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Mix-and-inject serial crystallography (MISC) is a technique designed to image

enzyme catalyzed reactions in which small protein crystals are mixed with a

substrate just prior to being probed by an X-ray pulse. This approach offers several

advantages over flow cell studies. It provides (i) room temperature structures at near

atomic resolution, (ii) time resolution ranging from microseconds to seconds, and

(iii) convenient reaction initiation. It outruns radiation damage by using femtosecond

X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate

that MISC is feasible at an X-ray free electron laser by studying the reaction of M.
tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron

density maps of the apo-ß-lactamase and of the ceftriaxone bound form were

obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to

study cyclic and non-cyclic reactions and represent a new field of time-resolved

structural dynamics for numerous substrate-triggered biological reactions. VC 2016
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INTRODUCTION

ß-lactams are a class of antibiotics used frequently in the treatment of bacterial infection.1

They form one of the most important antibiotic families, including a broad range of molecules

such as penicillin derivatives, cephalosporins, and ß-lactamase inhibitors, as well as penems

and carbapenems.2–4 The broad range of activity of these antibiotics against both Gram-

negative and Gram-positive pathogens renders ß-lactams some of the most widely used antibiot-

ics worldwide.5 Evolutionary bacterial response has given rise to ß-lactamase enzymes able to

hydrolyze the ß-lactam ring, thereby conferring antibiotic resistance to bacteria.4,6 This increas-

ing resistance now represents a serious challenge for the efficacy of this class of antibiotics.7

Tuberculosis (TB), a disease caused by the bacteria Mycobacterium tuberculosis (MTb), is

a major health concern worldwide with approximately 9.6 � 106 new cases in 2014, 1.5 � 106

deaths in the same year. TB remains a leading cause of death among AIDS patients.8 One rea-

son tuberculosis has evaded treatment with b-lactams is the evolution of a singular ß-lactamase

(BlaC) found in MTb.9,10 Understanding the structural origins of binding modes of BlaC has

resulted in improved compounds for the treatment of not only TB but also Extensively Drug

Resistant (XDR-TB) strains of the disease.11

BlaC catalyzes the opening of the ß-lactam ring by nucleophilic attack via an active site

serine residue that generates an acyl-enzyme intermediate state. The intermediate formation is

followed by the generation of the ring-opened, inactive product through hydrolysis of the ester

bond.12 In addition, in cephalosporin substrates, the thiodioxotriazine moiety is a good leaving

group and likely dissociates in a concerted manner with the ring opening and formation of the

acyl intermediate.13–15 Previous studies have further shown that BlaC is a broad-spectrum ß-lac-

tamase, hydrolyzing virtually all ß-lactam classes.16 Direct observations of this process would

lead to a better understanding of enzyme-drug interaction and could allow for novel ways to

bypass or inhibit the BlaC catalyzed ring hydrolysis, such as drug targeting of stable intermedi-

ate states. Many structures of M. tuberculosis BlaC have been solved with various substrates

via conventional X-ray crystallography. However, these are static structures showing only the

binding interactions and not the coordinated actions of the enzyme that result in binding and

catalysis.17–20

Time-resolved crystallography21 enables time-dependent structure determination to reveal

protein kinetics.22 Light-triggered studies at synchrotrons can provide up to 100 ps time resolu-

tion.23–25 However, one of the major challenges with time-resolved macromolecular crystallog-

raphy is the study of reactions that do not “reset” for the next X-ray pulse. Reactions that are

not light-driven, like most enzymatic reactions, can be difficult or impossible to capture in crys-

tals because of the difficulty in initiating reactions in a concerted way in the molecules through-

out the volume of a large crystal needed for conventional crystallographic measurements.

Calculations show that this issue can be resolved using micron-sized crystals because the

reduced size drastically decreases the diffusion time of the substrate into the crystal.26–28 If dif-

fusion times are much faster than the enzymatic turnover times, this provides an elegant and

straightforward way to initiate reactions in enzyme crystals.

