantiations of f may procede simultaneously

195

Here statements 3 and 5 are recurrence statements (new i and new sum
are being computed, both variables having been given initial
values), while statement 4 is simply a partial result used in
statement 5 (variable y was not given an initial value).

now let us briefly consider the execution of (2.9). Suppose
function t of line 4 takes a long time to execute. The loop
preaicate 1<n, nowever, aoes not depend upon the evaluation of f(i).
Tnerefore it 1is possible for several tokens to accumulate on tne
line 1 going 1nto tne function wox £ since these tokens are the
values of i counting from 1 to n, a relatively fast process. Now if
1 were treated as a memory cell tnen the notion tnat i might be
severali values at the same instant of time would be meaningless. We
will snow in Section 3 that the machine's interpretation of the base
language 1is such that instead of accumulating tokens on the line
leading from output i to box f, many instantiations of function f
may proceed concurrently. This greatly increases the apparent
asynchrony and concurrency of loop expressions.

ia suppbrts many different loop constructs such as for-loops,
repeat-until-loops, and for-while-loops, but the semantics of all
loops (except for those involving streams*) are encompassed within

the general wnile-loop congtruct given in expression (2.10).

(initial x <- f(a)
while p(x,c) do
y <= g(x,c);
new x <- h(x,y,c)

return r(x,c)) (2.10)
In an actual i1ooup expression tiere might be more than one variable
ot type a, x, y, or c. Variables that are assigned in the initial
part (x variapbles) circulate 1in the loop and tnus have both ola and
new vaiues. Variables that are not assigned in the initial part but
are assigned in the loop boay (y variables) are simply partial
values and can be used only within the body; a y variable never
circulates. Variables referenced but not assigned in a 1loop (or
assigned only in the initial part) are loop constants (¢ variables).
A ¢ variable behaves exactly 1like an x variable in that it
circulates (see n in Figure 2.8) and one can assume that a statement
new c <- c exists in the loop body. All variables referenced on the

*Streams are discussed in Section 4.

205

rignt-hanu siue of assignments in tne initial part (a variables) are
treateu as 1nputs to tne loop expression and must originate from
outsiue the 100p expression. Hence, x <- f(x) appearing 1in the
initial part of a loop expression would be a valid assignment
statement. The X on tnhe right-hana side would be connected to the
output namea x outside the loop expression, while x on the left-hand
side will be the name of an output inside the loop expression. To
explain further we give two equivalent loop expressions. The loop
(2.11) is a for-while-loop which is implemented as if it were the
while-loop (2.12).
(x <= g(a);

y <= a*(initial x <- f(x)
for i from 1 to n while p(x)do

Y=< g{i)3
new x <- f(x)+y
return x)
return y) {#+ 21}

(+x% K= g (a)}
y' <= a¥(initial x <= Lxg il K= 1

while (i<n) ana p(x) ao
Yy <= g(i);
new x <- f£(x)+y;
new i <- i+l

return x)

return y') (2.12)

Now we describe a very useful default for conditional
assignment statements. Consider expression (2.13).

(initial x <= x; sum <- 0
for i from 1 to n while p(x) do
new x <- f(x);
(if g(x) then new sum <- sum+l)
return sum) (2.13)

Normally a variable must be assigned both in the then clause and the
else clause. But instead of treating the conditional assignment in
expression (2.13) as illegal, we translate it as if it were the
following statement:

(1f g(x) then new sum <- sum+l else new sum <- sum)
or

new sum <- (1f g(x) tnhen sum+l else sum)
1nls 1s a uefault rule tnat applies only within a loop boay.

<.4 rroceuure applications: Figure 2.1 shows the Iad sqgrt function

21'

implemented by the machine primitive SQRT. If sqrt were actually a
procedure application, then the SQRT box would be replaced by the
schema of Figure 2.9. The APPLY operator expects a token carrying a
procedure definition value and another token carrying the argument
value. It applies the procedure definition to the argument when
potn have been received. Note that sqrt is the name of a line, and
we would now say that expression (2.2) needs sqrt in addition to a,
D, ana ¢ as inputs. The line sqrt would thnen, presumably, be
connecteu to a box tnat outputs a proceaure definition value tnat
auescribes a square root function. We will elaborate on proceudure
aetinitions 1n Sections 2.5.2 anu procedure applications in Section

3.

2.5 Data structures and procedure definitions: Variables in Id are

not typeu; only values are typed. Thus a variable may be assigned
a value of any type at any time. The programmer may, however, write
an expression to test the type of a value, coerce the value to a
different type, or assert that a value must be of a particular type.
We do‘'not wisn to impose a strongly-typed language on the programmer
where he is required to state the type of value every variable is to
acquire. In our mind this can cause a great deal of overhead for
the programmer. Instead, Jwe feel the programmer can be given
sufficient tools to allow him to specify in as much detail as he
wisnes the information that a strongly-typed language would
otnerwise reguire; he need not, nhowever, specify typing in those
situations which are burdensome or in which it is wunnecessary to

state typing information.

w'nere are nine airterent primitive types of 1Id values:
integers, reais, pooleans, strings, structures, procedure
aelinitions, aataflow monitor aefinitions, aataflow monitor objects,
ana errors. Tne first four need no discussion while monitor
aefinitions and monitor objects will be discussed in Section 5.
Error values are not discussed at all. The following subsections
concentrate on structure values and procedure definition values. A
full discussion of type coercions, assertions, and
programmer-defined types is deferred to Section 6.

2.5.1 Structure values: A structure value is either the
distinguished empty structure A or a set of <selector:value> ordered

sgrt

APPLY|

Figure 2.9
Applying a procedure

name height weight age

.

" L 175 33
John Doe 1 2

6 5

Figure 2.10a
A structure value t with string and integer selectors

22,

28

name height weight age sex
"John Doe" 175 33 "M"
ohn % l
6 5

Figure 2.10b
The[structure t+["sex"]1"M"

name height weight age sex
"John Doe" i 2 180 33 o
6 5

Figure 2.10.c
The structure (t+["sex"]"m")+["weight"]180

24.

pairs. A selector is an integer, string, or boolean value; a value
is any lu value. An example of a structure is shown in Figure 2.10a
wnere “name", "height", "weight", ana "age" are string selectors
(string selectors are not quoted when usea in figures). There are
exactly two operators aefinea on structure values: SELECT ana
APFPEND. If t 1is the structure value in Figure 2.10a, then values
can be selected from t by writing, for example, ¢t|"weight"] ana
t({"height"] 1] (giving 175 and 6, respectively). The APPEND
operator is somewhat more complex. Given a structure, a value, and
a selector to be associated with that value, APPEND creates a new
structure value. For example, Figures 2.10b and 2.10c are the
results of the indicated appends on the structure t of Figure 2.10a
(the "+" symbol means APPEND when the right-context is the symbol
o (e the "-" symbol means to use an APPEND operator to remove a
<selector:value> pair from the original structure). Note there are
two wulstinct appends in Figure 2.1lfc. These will be done in
left-to-right order with an intermediate value as indicated by the
parentneses. Most importantly, the structures created as a result
of an APrtnD are neither tne original structure t nor any modified
version ot t, since uataflow values cannot be moaified. Rather each
appenu creates a new and logically distinct structure, ana the old
structure (t 1n tne examples of Figure 2.10b ana 2.l6c) nas an
existence ot its own, possibly concurrent with the new structure.
''nis means that the value of t may be referenced by some other
expression 1in tnhe program even after the appends have been
completed. Select and append may be summarizea by the equations

(t+[s]v)[s']

(if s'=s then v else t[s'])

A[s'] = error
(t-[s])Is'] = (if s'=s then error else t[s'])
A-[s'] = error

Some syntactic shorthands are available in Id for manipulating
structure values. In the case of string selectors, the notation
Xx.welght can be usea instead of the more cumbersome x["weight"].
Also, to simplify thne construction of structures, the angle-bracket
notation

<neight:<6,5>, weight:175, age:33>

can be usea 1nsteaa of

A + ["height"] (A + [1]6 + [2]5) + ["weight"]1l75 + ["age"]33

In the above, the notation <6,5> means <1:6,2:5> where the values 1
anda 2 are selector specifications. To explain in more detail, an
integer-valued counter 1is associated with each angle-bracketed
structure specification during compilation. The specification is
scanned left-to-right and whenever a value is encountered with no
associated selector specification, the value in the counter is used,
ana then the counter is incremented by one. Whenever an integer
constant selector 1is specifiea, the counter is reset to that value
plus one. No otner seiector specification affects the counter,
wnilch 1s 1nitializea witn wvalue 1. Figure 2.11 illustrates the

awove witn several equivalents.

we often fina statements i1n tne pbody of a loop that create a
new structure by appending to an old structure witn a change in just

one component, as for example

new x <- x+[i]v
A shorthand equivalent is

new x[i] <- v

Id also allows multiple selectors in order to make references to
trees and arrays more convenient, for example, the reference x[1,2]
means (x[1])12].

Notice that the programmer sees each variable that is assigned
a structure vaiue as holding that entire structure. This is
retlected 1n the base language where a token that carries a
structure logically carries the whole structure as its value. 1In an
actual macnine, tnis gquickly becomes impractical when large
structure values are 1nvoiveu. However, the fact that structures
are acycliic anua tnat wuataflow operators are pure functions has
alioweu Dennis |vennis73] to devise a technique whereby a memory may
e used to store tne actual structure while only pointers to the
structures are pnysically carried by the tokens. That is, the
underlying implementation of structure values in dataflow may use
pointers, snared common substructures, reference count garbage
collection, and many other techniques in order to reduce overhead
[Dennis74, IPL, etc.]. Nevertheless, these aspects are completely
transparent at the level of Id, and even at the level of the base

26.

shorthand notation definition

<v,7,w> A +[1]Jv+[2]7+[30w
<0:v,w,5:x,y> A +[0Jv+[1]w+[5]x+[6]y
<=5:v,str:w, x> A +[-5]v+["str" Jw+[-4]x

Figure 2.11

Shorthand structure specifications and their equivalents

(trigger)

J
iy

procedure (s)
(initial i<«l1;
sum<1
while sum <s do
new sum<sum+i;
new i<i+l

return i)

Figure 2.12
Compilation of statement (2.14)

27.

aataflow language where any structure-carrying token still behaves
as 1f it carrieu tne entire structure value*. We do not discuss
uetalilead memory mechanisms here, put it is important to emphasize
tnat any sucn memory system thnat may be usea to 1implement aataflow
1s never seen by the programmer. A memory system woula be present
only to reuuce the amount of information that would otherwise need
to pe carriea by a token.

2.5.2 pProceaure aefinitions: An example of a procedure definition

value being assigned to a variable y is

Yy <- procedure (s) (initial i <= 1; sum <- 1
while sum<s do
new sum <- sum+i;
new i <- i+l
return i) (2.14)
The specification of a procedure definition value, exemplified by
(2.14), 1is much like a constant specification. That is, just as a
numeric constant a in Id actually implies a constant function that
proauces o as 1its value, so does a proceaure definition imply a

function that produces that procedure as its value.

Statement (2.14) translates into Figure 2.12. Since la
variapiles are not typed, variable y in (2.14) is not a proceaure
variabie, but aoes receive a procedure value whenever (2.14) is
executea. Variable y is like any otner variable and can be passed
as an argument to a procedure, appended to a structure, or operatea
ugon oy any operator tnat is aefined on the type of value carried by
Y. In Id, two operators are definea over procedure values: APPLY
and COMPUSE. We recall from Section 2.4 that the APPLY operator
applies a procedure definition to a 1list of actual arguments by
writing

apply (y,x1,x2,...,xn)
or simply
y{xl,x2, .4 X0)

Since a variable may assume any one of the several values during an
execution, 1t cannot be guaranteea at compile-time that the value of

*We aifier trom Dennis [Dennis73] on this point, since in nis
languagye a wudistinction can be made between a pointer and an
elementary value.

28.

y will always be a procedure reguiring exactly n input parameters.
Suppose the value of y is a proceadure with m formal parameters and,
as above, the apply lists n actual arguments. If m<n then the first
m arguments from the actual parameter 1list are passed to the
procedure while the remaining n-m actual parameters are ignored. On
the other hand, if m>n then m-n actual arguments with the special
value & are supplied in place of the missing actual arguments. If
the programmer wishes to omit an argument, its place can simply be
left empty. For example, y(x1l,,x3) is translated as y(x1,€,x3).
Corresponding situations can arise where the number of outputs
expectea from an apply do not match the number receivea from the
applied proceaure. The compiler must pe able to deduce the number
of outputs to be produced by the apply; where necessary, the
programmer must make tne deduction unambiguous oy proper
parentnesizaton on tne left-nana side of an assignment statement.

ror example,
(x,y),2 <= £(a) ,9(b) (2.15)

means tuat t(a) must produce two outputs and g(b) only one. If the
procedure value from f£f produces more than one output, the extraneous
outputs are lost. If f produces fewer then two outputs, the value &
is proauced by apply. Section 3 discusses the implementation of
APPLY in detail.

It is also possible to give a name to an Id procedure. This
can be useful in writing recursive programs. The named procedure f
which calculates the ubiquitous factorial function may be written

y <- procedure f(n) (if n=0 then 1 else n*f(n-1)) (2.16)

Essentlally, wnenever a namea procedure is applied its definition is
also passed as if it were a parameter, thereby making a namea
proceaure aole to reference 1itself. Recursive programs can be
written wltnout namea procedures, but it can be a little less
convenient. 71n1s is shown in (2.17) wnere z(3,z) is 3.

z <- proceaure (n,f) (if n=6 tnen 1 else n*f(n-1,£)) (2.17)

An unnecessary aanger also exists in (2.17), since when 2 is applied
the procedure passed as a parameter need not be z. Hence, z(3,9) is
a vaiLid application, but the effect of the application may be
aifferent from what one expects. Procedure definitions such as the

29.

one in (2.16) are more convenient than (2.17), as well as more

desirable tor good programming.

Ine remalning operator aefined on procedure values is COMPOSE.
Ihas operator is actually a very simple but very powerful functional
in tnat it accepts a procedure as input and proauces a new procedure
as output. COMpuUSE takes the input procedure value and "freezes"
one or more ot the procedure's tormal parameters to particular
actual values, and tnen removes the parameters that were frozen from

tue rormal parameter list. For example, in

q <- procedure (a,b,c) (a”2+b"2+c”2);
r <- compose (g,<<b:5>>) (2.18)

the procedure value assigned to r, when applied, behaves as if the

programmer had written
r <- procedure (a,c) (a”2+572+c"2)

since the argument of compose is a l1ist of subarguments either of
the form <£ormal-parameter-position:value) or the alternative form
<formal-parameter-name:value>. As another example, we use 2z from

(2.17) and write.
w <- compose (z,<<2:2>>)

wnich produces a value w witn one formal parameter (the parameter n
in (2.17)). 'inhe value of each instance of £ in (2.17) has thus been
frozen to tne proceaure value z, SO w(3)=z(3,2z)=3! . In fact, a
nameu procedure is implemented by compose. For example, statement
(¢.16) actualiy translates into
y <= (f' <- procedure (f£,n)
(if n=0 then 1

else n*compose (£,<<1:£>>) (n-1))
return compose (f',<<1:£'>>))

so that y, regardless of how it may be composed further, will allow
procedure f to internally refer to the original definition of £ in
all cases. The translation of the named procedure definition f to
its new form is according to the following steps:

1. Construct a new procedure definition f':

- insert the original procedure's name f as the first
parameter of the argument list

- alter tne code inside the original proceaure f by
replacing every occurrence of f by the code
compose (£,<<1:£>>) .

30.

2. keturn tne procedure compose(f',<<1:f'>>)
‘'ne name ot the resulting procedure is f (i.e., the original name).

Named procedures are important and are used extensively in
implementing programmer-defined types and in the environment feature
of Id. (These application points are covered later in Section 6.)
Lastly, we note that the above algorithm is the straight-forward way
of handling named procedure definitions. However short-cuts are
sometimeé possible, for example, rather than do a compose and then
immediately do an apply, the compose could be deleted and instead
the procedure passed directly to itself as a parameter in the apply.
Such short-cuts must be very carefully considered, ana in general
can pe done only by a complete analysis of all possible patns
througn the nameu procedure and witn the guarantee that the
proceuure will never be returned to an outer context and applied by
anotuer program tnat knows nothing about it. For example, the
result ot such an apply coula be for proceaure f to return f itself,
wnich must be the f' version of f, but which may not be the case if
1t is ‘'not composed before the apply.

