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Abstract

Calcite precipitation plays a significant role in processes such as geological carbon 

sequestration and toxic metal sequestration and, yet, the rates and mechanisms of 

calcite growth under close to equilibrium conditions are far from well understood. In this 

study, a quartz crystal microbalance with dissipation (QCM-D) was used for the first time

to measure macroscopic calcite growth rates. Calcite seed crystals were first nucleated 

and grown on sensors, then growth rates of calcite seed crystals were measured in real-

time under close to equilibrium conditions (saturation index, SI = log ({Ca2+}/

{CO3
2−}/Ksp) = 0.01–0.7, where {i} represent ion activities and Ksp = 10−8.48 is the 

calcite thermodynamic solubility constant). At the end of the experiments, total masses 

of calcite crystals on sensors measured by QCM-D and inductively coupled plasma 

mass spectrometry (ICP-MS) were consistent, validating the QCM-D measurements. 

Calcite growth rates measured by QCM-D were compared with reported macroscopic 

growth rates measured with auto-titration, ICP-MS, and microbalance. Calcite growth 

rates measured by QCM-D were also compared with microscopic growth rates 

measured by atomic force microscopy (AFM) and with rates predicted by two process-

based crystal growth models. The discrepancies in growth rates among AFM 

measurements and model predictions appear to mainly arise from differences in step 

densities, and the step velocities were consistent among the AFM measurements as 

well as with both model predictions. Using the predicted steady-state step velocity and 

the measured step densities, both models predict well the growth rates measured using 

QCM-D and AFM. This study provides valuable insights into the effects of reactive site 

densities on calcite growth rate, which may help design future growth models to predict 

transient-state step densities.
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1. Introduction

Calcite, as a major mineral in sedimentary rocks, can precipitate in many natural and 

anthropogenic systems (Tucker and Wright, 1990, Morse and Arvidson, 2002, Morse et 

al., 2007). Quantitatively understanding the extent, location and rate of calcite 

precipitation provides important information on paleo-environments as well as on the 

geochemical processes taking place during geological carbon sequestration and toxic 

metal sequestration (Marshall and McCulloch, 2002, Fantle and DePaolo, 

2005, Lagneau et al., 2005, Eisenhauer et al., 2009, Bracco et al., 2012, Stack, 2014).

The kinetics of calcite growth as a function of solution chemistry has been studied 

extensively for decades by both macroscale and microscale experimental techniques. 

Macroscopic calcite growth rates have been determined by either monitoring solution 

composition changes or measuring the mass change of calcite seed crystals (Nancollas

and Reddy, 1971, Reddy and Gaillard, 1981, Christoffersen and Christoffersen, 

1990, Zhong and Mucci, 1993, Zuddas and Mucci, 1994, Zuddas and Mucci, 

1998, Nehrke et al., 2007, Lopez et al., 2009, Gebrehiwet et al., 2012). However, some 

of these methods may not be able to provide real-time measurements of slow growth 

rates under close to equilibrium conditions. For example, Nehrke et al. (2007) used a 

microbalance with a resolution of 0.1 µg to measure the growth rates of a calcite seed 

crystal in solution at a saturation index (SI = log ({Ca2+}/{CO3
2−}/Ksp), where {i} represent 

ion activities and Ksp = 10−8.48 is the calcite thermodynamic solubility constant) of 0.70. 

After 266 hrs, the total mass increase of the calcite seed crystal was only 33 µg. In 

recent decades, calcite growth has been studied under different solution conditions 

using in situ atomic force microscopy (AFM) (Gratz et al., 1993, Teng et al., 

2000, Larsen et al., 2010a, Larsen et al., 2010b, Stack and Grantham, 2010, Ruiz-

Agudo et al., 2011a, Bracco et al., 2012, Bracco et al., 2013). Based on the observed 

steady-state step densities and step velocities, macroscopic growth rates can 

theoretically be inferred from these sub-microscale images. However, the growth rates 

calculated based on these AFM observations were limited to growth that occurred on 

single spirals and did not include other growth mechanisms, such as single-sourced 

multi-spiral growth and 2-D nucleation (Teng et al., 2000). Moreover, calcite growth and 

dissolution may occur simultaneously at different locations on the crystal surface (Stack 
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and Grantham, 2010). Therefore, localized microscopic calcite growth rates measured 

by AFM may not necessarily represent macroscopic growth rates, which are required to 

predict large-scale calcite growth in geologic settings using reactive transport modeling 

(Steefel et al., 2005). Little has been reported on the macroscopic growth rates of 

calcite under close to equilibrium conditions (SI < 0.10), despite the fact that this is a 

common condition in natural geologic systems (Plummer, 1975, Zhong and Mucci, 

1993). Zuddas and Mucci (1994)reported macroscopic calcite growth rates 

under atmospheric pressure condition but at relatively high 

solution supersaturations (SI > 0.15). Data on macroscopic calcite growth rates under 

close to equilibrium conditions at atmospheric pressure conditions are still extremely 

limited.