Crystals of this small size (<10 lm) are difficult to examine at a synchrotron, due to radia-

tion damage and the lack of well-established sample delivery methods. The introduction of X-

ray free electron lasers (XFELs) therefore presents new opportunities in several regards. XFELs

have enabled time-resolved structure determination of fast light-activated proteins after optical

illumination, allowing structures of protein conformational changes to be imaged on time scales

of hundreds of femtoseconds that have been previously impossible to reach.29–33 However, light

sensitive proteins are only one type of proteins whose dynamics are of interest. Many, if not

most, physiologically relevant reactions are initiated chemically rather than by light. The ability

to mix a protein with a substrate and directly observe the various structural intermediates asso-

ciated with a chemical reaction would open an entirely new field in structural enzymology,

incorporating a new, more holistic perspective on substrate binding, significant intermediates,

bound products, and the kinetics of their appearance and disappearance. Such reactions need to

be studied at room temperature in order to explore relevant kinetics and discover the structure
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of the transitional states. In this paper, we present the evidence that such experiments are possi-

ble, using the mix-and-inject serial crystallography (MISC) approach at an XFEL. During the

review of this paper, Stagno et al. also reported successful diffusion of an amino acid (adenine)

into RNA with a 10 s mixing time using a similar setup, providing further credence that the

technique is a viable method for future enzymological studies.34

RESULTS AND DISCUSSION

Structures of BlaC with and without ceftriaxone (CEF), a cephalosporin antibiotic substrate,

were measured at room temperature using the Coherent X-ray Imaging (CXI) instrument at the

Linac Coherent Light Source (LCLS)35 at SLAC. The antibiotic was mixed with microcrystals of

BlaC using a T-junction (Fig. 1), which allowed for a diffusion/reaction time of about 2 s (see

supplementary material). The time-resolution of a mix-and-inject experiment also depends on the

rate of diffusion of the substrate into the crystals, limiting the time resolution that can be

achieved at synchrotron sources.26 Our crystals have average widths on the order of 3–10 lm in

two of the dimensions and thickness of 2–3 lm in the third. Diffusion calculations indicate that

the diffusion of the substrate into these microcrystals takes only about 1–15 ms.26 This is about

one hundred times smaller than the time required for the crystal substrate mixture to travel to the

injector and can be neglected in our experiment. Therefore, with improved mixing-injectors,36,37

this time scale should allow for a variety of enzyme reactions to be studied, from the long time

delays (seconds) to short time delays (500 ls).37 To demonstrate substrate binding with MISC as

a proof-of-principle, two separate room temperature data sets were collected using the serial fem-

tosecond crystallographic (SFX) approach: an apo structure from 12 853 indexed diffraction pat-

terns and a “mixed” structure from 22 646 indexed patterns with CEF added.

The data collected were used to determine the structures to a resolution of 2.8 Å for the apo
and 2.4 Å for the mixed form. Fig. 2 shows an overview of the BlaC asymmetric unit, as well as

the ligand binding pocket from both the apo and the BlaC mixed with CEF. The subunits labeled

A and C show no binding to ceftriaxone, highlighting the point that the kinetics of a catalytic

cycle in the crystal are not necessarily the same as in solution. The crystal packing of these subu-

nits and their crystal contacts appear to prevent facile access to the binding pocket, showing only

the presence of phosphate. The density in the binding pocket of subunits D shows strong evi-

dence of substrate accessibility with the active site electron density (ED) from subunit B being

less prominent, but still present. Given the long mixing times of this experiment along with the

FIG. 1. Data collection schematic showing the T-junction set-up used for a mixing time of about 2 s. The T-junction was

placed outside of the nozzle rod in our experiment but could also be engineered to fit inside closer to the interaction region

for shorter mixing times.
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measured K(cat) for ceftriaxone of 49 6 17/min (turn over time of 1.22 s),16 it is likely that on

average, at least one CEF molecule, perhaps two, was cleaved during the time between mixing

and actually interacting with the X-rays. Models of the uncleaved, acyl intermediate, and product

complex of the ceftriaxone molecule were modelled to attempt to fit the electron density (ED)

found in the BlaC active site. For the current time point of 1.4–2.6 s, we expect to observe the

superposition of several chemical intermediates in the ED. Since our time delay is more than 2 s

and the turnover time is on the order of seconds, a steady state has most likely formed. The

steady state consists of all states along the enzymatic pathway that are occupied according to

their free energies. The enzyme substrate complex, any putative intermediate, and the product

state may all be occupied and represented by the average electron density. Therefore, we

attempted to refine three different structures into the electron density (Figs. S3–S5, supplementary

material). Accordingly, the chemical form with the longest presence in the active site, i.e., the

rate-limiting step, will be most represented in the ED. From the modelling of our data, it appears

that we mainly observe a steady state. The Km value was previously measured at 520 lM.16