Only COMPUSL and APPLY are allowed to manipulate the internal
representation of procedure values. To describe exactly how the
COMPOSL operator works, we./consider the encoding of a procedure
value to be a special kind of structure which the Id programmer can
neither select values from nor append values to. (A programmer can,
of course, always append an entire procedure value to and select a
procedure value from another structure.) In this way we can
guarantee the consistency of the internals of a procedure value.
The special structures that encode the procedure values at outputs g
and r of (2.18) are shown in Figures 2.13a and 2.13b, respectively.
In these structures, the detailed encoding of the procedure body
itself 1s of no consequence to this aiscussion and 1is left
unspecifieu. Concerning the otner components, tne "name" recoras
tne name of the proceadure (it any) as a string. The "#" component
specifies tne number of parameters. Tne "“formals" specifies for
each parameter position, the name of the parameter as a string,
wnlle "actuals" specifies, for each parameter frozen, its actual
value. we note nere that the COMPOUSE operator rearranges nothing
out the "formals" and "actuals" components. The procedure values in
Figure 2.13a and 2.13b contain enough information for the APPLY

body name # formals actuals

2 3

C

1
'Ia

] nn b n o nn

Figure 2.13a

The encoding of the procedure value on line g in (2.18)

body name # formals actuals
[4
n n 3
1 2 b
n a n n o] L] 5

Figure 2.13b

The result of the compose function in (2.18)

32.

operator to determine the values of all actual parameters.

The CUMPUSE operator is useful for tailoring a proceaure to
special forms by freezing certain parameters. COMPGSE is used
extensively in Section 6 for implementing programmer-defined data
types. It furthermore proviaes a way in which (dynamic) program
linking can pe performea, since sucn linking is actually just the
freezing of certain ftormal parameters to actual parameters, where
the actual parameters woula generally be subprograms.

2.6 'l'wo sample programs: we now give two sample programs written in

fu: hoare's quicksort and matrix multiply. We have chosen
conventional algorithms for two reasons. First of all, we want to
show tnat a programmer proficient in ALGOL-6¢6 would have no
aifficulty in writing programs in Id, even though Id is a dataflow
language and has a different semantic base. Second, we want to show
that even contentional algorithms automatically exhibit a great deal
of concurrency when expressed in Id. A complete discussion of the

secong point must wait until Section 3 because it is related to the
unravelling interpreter of the base language.

2.6.1 Hoare's quicksort: In Id we write Quicksort as

procedure Qucksort (aﬂn)
(below,],above <-
(initial below <- A; j <- p;
apove <- A; k <- 0;
micdale <= al|l]
for i from 2 to n ao
(if a[i] < miaule
then new pbelow|;+1] <- a[i];
new j <- ,+l
else new above |k+1] <- al|i];
new k <- k+l)
return (if j>1 tnen gucksort(below,)
else below),3,
(if k>1 then Quicksort(above, k)
else above)))

return (initial t <- below+|[j+l]midale
for i from 1 to n-j-1 do
t <- t+[i]abovel|i+j+1]
return t)) (2.19)

The time complexity for single-processor Quicksort has an
average of O(n log n) and a worst case behavior of 0(n2). The above
Ia counterpart, when compiled into the base 1language and executed
under the wunravelling interpreter, has an average of O(n) and a

33.

worst case benavior of 0(n<4), bput requires an average of 0(n)
processors. ne time complexity 1s reduced because of tne
possibility of executing the recursive procedure calls in parallel.
Given sufiicient processor resources, this will occur automatically
and witnout any analysis of the program. The mechanism which
accomplishes this is discussed in Section 3.

2.6.2 Matrix mutliply: The following procedure multiplies an£4 x m

matrix a by an m x n matrix in the straight-forward way.

procedure multiply (a,b,Z,m,n)
(initial ¢ <- A
for i from 1 to £ do
new c[i]j<-(initial d<- A
for jJ from 1 to n do
new d[J]<-(initial s<-9
for k from 1 to m do
new s<-s+a[i,k]*b(k,]]
return s)

return d)
return c) (2.20)

Tne apove program executes i1n O(4£+m+n) time wutilizing in the
worst. case O(Zmn) processors and in the best case 0(#n) processors.
'ne unravelling 1interpreter will try to execute all of the
multiplications and n of the additions in parallel, thus reducing
tnhe usual time complexity ©of O(Zmn) to O(£+m+n).

The reader should not conclude from these examples that Id 1is
Jjust another language for writing programs. We are most interested
in expressing algorithms in a way that preserves the structure of
problem solutions. For many types of problems sequential languages
have worked well, and we would 1like to keep as many of these
features of sequential 1languages as is possible provided they are
not in conflict with the semantic basis of dataflow. However, 1in
Section 4 we will give examples of programs that one is not likely
to write 1if restricted to von Neumann semantics. 3t is a
well-accepted fact that language influences our thinking. We hope
that thinking i1n terms of dataflow will remove some unnecessary
constraints placed on us by languages with sequential control

structures.

34.

3. ‘''ne base Languaye anu tne Unravelling interpreter

1he unravelilng interpreter (described herein) has been
uesignea to exploit even greater asynchrony then what is normally
fealizea in a dataflow language [Dennis73, Chamberlin7l1, Ashcroft &
waage76] . 7o see how the interpreter operates, we must examine
token flow in some detail. Imagine the operator F of Figure 3.la in
the body of a loop at a time when three complete sets of values from
outputs a and b are ready for processing, the results of which are
to be placed at output c. According to the first principle of
dataflow, since both input values X3 ana yj] are present (from
outputs a ana b, respectively), the first initiation of the operator
can take place and we can move to the configuration of Figure 3.1b.
Immeuiately the seconu initiation of the operator can occur on the
lnput values x; anu y;. nowever, tne lmplication that tne secona
initiation can take place only after tne result aue to the first
initiation nas bpeen proauced 1is unnecessary, since tne secona
prainciple ot aatafiow states thnat the actions of each operator must
ve Lree Oof siue-eritects. To take fuli aavantage of the freeaom from
slue-erLlects, let each uistinct 1initiation of an operator be termed
an activity. Then we note tnat if sufficient free processors were
availabie, and 1f each activity were associated with one processor,
tnen in the case ot Figurei3.1 all three activities (initiations of
operator s) coula be carriea out concurrently. The purpose of the
unravelling interpreter 1is to execute programs by generating
activities (in fact, large numbers of activities) for execution by
waiting processors. Of course, the main problem is to keep the
different sets of tokens from being mixed, since for correct
operation it is essential that the token carrying xj; be matched only
withn the token carrying Yi- The wunravelling interpreter
accomplishes tnis by appropriately tagging every token that is
proauceu witn a wauestination activity name. The wunravelling
interpreter 1s largyely a set of rules for manipulating tnese

activity names.

5.1 Activity names: An activity 1s a single execution of a base

lanyuage vperator. Each activity is assigned a unique activity
name, ana ali tokens carry tne name of tne activity for which tney
are wuestineu. ine rules for generating activity names are basea

upoOn the roilowing principles:

35,

N,

a b
3 Y3 %3 Y3
2) %3 Y,
1 ¥y
S: S:
F ::::> F ::i:> oo o0 ::::>
C
F (xl 'Yl)
(a) (b)
Figure 3.1

Three executions of a dataflow operator

Figure 3.2

Elimination of forks

(c)

F(xz,yz)
F (xl ,Yl)

36.

1. All tokens with identical activity names must be destined
for the same activity, that is, each activity has a name
that is unique throughout the system, and

2. All tokens accepted by an activity have identical activity
names.

A macnine composed of an ensemole of large numbers of iaentical
processing eiements (rks) 1is very well suitea for the unravelling
lnterpreter. .onsicer a machine in wnilcn each rE can execute any
base languaye operator ana can communicate witn otner Prs by senaing
tokens tnrough a communication meaium. A copy of the program to be
executeu 1s avallabie to every PL, and each PE repeatedly goes
tnrough vasically tne roiiowing cycle:

l. 1If a PE is free it looks for an allocation token* in the
communication meaium. Wnenever it finds such a token, the
PE acquires the activity name written on that token and
thereby becomes that activity. By decoding the activity
name, the PE discovers which operation in the program it is
supposed to execute and how many operands are needed before
it can initiate.

2. After acquiring an activity name, the PE waits for the
otner operands to arrive from the communication medium.

3. When all reguired operands have been received, the PE
begins execution of the activity, and after a finite period
of time it terminates. The PE then produces result tokens
witnh appropriate activity names and inserts them into the
communication medium.

4. 4une rL becomes free.

3.2 veneration or Activity names: e assume each operator in a

uatarlow program grapn 1is uniquely lapellea, ana that it has some
SpecClllc numver or input and output ports. As snown in Figure 3.2,
a tfork conmection 1s not an operator. By moving a fork back to the
output port to which 1t is connected and by assigning token
replication to that port, we can use the operator itselif to
implement a fork. (Note that still no two lines converge on a
single input port.) Thus, the structure of a program graph is such
that each operator contains a destination list for each output port,
and where that destination list contains the names of all the input

*Exactly one input line to each operator can be distinguished 1in
that each token flowing along that 1line can be marked as an
allocation token.

g

porLs wnich are to receive 1iuentical output tokens. In the
remalnaer ot tnis section we show how activitles are createu ana
nameu, ana uow the structural integrity of the program graph 1s
maintainea 1in tne miast of a system based on activity name

manipulation.

A token is output from an operator and moves to the input of a
successor operator. Each token carries both its data and its
destination activity name which we write as the ordered pair

<data, destination>

where destination comprises five fields: context u, procedure code
c, operator label s, initiation i, and port p. Logical groupings of
the values in various fielas help to identify some facets of the
uestination of a token. 1TInus tielas ¢, s, ana p specify that tne
token unaer consiceration is passing along the line of the program

yrapn connectea to port p of operator s in procedure c. Any such
specification must, of course, be consistent with the static
structure ot tne program graph. The remaining fielas u and i of the
tuken uestination yive the context u (for example, the proceaure
application context) ana 1nitiation count 1 consistent with the
aynamics of program execution. ‘These latter fielas u and 1 are
particulariy 1mportant ih the case of the two operators A and L
associated witn procedure applications and loop expressions,
respectively. Operator A dynamically creates a new program graph,
while operator L copies only a portion of the executing program
graph, 1i.e., a loop. Unaer such circumstances it becomes necessary
to attach a unique context name to the operator 1labels to
aistinguish between the various initiations of two operators with
the same label, and in general an operator is uniquely identified by
fielus u, ¢, and s instead of fields c and s only. Considering
another grouping of the fielas in a token destination, we may
identify a logical line by u, ¢, s, and p, ratner than fielas c, s,

ana p only. 'The set of tokens associated witn a 1logical 1line
contains all those tokens with fielas u, ¢, s, ana p common in their
uestinations. ‘1nese tokens are calliea tne nistory of that 1logicail

i1lne.

An activity of an operator is 1aentifiea by the fielus u, c, s,
alu 1 anu 1s written as the symool "u.c.s.1". ‘lhe symbol 1s callea

38.

an activity name. The input tokens associated with an activity are
called the input token set and are easily identified as all those
tokens witn fielas u, ¢, s, and i common in their destination. The

process of generating activities is described by specifying how an
input token set is transformea to a set of output tokens, each token
intenaed for some successor activity. Even though lines in the
program graph have no actual physical significance, the activity
name yeneration process for each operator (specifiea below) makes it
ciear tanat tne structural integrity of a graph 1s never violatea,
1.e., tne ftieius ¢, s, ana p ot a aestination are easily verifiea
correct. 1n yeneral, even when logical 1lines are aynamically
createu (tue A ana L operators) anu aynamically uestroyea (the A-l
ana L=1 operators) no line of tne program graph is aauea or deletea.
It 1s somewhat more complex to verify tnat the history of a line is
valia, that is, tnat no two tokens in the nistory of a line have the
same initiation count value i*. Brief arguments are given to show
tnat all operators produce valid nistories, provided these operators
are .interconnected in a proper way, i.e., according to a
syntactically correct ID construct. Any other interconnection of
base language operators is undefined.

Below we will specify in detail the semantics of dataflow
operators, where we often make use of definition by case.

Notationally,
(a=>b; c=>a; ...; e=->f; qg)

means that if a hoilus then token b is the result; otherwise, 1if ¢
noius then token u 1s the result; etc., finally, if no conaition
nolas tnen token g 1s tne resuit. If no result token 1is specifiea
%), tnen none 1s producea. Aiso, tne tollowing semantic
speclilcations generally assume tnat u.c.s.i 1s the name of the
activlty unuer consiueration, ana tnat the aestination of a token is
port u ot operator t. Because ot tne emphasis on activity names, we
nave logicaliy groupea tne fielas of the token destination part in
the torm <activity name, port>, or <u.c.s.i, p>. Further, we often
refer to a logical line by the form <u.c.s, p>.

*This statement does not hold for streams. A valid history of a
stream line will be aiscussed in Section 4.

39.

3.2.1 blLOCK oCnema (Lunctions ana predadicates): This category
incliuues owLLCT ana APPEND as weirl as ali arithmetic and boolean
operators. ‘1ne pinary function F typically specities tne operators
OL tnls class:

input = {<xX,<U.c.S8.1i,1>>, <y,<u.c.s.i,2>>}
output = {<F(X,¥Y):SU.C.t.1,p>>}

Instead of using the above formal notation, sometimes we will
express the semantics by writing the activity name and an
aboreviatea description of its input ana output as follows:

Uu.C.s.i == input: port 1
port 2

X
Y.
output: port 1 = F(x,y)

In case only one port is used, port numbers will be elided.

As we have saia, the history of line <u.c.t, p> is valid if no
two tokens have the same initiation count. We define a schema to be
valia 1f given valid input histories it produces valia output
nistories. Since the 1nitiation count is unchanged from input to
outpu& tor function ana preaicate operators, ana since no two lines
converge on tne same input port of any operator, 1t 1s clear that ir
a runction operator recelves valiu input nistories, then the output
will be a valiu nistory. rurtnermore, any block expression (any
acycllic i1nterconnection of functions ana predicates ana other valia

schemas) 1s also valia.

Tne interesting aspect of the activity name mechanism is that
two initiations of a function box neea not initiate or terminate in
any particular oruer. Returning to the example of Figure 3.1, the
result token corresponding to the input values X3 and ys can be
produced before the computation with tokens xj; and Y; ever begins.
This obviously increases asynchrony over what it might otherwise be.

3.2.2 Conditional schema: The operator needed to implement
conuitional schemas 1is the SWITCH operator. This operator copies
the single input datum onto one of the two output 1lines depenaing
upon the value of tne boolean input. A SWITCH does not affect the
initiation count fiela of the tokens passing through it.

Assume in figure 3.3 that the labels of the SWITCHK, £, and g
operators are s, t;, and tp, respectively. Then the SWITCH can be
uescripeu as

u.c.s.1 -- input: aata-port = x
control-port = b

output: T-port = (b=true -> X; ¢)

Figure 3.3

A conditional schema

Figure 3.4
A simplified loop schema

corresponding to expression (3.1)

40.

41.

F-port = (b=false -> x; ¢)

The @§ operator aoes not affect the initiation count fiela i,
tne context field u, or the data part of a token. In fact it does
nothing except change the value of the s and p fields according to
the (static) program graph connections. (Therefore the 6@ operator
is implemented simply by merging it with the operator following it.
Inis operator 1is needed only to guarantee that lines in a program
graph are not connected together in an arbitrary manner.)

rollowing tne example in Figure 3.3, if the history of output x
1s valla tnen SO wlll be tne history of the lines going into boxes ft
anu y. nowever, 11 a token with 1nitiation count 1 exists on the
line gygoiny 1into £, tnen no token witn initiation count i exists on
tne i1lne going 1nto g. hHence the initiation count of tokens going
into t anu gy are mutually excliusive. Now let us assume tnat f ana g
are vaiiu schemas in tne base language. Then, like functions anu
predicates discussed earlier, f and g each merely copies the
initiation count from the tokens on its input lines to the tokens on
its output lines. Due to the disjointedness of the initiation
counts of the tokens on the lines coming out of £ and g, only a
proper history will result after merging the two lines via .
Hence, if the histories of the input lines to a conditional schema
are valid, so will be the history of the output. Note that the
entire aotted box in Figure 3.3 behaves just 1like an ordinary

function box.

