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Abstract

Background

Children from families with low socioeconomic status (SES), as determined by income,

experience several negative outcomes, such as higher rates of newborn mortality and

behavioral issues. Moreover, associations between DNA methylation and low income or

poverty status are evident beginning at birth, suggesting prenatal influences on offspring

development. Recent evidence suggests neighborhood opportunities may protect against

some of the health consequences of living in low income households. The goal of this study

was to assess whether neighborhood opportunities moderate associations between house-

hold income (HI) and neonate developmental maturity as measured with DNA methylation.

Methods

Umbilical cord blood DNA methylation data was available in 198 mother-neonate pairs from

the larger CANDLE cohort. Gestational age acceleration was calculated using an epigenetic

clock designed for neonates. Prenatal HI and neighborhood opportunities measured with

the Childhood Opportunity Index (COI) were regressed on gestational age acceleration con-

trolling for sex, race, and cellular composition.

Results

Higher HI was associated with higher gestational age acceleration (B = .145, t = 4.969,

p = 1.56x10-6, 95% CI [.087, .202]). Contrary to expectation, an interaction emerged show-

ing higher neighborhood educational opportunity was associated with lower gestational

age acceleration at birth for neonates with mothers living in moderate to high HI (B = -.048,

t = -2.08, p = .03, 95% CI [-.092, -.002]). Female neonates showed higher gestational age

acceleration at birth compared to males. However, within males, being born into neighbor-

hoods with higher social and economic opportunity was associated with higher gestational

age acceleration.
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Conclusion

Prenatal HI and neighborhood qualities may affect gestational age acceleration at birth.

Therefore, policy makers should consider neighborhood qualities as one opportunity to miti-

gate prenatal developmental effects of HI.

Introduction

More than 43 million people live in low income households in the United States [1]. Children

raised in a low income environment have been associated with a spectrum of negative health

outcomes such as poor academic performance, fewer years of school completion [2], behav-

ioral problems, and increased neonatal mortality rates [3, 4]. Effects of low household income

(HI) have been found beginning in utero suggesting lower birth rate [5], increased risk for pre-

term birth [6], altered cortisol regulation [7], and through to adulthood when adult working

memory capacity has been found to be negatively impacted [8]. Moreover, the consequences

of low HI on fetal development are indicative of biological embedding that can perpetuate a

cycle of generational income patterns making it difficult for subsequent generations to achieve

better economic status [9].

Neighborhood factors can promote healthy child development such as higher IQ [10], over-

all cognitive processes, and healthy psychophysiology [11]. The impact of protective factors

(such as access to community resources) on ameliorating the effects of childhood low HI are

less clear. Roubinov and colleagues [12] found that neighborhood opportunities may protect

against some of the stress and health consequences of living in a low income household. Chil-

dren living in neighborhoods with higher opportunities did not show any association between

HI and cortisol or physical health outcomes [13]. Therefore, neighborhood opportunities may

prevent or reduce the biological consequences of stress associated with a low HI. Yet, it is

unknown if the potential buffering effects of neighborhood opportunities could affect HI-

linked outcomes in prenatal development. The mechanisms of how HI may affect prenatal

development are not well understood, or how maternal exposure to a beneficial factor, such as

neighborhood opportunities, may ameliorate the effects of low HI on prenatal development.

Maternal exposure to neighborhood opportunities may mitigate the effects of low HI on the

developing fetus.

Studies have found associations between childhood low HI and DNA methylation in adult-

hood, highlighting the potential long-term effects of low income exposure [8, 14]. Associations

between DNA methylation and HI are evident even at birth, suggesting that prenatal exposure

to low HI can affect DNA methylation patterns during fetal development [7, 15–18]. Changes

in DNA methylation may be a mechanism underlying biological embedding of early-life expo-

sure to low HI [14, 19]. Therefore, DNA methylation patterns established during childhood

may create a trajectory of development that, when influenced by HI, could increase risk for

low income-related outcomes in adulthood, including diminished negative emotion regulation

[20] and higher allostatic load [21].