The quartz crystal microbalance with dissipation (QCM-D) technique can detect 

variations in mass as low as 0.5 ng/cm2 on a quartz sensor, by monitoring changes 

in resonant frequencyand dissipation of an oscillating quartz sensor. The resonant 

frequency shift (Δf) is related to the mass change on the sensor (Richter and Brisson, 

2004, Dixon, 2008), and the dissipation shift (ΔD) is related to the rigidity of the surface 

layer on the sensor (Richter and Brisson, 2004, Dixon, 2008). QCM-D has been widely 

utilized to investigate interactions at solid-liquid interfaces, including the adsorption of 

molecules (Maroni et al., 2015, Zhu et al., 2016) and ions (Dai and Hu, 2014, Dai et al., 

2016a, Dai et al., 2016b) as well as the deposition of nanoparticles and biomolecules 

onto organic/inorganic coatings (Richter and Brisson, 2004, Höök et al., 2008, Knoll et 

al., 2008, Chen et al., 2016). Here, QCM-D was used for the first time to quantify 

macroscopic calcite crystal growth rates under close-to-equilibrium conditions.

2. Materials and methods

2.1. Setup of calcite growth experiments

Calcite growth on QCM-D sensors was conducted with a Q-Sense E4 system (Biolin 

Scientific) at 25.0 ± 0.1 °C using the experimental setup shown in Fig. 1. The prepared 

CaCl2and NaHCO3 solutions were placed in a water bath to keep the temperature at 

25.0 ± 0.1 °C. Each solution was pumped by a peristaltic pump (IPC-N 4, Ismatec) at a 

flow rate of 0.125 mL/min. The CaCl2 and NaHCO3 solutions were mixed in a small 

mixing cell (volume: ∼70 µl) with magnetic stirring immediately before injection into the 

QCM-D chamber (temperature maintained at 25.0 ± 0.1 °C, volume: ∼40 µl).
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1. Download high-res image     (79KB)

2. Download full-size image

Fig. 1. Schematic plot of the flow through set up for QCM-D experiments.

2.2. Solution preparation

ACS reagent grade chemicals (CaCl2·2H2O, NaHCO3) were used to prepare stock 

solutions of CaCl2 (0.00239 M) and NaHCO3 (0.155 M). Ultrapure water (18.2 MΩ·cm) 

was sparged with air for 24 h to ensure complete equilibration with atmospheric CO2. 

Immediately before each experiment, CaCl2 and NaHCO3 stock solutions were weighed 

with a Mettler Toledo balance (0.1 mg precision) and diluted with the sparged ultrapure 

water to prepare separate CaCl2 and NaHCO3 solutions with the desired concentrations. 

Using PHREEQC (version 3.3.3.10424) and the thermodynamic data from the 

Lawrence Livermore National Library database (llnl.dat), the mixed solution 

compositions, pH, ion activities, and saturation indices with respect to calcite were 

calculated, as given in Table 1. For all experiments, the pH values (8.18–8.22) and 

activity ratios (0.97–1.07) of {Ca2+}/{CO3
2−}in the mixed solutions were similar. 

Two Ksp values for calcite at 25 °C, 10−8.54 (Teng et al., 1998) and 10−8.48(Plummer and 

Busenberg, 1982), have been used in previous studies (Plummer and Busenberg, 

1982, Teng et al., 1998, Teng et al., 1999, Teng et al., 2000, Larsen et al., 

2010a, Larsen et al., 2010b, Teng et al., 2011, Gebrehiwet et al., 2012, Bracco et al., 

2013). In this study, QCM-D experiments were conducted using a solution with 

8.46 × 10−5 M Ca2+and 8.18 × 10−5 M CO3
2− (Sample #1, Table 1). This solution is 

supersaturated with respect to calcite if a Ksp = 10−8.54 is used, and undersaturated if 

a Ksp = 10−8.48 is used. The QCM-D measurements reported here (Fig. A1) indicated that 

calcite dissolution rather than growth took place in this solution. Thus Ksp = 10−8.48 was 

used in this study to calculate calcite supersaturations (Table 1, −0.01 to 0.70).
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Table 1. Solution compositions for calcite growth experiments and the calculated growth rates. 