3.2.3 Loop schema: A simplified loop schema is shown in Figure 3.4

wnere tne corresponaing ID expression is

(wnile p(x) ao
new x <- f(x)
return x) (3.1)

A 1oup neeus operators D, D-1, L, ana L~1, as weil as a SwITCh.
All tunese operators are control operators ana they do not affect the
aata portion ot tne tokens passing through them. Bach does,
nowever, aftect tne activity name of the tokens passing through
them.
(a) The D operator: This operator is used if and only if there is a
cycle in the base language program graph. A token going through

this operator is an indication of the fact that the next iteration
of the loop is underway. The D box simply increments the initiation

42.

count ot the token passing tnrough 1it.

UeCeSal == lnt)ut = X

output = <x,<u.c.t.i+l,p>>

10 explain tne operation of a loop, assume the L box in Figure
3.4 prouuces exactly one token ana that tne initiation count of tnat
token 1s 1 (we wiil snow snortly that this is inaeea the case). 1f
tne preuicate p prouuces a true valuea output, then tne aata token
irom L will take tne T branch output from the SWITChH. IE LB nder T a
valia schema then the output line of f (and the input line to D)
will receive a token with an initiation count of 1. The D box then
increments the initiation count of the token by one and sends it to
the SWITCH and to the predicate p for the next iteration. As long
as only that singie first token is output by the L box, the history
of each line going into the SWITCH and the predicate will remain
valid. Since D always increments the initiation count by one, it
can never duplicate an activity name. The operator Qb also
preserves histories since the only token it receives from L has an
initiation count of 1, and the tokens it receives from D all have
initiation counts of two or more. 1f the loop executes n times ana
tne preclate produces a false vailue on its n+l1th execution, then tne
token coming out the F brancn ot the SwIWiCH will nave initiation
count n+l. olnce tnis branch terminates tne loop, the input to the
v-1 operator can never receive more than one token. 1k 4B
interestiny to note tnat tokens neea not go arouna a loop 1in any
particuiar oruer uniess constraineu by the neea for partial results.
lnlis situation was 1lliustratea earlier by the program in Figure 2.8
where it 1s possible for the jth, the j+lst, and in fact all
executions of box £f to go on concurrently. Even 1if the 3j+lst
execution of f terminates before the jth execution, no confusion or
mismatch of activity names can result. The unravelling or unfolding
of a loop is a very powerful feature of the unravelling interpreter.
Automatic unravelling, constrained only by those data dependencies
that are actually necessary, dgreatly increases the asynchrony of
programs (for example, f coula be another nestea 1loop), many of
which woula otherwise be consiaered completely sequential.

(b) ine _:l operator: This operator is the inverse of the D
operator, and serves to return the initiation count of the token
output alony witn £ branch of the SwITCh pack to tne value 1. The

tirsc token tnat pvegan tne i1oop as output from tne L operator haa an

43.

initiation count of 1, tne D operator _incrementea it for each
iteration ot the loop, and now the D-1 operator ensures that the
output of the loop also has an initiation count of 1. The D-1
operator 1is

Uu.c.s.i -- input = x

output = <x,<u.c.t.l,p>>

Before describing the L and L-1 operators, we would like to
point out that it is possible to define a base language without them
(for example, the languages in [Dennis73] and [Kosinski73] have
notning corresponding to these operators). However, these operators
were introaucea aiter we realizea that the semantics of 1ID 1loops
coulu permit even greater asynchrony of execution. 1D loops are
pure tunctions, tnat 1is, tney have no memory of previous
invocations, or eguivalently, an execution of a loop expression can
receive intormation only from tokens explicitly input to it. Thus
in tne case of nestea loops it is quite possible tnhat the input
tokens for several instantiations ot the inner loop may be available
at the same time. It is the L ana L-1 operators (in conjunction
witn the D anu D-1 operators) wnich capitalize on this fact by
creating a new logical loop schema for each instantiation of that
loop, and by destroying th?t logical schema on loop termination.

(c) The L (loop begin) operator: The L operator accomplishes the
creation of a new logical loop by changing the context part of the

activity name. Following is a description of an L operator with two
inputs (see Figure 3.5a):

Uu.Cc.s.i == input: port 1 = x
port 2 =y
output: port 1 = <x,<u'.c.tj;.l,p1>>
port 2 = <y,<u'.c.ts.1,p2>>}
where u' = (u.s.i)
By cnanging tne context u to u' = (u.s.i), L creates a

conpletely new set of lLogical lines ana operators in tne loop schema
Lor eacn input token set 1t receives. Equivalently, we may noté
tnat L puts one token witn initiation count 1 on each new set of
logyicai output lines. 1t 1s also clear tnat each token output by L
nas a uniyue aestination name because, based on that name, we can
ueauce the 1input token wnich was itself assumea to be unique. It
shoulu pe clear tnat the requirement placed by the D operator on tne
L box, namely tnat the L box produces only one token on each of its

Figure 3.5a
An L operator with two inputs

Figure 3.5b

An L & operator with two inputs

44,

45.

output lines, is satisfied by the aefinition of L. (Note that the L
operator uoes not have to wait for all its input tokens to arrive.
It may produce an output token as soon as it receives an input
token.)

oince ali input lines to tne loop pass through the L box, all
tokens 1nvoiveu 1n tne ith jinstantiation of a loop wili have
(u.s.1).c common to tneir aestination activity names. This
information 1s extremely useful in localizing tne tokens belonging
to a particular 1instantiation oi a loop.
(a) ine L=l (loop end) operator: This operator is the inverse of
tne L operator. It expects only one token on each input line and
cnanges its activity name back to the environment to which the

output token belongs. The following description relates to Figure
3.5b:

u'.c.r.l where u' = (u.s.i)
input: port 1 = x
port 2 =y
output: port 1 = <x,<u.c.tj.i,p1>>
port 2 = <y,<u.c.t.i,p2>>

Several facts about the above activity names are worth pointing
out. First, only an initiation count value of 1 is valid on any
input to L1, second, statement s in u.s.i must refer to the L
operator mate ot tne L-1 unaer wuiscussion. Thirda, a close
examination or tne activity names deneratea for a given output
loyical 1line, say <u.c.tj,pj;>, reveals tnat several initiations of
operator L-l, each unuer a uifrerent context, contribute tokens to
tnat logilcal i1ine. In a sense tne L=l operator collapses many input
loyical lines into new output 1logical 1line. For example, input
logical lines <(u.s.l).c.r,j>, <(u.s.2)c.r,}>,
e s €U Bal) Bl s Denen. all collapse’ to' form the single output
logical line <u.c.t ,py>. Since each input 1logical 1line
<(u.s.i).c.r,3> contributes exactly one token with an initiation
count value of 1 to the output logical line <u.c.tj,pj>, the history
of that output logical line is valid.

The reader may be concerned about activity names becoming
arbitrarly large because the context field 1is recursive. Even
though this is logically true, names can physically be kept within
bounas by proper encoding of the information. As an example of such
encoainy, consiaer tne possibility of an L operator sending the

46.

context u' = u.s.i on a special "aummy" token airectly to its mate
L=l gperator. unen it is easy to see that u' can essentially be
equal in size to u. Witnh the help of the dummy token the L-1
‘operator will be able to generate the proper output.

Again, note that the dashed box in Figure 3.4 is a valid schema
(the ith get of input values produces the ith set of output values).
Each instantiation of a loop and the corresponding new context u' is
called a loop domain, and all activities within a loop domain can

proceea independent of activities outside that loop domain,
~including 1loop domains at the same and at other arbittary nesting

leveis.

3.2.4 rroceaure application: ~rocedure application is specifiea Dy

tne APPLY operator. Let us assume tnat the proceaure aefinition
value Q (recall the detinition of -pfoCeuure values: from“ section
2.5.2) 1s pelny applleu to arguments x ana y for tne ith jnitiation
oL tue APrLy operator. LIne APrLY operator must create a new logical
scnema tor eacn instance of execution of ApPrLY, ana in tnis case the
schewa to be created is Q. We do tnis by breaking APPLY into two
internad operators callea A (activate) ana A-l (terminate);
futnermore, every procedure must have a BEGIN ana an END operator.
All tnese operators are related as shown in Figure 3.6. The purpose
of the A operator 1is to create, for each initiation of that
operator, a new logical procedure domain similar to the way in which

the L operator creates loop domains. Because of this similarity, we
say that all tokens with u.c common in their activity names belong
to the same logical domain, where that logical domain may be either
a loop daomain or a procedure domain. The major difference between a

loop expression ana a procedure application is that the same loop
expression 1is always executed at the same point in a given program,
but the particular proceaure aefinition value tnat arrives on a
token at the ApPrLY may vary, ana in general is not known in aavance.
Egulvalently, we can say tnat a loop is like a nameless procedure
that 1s appliea at only one place in tne program. In Figure 3.6 the
connection vetween tne two logical a«omains (the calling ana thne
cailleu womaln) 1S wltn aashea lines since the connection is known
oniy at execution time. Note aiso tnat since ApPPLY 1is actually
carriea out by two disjoint operators, it is not possible for an
execution of Q to keep an actual APrPLY activity in execution

APPLY

)
1]
()
)
\ END
\
\

-———-

!
So e

domain u'

Figure 3.6

The APPLY operator and its execution

47.

48.

indefinitely, for example, if Q never terminates.

Activiy name generation and various other functions of A, A-1l,
BEGIN, and END are aescribed in the following.

(a) lne A (activate) operator: This operator examines the proceaure
value supplieu to wuetermine now many actual parameters are neeaea
for tne execution of tne proceaure. It accomplishes this by
matchilngy tne elements in tne list of formal parameters containea in
tne proceaure value witn the actual parameters suppliea to the A
vperator on various lnput ports. Accoraing to the rules explained
1n section 2.5.2, a structure o containing tne actual parameters
1nput to A, ana tne actual parameters carriea by the proceaure value
1tsell, ana tne environiment* structure n, 1s constructea. This
structure o 1s suppliead to tne BEGIN operator of the appliea
proceuure. Tne activity name generation process for tne operator A
1S gilven bpbelow. It snows that a new logical graph is created
aynamically corresponding to the applied procedure. Assuming two
input ports, we uescribe tnhe A operator by the following:

u.c.sp.l1 -- input: procedure port = Q
argument port 1 = Xx
argument port 2 =y

output = <a,<u'.cQ.begin.l,l>>
where u' = (u.c.sq.i)

(b) The BEGIN operator: This operator essentially tears apart the
parameter list o that it receives from the A operator. It produces
a token for each input variable of the procedure Q (that 1is, the
proceaure to which this BEGIN operator belongs) as well as a token
carrying the environment value n.

u'.cv.begin.l wnere u' = (u.c.sq.i)
input = a
output: port 1 = x
port 2 =y

wihere x anu y are selected from o basea on the names of the
corresponuinyg tormal parameters.

(¢) 1ue bLwb operator: Thnis operator tirst constructs a structure B
containiny tne value receivea on each input port. It then sends
tnis struccture to tne A~l operator in the calling domain by changing
tne context part of the input activity name.

Assuming two inputs, we «aescribe the END operator by the
foilowing:

u'.cQ.end.l where u' = (u.c.sp.i)
input: port 1 = x
port 2 =y

output = <B,<u.c.sp.i,1>>
where B is the structure <1:x,2:y>

*The environment is aiscussed in Section 6.

49.

(u) 2ne A=l (terminate) operator: This operator tears tne B
structure apart anu matcnes its elements with tne number of output
ports. In tne case of extra elements 1in B, 1t aiscaras the extra
elementsS 1n B, anu 1n thne case where more outputs are neeaed, A-l
supplies an output vaiue of ¢ (see Section 2.5.2).

output: port 1 = x
port 2 =y

where x is either g[1l] or
and y is either g[2] or g

It is clear from the definition of END and A-l that if the END
operator were to receive two tokens on some input line (i.e., one
token with initiation count 1 and another with an initiation count
greater than 1) then it could generate two tokens for A-l with the
same activity name u.c.s.i and the history of the output 1lines on
A-l wili not be valia. However, if Q is a valia ID procedure, y
cannot proauce more tnan one token on each output line. Hence the
A, boGin, bknb, ana A~l operators, when suppliea syntactically
correct procedures, willi proauce only valia histories on all logical

lines.

1ne scheme aiscussea above for encoding the context part u' on

a aumuy tuken sent from an L operator to an L-1 operator, is also
i i : g

applicable nere between tne BeGIN and END operators. Again, this

will aliow essentially constant space to hold all context names.

3.3 Asyncnrony in a sequential algorithm: In this section we
analyze the procedure given 1in Section 2.5 for multiplying two
matrices. The procedure of expression (2.20) assumes the matrices

are stored by rows, so a[i] gives the structure value representing
the ith row of matrix a. While discussing loop schemata in Section
3.2.3 we showed that the unravelling interpreter exploits loop
asynchrony in two ways: by unravelling, and by permitting
concurrent invocations of the same 1loop. Asynchrony in matrix
multipiy aepends on both. The innermost aot product will unravel,
tor 11 tne structure selections ana the multiplications take longer
than i1ncrementinyg the 1naex Kk, tne 1 through m values of k will be
generateu quickly, ana tne ali,K|*blk,] operations will overlap.
but the auultions 1n tne innermost loop must be uone serially, so it
wiil take U(m) time to yenerate each aot proauct s (each element of

row a).

50.

Since the meaning of new d[j]<-expr is actually new
d<-d+[j]expr, the value of new d depends upon the old value of d
(Just like s above). However, many instantiations of the innermost
loop might be executing concurrently because each value of J can be
generatea faster than a complete execution of the innermost loop.
Hence the time complexity of the 3 loop is aetermined by the
sequentiality of the append operations as opposea to the time to
generate eacn element of a. Since the first appena operation (i.e.,
new u|lj<-expr) cannot pegin until tne innermost ioop prouuces an
answer, the <total time to yenerate a row a is u(m+n). Similar
aryuwents can pe maue L0r tne 1oop witn inaex 1 to show that the
totail time complexity of the matrix multiply program is O(£+m+n) ;
note tnat tne totar numoer of nmultiplications, i.e., the total
Computacional flux, has not changea from tnat of a purely sequential
eéxecution of tne same program -- only the overlapping of operations
in time has changea. The importance of the unravelling interpreter
lies in the fact that it does not recognize unnecessary data
aepenaencies and thereby exploits the semantics of ID programs to
enhance the attainable asynchrony.

The above analysis was done assuming unlimited processors. If
only enabled operations are scheduled, then it can be shown that
processing time is inversly related to the number of processor
resources. In the case of matrix multiply, if only one processor
were avallable rather than £n processors, the time complexity woula
be O(£&mn) .

4, Programming with Streams

All variables discussed in Sections 2 and 3 are called
simple variables. Another kind of variable is also possible
in Id: a stream variable. Stream variables generalize

the possible behavior of an activity in two ways:

1. A simple activity may input (output) a potentially
unbounded number of tokens from (onto) a single
stream line, and

25 Input and output of streams through an act1v1ty
is asynchronous, so a single activity may be in
the act of producing an output stream while still
accepting tokens from an input stream.

As an example, we generate a stream FIB comprising the

first k Fibonacci numbers by the statement

FIB <« (initial f <« 1; nextf « 1
for counter from 1 to k do

new f <« nextf;
new nextf « f + nextf

return all f) (4.1)

Statement (4.1) has the simple variable k and the constant 1 as

its inputs, and produces a stream of tokens at its output FIB.
The stream output FIB corresponds to the clause all £, i.e.,
the ordered sequence of values assumed by f whenever the loop
predicate is true (when lscounters<k). If k<1 initially, then
FIB will receive the empty stream. Figure 4.1 illustrates
the stream produced on line FIB for k=5.

As a second example, let us consider the electrical
circuit shown in Figure 4.2a. Let the state of an electrical
line be represented by an ordered pair giving the voltage and

the point in time when that voltage is said to exist on that

FIB

—0—0—00—-0-0—>

egt 5 3u D iy

Figure 4.1
A stream on line FIB

in out

o- AAAY;

E 7
i E.

Figure 4.2a
The circuit of expression (4.2)

in

53.