We have previously developed a DNA methylation-based biomarker of gestational age [22],

DNA methylation gestational age (DNAm GA), that may provide novel insight into the effects

of maternal income on development early in life. DNAm GA is a polyepigenetic score based

on 148 CpG sites across the genome [22]. DNAm GA can be used to calculate a metric of

developmental maturity, termed gestational age acceleration, which is the residual between

DNAm GA and clinically estimated gestational age. This biomarker may offer a new
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perspective on how prenatal exposure to HI affects neonatal development. We have previously

demonstrated that developmental age is associated with maternal Medicaid status in the CAN-

DLE cohort, an indicator of HI [22]. The benefit of using Medicaid status as an indicator of HI

is it includes a large proportion of individuals living with lower income. However, there may

be beneficial knowledge gained from exploring the spectrum of HI in terms of the effects on

gestational age acceleration at birth. Furthermore, we wanted to provide a more refined assess-

ment of the interplay between the presence and absence of different neighborhood opportu-

nity types in relation to developmental maturity. Therefore, we included a Childhood

Opportunity Index (COI) previously created to map opportunities by neighborhood that

include sub-domains of health and environment, social and economic, and education [23] fol-

lowing the protocol described in earlier research [13].

Previous research has identified sex-specific associations between HI and varying develop-

mental outcomes, such as chronic low income associating with poor cognitive developmental

effects only in girls [24, 25]. Furthermore, developmental age differences based on neonatal

sex have been previously demonstrated [26–28] and these differences may be due to neuroen-

docrine variations between male and female fetus development [29, 30]. Such biological differ-

ences may also result in sex-specific patterns of DNA methylation [31] that could result in

different sensitivities to the social environment [29]. Based on the distinct biological changes

by sex, prior sex-specific findings, and previous associations of developmental age with sex, it

is vital to consider sex-specific associations between HI and DNAm. This addresses a critical

gap in the literature as sex-specific differences are often understudied and may have significant

impacts on the interpretation of findings [32, 33]. Considering sex-specific associations will

help inform professionals engaged in areas of child development about unique needs between

male and female children in relation to prenatal HI. We sought to identify associations

between mother’s income, their neighborhood opportunities, newborns’ gestational age accel-

eration, and the potential for newborn sex to moderate associations by leveraging a subset of

data from the CANDLE cohort [34–36]. This study is not published or considered elsewhere.

Methods

Cohort description

This study meets ethical principles of the Helsinki Declaration, protection of human subjects

outlined in the Belmont Report, was approved by the CANDLE ethical oversight committee,

which is the research group IRB, and was exempt from IRB review at Emory and Syracuse Uni-

versities given the de-identified secondary data analysis. Data used for this study are available

through CANDLE and collaboration application information can be found on their website

(https://candlestudy.uthsc.edu/collaboration/). The study data are from the CANDLE cohort

(Conditions Affecting Neurocognitive Development and Learning in Early Childhood) who

participated in the original data collection from and were accessed in June 2018. Details of this

cohort are previously described [36]. Briefly, this cohort consists of 198 mother-neonate pairs

recruited from prenatal clinics in western Tennessee. Selected participants were of ages 16–40

years, having a singleton pregnancy and low-risk pregnancy status.

Household income

Household income (HI) was self-reported by mother participants and adjusted for the number

of household members. Household income was divided by the square root of the number of

people in the family and the correct income adjustment was noted for the household. Income

was reported by mothers and treated as continuous and categorical when divided into moder-

ate-high- and low-income groups. Categorical HI was used to further discern the effects of
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income when appropriate. HI was reported in increments of 5,000 to 10,000 with a range of 0

to 75,000 or greater. The majority of participating mothers reported income, after adjustment,

within $20,000 and $44,999 annually. Low household income was determined to be adjusted

HI� $24,999 according to federal poverty guidelines 2024 and the income categories closest

to the determined value ($25,820) for a family of three [37].

Neighborhood opportunities

Neighborhood opportunities, as measured by the Childhood Opportunity Index (COI), were

compiled following previously developed protocol using publicly available data from nation-

ally representative surveys [23]. The COI development was outlined by Acevedo-Garcia and

colleagues [23]. The Child Opportunity Index and its three opportunity domains are calculated

for all census tracts in the 100 largest US urban regions. About 4,000 people and 1,600 homes

live in each census tract. A metropolitan area includes a center urban district with over 50,000

people and surrounding counties that are socially and economically integrated. Research and

conceptual frameworks informed on how neighborhoods affect child development. Z-scores

compared a neighborhood’s opportunity indicators to those of other neighborhoods in the

region. This method measures neighborhood data by proximity to regional averages. The

three domains’ opportunity indices are calculated by averaging each indication’s z-scores.