Concentration of ions ([Ca2+], [CO3
2]), activities of ions ({Ca2+}, {CO3

2−}), calcium/carbonate activity ratios 

({Ca2+}/{CO3
2−}), saturation indices (SI) with respect to calcite, ionic strength values (IS), pH, and calculated

calcite growth rates are listed.

Sample 
No.

[Ca2+] 
(10−5 M)

[CO3
2−] 

(10−5 M)
{Ca2+} 
(10−5)

{CO3
2−} 

(10−5)
{Ca2+}/{CO3

2−} SIa IS 
(mM)

pH Calcite growth rate 
(10−2µmol/m2/s)

# 1 8.46 8.18 5.83 5.55 1.05 −0.01 8.82 8.22 −3.1 ± 0.2

# 2 8.69 8.42 5.96 5.69 1.05 0.01 9.05 8.22 1.4 ± 0.1

# 3 8.81 8.54 6.03 5.76 1.05 0.02 9.18 8.22 3.2 ± 0.7

# 4 8.94 8.68 6.11 5.83 1.05 0.03 9.31 8.22 4.7 ± 0.6

# 5 9.06 8.81 6.18 5.91 1.05 0.04 9.44 8.22 6.4 ± 0.3

# 6 9.17 8.94 6.24 5.98 1.05 0.05 9.57 8.22 7.6 ± 0.8

# 7 9.58 9.54 6.45 6.32 1.05 0.10 10.16 8.22 13 ± 0.1

# 8 12.6 12.6 8.09 7.96 1.02 0.30 13.24 8.21 30 ± 6.4

# 9 17.1 16.4 10.5 9.93 1.07 0.50 17.12 8.2
0

138 ± 15

# 10 22.3 23.7 12.7 13.1 0.97 0.70 24.18 8.18 226 ± 22

a

SI = log ({Ca2+}/{CO3
2−}Ksp), where {i} represent ion activities and Ksp = 10−8.48 is the calcite 

thermodynamic solubility constant.

2.3. Real-time calcite growth experiments in QCM-D chamber

QCM-D measurements were conducted in two steps (Fig. 2): first, calcite 

seed crystals were generated on sensors coated with OH-terminated self-assembled 

monolayers (SAMs) (Aizenberg et al., 1999a, Aizenberg et al., 1999b, Wang et al., 

2010) at a relatively high SI = 0.70 (Step I, details in Appendix A), and second, the 

growth rates of calcite seed crystals were quantified under close to equilibrium 

conditions (Step II, SI = 0.01–0.50, Table 1). Immediately after switching feed solutions, 

the flow rate was increased to 1.20 mL/min for five mins to allow the new feed solutions 

(SI < 0.70) to fully replace the initial solution (SI = 0.70) in the system. Thereafter, the 

pump was adjusted back to a flow rate of 0.125 mL/min.
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Fig. 2. QCM-D measurements of calcite seed crystal generation (Step I, SI = 0.70) and 
growth in solutions with lower SI values (Step II, SI = 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 
0.30, and 0.50, Figures a-h). The blue markers indicate frequency changes shown on 
the left Y axis. The red markers indicate dissipation changes shown on the right Y axis. 
Data in shaded areas were fitted to calculate calcite growth rates, and the solid black 
lines were model fittings. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)

2.4. QCM-D data analysis

The real-time changes in resonant frequency (Δf) and dissipation (ΔD) of the sensors 

(Fig. 3) caused by calcite nucleation and growth were fitted to a Kelvin-Voigt viscoelastic

model (Voinova et al., 1999) (fitted curves are shown as black lines in Fig. 3) using 

QTools software (Version 3.0, Biolin Scientific AB). By obtaining the best fits of the 

QCM-D measured frequency (Δf) and dissipation (ΔD) changes at different overtones 

(e.g., 15 MHz, 25 MHz, 35 MHz and 45 MHz), film viscosity, mass changes on sensors 

were calculated. More details of model fitting can be found in Appendix A.
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Fig. 3. Calcite masses on sensors calculated from QCM-D and ICP-MS measurements.

2.5. Ex-situ characterization of calcite coverage on sensor using optical microscopy

At the end of each QCM-D experiment, the sensor was removed from the QCM-D 

chamber, rinsed with ethanol to remove the residual solution, and dried with N2 gas. To 

quantify the surface coverage of calcite crystals on the sensor, the sensor surface was 

imaged by optical microscopy (Optem, Qioptiq). Using a magnification of 500, a total of 

50 pictures were taken to cover the entire sensor surface. A typical image collected by 

the optical microscopy at 500× magnification is shown in Fig. A3. Using Image J 

software, the original optical image was processed to a black-and-white version (Fig. 
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A3) and surface coverage of the sensor by dark spots corresponding to calcite crystals 

was calculated. By analyzing all 50 images, the coverage of calcite crystals on the 

entire sensor surface was calculated, as shown in Table A1.