Figure 4.2b
Input to and output from the circuit
of Figure 4.2a

54.

line. We can then represent the dynamic behavior of an

electrical line by a stream of
<time: t, voltage: v>

structured values called a "voltage stream". Suppose at

time to the voltage at the output port of Figure 4.2a is
Vout(to)‘ If a voltage Vin is impressed upon the input port
at time t then the behavior of the circuit in Figure 4.2a

is described by the following equation

= (k) + (V, (E.0) (1~ 8 D

Vout out out

where T is the time constant of the circuit. If the input
voltage varies in discrete steps then the output voltage will
also vary accordingly (see Figure 4.2b). If
output voltage is recorded every time a new input voltage

is impressed we can eipress the behavior of the circuit in
Figure 4.2a by an Id program. In the following assume IN is
the input voltage stream and OUT is the corresponding output

voltage stream.

OUT « (initial out <« V (t) ;

e t out

for each status in IN do
new t <« status.time;
new out * out + (status.voltage - out)
B *(1 - e4(-tau*(status.time - t))

return all <time : new t,
voltage : new out>) (4.2)

The for-each-loop above is a new construct which accepts

each token as it arrives on stream line IN, transforms that

55.

token to a simple token and places that token on the simple

line "status", and finally executes the body of the loop

one time. This behavior is repeated for each token arriving

on the incoming stream IN. The return clause at the bottom

of the loop is active on each iteration (due to the all construct)
and consequently produces an output voltage stream on line OUT.
Execution of (4.2) terminates when the end-of-stream is

reached on IN. The function performed by (4.2) is interesting

for two reasons:

1. It illustrates a "history-sensitive" function,
whereby the output produced for a given input
depends upon inputs previously received, and

2. Input and output is asynchronous; not all input

need be defined before output can be produced.

4.1 Background

Viewing the inputs and outputs of some operating system routines,
e.g., I/0 drivers, as’ streams is not new. Streams have also been
used by Landin [Landin 65] in describing the applicative
semantics of loops in ALGOL-60. There Landin defined a stream
as a list (i.e., structure) with some special properties regarding
the sequencing of evaluation. Essentially, the elements of a
stream (both Landin's and ours) have a total linear ordering
and are not required to exist simultaneously. Thus the
sequence of values assumed by a loop variable in ALGOL can be
easily modelled as a stream. However streams also have practical
advantages, especially when subjected to a cascade or a pipeline of
editing processes. For example in applicative languages*,

P - ————— - —

< :
Note that 1d is an applicative language.

56.

streams enable one to perform operations on lists (such as
generating them, mapping them, concatenating them) without
using an item-by-item representation of the intermediate
resulting lists. More interesting is the fact that streams
enable one to postpone the evaluation of the expressions that
produce the items of a list, until those items are actually
needed. Friedman and Wise have exploited these ideas in
pure LISP and other related languages [Friedman & Wise 76a,76b].
Streams were first introduced into dataflow by Weng in
[Weng 75] where he gave formal rules for constructing "well-formed"
dataflow schemata with streams. Weng does not allow any
cyclic schema with streams except in a very limited sense; however,
recursive schemas are defined in full generality. Weng did
not have to extend Dennis dataflow language [Dennis 73] to
implement his streams. The principal semantic difference between
Id and Weng's streams is that many Id streams can appear on
one line, while in Weng's language a stream is identical with
the history of a line.
The remaining sub-sections are concerned with showing how
streams can be implemented, and how they can be used to
solve problems. Streams introduce new capabilities into
dataflow that are necessary for programming certain kinds of
problems, e.g. the problem of updating databases (this particular
history-sensitive function is discussed in depth in Section 5).
However, streams are also interesting for problems that can be
solved by methods already presented in Sections 2 and 3, except

that streams often introduce still another level of asynchrony

573

which can be very significant in exploiting machine concurrency.

4.2 Implementation of Streams

A stream is an ordered sequence of tokens, each token
carrying a value, and where the last token in the stream carries
the special value est (end-of-stream). Notationally we can
constant [1,1,2,3,5]; also, the empty stream may be written in
Id as [] which comprises exactly one token, the est token.
However, the Id programmer is never aware of the est token
and cannot use it as a value except by writing []. Extending

th

the notation of Section 3, we denote the k token carrying

the value X, to activity u.c.s.i on stream line <u.c.s, p> by
<<xk,k>,<u.c.s.i,p>>

We may denote an enti;e stream with n tokens as a set:
{<<Xk,k>,<u.c.s.i,p>> | 1s<ks<n}

where the assumption is that the nth token is est.

Vle denote the number of tokens in stream A (including est) by n,.

The basic rules given in Section 3 for generating activity
names are also valid for streams. Even though an activity may
absorb more than one token on a port, no two tokens will have
identical stream positions. Hence, each token in the input set
for an activity is still uniquely identified. A further

requirement on streams makes this task even simpler - a stream

58.

cannot have missing token positions. If the est token appears
in stream position n, then a token is defined for each stream
position k such that l<k=<n.

The following shows how the four categories of Id
expressions - blocks, conditionals, loops, and procedure
applications - and some extensions of these expressions are
implemented when stream variables are used. We assume that
variables are kinded as either stream or simple and that the
kind of a variable does not vary during the execution of
a program. For convenience we will denote stream variables
with upper case letters. This convention has been observed

in both examples given earlier in this section.

4.2.1 Block expressions (functions and predicates): Several

functions and predicates are defined on streams, some of which
are primitive and othe;s of which are included in the language
simply because they are useful. Many of these functions

and predicates will be used in implementing various Id constructs
shown later. Activity names for streams in functions and
predicates are manipulated in a manner identical to that for
simples (see section 3.2.1); only the data parts and the
stream positions are affected. Therefore we will show the
manipulation of only these parts under the assumption that

the input activity name u.c.s.i is transformed into the
destination activity name u.c.t.i. If an operator has more

e output port

than one output then it is assumed that the i
is connected to input port P4 of statement t;. As before, if

an operator has only one port then port numbers are not shown.

59.

(a) size (A): This function produces a simple value glVlng
the length of the input stream A (recall that n, is the

number of tokens in stream A, including the est token).

u.c.s.i -- input: (stream) {<Ak, k> | 1sksnA}
output: (simple) n, - 1
(b) e 2 z (A): This predicate produces a boolean token true

[], otherwise a false token is produced.

u.c.s.i -- input: (stream) {<A,, k> | l<ksn,}
A

output: (simple) (nA = 1 » true; false)

(c) first (A): This function outputs the first token of
stream A provided stream A is not empty.

u.c.s.i =-- input: (stream) {<Ak,ik> | lsksnA}

output: (simple) (nA=l - &; A,)

(d) rest (A): The result stream is all but the first member
of stream A.

u.c.s.i -- input: (gtream) {<Ak, k> | lsksnA}
output: (stream) (nA=l -+ {<est, 1>};
{<Ap 1+ k> | 1sksn,-1})
(e) cons (x,A): The output stream has x as the first member

and A as the rest, i.e. if X represents the output stream
then X = cons (first (X), rest(X)).

u.c.s.i -- input: port 1 (simple)= x
port 2 (stream) = {<A,, k>] 1<ks<n,}
output: (stream) {<x, 1>} v {<a__,, k> | ZsksnA+1}

(f) consf (A,x): This function is similar to cons except that
the input x appears at the end of the output stream.

u.c.s.i -- input: port 1 (stream)

{<Ak, k> | 1sksnA}

port 2 (simple) = x

60.

output: (stream) {<A,, k> | l<ksn,-1} v

{<x, n,>,<est, n, + 1>}

(g) concatenate(A,B): The output is a stream with the tokens
ot A (except the est token) preceding the tokens of B.
u.c.s.i -- input: port 1 (stream) = {<aA., k> | 1lsksn,}
port 2 (stream) = {<B,, k> | l<ksng}
output: (stream) = {<aA, , k> |'l§k§nA—l} u
{<By, np-1 + k> | 1sksng}
(h) filter(x,A): This function produces two output streams.

U.c.s.1 -- input: port 1 (simple)

(1)

u.c.s.i -- input: port 1 (stream)

''he stream on output port 1 contains all those tokens of A
that are not equal to x, while the stream on output port

2 specifies the input stream position of those tokens selected
to appear at output port 1.

X
port 2 (stream) = {<A,, k> | 1<ksn, }
output: port 1 (filtered stream)

% ' kJ (Ak#x + {<Ak,count>}; o)
<k<n
A

port 2 (position stream)

% LJ (B #x > {<k, éount>};¢)

1sksnA

where count = § {j|1<j<k A Ak#x}

equalize(A,B): This function outputs two equal length
streams formed from input streams A and B by truncating the
longer of A and B to the length of the shorter. The
truncated portions of A and B are also output as remainders

(one of these two output remainder streams will be empty,
by definition).

{<a, k> | 1sksn,}

port 2 (stream) {<Bk, k> | lsksnB}

output: port 1 (equalized A stream)

(nA < ng -+ {<Ak, k> | 1sksnA};

{<Ak, k> | 1sksnB—1} v {<est, nB>})

port 2 (equalized B stream)

(nB < nA

{<Bk, k> | lskSnA—l} u {<est, nA>'})

> {<By, k> | l<ks<ngl;

port 3 (remainder of A stream)

(ny < ng {<est, 1>};

B

{<a, k> | 1<ks<n -ng+1})

B-1+k’ A

port 4 (remainder of B stream)

IA

(ng < ny + {<est, 1>};

{<BnA-l s’ k> | lsksng-n,+1})

(j) extend(A,x,B,y): This function also outputs two
streams of equal size, formed from the input streams

B. However the length of the output streams

is equal to the longer of streams A and B. The shorter

stream is extended by x or by y depending upon which input

stream is to be extended.

A and

u.c.s.i --

input:

output:

port 1 (stream)
port 2 (simple)

port 3 (stream)

{<a, k> | 1sksn,}

X

{<By, k> | l<ksng}

port 4 (simple) =y

port 1 (extended A stream)

(nA < ng

v {<x,k> | nA—lsksnB-l} u {<est,nB>};

+ {<a_, k> | 1sksnA-1}

{<a,, k>} | 1<ksn,})

61.

62.

port 2 (extended B stream)

= (nBsn

, * {<By, k> | lsksnp-1}

u {<y,k> | nB-ISksn -1} v {<est, nA>};

A
{<B,, k> | lsksng}

(k) exif(A,B,x): This operator means "extend A to B by x, if
necessary", and is a useful combination of the equalize
and extend operators as shown in Figure 4.3. Unlike extend
and equalize, exif is not symmetric. It produces a stream
which is equal in length to stream B. In case A is longer
than B, the output stream contains the first n-1 tokens of A.

Otherwise enough x tokens are added behind stream A to extend
its length to that of stream B. The remainder of stream A
is also produced on a separate port.
The above functions and predicates are available to the
Id programmer; some will also be used later to implement the
for-each-loop and other constructs. As has already been
pointed out, the general rules for activity name manipulation
are also followed by stream functions. However, as opposed
to simple functions, /sstream operators can begin producing
output tokens as soon as enough input has been received to
calculate any result token(s). For example rest(A) can produce
tokens as soon as it receives each input token. In particular,
the arrival order of tokens for rest (A) is totally immaterial.

Similarly empty(A) can produce a true or a false token as

soon as it receives any token belonging to stream A. But even
though answers can be produced before all input has been received,
the activity continues to remain in existance until it absorbs
all its input tokens. (Otherwise, there would be unused
tokens left to clutter up the machine.)

To understand the kind of asynchrony that is possible with

streams, let us consider the block expression (4.3).

€a A B
r - - — e - - —— — R @ ow o o - e -
]]
L}
]
' (]
]]
| [
| |
' |
1 L EXTEND :
: I
. 4 !
:]
')
] |
i |
]
; |
| EQUALIZE :
|
o R
'EXTH :
L -— - -— - -_— - T - ——— — —-— — — -J
rem A X

Figure 4.3
Definition of the EXIF macro operator

63.

64.

(A « cons(3,A);
B « concatenate ([2,7,4],A);
return A,B) (4.3)

The cons function outputs the token <A1,1> = <3,1> immediately
upon receipt of the simple input value 3. Thus the input stream

A to cons is defined, which allows cons to produce token

<A2,2> = <3,2> etc. In this manner A becomes an infinite
stream of 3s. while B is the result of concatenating the
stream[2,7,4] and A. Both A and B are returned as the
(infinitely long stream) result of (4.3).

We indicated above that tokens within a stream may
appear as input to an activity at a time out of phase with
their positions in the stream. Such a condition might easily
arise in an implementation with varying token communication
delays. But even more impdrtant we also allow stream output
tokens to be produced}in a time order unrelated to stream

position order. Thus tokens appearing late in physical stream

position might still be produced early in time.

4.2.2 Conditional expressions: Consider the Id conditional

expression
(if p(x,A) then f(A) else g(B)) (4.4)

where f£(A) and g(B) are streams. The base language translation

of (4.4) is identical to the case when f(A) and g(B) are simples.
The meaning is that if the predicate is true (the predicate

must be a simple boolean value), then the result of the expression
is stream £(A), else it is stream g(B). Any expressions may

appear in the then and else clauses that satisfy the rule.

65.

given in Section 2.2 for the case of simple value expressions
(e.g. both clauses must specify the same number of results).
There is only one further condition we must now impose on
the expressionsappearing in the then and else clauses:
corresponding results in the then and else clauses must
both be simples or both be streams.

To implement the above conditional on streams, we
simply extend the definition of the SWITCH (Section 3.2.2)

operator for the case of stream data inputs:

u.c~.“s.i -- input: data port (stream) = {<xk, k> | lsksnx}
control port = b
output: T-port (stream) = (b=true - {<xk, k>
| 1<ksny}:¢)

F-port (stream)

(b=false - {<Xk, k>

| 1<ksny};¢)

Just like any other operator, a SWITCH with stream input
is asynchronous from input to output, so if the boolean
token has already arrived then each stream input token can

be output immediately without waiting for further input.

4.2.3 Loop expressions: Loops on streams can be very involved

expressions. However, if streams appear simply as another
variable in a loop, then the schemata already discussed in
Section 3.2.3 provide the appropriate semantics - we simply
extend the operators D, D-l, L, and L_1 to handle stream input

and output just as we did for the SWITCH operator above by

66.

replacing any reference to a simple variable x in the definition
with the stream reference {<X,, k> | 1sksn_}.

As we saw at the beginning of this section there are
also some new loop constructs concerning streams. The following

paragraphs consider these constructs.

4.2.3.1 The all construct: A loop is a natural stream generator
as demonstrated by expression (4.1). A somewhat idealized loop

incorporating the all construct is

(initial x <« f(a)
while p(x,n) do
Yy « g(x,n) ;
new x + h(y)
return all x, all y, x) (4.5)

the base language translation for which is given in Figure 4.4

where we have introduced a new operator:

(a) The E-l operator: This operator is necessary for
implementing the all construct. It accepts a simple
token as input and changes its activity name to conform
to belonging to a stream.

u.c.s.i --input token: (simple) x
output token: (stream element) <<x,i>,<u.c.t.l,1>>

Note that every initiation of operator gl with activity

name prefix u.c.s contributes to the production of the

same stream, that is the stream on line <u.c.t,1>. Further

note that this output stream always has an initiation count

or 1s

There are two important points about Figure 4.4. First,
recall that L-l is asynchronous on stream input and output

(all x and all y in the above example). Second, all x returns

exactly those x for which p(x,n) is true, and this means that

= D] X

A
V4

3
(1
<
b

¥
h

o]
(D
<
o]

all x all y

b

Figure 4.4
Compilation of expression (4.5)

showing the all construct

67.

68.

the final x is not included in the output stream. The figure
also shows that since any stream is terminated by an est
token, est is automatically output for every stream being
generated. Note that the history of each stream line is valid and
that the streams produced have no missing tokens.
The all clause is not necessary for writing stream programs

in I3, but it can simplify matters considerably. Expression (4.6)
produces the same results as (4.5) but involves substantially
more computation (two partial streams are circulated completely
around the loop on each iteration), and it functions with far
less asynchrony.

nitial x +~ fl(a); X+ s ¥ ieol' 3

while p(x,n) do

Yy « g(x,n);
new Y « consf(Y,y):;

new x « h(y);
new X « cons/t (X, x)
return X, .'Y, x) (4.6)
The base language translation of expression (4.6) is given
in Figure 4.5. Even though expression (4.5) and (4.6) produce
the same results, they are semantically different because they
result in different base language programs. This situation is
quite different from the translation of for-loops into while-loops
that was discussed in Section 2.3, since the semantics of a
for-loop can only be expressed in terms of a while-loop. In
this sense, expression (2.11) and (2.12) are semantically the
same since they result in identical base language programs;

again, this is not the case for expressions (4.5) and (4.6).