Finally, the domain indices are averaged to calculate the opportunity index [38].

The COI was computed into an overall summary score and sub-domains of education,

social and economic, and health and environment opportunities, each treated as continuous

variables. The COI sub- domains include data that can be used to inform on opportunities

available for children and parents [23]. The health and environment domain includes mea-

surements such as proximity to parks and healthcare facilities, nearby toxic waste, and the

housing vacancy rate. The social and economic domain includes measures of poverty, unem-

ployment, proximity to available work, and public assistance. The education domain consists

of measures of local area students’ math and reading proficiency, proximity to quality early-

childhood learning centers, high school graduation rates, and adult education attainment. Sev-

enteen participants had random missing values among income status, COI, and race variables

so we employed pairwise deletion to address the missing data.

Covariates

Neonate sex, race, and gestational age were derived from a neonate summary form completed

after birth. Sex was coded as a binary variable (male = 0, female = 1). Race was coded with cate-

gories including African American, Caucasian, Asian, and “other”. While the race categories

were not exhaustive and did not include an ethnicity option for Hispanic or Latino, this is due

to the predominant African American and Caucasian population distribution within the geo-

graphic area of this study sample from the west Tennessee region. Only one participant was

identified as Asian, and four identified as “other”. Four percent of participants were missing

race data and the remaining 93.5% of participants were identified as African American or Cau-

casian. Gestational age was treated as a continuous variable with a range of 30–44 weeks esti-

mated gestation from the neonate summary form completed by the mother’s medical care

provider.

Biological sample collection and DNA extraction

The hospital staff obtained umbilical cord blood using conventional protocols. The entire

blood sample was then utilized to extract and evaluate DNA methylation and gene expression.

The DNA extraction was conducted by CANDLE researchers at the Department of Health and
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Science of the University of Tennessee in Memphis using the Wizard Genomic DNA purifica-

tion kit (Promega Corp.). The DNA was bisulphite-converted using the EZ-96 DNA Methyla-

tion kit from Zymo Research. Samples were processed on the HumanMethylation27 BeadChip

according to manufacturer’s specifications (Illumina Inc.). An initial data quality assessment

was performed using the R package CpGassoc [39]. CpG sites exhibiting low signal or contain-

ing missing data in over 5% of samples were excluded, as were samples with missing data for

over 5% of CpG sites, no samples or CpG sites failed this initial QC. Subsequently, cross-reac-

tive, and polymorphic CpGs were deleted. The beta values (β) for each CpG site were com-

puted by dividing the methylation signal (M) by the sum of the methylated and unmethylated

signals (M+U): β = M/M+U. DNA methylation QC was conducted as previously described

[22]. Samples were checked for sex match discordance and no samples failed. The ComBat

method was employed to mitigate the influence of chip and position effects that could poten-

tially distort the results [40]. The revised dataset was utilized to estimate gestational age accel-

eration as previously described by Knight and colleagues (2016) [22]. A Cross reference check

of the gestational age acceleration (GAA) CpG sites and the Illumina HumanMethylation27K

annotation file revealed that all 148 CpG sites used to estimate GAA were included in the

HumanMethylation27K data for the neonates.

Statistical analysis

Gestational age acceleration was regressed on prenatal household income (HI) and maternal

exposure to COI in separate and combined linear models while controlling for neonate sex,

race, and cellular composition estimated from methylation data [41]. A second analysis

regressed interaction variables containing (1) neonate sex and HI, and (2) neonate sex and

COI on gestational age acceleration to investigate moderating effects. All interactions tested

used a significance cutoff of p< .05. A sex-stratified analysis was conducted to extrapolate

meaningful details in the sex-specific associations while controlling for the appropriate covari-

ates. All analyses were conducted in R version 1.1.383 [42].