The sensor was only partially covered with calcite crystals (Fig. A3), with a large 

percentage of the sensor covered by SAM coatings. Therefore, it is possible that the 

mass changes recorded by the sensor during seed crystal growth (Step II) may be 

partially generated by ion adsorption and/or the nucleation of additional calcite on the 

SAMs. To investigate such effects, control experiments were conducted using the same 

flow system (Fig. 1), but by directly flowing a solution with SI = 0.30 or 0.50 over a SAM-

coated sensor without calcite seed crystals. Minor changes in frequency and dissipation

were observed over 4 hours for both conditions (Fig. A4), and the calculated mass 

change attributed to ion adsorption and calcite nucleation on SAM coatings was less 

than 5% of the mass increase observed during the growth of seed crystals under the 

same solution conditions (Step II, Fig. 2). Thus, we concluded that the measured mass 

increases during Step II (Fig. 2) were mainly caused by the growth of preexisting calcite 

seed crystals.

2.6. Ex situ characterization of calcite amount on sensors using ICP-MS

After quantifying the surface coverage of seed crystals on the sensor, the sensor was 

soaked in a 5.00 mL 1.0% HCl solution in a test tube. The test tube was then placed on 

a shaker (Innova 2000, Expotech) at a speed of 100 rpm for 24 hours to dissolve all 

calcite seed crystals. The dissolved Ca concentration was measured by inductively 

coupled plasma mass spectrometry (ICP-MS, PerkinElmer) with an analytical error 

of ∼10% and a detection limit of ∼10 µg/L. The total mass of calcite crystals on the 

sensor was calculated from the Ca concentration.

2.7. Calcite step density measurement using vertical scanning interferometer (VSI)

Step densities on the calcite surface, which can affect its growth rate significantly, have 

been measured using AFM in previous studies with calcite crystals (Teng et al., 

1998, Teng et al., 2000, Stack and Grantham, 2010, Bracco et al., 2012, Bracco et al., 

2013). In this study, the seed crystals generated on the Au sensors were very small 

(∼1–5 μm), making it difficult to perform AFM measurements. Vertical 

scanning interferometry (VSI, NewView™ 7300, Zygo) has been utilized to quantify the 

changes in surface roughness during glass dissolution (Icenhower and Steefel, 2015), 

and was used here to measure the step densities after growth experiments (Step II). A 

similar two-step procedure was followed: First, a gold wafer coated with –OH terminated
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SAMs was immersed in a mixed CaCl2 and NaHCO3 solution (SI = 1.50) for 12 hrs for 

seed crystal generation. The mixed solution with a higher SI (1.50 instead of 0.70) was 

able to generate bigger seed crystals (∼20–30 μm, Fig. A5) for high-quality VSI 

measurements. Second, the gold wafer was immersed with solutions having SI = 0.02, 

0.06, 0.10, 0.20, 0.30, 0.40, 0.50, or 1.00 for 1 h (Step II). Finally, the step densities of 

calcite crystals after the growth in lower SI solutions (Step II) were measured by VSI 

(Fig. A5). The detailed experimental procedure for VSI measurements can be found 

in Appendix A. The measured VSI step densities shown in Fig. A6 were fitted to an 

empirical expression:

(1)ρstep=y0+Aexp(-SI/τ)

where y0, A and τ are fitting parameters, and each data point was weighted by its 

standard deviation. The fit obtained was excellent, as shown in Fig. A6, but it should be 

noted that the solution used to generate the larger seed crystals required for VSI 

measurement had a higher supersaturation (SI = 1.50) than the solution used to 

generate seed crystals (SI = 0.70) for QCM-D experiments. Therefore, the step densities

measured via VSI may not exactly correspond to the step densities of calcite seed 

crystals on QCM-D sensors.

3. Results

3.1. Validation of QCM-D measurements: comparison of total calcite mass measured by
QCM-D and ICP

The full data sets of real-time QCM-D results under our experimental conditions (with 

seed crystal generation under SI = 0.70 and later crystal growth under SI = 0.01, 0.02, 

0.03, 0.04, 0.05, 0.10, 0.30, 0.50) are shown in Fig. 2. During both the seed crystal 

generation (SI = 0.70, Step I) and the later crystal growth (SI = 0.01, 0.02, 0.03, 0.04, 

0.05, 0.10, 0.30, 0.50, Step II), decreases in frequency (blue markers in Fig. 2) and 

increases in dissipation (red markers in Fig. 2) are observed, indicating mass increases 

on sensors caused by calcite nucleation and growth.