69.

£

o}
D
D X
D
T F
/ \
Y Y
consl g
new Y -
h
new x
__new X
new n

Figure 4.5
This loop (from expression (4.6)) produces results
identical to the loop of Figure 4.4,

but by circulating streams

70.

4.2.3.2 The for-each construct: Another new loop construct
is the for-each-loop shown earlier in expression (4.2). To
show how a for-each-loop is translated, as well as some other
new constructs, consider expression (4.7) for computing the

number s of elements in stream B that satisfy some predicate q.

(initial s « 0
for each b in B do
~ (if q(b) then new s « s+l
return s, all new s) (4.7)

First note that the default meaning of the conditional statement

is
(if g(b) then new s <« s+l else new s +« S)

Second, expression (4.7) produces not only the final value

s but it also produces‘a stream giving a running count of the
number of tokens in B that satisfy the predicate g. The phrase
new s in the return clause refers to the newly created value

of s, rather than the old value of s. The base language
translation of expression (4.7) is given in Figure 4.6. As

before, it uses the E-l operator for the all construct, but

a new operator E is introduced to implement the for-each construct:

(b) The E operator: Each activity of this operator takes
a single stream of tokens as input and produces a
sequence of simple tokens for different initiations
of the operator that follows it.

u.c.s.i -- input: (stream) {<Xk, k> | lﬁkﬁpx}

output: (simples) {<Xk,<u.c.t.k,p>> | 1<ksny}

L
E
D
s
T F

| R s ol W "
| |
1]
| T B q |
| |
| |
| |
; |

+1 1
|
: |
: : est
! |
Loyt e D ek Sl e R |
new s

——
B i
L-l
s all new s,
Figure 4.6

Translation of expression (4.7)

showing the for-each construct

g

T

Note that the input stream always has an initiation
count of 1, and that the initiation counts of the
output tokens correspond exactly to the stream
positions of those tokens in the input.

So the reader may be certain of the semantics of expression (4.7),

a while-loop equilvalent is given in (4.8):

(initial s <« 0; S « []
while not empty (B) do
(If q(first(B))then new s <« s+l);
new B « rest(B) ;
new S « consf (S, new s)
return s, S) (4.8)

Suppose we modify the above problem slightly so that in
addition to producing a stream giving a running count of those
elements in B that satisfy predicate g, let us determine the
size of the smallest prefix of B that contains n such elements.
We also wish to output the suffix of stream B, if any, after
determining the above prefix. A program for this new problem

is

(initial s «0; 1 « 0
for each b in B while s<n do
new i « i+l;
(if g(b) then new s <« s+l);
return all new s, i, remainder B) (4.9)

This loop can terminate for one of two reasons: s<n and B

runs out of tokens, or s=n. In the first case the final value
of i will be the size of stream B, while the remainder of B
will be the empty stream. In the second case, i will give

the desired result and the remainder stream will contain all

13.

th element. Expression

those elements of B which come after the i
(4.9) can also be written as a pure while<~loop by changing

the loop predicate of expression (4.8) to (not empty (B) and s<n)

and by introducing some detail involving i. However, since

B may be an infinite stream*, we are most interested in the
latter expression, the semantics of which appears in Figure 4.7.
This concern is quite practical since an infinite stream
should not be circulated in a loop, rather it should be taken
apart one token at a time as in a for-each-loop. Figure 4.7
also shows stream B some distance from the E operator, since
not all tokens in B will necessarily be used prior to loop
termination. Thus a signal is necessary to indicate whether a
token from stream B is needed or not. If the loop predicate
turns false, then the signal stream (labelled S in Figure 4.7)
is terminated by generating an est token. Also, since a

token must be received from stream B before the loop can begin
execution, a true valued token is put in front of the signal
stream by cons. The signal stream is used as a control input
to the exif operator placed between the L and the E operators.
The exif operator acts like a valve and lets a token pass only
if it is needed for the next iteration of the loop. Due to
the extra true token in the signal stream,the last token coming
out of Operator E is also extra and it is destroyed by the
DELETE-est operator.

*Infinite streams are not just a mathematical curiosity, but
are very useful in modelling continuously operating systems.

A

0 0
i.l s l n B
L
D
O :
<
> D
T F T F
st
+1 D-l
T P
hew i
|
+1 !
)
f |
new s :
PN R
new n : F
|
]
= I
i 1
i jcons
)
|
)
i
PRy TR C RIS et e ol e
Y ¥
L—l
all new sl iv lremainder B
Figure 4.7

"

cons

true

for-cach-while loop corresponding to expression (4.9)

75.

(c) The DELETE-est operator: This operator lets all the
tokens except the est token pass through. This
operator is not available to the Id programmer.

X

u.c.s.i -- input

output (x # est » x;9¢)

The graph enclosed in the lower dashed box in Figure 4.7
is needed to generate the correct remainder of stream B. When
the predicate s<n turns false before tokens in stream B
are exhausted, the remainder stream produced by the exif operator
does not contain the first unused token of stream B(i.e.,
the last token to enter the loop body). The conditional construct
of the dashed box is used to include this last token in the
remainder stream under the appropriate condition.

The program shown in Figure 4.7 will terminate prematurely
if there are any ¢ tokens in the input stream B. This problem
is easily avoided either by keeping the ¢ token used by the
exif operator distinct from all the other possible ¢ tokens
(say, based on token names) or by generating the boolean
sequence needed by the loop predicate (line c in Figure 4.7)
directly on the basis of the input stream B and the signal
stream S.
As a notational abbreviation in future base language

program graphs, we will use the EACH macro-operator in place
of both of the areas enclosed in dashed boxes shown in Figure
4.7. The EACH operator has sufficient information to generate

the remainder stream also. Hence, we do not show the two ouputs

76.

marked "last" as inputs to the EACH operator.

It is also possible to write the following type of loop:

for each b in B while p(b,x) do

where the tokens being extracted from the input stream are
also part of the loop predicate. Since the last b may be an
e token (actually an est changed to an ¢ token), an error
may be caused by evaluating p(b,x) unnecessarily; thus, the

base language translation of p(b,x) is actually

(if b # € then p(b,x) else false)

Extra care has been taken to ensure that no tokens remain in
the loop domain at loop termination. We note this point since
it would be possible to speed-up loop execution even further

if token clean-up was not a requirement.

4.2.3.3 The next construct: This mechanism has meaning only
when embedded in a loop and is very useful for merging streams
on the basis of some condition. Suppose we have two streams

X and Y and a stream B of boolean values. A new stream may
be formed by successively taking tokens from stream X and
stream Y depending upon whether the token in stream B is

true or false. The semantic effect we wish to achieve is

described by expression (4.10).

7

(for each b in B do
(Lf b then z « first(X); new X +« rest(X)

else z « first(Y); new Y « rest(Y))
return all z,X,Y) (4.10)

Stream all z is the desired stream, and X and Y are remainder
streams. The syntax described so far is inadequate for achieving
the above without circulating the streams X and Y. As before,
we consider the circulation of streams X and Y wasteful since
at most one token is used from either stream in each iteration
of the loop. We introduce the next construct to build the
desired stream without circulating either X or Y. An expression
equivalent to (4.10) using next is

(for each b in B do

z + (1f b then next X else next Y)
return all z, remainder X, remainder Y) (4.11)

The next construct behaves in a manner distinctly apart
from our other constructs since next X takes a token from
stream X only when one is needed. For example, in (4.11) a token
is taken from X only when b is true, and no token is taken
when b is false. To see how this works, associate a virtual
counter with each stream X and a predicate with each next X
operator. The counter associated with stream X is incremented
when any of the predicates associated with next X is true.

(For the present assume there is at most one next X .) For
example, in expression (4.11) the predicate associated with

next X is "b", while the predicate associated with next Y

is "not b". A compiler can detect the predicate associated

with each next. In order to translate next X , we generate

78.

a stream containing the successive boolean values of the
associated predicate. The length of this stream is determined
by the number of times the encompassing loop is executed.
Once this boolean stream has been formed, we filter out all
false tokens and send the resulting stream of true tokens
to the control input of an exif operator. The exif operator
interprets the stream of true tokens as a stream of signals
that indicate when a token should be released from stream
X. The base language translation of expression (4.11) is
shown in Figure 4.8. The exif operator here also behaves
like a valve on a stream just as it does in a for-each-while
loop. A new operator DIST (distribute) is needed in Figure
4.8 to generate the appropriate activity names for stream X
tokens that are released into the loop. Again it should be
pointed out that some of the complexity of the program in
Figure 4.8 would vanish if self clean-up were not required.
(d) The DIST operator: The purpose of this operator is to
distribute tokens only to specific initiations of

another operator. This operator is available to the
programmer only via the next construct.

U.CeS.i == input: data port = x
control port = j

output = <x,<u.c.t.j,p>>

As a notational abbreviation we will use the NEXT macro-
operator in future base language program graphs in place of
the larger network outlined in Figure 4.8. Since the exif

operator does not use the values of the tokens in the signal

19.

all z v l remainder X l remainder Y

Figure 4.8
Compilation of expression (4.11),

showing the next construct

L
== —==e=——-- -
| |
i [A |
(]
']
' I |
E II v_ Y :
]
B) & exif : r exif I E
T '
b B" 1 | \
. A T A :
T F est E||E| '|E E :
r-- | L :
’;lr\ i : '
O el 1 |oft] gt :
a a : :
1 2 ' !
IST : DIST :
| '
4 (]]
= By D) ;
! 0
[)
- '
3 EY : !
= ! '
|)
| |
) |
| 1
T T J ,
|)
filtey |false :
: LH '
'] |
' filt)
: position integer :
]
BRI F10, - .. o apor g - ez g 4
position integer
all z
B B
Y51y 2}
L—l

80.

stream, we can use the stream containing the position integers
for signaling purposes. This will further cut down the
overhead.

The following is a more complicated example of a program
that merges streams. Suppose streams X, Y, and Z are to be
merged according to specifications given by stream I. Let
i represent an individual token from stream I. If i=1 then
a token is taken from both stream X and stream Y, and their
sum is merged into the output; stream Z is left undisturbed.
If i=2 then X is left undisturbed but the sum of the next
tokens from Y and Z is taken. In case i=3 a token is taken
from streams X and Z while Y is not affected. Expression

(4.12) shows how these streams might be formed.

(for each i in I do

(if i=1 then new X <« rest(X); new Y « rest(Y);
a « first(X)+first(Y); b « first(Y);
else if i=2 then new Y +« rest(Y); new Z < rest(2)
R T a € first(Y); b + fiTrst(Y)+first(2)
else new X « rest(X); new Z <« rest(2)
a « first(X); b « first(2))
return all a, all b) (4.12)

For input stream I = [1,1,2,1,3,2], the following output streams

would be produced by expression (4.12):

A

[X1+Y1rx2+Y2:Y3:X3+y4:X4:Y5]
B = [YllYZ IY3+ZIIY4l221Y5+z3]

Expression (4.13) instead uses the next operator to

produce the same output as expression (4.12).

81.

(for each i in I do
a,b «

(if i=1 then next X +next Y, next Y;
else if i=2 then next Y, next Y + next Z;
else next X, next Z)

return all a, all b) (4.13)

The translation of expression (4.13) is quite involved;
the following program is semantically identical to expression
(4.13) but is better suited for illustrating the techniques of
compiling the next construct. (Nevertheless, the programmer
would probably consider (4.13) easier to write.)

(for each i in I do
a,b « (if i=1" then (y; « next Y ; return next X +y;,¥;)

else if i=2 then (y2 « next Y; return yz,yZ+next Z)

else next X, next 2)
return all a, all b)

e W o

As noted before there may be several next constructs
referencing a given stream, the associated predicates of which
are not necessarily identical. For example, the predicate
associated with next X in line 2 of (4.14) is "i=1" while the
predidate associated with the next X of line 4 is "i#l and i#2".
Recall that there is exactly one counter associated with each
stream regardless of the number of next clauses in which it
appears. This implies that next X on 1line 2 is affected by
next X on line 4, and vice-versa. The translation process deals with
this situation in essentially the following way (below we will state
the limitations of the translation technique):
1. Generate sequences of true/false tokens for every next

operator in a loop (remember that only the innermost

loop encasing a next affects its behavior). If the
ith token in such a sequence is true, then the ith

82.

iteration of the loop requires a token from the
stream being input to the next.

2. All such true/false sequences associated with the same
stream (say X) are logically ORed element by element
to generate signal stream for input to the NEXT macro-
operator. In this way the NEXT macro produces a token
exactly when some next associated with X requires a token.

3. The remaining problem is to send the token produced by
the NEXT macro to the appropriate place. Information regarding
which next clause expects the token is contained in the
true/false sequence associated with that next; these
true/false sequences are thus used to switch the tokens
to the waiting clause.

It is possible to take advantage of the fact that a given
predicate may be associated with several next expressions
on the same or different streams. We can, in general, reduce

the number of true/false sequences that must be generated and

thus considerably reduce overhead as shown in Figure 4.9.
The scheme described above operates properly when the

next clauses associated with a stream are "properly nested" in

¢

conditional expressions. The following is an example where

the above translation technique fails.

(for ...

b « (if(if p then next X else f(y)) then next X
else g(y))

return ...)

It may be possible to assign some reasonable meaning to the
above next clauses, but at this point we are not prepared to
specify such complex semantics, nor does it appear essential

to do so. As we will show in Section 5 (Resource Managers),

Figure 4.9
The NEXT construct and the
compilation of expression (4.13)

83.

84.

the next operator is already quite convenient and sufficiently

powerful for programming interesting problems.

4.2.3.4 The but construct: This construct is used most
often in conjunction with the all construct to withhold some
tokens from a stream. For example, if the return clause of a

loop expression is

return all x but a

then only those values of x that are not equal to a will be

returned. This construct was mentioned previously (Section 4.2.1(h))
when discussing the filter function, but is repeated here due to

its common use in loops; implementation is straightforward

and is shown in Figure 4.10.

4.2.3.5 Streaming a function: A common programming situation

is to perform an operétion on several streams, element by
element. Since the streams may be of different sizes several
options exist. We have decided to let the smallest of the

input streams determine the size of the output stream. Alternate
semantics can be programmed by using the extend operator.
Expressions (4.15) and (4.16) give two different syntaxes for

streaming a binary function.

(for each x in X; y in Y do
x + £(x,y) e

return all z, remainder X, remainder Y) (4.15)

[f(ex,ey)] (4.16)

Figure 4.10
The but construct

85.

(—h_—— 86.

The syntax of expression (4.16) does not permit the remainder

of streams X and Y to be returned.

An example:

Now, we present a program to generate in ascending numerical
order the first n elements of the set {2i3j5k | i,3,k=0} [Dijkstra].
One method for generating this sequence uses the three queues
X1, X2, and h3. Queue X1 contains numbers which are two times
the number last output, while queue X2 contains numbers which
are three times the number last output. The third qgueue h3 is
of length one and contains five times the number last output.
At any given point, the next number output is the smallest
number at the head of the three queues (i.e., min(hl,hz,h3)
where h; is the head of the ith queue). If the ith queue has
the smallest number at'its head (thus becoming the next number
output), then a new element is added to every queue before the
ith queue, according to the rules stated above.

Expression (4.17) produces the desired set as the

stream output A. It is unusual in that it uses streams X1 and

X2 as inputs to the same loop that generates them.

87.

(A,X1,X2 « (initial hl'h2'h3 +.2,3,;5

for i from 1 to n do
¢ « min(h;,h,,hj);

(if c=h, then a,x,,%x, <« h.,2*h., A; new h., « next X1
= 1 — R 1 1 — 1 —

else if c=h, then a,x;,%, « h,,2%h,,3%*h,;
new h, <« next X2
else a,X;,Xy * h3,7TH3, *h3; new h, « 5*h3)

return all a, aiifxl,ﬁallrxzvbut 1 i ' (4.17)

4.2.4 Procedure application: Recall from Section 3.2.4 that

procedure application actually involves the four operators

A, A”1, END, and TERMINATE. Like other control operators, the

semantics of these operators must also be extended to handle
streams. However, the change in the semantics here is more

involved. We consider each operator in turn.