Results

Variable descriptive statistics

The majority of neonates in this subset (N = 198) were male (52%) and mostly African Ameri-

can (n = 102). Caucasian accounted for the next largest group of neonates (n = 91), and some

neonates identified as “other” (n = 4), or Asian (n = 1) with 4% of participants missing race

data. As the HI increased for mothers so did the COI overall (B = .065, t = 9.166, p< 2x10-16,

95% CI [.053, .082]), health and environment (B = .123, t = 4.513, p = 1.08x10-5, 95% CI [.068,

.182]), education (B = .159, t = 6.565, p = 4.25x10-10 95% CI [.121, .219]), and social and eco-

nomic (B = .217, t = 9.507, p< 2x10-16, 95% CI [.171, .264]) opportunities (Fig 1A–1D).

Though the subdomains are moderately correlated (r’s = .50 to .64; p< .05), they each provide

independent information (variance inflation factors < 5). Gestational age acceleration was

normally distributed as shown in Fig 2 (M = 0, SD = 1.54, Min = -5.01, Max = 4.36).

Household income, neighborhood opportunity, and gestational age

acceleration

In the full sample, gestational age acceleration was positively associated with HI showing

increased gestational age acceleration with higher HI and decreased gestational age accelera-

tion with lower HI after controlling for sex, race and cell type (B = .145, t = 4.969, p = 1.56x10-

6, 95% CI [.087, .202], Fig 3). Due to small group sizes, we collapsed child race into Caucasian

PLOS ONE Poverty and NOI effects on neonate DNAm developmental age

PLOS ONE | https://doi.org/10.1371/journal.pone.0306452 July 12, 2024 5 / 14

https://doi.org/10.1371/journal.pone.0306452


and non-Caucasian neonates to investigate within-race HI associations. Only 2% of Caucasian

neonates had mothers living in a low HI compared to 48% of non-Caucasian neonates, and as

a result we were not adequately powered to examine within-race HI associations with gesta-

tional age acceleration in Caucasian neonates. However, non-Caucasian neonates showed the

same positive association between HI and gestational age acceleration as found in the full

cohort (B = .134, t = 3.167, p = .002, 95% CI [.050, .218]).

We next examined whether prenatal COI was associated with gestational age acceleration at

birth. Overall COI did not associate with gestational age acceleration (p> .05).

Fig 1. Histograms by household income status. (A) Mothers living in moderate to high household income showed

greater access to neighborhood opportunities overall (B = .065, t = 9.166, p< 2x10-16), (B) health and environment (B

= .123, t = 4.513, p = 1.08x10-5), (C) social and economic (B = .217, t = 9.507, p< 2x10-16), and (D) education

opportunities (B = .159, t = 6.565, p = 4.25x10-10).

https://doi.org/10.1371/journal.pone.0306452.g001

Fig 2. Histogram of neonate gestational age acceleration. Neonate gestational age acceleration is normally

distributed (M = 0, SD = 1.54, Min = -5.01, Max = 4.36) with an age above “0” indicative of greater physical

development for the gestational age at birth.

https://doi.org/10.1371/journal.pone.0306452.g002
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Analysis of the subdomains of COI showed education (p > .05), health and environment

opportunities (p> .05), and social and economic opportunities (p> .05) did not associate

with gestational age acceleration. However, previous findings revealed higher cortisol levels

with lower COI in children living in low HI, but lower cortisol levels with lower COI in chil-

dren living in high HI [13]. Therefore, we stratified the sample by low/mod-high HI status to

assess for association differences by HI. COI did not associate with gestational age acceleration

in neonates prenatally exposed to a low HI (Overall COI, p> .05; Education, p> .05; Health

and Environment, p> .05; Social and Economic, p> .05). However, mothers living in mod-

high HI with higher education opportunities had neonates with lower gestational age accelera-

tion at birth compared to peers living in low HI with the highest education opportunities

(B = -.048, t = -2.08, p = .03, 95% CI [-.092, -.002], Fig 4). Overall COI (p> .05), health and

environment (p> .05), and social and economic opportunities (p> .05) did not associate with

gestational age acceleration in neonates born into mod-high HI.

Neonatal sex as a moderator of COI and household income associations

with developmental age

We analyzed the phenotypes for differences by neonatal sex controlling for child race. Overall

COI (B = .166, t = 2.75, p = .006, 95% CI [.046, .285]), and social and economic opportunity

(B = .602, t = 3.137, p = .002, 95% CI [.223, .980]) varied between males and females (Table 1).