When considered in conjunction with the moderately slow turnover rate of approximately 1.22 s,

the data support that the rate-limiting step for this reaction has not been measured but is likely

the formation of the acyl intermediate (for a further discussion of the chemical kinetics see the

supplementary material). In this state, the enzyme requires time to achieve coordinated alignment

for the nucleophilic attack of the Ser70 residue on the b-lactam ring before the reaction can pro-

ceed to the acyl intermediate. As seen in other inhibitor complexes, other protein interactions we

observe with ceftriaxone (and the phosphate) include threonine (Thr237), glutamic acid (Glu166),

lysine (Lys73), and an additional serine residue (Ser128).

We next compare the active site structure presented here with the structure when the

antibiotic cefamandole is soaked into large BlaC crystals (PDB code 3N8S38). The structure

FIG. 2. Electron density in the catalytic cleft of BlaC. (a) Refined model of the entire tetramer (r¼ 1.1) in the asymmetric

unit after mixing. The mixed electron density (2Fo-Fc) is shown in blue in the binding pockets. Subunits A and C contain

phosphate while subunits B and D have a bound ceftriaxone, with the electron density of D being slightly stronger. (b)

Enlarged section of subunit D showing the unmixed ED, which corresponds to a bound phosphate. (c) Enlarged section of

subunit D showing the mixed ED (blue electron density) with ceftriaxone modelled in. Slightly different views of the same

subunit binding pocket are shown in (b) and (c); however, there are minimal changes to the ligand binding sphere (see sup-

plementary material, Table S2).
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of the Michaelis complex as well as the covalent acyl intermediate for mutants of BlaC was

solved at a synchrotron at cryogenic temperatures.38 In the cefamandole structure, the Ser70

nucleophilic oxygen is 2.8 Å from the b-lactam ring carbonyl carbon compared to 3.2 Å for

the ceftriaxone Ser70 oxygen. Both the complexes are positioned almost identically in the

active site. Interestingly, the Ser142, in our structure, which binds the carboxylate group, is

turned and the carboxylate is positioned over 3 Å away. This suggests that the ceftriaxone

molecule is bound more loosely and has a lower affinity in the active site than cefamandole;

however, it is impossible to fully separate the differences between the two due to the differences

in techniques used to solve the structure, especially the difference between room-temperature

and cryo-cooled data collection. For Thr253 and K250, this results in the ceftriaxone carboxyl-

ate group being rotated by nearly 90�. These observations explain the difference between the

observed kinetic parameters of cefamandole (Km¼ 184 lM with kcat¼ 3500 min�1) and ceftri-

axone (Km¼ 520 lM and kcat¼ 49 min�1).16 The high turnover rate of cefamandole is why it

was deemed unsuitable for this initial proof-of-concept work. Since we see no clear density

connecting the Ser70 to the lactam ring, we have modeled the structure as the enzyme-

substrate complex in this study (see Fig. 2); however, it is most likely a mixture of free

enzyme, enzyme substrate complex, and product bound to the enzyme (see supplementary

material for further discussion).

In conclusion, our data show clear electron density in the binding pockets, which changes

between the apo and mixed states. The electron density of the mixed sample matches ceftriax-

one and its products fairly well, which shows that binding of the substrate to BlaC in the crystal

took place, and occurred extensively across the crystals so that electron density is clearly visi-

ble in the active site. The lack of strong density for the thiodioxotriazine ring also suggests that

the enzyme is turning over, although we cannot rule out the possibility that it is just disordered

in this context. This constitutes a proof-of-principle that room temperature MISC on enzymes is

possible. Future experiments with further increase in time resolution of the mixing process

should allow us to separate the events in time throughout the course of the catalytic cycle, free

of radiation-damage and photoelectron reduction effects. The potential impact of this method

on the field of enzymology and related disciplines is unquestionably exciting, since it allows

both the atomic structures of stable intermediates and the time scales of their inter-conversions

to be observed directly at atomic resolution.

SUPPLEMENTARY MATERIAL

See supplementary material for the further detailed discussion and analysis.
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