(a) A (activate): In Section 3.2.4 the A operator always
had one output port which produced a single token
carrying the value of structure o (the list of actual
parameters). In order to maintain the asynchrony of
streams as well as to handle infinite streams, it is
necessary that a stream parameter be treated independent
of structure a. Therefore the A operator has a separate
output port for each stream parameter implied by the
procedure definition being applied. If too few or too
many input streams are actually supplied to operator A,
then we follow the rules given in Section 2.5.2 and
supply empty streams or delete extra streams as required.
The following description is for the case when the
procedure being applied requires one stream parameter and
two simples.

u'c'SA‘i --input: procedure port = q
argument port 1 (simple) = x
argument port 2 (simple) =y
argument port 3 (stream) ={<2Z , k> | l<k<n}

88.

output: port 1 (simple) = <a,<u'.cQ.begin.l,1>>
port 2 (stream) = {<<Zk,k>,<u'.c .begin.1,2>>
| 1<ksn}
S« y
where u' = (u.cQ.sT.l)

(b) The BEGIN operator: The extension of the semantics given

in Section 3.2.4(b) are quite straightforward and need no
further explanation.

(c) The END operator: Here again, each stream output must
be treated independently of the simple outputs (g). 1In
the following we assume the END operator receives two
simple inputs and one stream input.

u'.cQ.end.l where u' = (u.c.s_.i)

T
input: port 1 (simple)
port 2 (simple)
port 3 (stream)

X
y
{<2, ,k> | 1l<ksn}

output: port 1 (simple) <B,<M.C.8. VTS
where B is™<x,y>

port 2 (stream) = {<<Zk,k>,<u.c.sT.i,2>>
| 1<ks<n}

(d) The A-l operator: ‘This operator, in addition to doing
what is described in 3.2.4(d), also adds streams or
deletes extra streams. Activity name generation is
extended in an obvious way from the case of simples
to handle streams as well.

It is clear from the semantics given above that applying
a procedure with stream arguments and stream results causes that

procedure as a whole to be asynchronous from input to output.

4.4 Pipelining effect in stream programs

We illustrate the natural cascading effect of streams
by the program in (4.18) to generate primes according to the
Sieve of Eratosthenes algorithm. A recursive version of this

procedure is given in [Weng 75].

89.

procedure SIEVE (LIST)
(while not empty (LIST) do
prime +« first (LIST);
new LIST « (!delete all the multiples of prime from LISTI
for each item in LIST do

a « (if mod(item, prime) = O then) else item)
return all a but g)
return all prime) (4.18)

The above procedure, when applied to a stream of integers from
2 through n, will iteratively create sieves, each of which
filters out multiples of the first item of the iteratively
created LIST. Each iteration of the outer loop generates one
prime number and a sieve; it is this sieve that produces a
stream of integers for the next sieve if that stream is non-empty
(see Figure 4.11). The predicate empty (LIST) can be decided by
examining any token of stream LIST. Therefore the next iteration
of the loop will begin as soon as any token of the stream new
LIST is produced. Since the LIST gets smaller after every sifting,
it is possible that mdhy sieves may work simultaneously. The

th

amount of time it takes to do the i iteration of the outer

loop is O(Si) where s; is the number of tokens in the LIST for

n iteration (recall from Section 4.2.3 that filtering

the i
is completely sequential). However, due to the pipelining of
sieves the total time to execute procedure SIEVE will also

be O(s) where s is the size of the largest LIST. Obviously the
size of the initial LIST is the largest and thus the SIEVE

procedure will take O(n) time (assuming an unlimited number of

processors is available).

[2,3,4,.-d J [3'5,7,0..] [5,7'11'13'0-.]
— sml"“)sievezq ®ee ——asieve

= -

Figure 4.11

The Sieve of Eratosthenes in execution

. G Pl -(—-PZ < — —

Figure 4.12
Deterministic interprocess communication channels

91.

In order to illustrate the asynchrony of this stream
procedure we compare it with the non-stream version of the

Sieve of Eratosthones given in (4.19) following:

procedure sieve (list, s) !s is the number of elements in the list!
(initial p « A;i « 1
while s#0 do
new pli] « list[il;
new i « i+l;
new list, new s + (initial a + A; k « 1
for j from 1 to s do
(If mod (Iist[j], p[il) # 0
then newalk] « list[j];
new[k]+ k+1)
return a,k-1)
return p) (4.19)

Even though each sieve still takes O(Si) time, this procedure
takes 0(.3 si) time, assuming there are m primes in the first
n number;jl Since a complete new list has to be produced before
the next iteration begins, no overlapping of the sieves is
nossible.

We again want to emphasize the fact that these significant
speedups of programs takes place automatically. Dataflow
programs generally are more asynchronous than their counterports
in sequential languages, and dataflow programs with streams
are even more asynchronous than comparable dataflow programs
without streams. It should also be noted that the actual number of
processors do not figure in writing programs. All dataflow programs
will naturally run slower if there is a lack of resources. However
no critical slow down will take place provided only enabled

activities are given processors. This is primarily due to

the side-effect free nature of dataflow.

92

4.4 Streams as interprocess communcation channels

Suppose two processes P, and P, communicate by sending
messages to each other over unidirectional channels X and
Y as shown in Figure 4.12. Let us further assume that
communication between P, and P2 is absolutely deterministic,
that is, both processes send and receive messages only when
certain time independent conditions hold. (We are not avoiding the
case when messages may be time-dependent, that is, non-deterministic
communication; we are simply postponing that discussion until
Section 5.)

It is quite convenient to model such deterministic communication
in Id. Expression (4.20) suggests a way in which Py and P, may
send and receive messages. The outer block of expression (4.20)
is of no physical consequence. It is only for making the names
of channels X and Y known to each process without compromising the
security of either since the normal scoping rules of Id prohibit
both P, and P, from determining anything about the internal
operation of the other.
! partial code fgr.pyocess Pl !
ses it Kipees . (initial

while true do
! 1f qlis true send a message to P2 !

« (if g; then m; else 1);

X
! if p; is true then receive a message from P2 !
z « (if p; then next Y else ...);

return, ..., all x but A, ...);

93.

! partial code for process P2 !
ceoor Yo wess ¥ CEHETRT
while true do
I X q, 1s true send a message to P1 !

y « {if d, then m, else 1);

if Py is true receive a message from P, !
o gt & 1 Py then next X else ...)

eturn ...;:all'y But X, ui)s (4.20)

It is easy to see that streams in Id really do behave like
channels. Several processes can receive messages from the
same channel, however, only one process can send messages
through that channel (the single assignment rule). Since no
special programming is required in order to use streams as
communcation channels, the full programming power of Id is
available to model interprocess communication. If processes
are communicating overihardware channels then Id streams provide
a good model for inte;rating these channels into a programming
language.

Lastly, we remark again that Section 5 complements this
discussion on interprocess communication by introducing the

concept of a resource and by showing how general resource

managers (for example, a database manager) can be written in Id.

94.

5. Resource Managers

Any high-level language suitable for writing operating systems
must include the concept of a resource, and it must also provide
mechanisms for synchronizing accesses to a resource. For
non-applicative languages, this is accomplished by using one or more
memory cells to represent the state of each resource, so simple
reading and writing (which includes P and V) of those cells is used
to coordinate and to control those resources. Thus resource sharing
among several processes is accomplished in an indirect way by the
sharing of memory cells. Furthermore, some degree of nondeterminism
is usually implied in the use of re§ources, for example the order in
which a computer responds to two terminals, or the scheduling of two
iaentical printers, may depend upon when those respective resources
become available. Any reasonable model for resource managers must
therefore incorporate a facility for nondeterministic programming.

The sharing of memory cells to effect non-determinism and
access synchronization is not appropriate to Id since there are no
memor§ cells to share. 1In this section we show the facilities that
are present in Id for writing resource managers and how those
facilities are implemented in the base language. We feel that 1Id
provides a good framework in which the programmer can think about
resource managers and produce program code that closely reflects the
structure of the problem he seeks to solve. Further remarks on the
approach Id takes to resource control are given in Section 5.4.

5.1 A primitive resource manager: Figure 5.1 outlines a very

primitive resource manager in which the token produced by output s
represents the current state of the resource being managed. The
state s 1is part of a loop, so thne next value of s is determined by
tne function f acting on the current value of s and the incoming
user request, each request arriving as a component of the input

stream X.

Expression (5.1) below is attempting to represent the resource
manager described by Figure 5.1. However,

(initial s<-a linitialize the
resource state!
for each x i

answer, new

return all answer, s) (5.1)

X do
S

Figure 5.1

A primitive resource manager

95.

96.

expression (5.1) is an incomplete model for two reasons. First, it
contains no provision for non-determinacy. Second, the expression
coulu at best be a procedure being independently applied by the
several contending processes. But a procedure application has no
siace-effects, thus no interprocess communication, and thus no
successive values of s. (One possibility instead is to pass the
resource to each process in turn as a parameter, a new value of
which 1is then returned as a result. The problems here concern
discovering who to send the resource to and the order of the
processes to which the resource should be sent.)

To remove these difficulties, we have introduced two new
semantic constructs into 1Id: a manager and a non-deterministic
merge. Together they provide the facilities necessary to write
resource managers in Id.

5.2 Dataflow managers: Statement (5.2) is a dataflow manager
definition value being assigned to the variable md, where this
particular manager definition will be shown to satisfy all the

requirements implied by Figure 5.1.

mu <- manager (sg)
(entry X do
RESULT <- (initial s<-sg
for each x in X do
new s, answer <- f(s,x)
return all answer)
exit RESULT) (5.2)

A manager detinition value is essentially a pattern from which many
instances of a manager values (i.e., managers) may be created. A
given instance of a manager may then be used by any number of
expressions in a program by passing the name of that manager to that
program. The remainder of this section discusses Id and the
underlying base language implementation of managers by following the
creation, use, and destruction of a particular manager derived from
statement (5.2).

Creation of a manager requires a manager definition and
parameters for initializing that manager. For example, to create a
particular manager from (5.2) with the value a as its initial state,

we can write

me <- crgate(mo,a) (5.3)

ENTRY
MBEGIN —

! !

f est
answer

new s

Figure 5.2

A manager created from statement (5.2)

98.

The variable me receives a value of type manager and is the means by
which the programmer refers to (names) that manager. Figure 5.2
illustrates in some detail the base 1language implementation of a
manager value, while Figure 5.3 shows the relationships between the
operators that create and use manager values.

To use the manager me requires that the programmer first
acquire the value me; then to send the value y as the entry
argument to me, he writes

z <- use(me,y) (5.4)

Following Figure 5.3, we see that the effect of (5.4) is to place
the token from output y into the stream X of manager me; however,
the exact position of y in stream X cannot be determined unless, of
course, statement (5.4) is the only place from which the manager me
1s calied. Everyone using manager me sends tokens to exactly the
same manager, but since many independent processes may use that
manager tne oraer of arrival of tokens at the entry of me is
inaeterminate. Thus entry performs two tasks: it changes simple
tokens into stream components, and then it nondeterministically
merges them into one single stream (stream X in the case of manager
me). Conversely, response tokens produced by me on 1line RESULT
leave the manager through the manager's exit where they are
converted back to simple tokens and are then returned to the waiting
use. In particular, the use from whence the ith member of X arrived
is the use to which the ith member of RESULT is returned. Any
number of uses may be made of me, each of which simply supplies one
component of the input stream to the manager being used. Finally,
the manager may be destroyed when there are no longer any references
to that manager. Destruction of managers is as yet an unsolved
problem of garbage collection in which, unlike structures, circular
reterences are possible. A scheme is yet to be devised which can
ueciae when to destroy a set of managers that reference nothing but

themselves and no one else references them*. As a final point, we

*I/0 is not described here, but each device will be a manager that
references those other managers that contain the data the device is
transmitting; see references [Bic77a, Bic77b, Bic 78].

o 0 0=

- - - .-
--------— - o-oo-----‘

=" \

L . T

- "
P hd L))

. ~
r r| ‘3 -t ,o'
g a monitor object (me)
i |
Figure 5.3

Creation and use of a resource manager

T ey, ey e e e e e e e

100.

do not allow streams as initial creation arguments nor as arguments
to use. All create and use arguments must be simple values.

We now consider the implementation of the constructs just
oescribed as well as the when construct which is used to control the
timing of activities in a resource manager. The reader may still
wisn to follow Figure 5.3 to maintain perspective.

5.2.1 The create construct: Given a manager definition value and

initialtization arguments, the CREATE operator builds a resource
manager and returns two related values, each of type manager, to be
used to refer to that manager. CREATE is actually composed of two
sub-operators as shown in Figure 5.3. Every manager has exactly one
MBEGIN operator.

(a) Ci3: This operator creates the manager object and produces the
activity name of the ENTRY operator as its result:

u.c.sj.i == input = cp

output: port 1 <(u'.cp.mbegin.l),
<u.c.sz.i’1>>

(u'.cp.entry.l)

port 2

Note that production of the activity name is asynchronous to
the initialization of the manager just created. We do this
specifically to allow a group of managers to be created, each
of which can be initialized with the manager object value of
the otners. This is convenient when creating a set of manager
objects that are to communicate with one another. Also, the
context u' is arbitrary but unique, so u' = (u.c.sj.i) would
suffice.

(b) C2: Here we simply send the initialization parameters to the
MBEGIN operator in the manager object just created:
u.c.sz.i -- input: port 1 = (u'.cp.mbegin.l)
port 2 = x
output = <x,<u'.cp.mbegin.1l,1>>
(c) MBEGIN: Every manager has an MBEGIN operator, just as every
procedure has a BEGIN. The only difference between BEGIN and
MBEGIN is that MBEGIN does not receive a "return address" from
CREATE, nor does it have a mate MEND operator.
u'.cp.mbegin.l -- input = x
output = x

5.2.2 The use construct: To use a manager object actually involves

four new operators, as shown in Figure 5.3. We will let sp be the
label of the U operator, and sp that of its mate U~l.

101.

(d) U: This operator sends a simple input token to the specified
entry port of the manager object.

u.c.sp.i =-- input: port 1
port 2

output = <<x,u.c.sq.i>,<u'.cp.entry.1l,1>>

(u'.cp.entry.l)
X

(e) ENTRY: This operator accepts simple tokens coming from many
sources (each U operator is a source), changes them to stream
components, and merges them nondeterministically into a single
stream. Two streams are output: one stream contains the data
part while the other stream contains the "return address" for
the EXIT operator. Let t be the label of the destination of X.

u'.cp.entry.l where u' = (u.c.sj.i)
input (simple) = <x,u.c.sp.i>

output: port 1 (stream element) = <x,k>
port 2 (stream element) = <<(u.c.sg.i) , k>,
<u'.cp.exit.1l,1>>
wnere k means this is the kth such
input to tnis ENTRY.

Note tnat even though many sources may be sending tokens to
tnis one ENIRY, it is a single activity and thus can keep a
count k of each token as it (nondeterministically) arrives.

(£) EXIT: The purpose of this operator is to return its data input
stream, after transforming them back to simple tokens, to the
activity specitied in the "return address" input stream.

U'.Cm.exj.t.]. Where l]l = (U-C-SI.i)

input: port 1 (stream element) <(u.c.sq.i) k>
port 2 (stream element) <x,k>
where k means this is the kth such
input to this EXIT.

output (simple) = <x,<U.C.S¢.i,1>>

Notationally, we often do not show the stream RA from ENTRY to EXIT
since it tends to clutter the diagrams; nevertheless, that stream
is always present.

(g) U~l: similar to TERMINATE in procedure applications, this
operator serves only to interface from the manager object back
to the user.

U.C.Sq.i == 1nput = x
output = x

As a Linal note, multiple entry-exit pairs may appear in a

manager, provided each pair is named, as in

mon <- manager (t)
(entry a: A,B;
b: €

20275

G) £5%5)
If the programmer writes
g <- create(mon,a)

tnen q wili be a structure of manager object values, the selectors
of whicn are the names of the entry-exit pairs. Thus

use(g.a,y+l,y-1)

wiil send y+l1 anu y-1 to tne "a" port of q, ana thus to the ¢two
streams A and B, respectively. The result from the above use will
be a single value taken from stream D inside the manager.