We further assessed developmental age for sex differences and found female neonates showed

Fig 3. Household income association with gestational age acceleration. Prenatal household income (x-axis)

positively associated with gestational age acceleration (y-axis) after controlling for neonatal sex, race, and cell

composition (B = .145, t = 4.969, p = 1.56x10-6).

https://doi.org/10.1371/journal.pone.0306452.g003
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higher gestational age acceleration at birth compared to male neonates after controlling for

race and cell composition (B = .794, t = 3.415, p = .0007, 95% CI [.335, 1.253], Fig 5). We evalu-

ated the interaction of neonatal sex and HI on gestational age acceleration and found no mod-

erating association (p> .05). The interaction analysis for neonate sex and COI overall also

proved no association for moderating effects on gestational age acceleration (p> .05). The

subdomains of COI also did not show interactions with neonate sex on gestational age acceler-

ation (health and environment: p> .05; social and economic: p> .05; education: p> .05).

Given that interaction models can require large statistical power and that our cohort neonate

gestational age acceleration varied by sex, we sex-stratified the sample to explore the potential

for smaller associations that could inform the complexity of the environmental influence.

COI did not associate with gestational age acceleration in female neonates: overall COI

(p> .05), health and environment (p> .05), education (p> .05), and social and economic

opportunities (p> .05). Likewise, overall COI did not associate with gestational age accelera-

tion in male neonates (p> .05), health and environment (p> .05), or education (p> .05).

However, males did exhibit higher gestational age acceleration with higher neighborhood

social and economic opportunity (B = .335, t = 3.096, p = .003, 95% CI [.120, .550], Fig 6). A

summary of HI associations is included in Table 2, and neonate sex associations are summa-

rized in Table 3.

Table 1. Demographic, risk, and protective factors by neonate sex.

Variable Full Sample Males N (%) Females N (%)
Neonate Sex 198 103 (52%) 95(48%)

Non-Caucasian 107 60 (30%) 47 (24%)

Household Income (Mean±SD) 22,739±17,820 21,049±18,648 24,412±16890

COI: Overall (Mean±SD) .09±.45 .02±.42 .17±.47

COI: Health & Environment (Mean±SD) 2.24±1.45 2.05±1.46 2.45±1.41

COI: Social & Economic (Mean±SD) 2.17±1.41 1.91±1.48 2.44±1.29

COI: Education (Mean±SD) 2.3±1.37 2.25±1.29 2.35±1.45

https://doi.org/10.1371/journal.pone.0306452.t001

Fig 4. Gestational age acceleration by education opportunity in neonates exposed to mod-high household income.

Neonates born into neighborhoods with more education opportunity (x-axis) have lower gestational age acceleration

(y-axis) (B = -.048, t = -2.08, p = .03). Gestational age acceleration is graphed in mean values.

https://doi.org/10.1371/journal.pone.0306452.g004
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Discussion

This is the first study, to our knowledge, to investigate the direct and interaction effects of

neighborhood opportunity (measured with the childhood opportunity index), household

income, and neonate sex on gestational age acceleration. A recent study examined the

Fig 5. Neonatal sex association with gestational age acceleration. Female neonates (x- axis) have higher gestational

age acceleration (y-axis) compared to male neonates at birth (B = .794, t = 3.415, p = .0007).

https://doi.org/10.1371/journal.pone.0306452.g005

Fig 6. Neonatal sex moderates association among social & economic opportunity and gestational age acceleration.

Males exhibit higher gestational age acceleration with highest neighborhood social and economic opportunity

compared to females (B = .335, t = 3.096, p = .003).

https://doi.org/10.1371/journal.pone.0306452.g006
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childhood opportunity index and age acceleration in children as young as 6 years and found a

positive correlation across several age acceleration clocks [43]. It is possible that our null find-

ings for direct effects of COI were due to the indirect exposure through the mother during

pregnancy.

In this study, we extended and supported our previous findings of lower socioeconomic sta-

tus associations with lower gestational age acceleration at birth [44] with a different indicator

of SES, specifically household income (HI). Lower gestational age acceleration was associated

with prenatal lower household income. Previous research has shown a positive association

between children and teenagers aged 8–18 years living in impoverished homes and areas and

the rate at which they age measured with age acceleration residuals [45]. The results of our

study contradict the expected direction of the relationship, yet the negative effects on biology

are comparable in terms of risk. A newborn with lower gestational age acceleration has less

physical development compared to their peers, which consequently puts them at a higher risk

for possible health problems. Children who experience accelerated aging would likewise face

heightened health risks.

Our direct effects of sex findings are consistent with previous research suggesting male neo-

nates have lower gestational age acceleration compared to female neonates at birth [46, 47] but

are in contrast to prior research on twins showing young adult males have increased age accel-

eration compared to female peers [48]. However, higher gestational age acceleration was

found in male neonates with mothers who reported greater social and economic opportunity

in the neighborhood. This could be due to variation in the neuroendocrine milieu during pre-

natal development, but additional research is needed to discern specific mechanisms and path-

ways. Future studies could investigate race as a potential confounder and assess the influence

of different neighborhood opportunities within the context of race and sex-specific associa-

tions with gestational age acceleration.

We did detect lower gestational age acceleration in newborns that did not experience pre-

natal exposure to low household income and were born in neighborhoods with more educa-

tion opportunities. It is possible that the limited neighborhood opportunities available to our

Table 2. Household income associations.

Model Coeff. (B) t-statistic p-value 95% CI
HI!COI .065 9.166 < 2x10-16 [.053, .082]

HI!Health & Environment .123 4.513 1.08x10-5 [.068, .182]

HI!Education .159 6.565 4.25x10-10 [.121, .219]

HI!Social & Economic .217 9.507 < 2x10-16 [.171, .264]

HI!Gestational Age Acceleration .145 4.969 1.56x10-6 [.087, .202]

Non-Caucasian HI!Gestational Age Acceleration .134 3.167 .002 [.050, .218]

HI*Education!Gestational Age Acceleration -.048 -2.08 .03 [-.092, -.002]

https://doi.org/10.1371/journal.pone.0306452.t002

Table 3. Neonate sex associations.

Model Coeff. (B) t-statistic p-value 95% CI
Sex!COI .166 2.75 .006 [.046, .285]

Sex!Social & Economic .602 3.137 .002 [.223, .980]

Sex!Gestational Age Acceleration .794 3.415 .0007 [.335, 1.253]

Males subset

Social & Economic! Gestational Age Acceleration

.335 3.096 .003 [.120, .550]

https://doi.org/10.1371/journal.pone.0306452.t003
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participants living in a lower household income likely reduced our power to detect more com-

plex relationships between maternal household income, neighborhood opportunities, and neo-

nate gestational age acceleration. Replication of this study in a larger sample may identify

neighborhood opportunities that interact with household income to provide protective effects

for the developing fetus. Furthermore, the difference in gestational age acceleration between

male and female neonates supports the need to assess results for varying effects on males and

females. In time, the implications for practice could include improved health and development

of intervention and prevention strategies for children according to their household income.

Limitations

There are some limitations to this study. First, the sample is from one urban community in

western Tennessee and therefore generalizability may be limited. Furthermore, this study had

a moderate sample size that was reduced in stratified sample analyses. Although sex-stratified

analyses provide more meaningful information for interpretation, the reduced sample size

also reduces statistical power. Additionally, fewer individuals living in a low household

income resided in the highest-opportunity neighborhoods whereas those living with more

economic means lived in neighborhoods across the full spectrum of opportunity (see Fig 1).

Therefore, our ability to optimally test for interactions between COI and household income

in association with gestational age acceleration was limited. Lastly, an alternative gestational

age acceleration predictor [49] that could have been used to compare results is incompatible

with the DNA methylation array used for this study. Future research on gestational age accel-

eration would benefit from including a more diverse racial and household income sample to

discern effects associated with race and household income separately. Despite these limita-

tions, this study provides important initial examinations of unstudied gestational age acceler-

ation in newborns associated with neighborhood characteristics and prenatal household

income which can provide valuable insight for prevention planning to promote healthy pre-

natal development.

Future implications

This study shows household income and neighborhood characteristics can have intergenera-

tional effects on neonate gestational age acceleration at birth. Furthermore, social and eco-

nomic opportunity mitigated the lower gestational age acceleration in male neonates.

Improving our understanding of how we differ between the sexes in our adaptation to the

environment will aid our endeavors to improve quality of life for those living with disadvan-

tage and adversity.
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