5.2.3 The when construct: In this section we consider a construct

that is needed in programming managers to provide timing signals and
to release requests from queues. For example, the expression

sin(x) when t

means ‘that sin(x) is not to be evaluated until signal t is received.
The gﬁgﬂ clause behaves somewhat as an operator, and syntactically
has the highest precedence of all operators. In general, to hold
evaluation of the entir% expression sin(x)/cos(x) until both of
signals a and b have been received, we write

(sin(x)/cos(x)) when (a,b)
which is translated into the base language equivalent of
if a=a anu b=b then sin(x)/cos(x) else u

wnere the else clause will never be executed since the predicate is
a tautology.

5.3 Nondeterministic stream merge: In the previous section, entry

was specifiea to be a nondeterministic operator. A second
nondeterministic Id operator is available to the programmer and is
the subject of this section.

Let A and B be streams. Then C is the result of
nondeterministically merging streams A and B if

C <- merge(A,B)

Such a definition of merge allows Id to accept tokens from streams A

103.

anu B as they arrive, and output them to C subject to the
restriction tnat the ith token 1s taken from A ana output to C only
if tne 1i-1lth token of A has alreaay been output to C. The same
penavior must hold for B. The merge construct is primitive and is
implementea by the MERGE operator below.

(a) Tne MERGE operator: A complete operational semantics for this

nondeterministic operator is very complex, so we rely on the
reader's intuition and write only

u.c.s.i -- input: port 1 (stream)

{<A5,3> | 1<jnal
port 2 (stream)

{<Bk,k> | 1<k<np}
output (stream) = {<Cp,m> | 1 <m<np+ng-1}

where Cp = Ay or Bk and m = j+k-1, and where if Cyn = Aj and
3>1, tnen thére exists an m'<m such that Cpr = Aj-).

The behavior of the MERGE operator cannot be described in terms
of a function even from the histories of the input lines to the
nistory of the output line because output history is not uniquely
uetermineu simply by knowing input histories. The semantics of
mekhGE also cannot be aescribed in terms of the set of all possiple
lnput-oruer-preserving histories. This latter point 1is rather
subtle anu is aue to tne possible presence of feedback (cycles)
witnin a program. For example, consider expression (5.6) a semantic
representation of which is given in Figure 5.4.

(X <- la,b];
Z <- merge(X,Y)
Y <- (initial i<-1
for each z in 2 while i<3 do
new i <- i+l;
Y K= g¥*¢
return all y)
return Z2,Y) (5.6)

Since the loop defining stream Y will execute three times, Y will
receive three tokens (plus the end-of-stream token). There are also
only tnree possibilities for the firing of the MERGE operator, which
along with the final value of Y are given below:
l. 7he first two tokens are from X while the third token is
from ¥ = [ac,bc,ac?].

2. The first and thira tokens are from X while the secona
token 1s from Y = [ac,ac2,bc].

3. 41ne first token is from X while the second ana third are
trom ¥ = [ac,ac2,ac3]

104.
X
MERGE
compute
Z
' Y
Figure 5.4
The MERGE operator in a feedback loop
\\‘ ’ \\ :
\ ’ \ #
read: YV write; vV ¥
\ entry ; \ \ entry 7
READ WRITE system
2 ‘. Joerge state
READ DONE
v o v WRITE DONE
access access__
ro s TGN i scheduler

A WRITE_ENABLE

t READ_ENABLE

\
| \ ‘ 5

i ¥ N

Figure 5.5

A resource manager

105.

Let us consider the first case above in detail. Inputs to the
merge are stream X = [a,b] and stream Y = [ac,bc,ac2], and there is
exactly one legal outcome for 2 = [a,b,ac,bc,ac2]. We point out
that there are at least nine other input-order-preserving histories
for these inputs, all of which are physically unrealizable due to
the presence of feedback. A semantic specification of MERGE
[Keller77, Kosinski] is beyond the scope of this paper.

5.4 bxample: The problem is to devise a resource manager* which nas
control over a file ana which accepts requests from users to read
ana write that file. ''nis resource manager may permit simultaneous
reau accesses, but any write access must exclude all other accesses.
rigure 5.5 outlines a resource manager which, with only minor
cnanges, can implement three different scheduling policies
corrsponding to tnree different versions of this readers-writers
problem [CHF71, Hoare74]. The manager is composed of two logical
parts: tne agent which performs the actual computation, and the
scheduler which blocks or enables individual requests within the
agent. We emphasize the word "logical", in that the scheduler
possesses no new primitive functions in order to carry out its work,
and is programmed entirely in Id.

This particular manager has two entry-exit streams, one called

"read" and the other ‘"write" corresponding to the two kinds of
requests that can be sent to the manager. For the resource manager
we are now describing, each request enters the queue READQ or the
queue WKITEQ accoruing to which namea entry port was used. kEach
gueuea reguest wili match with an enabling signal from the streams
ReAD_ENABLL or wRIYh_hNAbLE (generated by the scheduler) which then
aliow gqueueu values to be releasea to tne access_resource routine.
Inls 1s uone using tne when construct aiscussea above. Proper
operation of the resource manager requires that the scheduler be
notitiea whenever (l) a request enters the manager or (2) a request
completes 1its read or write access. Since these signals are
nonueterministically generated, we merge them within the resource
manager to form a single stream X of signals to the scheduler.
Thus, nondeterminacy may appear in two ways in this manager: in the
entry statements, and in the merge statement. :

*The solution presented here is taken from [AGP77] .

106.

In tne programmea soiution of the resource manager shown in
Figure 5.6, tne scheuuler state 1is represented by the number of
active reaaers (ra), the number of active writers (wa), the number
ot waiting readers (rw), anu the number of waiting writers (ww).

The scheduler enables requests to leave the waiting queues by
grouucing a stream of reader enabling tokens (RE) or one writer
enabling token (we). Note that

1. wa<=1l at all times,

2. 1if wa=1 then ra=g,
3. 1if ra>@ then wa=0.

(a) Version 1l: (Hoare [Hoare74] A new reader is not permitted to
proceed if a writer is waiting, and all readers that are
waiting when a writer completes are allowed to proceed. This
scheme prevents indefinite exclusion ("starvation") of both the
readers and the writers. The program for this version of the
problem is that given in Figure 5.6.

Recall again that the semantics of an entry-exit pair assumes
that the kth token in tne exit stream corresponds to the kth token
1n the entry stream. Note that this correspondence 1in token

positivns 1is not relatea to time, that is, the time at which the
k+lst result token is produced may be before the kth input reguest

token nas even been proces§ed.

To empea tne sharea file file_res (another manager object)
witnin the resource manager, we pass file res to it at creation

time:
file manager <- create(resource_manager, file_res)
Requests to read file res can now be performed by writing
use(file_manager.read, request)
Write requests are handled similarly.

(b) Version 2: (Problem 1 of [CHP71]) No reader is kept waiting
unless a writer has already acquired the resource. Starvation
of writers is possible. This means that the condition for
generating an enabling signal for a "reader" is relaxed from
wa=0 ana ra=@ to simply wa=@. This is accomplished by deleting
the code marked A from the first case <condition in the
scneduler of Version 1.

(c) version 3: (rroolem 2 of [CdP71l]) No reader 1is allowea to
proceea it a writer is wailting. Starvation of readers is
possible. ‘This uoes not affect the scheduling in the case for
a "reau exit" because the same condition applied in Version 1.
however, tor a "write exit" the scheauler must check for a

107.

resource_manager «
monicor (rfile) ! any file monitor resource such as file_res above !

(ntry reaa: REALY;
write: wrIvng ao

! this is the agent coae for a read request !

READ_ReSULT,READ_DONE « [each r in READY; re in READ_ENABLE:
(s « access_resource(file,r) when re
return s, "read exit" when s)];

! this is the agent code for a write request !

WRITE_RESULT,WRITE_DONE « [each r in WRITEQ; we in WRITE_ENABLE:
(s « access resource(f’le,r) when we
return s, "write exit” when s)];

X + merge (READQ,WRITEQ, READ_DOWNE,WRITE_DONE) ;

! the scheduler begins here --
its function is to produce enabling signals !
! tne input is stream X, the outputs are streams
READ_ENAoL: and WRITE_ENABLE !

REAV_ENABLE, wRITE_eENABLE +

‘(initiai rw ww, ra, wa +« 9,0,0,0 ! initial state !
tor each x in X do
tw, ww, :a wa, KRE, we + g;)
(case AN
x=“reaaer" => (it wa=0(anu ww=9
tnen ‘TW, wWw, ra+l, wa, L“go"), A

{ else rw+l, ww, ra, wa, L), A)
x="writer" => (it wa=0 anu ra=@
tnen rw, ww, ra, 1, ([}, "go*

else rw, W"’lr ra, wa, (], A)
x="read exit" => (if ra=1 and ww>@
tnen rw, ww-1, 6, 1, [], “go"
g_§e rw, ww, ra-1, wa, (1, A) (;)
x="write exit" => (if 1_:'_'.>___‘:-_ ______________________ RIS
then (0, ww, rw, 0, (for i from 1 to ™ do-
"::::.' \return “all go“),x
else (if QWD »-(C) T= === T=1-—=-77C
then (cw, ww-1, ra, wa, [l._"go¥

eturn all RE, all we but 1)

! the scheduler ends here !

exit reaua: READ_RESULT;
write: wnIIE RESULT | ena of tne monitor !)

Figure 5.6
The reader-writer resource manager

108.

waiting writer (ww>@). In particular, the code for Version 1
in position B is interchanged with that in position C, and the
code in D is interchanged with that in E.

This example illustrates an advantage of dataflow. The program
presents explicitly the essential components of the problem: the
agent with separate reader and writer queues, and the scheduler
which clearly shows the conditions under which enabling signals are
sent ana which thus is easily changed to implement different
policies. In all the problems we have programmed, our experience
nas been that the scheduler policy is explicit ana easily altered to
suict various scheduling criteria. (Again, please note that the
alstinction made between agent and scneduler is only for emphasis,
ana tnat no speciali scheauling primitives are required.) Also, tne
scheme 1s moaular, as illustrated here by the embeduing of the file
resource manager within the resource manager manager. Futhermore,
we nave founa the basic structure of Figure 5.5, differing only in
the number of entry-exit pairs, to be very useful in solving many

resource manager problems including a distributed airline
reservation system [AGP77] ana a disk scheduler.

We also wish to make two final points about resource managers
in Id. The first point concerns non-determinacy, which in
sequential languages is usJally a secondary effect resulting from a
particular manner of uSe of shared variables. In dataflow,
nondeterminacy is provided by explicit operators (MERGE and ENTRY in
the base language) which allows the programmer direct control over
nonueterministic behavior. The second point concerns the degree to
which the requesting process, 1n passing through a manager (monitor
[Brinch-hansen, Hoare74]) in a sequential language say, is actually
separatea trom that manager's internal controlling mechanisms. %hat
1S, each reguesting process is actually in control ana executing the
coue 1nsiue the manayer representing the sharea resource. This
Characteristic of managers 1in sequential languages makes it
aifricult, for example, to replace a software resource with a
hardware resource. It also makes it difficult to guarantee valid
use of the resource control mechanisms within a manager, such as
enforcing conventions on the proper sequence in which semaphores are
to be signaled. Id, however, implements a resource manager as a
closed module which nondeterministically receives streams of

109.

requests from other processes and acts upon these requests according
to the scheduler written by the programmer that is enclosed within
that manager. The reguesting processes have no control over, ana
are entirely indepenaent of the resource manager moaule (which is
itselr an independent process). Such a model completely separates
tne user from the resource and will make haraware/software moaule
intercnange easier to achieve.

110.

6. Programmer-defined Data Types, Extensionality, and Environments

A procedure aefinition value is treated exactly like any other
value 1in that it may be passed as a result of a computation,
appended to a structure, etc. This general view of a procedure will
allow us to incorporate some very sophisticated higher-level
concepts into Id while requiring only minimally expanded lower-level
mechanisms. These higher-level concepts include programmer-defined
data types and operator extensionality so operators such as "+" may
ve interpreted at execution time in the context of the types of
thelr arguments. 7Tnese points, and aiscussion of an environment
racility to ease programming etftort, are the subject of this

section.

6.1 Prrogrammer-aetineu data types (pats): In tnis section we show
now la aliows tne programmer to define his own data types and the
meaniny ot operations on those types. We also extend the base

operators in a very simple way in order to make Id an

operator-extensible language.

6.1.1 Values: So far, details of value representation have not been
considered other than to say that values are typed. Now that we
wish to introduce programmer-defined data types, it becomes
necessary to consider the internal representation of values. A
value is an ordered pair comprising a type and an encoding. For
example, the actual information held by a token that carries the
integer value "five" is shown in Figure 6.1.

To cnange a value x from one type to another the programmer

writes a coercion, for example
real: x

proauces a real vaitue from x (if possible). As a final remark,
please note that the programmer nas no access to the actual
representation of values, as this is the domain of the machine's
processors; the ":" is simply a binary operator.

6.1.2 Programmer-definea values: Just as the type field of a value
of type integer is set to "integer", so is the type field of a value

of the programmer-defined type "xyz" set to "xyz". The encoding of
a value of type integer 1is a string of bits; the encoding of a

Tl
[|

type encoding
"integer" 5
Figure 6.1

Representation of the integer value "five"

§

type \ encoding

llproc n

l l |

body name # formals actuals
1

"vector" "a" A

Figure 6.2a
Representation of a value of type
(named) procedure definition

P & i S

112.

[|

type encoding

lxyzn

[|

type encoding

"proc"” +

Figure 6.2b
Representation of the value in Figure 6.2a

after coercion to a pdt

procedure stack ()
“(z + procedure sg (!function! f, targs 1,2! u,v,

!stack array! s, !top of stack! tos)
(if f="size" then tos, anything
else if f="push" then pdt:compose (stack,<<s:s+[tos+1]v>,
s <tos:tos+l>>), anything
£="pop" then

Hh

else i

(if sp21 then pdt:compose (stack,<<s:s+[tos]A>,

<tos:tos-1>>), s[tos]
else error:<"stack underflow on pop">, anything)

else if f="peek" then

(if 1sv and vstos then s[v], anything

else error:<"illegal stack peek">,
anything)

else if f="=" then

(initial t « (if :v="stack" then tos=|size|v else false)

for i from 1 to tos while t do

new t « s[i]=v|peek|i
return t), anything

else error:<"illegal stack operation">, anything);
return stack:compose (z,<<s:A>,<tos:0>>))

Figure 6.3
The "stack" pdt

X13.

value of type "xyz" is a value of type procedure-aefinition. Let
x <- procedure vector(a) (...)

S0 X 1S a value of type (namea) procedure uefinition as shown in
Filgure 6.2a. ‘ine result of the coercion

y <= Xxyz:X
is snown in Figure 6.2b.

For a detailed example ot a programmer-defined type, we show
the pdt "stack" with six operators and some error checking in Figure
6.3. (The reader is asked to indulge in the syntax of Figure 6.3
which 1is not intended to be user syntax, however we have not as yet
devised a syntax for specifying pdts. The code in Figure 6.3 should
be viewed as implementation code.) To generate a new stack
initialized to empty, the programmer writes

a <= stack()

wnere the value of a will be a pdt value of type stack. That value
is produced ‘by the procedure stack and is the result of a stack
coercion on a procedure witn two frozen parameters -- s=A and tos=0.
nere s 1s a structure that represents the actual stack ana tos is
the i1nuex of s tnat is currently the top of the stack. Note that
botn the name of tne pdt (L.e., "stack") ana 1its generating
proceuure can be maue tne same¥*. Note also that a pdt value
instance cannot be confusea witn the generating proceaure for tnat
type, ana also tnat it is not possible to redefine the primitive
system types.

Reviewing Figure 6.3, we can see that a pdt is actually a
coercea procedure in which specific value instances of that type are
proauced by freezing certain of the procedure's parameters by means
of the functional compose. Note that the generator of a pdt value,
namely "stack", 1is a procedure; that procedure, when applied
returns values of type stack.

6.1.3 Operators over programmer-defined types: The body of the pdt

defines the operations that can be performeda on the pdt. For
example:

*I'nus the put yenerator can be placea on tne environment (Section
b.<) 1t appropriate.

114.

a <= stack();
b <- alpush|17
c <- b|push]|f(

;
X);
says that a is the empty stack, b is a stack with the single item
17, and ¢ is a stack with two items: 17 and the result of executing
f(x). The extended syntax above translates directly into

a <- stack():

b <- (proc:a) ("push", a, 17);

c <= (proc:b) ("push", b, f£(x));
Note in tne above that the instance of the data is passed to itself
as an argument. This allows the operation to have access to the
instance oi the pat uata as well as its internal representation. So
1t, for example, an operation ulop|v were coded, which means

(proc:u) ("op",u,v)

tnen "op" 1n the procedure proc:u might determine that the value v
is also a pat ana tnat it must carry out "op2" and be given u as an
argument. Tnus we make u available to itself. To complete the
notation, we'let |op|lu stand for unary and |opl|(u,v,...,w) for n-ary

operators.

The above has shown how to define new operators on
programmer-defined types, There is also another kind of
extensionality in Id as exemplified by the definition of the "="
operation on stacks (Figure 6.3). The definition of equality of
stacks is that they are of the same length and corresponding entries
in the stacks are equal. The first line of "=" in Figure 6.3 checks
the argument v to be sure that it is also of type stack by asking

tv = "stack"

where the unary coercion operator "“:" returns the type of value v as
a string. 1f ooth arguments are thereby uetermined to be stacks,
tnen the loop proceeds to cneck that the corresponaing members of
the two stacks are equal, and if so, returns true as the final
result. 1Ine preaicate s|1) = v|peek|i 1s the eguality test, where
"=" jis evaluatea in terms of the types of s[i] and v|peek|i. If,
for example, s|i]j ana v|peek|i are also stacks, then equality is
lnterpreted as stack equality. Since corresponding members of
stacks u and v may vary each time arouna the loop, the definition of
equality may vary each time as well. The implementation of this

115.

extensional behavior is covered in the remaining paragraphs.

The equality predicate 1is primitive for several of the
system-defined aata types (it is not daefined over monitor
aetinition, procedaure aefinition, or any pdt type). The
contiguration at the left of Figure 6.4 illustrates the pertinent
pase language translation extractea from Figure 6.3. However, the
equality preadicate (upon uetermining that, say, s[i] is itself of
type puat) internally "transforms" itself into the configuration at
the rignt of Figure 6.4. In this way, whatever the type of s[i],
tne correct interpretation of equality will be taken (the programmer
must, of course, have defined equality for his pdt).

The situation illustrated in Figure 6.4 is actually a
simplification. Our example presumed that s[i] was of type pdt. 1In
general we have an n-argument primitive operator "op", and any one
(or more) of those n arguments aj may be a pdt. If the ith argument
aj is a pdt and arguments 1 through i-1 are otherwise, then "op"
transforms iqto

(proc:aj) ("opi",aj,az,...sap)

wnere opi is a code that specifies the operation to be performea ana
which argument is serving as the context. This is important if the
operators are non-commutative.

Lastly, we note that "“op" 1s any operator, primitive or
otnerwise, so we coula define "*" over the type vector to pbe the
vector cross-proauct. Such flexibility seems possible in a dataflow
macnine since the apparently hign execution overhead may be gquite
small wnen one consiaers the fact that an entire micro-processor
coulu bpe aevoted to the evaluation of just the equality predicate.
The aaded flexibility in a language could be significant to
programmer productivity. It might also allow program libraries to
be more useful since they would tend to emphasize the definition of
data types at an abstract 1level (rather than "subprograms") and
provide operators specifically for manipulating those types.

As a final example of a pdt, Figure 6.5 shows the type set with
the following operations:

set() means ¢
Xx|contains|a means aex
X|insert|a means xvu{a}

X|lunion|y means XUy

| peek |i]| v|peek | i
pro

u|peek | i

—

Figure 6.4

The primitive equality operator extends

to values of type pdt

procedure set ()
(z + procedure setg (!function! £, largs 1,2! u,v,
:set array! s, !cardinality! a)
(if f="contains" then (initial t « false

for i from 1 to a while

new t « v=s[i]
return t)

else if f="insert" then (if u|contains|v then u

then u

116.

v |peek |i

t do

else pdt:compose (setg,<<s:s+[a+l]v>,
<a:a+l>>))

else if f="union" then (if :v="set"

then (initial x « v

for i from 1 to a do

new x + x|insert|s([i]

return x)

else error:<"argument is not a set">)

else error:<"invalid set operation">)
return set:compose(z,<<s:A>,<a:0>>))

Figure 6.5
The "set" pdt

217

6.< ‘I'ne wnvironment: rrocedure uefinition expressions, both named

anu unnamed, nave been discussed in previous sections. To review
priefly, a proceaure definition is simply an expression, so
(x <= proc(a,b) (a+b);

y <- proc(a,b) (a-b);

z <= x(u,v) + y(v,u)

return z,x,y)
is a block returning a sum and two procedures. Note the difference
between writing x and x(), where the former means the procedure
produced at output x and the latter means the result of applying x.
The number of arguments passed to a procedure, or results returned
from a procedure, need bear no resemblance to what was expected or
requirea. superfluous arguments and results are ignorea, ana
m1ssiny arguments and results receive tne value §&. Also, a namea
recursive procedure 1is transformea at its definition into a
proceuure carrying the same name but possessing one new argument
whicn 1s then composea witn tne procedure itself. A recursive
proceaure tnerefore carries a copy of itself as a frozen parameter.

in order to provide a library of proceaures (such as sin, sqrt,
etc.), ana to allow the programmer to build a dynamic execution
environment without undue parameter declaration and passing, Id
automatically maintains an environment for the programmer. The

environment, denoted n, is a structure of named procedures where the
selectors of that structure are the names of the associated
procedures. An environment is defined relative to a block and may
change when execution passes from one block to some inner block. To
append a named procedure to the environment, the programmer writes a
procedure statement (as opposed to a procedure expression). For

example, in expression (6.1),

A B
(eeo (x <= a+l;
y <= proc(a,po) (f(a)+g(b))
proc f(a) (at+l);
proc g(b) (b+2)
retulh i gix. e l)r + 6 o's)) ke bisn o) (6.1)

olock b is immeaiately nestea in oiock A. Now if np is the
environment obrought into block B from A, then

B <= a+ |"f"]proc f(a) (a+l) + ["g"|proc g(b) (b+2) h,h

is the environment in block B. Thus, expression (6.1) is

118. ;

inputs to
block B nA= environment of block A

1
(trigger) '
|

ﬁ]
]

[}

procedure :
statement> |
]

[

I

[}

|

'

I

i

[

i

|

of block B

append

; ¢ I Ng = environgent of block B

|

body of :
block B I
'

]

|

results

Figure 6.6

Building an environment in a block g

119.

semantically equivalent to expression (6.2) which the programmer
% cannot write himself, but Id does it for him:

?i A B

! -l (LR (X <- a+l;

y <= proc(a,p) (f(a)+g(b));

ok f <- proc f(a) (a+l);

N g <= proc g(b) (b+2);

N SNy -+ PREEE +1 "9 19

return y(x,x+1) + («e0)) .0y) (6.2)

w1he above has shown how a block inherits ana builds wupon an
" environment. A proceaure application can also inherit an
environment. whenever a procedure is appliea the most recent
environment 1is passed as an adaitional parameter. Thus both
X procedure definitions ana applications are adjusted during the
i translation process to accommoaate the environment parameter. To
e demonstrate, expression (6.3) 1is semantically edquivalent to the
‘ compiled version of (6.2), but again the programmer can write
X directly neither (6.2) nor (6.3).

A - B
; (loee .f X <= @Elis
3 y <= proc(n) (E(a,n)+g(b,N));

‘. f <- proc f(a,n) (a+l);
I g <- (b, n) (b+2);
,4"‘ nB <_ nA +J [llfll]f + [llgll]g
return y(x,x+1,ng) + (ces)) oo) (6.3)

Q

a,b
f(a
g(b

~
(o}
Q

Lastly, witnin tne body ot a proceaure the programmer may refer
to anotner named procedure that has peen placed on the environment
simply oy writing tnat other proceaure's name as if it were an 1Id
variaoie. If

g l. tne name aoes not appear on the left-hand-siae of an
assignment in that plock or any outer statically
encompassing block,

2. tne name is not the name of a procedure in a named
procedure statement in that block or any statically
encompassing block, and

3. the name is not a formal parameter nor the name of the
procedure in which that block appears,

then that name is a reference to the environment and we call that
name a n-parameter. In particular, the procedure assigned to

i variable y in (6.3) possesses two n-parameters: f and g. Thus the
- definition of y is semantically equivalent to

y <= proc (a,b,n) (n.f(a,n)+n.g(a,m))

2 though again, the programmer cannot write it this way -- Id does it

120.

tor nim.

In summary, an environment grows towards inner blocks, and
pecause appenas are being used to define an environment, a name can
pe reuefineda in an inner block. Note also that any environment
moditication affects only the procedures applied in that block and
the dynamic descendants of those procedures. That is, n only goes
into an expression as an argument, it never comes out as a result.
The environment is thus a dynamically varying value that reflects
the execution structure of a program. For this reason, if a
procedure A is written which depends upon a particular procedure B
being available via the environment, it may be dangerous to return A
from one block back to a higher-level block where A might be applied
in quite a different environment. (LISF programmers might view this
as a special case of the FUNARG problem.) Like most conveniences,
tne environment facility provided by Ia depends upon assumptions,
nere the assumptlon is tnat the context of a proceaure's application
can De guaranteea by tne programmer. In general, only library-type
proceuures or tightly controlled self-sufficient blocks of coae that
aetine tnelr own procedures shoulu be aepended upon to properly
malntain context. As an example of the kind of problem that can

arise
i

Proc u(x) (««.v(x)...);

proc v(x) («..u(x)...);
are two mutually recursive procedures and both depend upon each
being in the environment of the other. However, if these procedures
are passed out of the environment in which they are defined, they
will not function properly. Two ways out of the problem are
possible:

1. Return the two procedures encompassea within another
procedure, which when applied causes them to redefine
themselves and the environment in which they need to exist.

2. Have the procedures explicitly pass themselves as
parameters to one another, just as unnamed proceaures woula
have to do.

TS T e O R cae vy

121.

References

[Arvind & Gostelow 77a] Arvind, and Gostelow, K.P. Some
relationships between asynchronous interpreters of a
data flow language. In Formal Description of Programming
Languages, E.J. Neuhold, Ed., North-Holland, New York,
1978.

[Arvind & Gostelow 77b] Arvind, and Gostelow, K.P. A computer
capable of exchanging processing elements for time. 1In
Information Processing 77, B. Gilchrist, Ed., North-Holland,
New York, 1977.

[AGP 77] Arvind, Gostelow, K.P., and Plouffe, W.E. Indeter-
minacy, monitors, and dataflow. Proc. Sixth ACM Symp.
on Operating Systems Principles, Nov. 1977, pp. 159-169.

[Ashcroft & Wadge 76] Ashcroft, E.A., and Wadge, W.W. LUCID
-- a formal system for writing and proving programs.
SIAM J. Comput. 5, 3 (Sept. 1976), 336-354.

[Backus 73] Backus, J. Programming language semantics and
closed applicative languages. Proc. ACM Symp. on Prin-
ciples of Programming Languages, Oct. 1973, pp. 71-86.

[Bic 77a] Bic, L. An extended model for protection in data-
flow. Dataflow Note #23, Dept. of Information and Computer
Science, Univ. of California, Irvine, CA, Nov. 1977.

[Bic 77b] Bic, L. Protection in dataflow. Dataflow Note #25,
Dept. of Information and Computer Science, Univ. of Calif-
ornia, Irvine, CA, Nov. 1977. A

[Bic 78] Bic, L. Security and protection in a dataflow
computer system. Dataflow Note #34, Dept. of Information
and Computer Science, Univ. of California, Irvine, CA,
April 1978.

[Brinch-Hansen 72] Brinch Hansen, P. Structured multipro-
gramming. Comm. ACM 15, 7 (july 1972), 574-578.

[CHP 71] Courtois, P.J., Heymans, F., and Parnas, D.L.
Concurrent control with "readers" and "writers". Comm.
ACM 14, 10 (Oct. 1971), 667-668.

[Dennis 73] Dennis, J.B. First version of a data flow pro-
cedure language. Computation Structures Group Memo 93,
Lab. for Computer Science, Cambridge, MA, Nov. 1973.
(revised as MAC Technical Memorandum 61, May 1975).

[Dennis 74] Dennis, J.B. On storage management for advanced
programming languages. Computation Structures Group Memo
109-1, Lab. for Computer Science, Cambridge, MA, Oct. 1974.

122,
el s : §
[Dijkstra 76] Dijkstra, E.W. A discipline of Ero%rammlng. i
Prentice-Hall, Englewood Cliffs, N.J., 1976. (Chapt. 17). 3

[Friedman & Wise 76al] Friedman, D.P., and Wise, D.S. CONS
should not evaluate its arguments. In Automata, Languages 1
and Programming, S. Michaelson and R. Milner, Eds., 4
Edinburgh Univ. Press, Edinburgh, England, 1976. A

[Friedman & Wise 76b] Friedman, D.P., and Wise, D.S. The
impact of applicative programming on multiprocessing.
Proc. 1976 Intl. Conf. on Parallel Processing, Aug. 1976, b
pp. 263-272. |

[GIMT 74] Glushkov, V.M., Ignatyev, M.B., Myasnikov, V.A.,
and Torgashev, V.A. Recursive machines and computing %
technology. In Information Processing 74, North-Holland,
New York, 1974.

[Guttag 77a] Guttag, J. Abstract data types and the develop- E
ment of data structures. Comm. ACM 20, 6 (June 1977), [
396-404. 3

[Guttag 77b] Guttag, J. Personal Communication.

[Hoare 74] Hoare, C.A.R. Monitors: An operating system
structuring concept. Comm. ACM 17, 10 (Oct. 1974),
549-557.

[IPL] See [Newell & Tonge 60].
[Jones] See [Jones & Liskov 761].

[Jones & Liskov 76] Jones, A.V., and Liskov, B.H. An access
control facility for programming languages. Dept. of
Computer Science, Carnegie-Mellon Univ., Pittsburgh, PA, iy
May 1976. 4

[Keller 77] Keller, R.M. Denotational models for parallel
programs with indeterminate operators. In Formal Des-
cription of Programming Languages, E.J. Neuhold, Ed.,
North-Holland, New York, 1978.

[Kosinski 73] Kosinski, P.R. A data flow language for oper-
ating systems programming. SIGPLAN Notices (ACM) 8, 9 4
(Sept. 1973), 89-94.

[Kosinski 78] Kosinski, P.R. A straightforward denotational
semantics for non-determinate data flow programs. Proc.
Fifth ACM Symp. on Principles of Programming Languages,
Jan. 1978, pp. 214-221.

[Landin 65] Landin, P.J. A correspondence between Algol 60
and Church's lambda-notation: Part I. Comm. ACM 8, 2
(Feb. 1965), 98-101.

[Liskov] See [LSAS 77]. P\

123.

[LSAS 77] Liskov, B., Snyder, A., Atkinson, R., and Schaffert,
C. Abstraction mechanisms in CLU. Comm. ACM 20, 8 (Aug.
1977), 564-576.

[McCarthy 60] McCarthy, J.- Recursive functions of symbolic
expressions and their computation by machine, Part I.
Comm. ACM 3, 4 (April 1960), 184-195.

[Newell & Tonge 60] Newell, A., and Tonge, F.M. An intro-
duction to Information Programming Language V. Comm.
ACM 3, 4 (April 1960), 205-211.

[Patil 70] Patil, S.S. Closure properties of interconnec-
tions of determinate systems. Record of the Project

MAC Conf. on Concurrent Systems and Parallel Computations,
June 1970, pp. 107-116.

[Shaw] See [SWL 77].

[SWL 77] Shaw, M., Wulf, W.A., and London, R.L. Abstraction
and verification in Alphard: Defining and specifying
iteration and generators. Comm. ACM 20, 8 (Aug. 1977),
553-564.

[Sutherland 77] See [Sutherland & Mead 77].

[Sutherland & Mead 77] Sutherland, I.E., and Mead, C.A.
Microelectronics and computer science. Scientific
American 237, 3 (Sept. 1977), 210-228.

[Weng 75] Weng, K.S. Stream-oriented computation in recur-
sive data flow schemes. MAC Technical Memorandum 68,
Lab. for Computer Science, Cambridge, MA, Oct. 1975.