The real-time evolution of total calcite mass per unit surface area on the sensor was 

calculated by the Kelvin-Voigt viscoelastic model (Voinova et al., 1999) (Table A1). By 

multiplying the surface area of the sensor in contact with the solution (7.70 × 10−5 m2), the

total mass of calcite crystals on the sensor surface at the end of each experiment was 

calculated, as plotted on the Y-axis of Fig. 3. The total mass of calcite on the sensor at 

the end of each experiment calculated from the ICP-MS measurements is plotted on the

X-axis of Fig. 3. All the data points fall along a 1:1 line (Fig. 3), indicating that the total 

calcite mass on the sensor measured by QCM-D was consistent with the mass 
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calculated from ICP-MS analysis. This good agreement demonstrates the validity of 

using the Kelvin-Voigtviscoelastic model to quantify crystal growth on sensors. It should 

be noted that, whereas it was possible to measure the total masses of calcite crystals 

after growth experiments using ICP-MS, this technique is not suitable to determine the 

real-time change of dissolved Ca concentrations and the corresponding real-time calcite

growth rates under close to equilibrium conditions (SI < 0.10).

3.2. Calcite growth rates determined by QCM-D

The real-time QCM-D data of calcite seed crystal generation (Step I) and later growth 

(Step II) are shown in Fig. 2. For Step I (SI = 0.70), the initial slow changes in frequency 

and dissipation (Fig. 2) indicated the slow nucleation of calcite seed crystals on the 

sensor. With the generation of a larger number of calcite seed crystals, a more rapid 

mass increase on the sensor was observed, indicating that calcite growth became the 

dominant mechanism of mass increase. For Step II, when the feed solutions were 

switched from SI = 0.70 to lower SI (Fig. 2), the parabolic curves of frequency and 

dissipation changes indicated that the calcite growth rates started to decrease after 

switching to the growth solution with lower SI. For both Steps I and II (Fig. 2), after the 

initial parabolic curves of frequency and dissipation changes with time, linear curves 

(indicated by the shaded areas in Fig. 2) were established. The calcite mass increase 

(Δm, µg/m2) over time (t, seconds) under both SI = 0.70 and SI = 0.01, 0.02, 0.03, 0.04, 

0.05, 0.10, 0.30, 0.50 were calculated based on the fittings of data in shaded areas, as 

shown in Table A1.

In the Kelvin-Voigt viscoelastic model, the calculated mass increase (Δm, µg/m2) over 

time (t) was normalized to the entire sensor surface area, but calcite crystals only 

partially covered the sensors (Fig. A2). In addition, the seed crystals grown on sensors 

were rhombohedral, and therefore had five 101¯4 surfaces exposed to the solution. Two 

simplifications were made here to calculate the calcite surface area for growth rate 

normalization: (1) all five 101¯4 surfaces had the same surface area; (2) change 

in crystal surface area during the slow growth period (shaded areas of Step II, Fig. 2) 

was insignificant, as the mass increase (Δm, µg/m2) during this growth period t (s) from 

solutions with lower SI values (0.01–0.50) was less than 5% of the total calcite mass for 

each set of experiments (Table A1). Therefore, the surface coverage (η, Table A1) of 

calcite crystals on the sensor measured at the end of each set of experiment was used 

for growth rate (R, μmol/m2/s) calculations, according to Eq. (2):

(2)R=Δm/(5Mηt)×10-6
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where M is the molecular weight of calcite (100 g/mol)). As shown in Table 1, the QCM-

D measured calcite growth rates increased with the increase of SI. For solutions with 

SI = −0.01 to 0.05 (Table 1), the differences in Ca2+ concentrations were within 5%, and 

such small differences could not be distinguished by ICP-MS. The observed calcite 

dissolution with SI = −0.01 (Fig. A1) and faster calcite growth at higher SI (Fig.     2a–e) 

indicated the consistency of our solution preparation and QCM-D measurements.

4. Discussion

4.1. Comparison of growth rates measured by QCM-D and other macroscopic 
measurements

A number of experiments have been performed to investigate the macroscopic growth 

rates of calcite using different measurement techniques, such as microbalance, auto-

titration, and ICP-MS (Nancollas and Reddy, 1971, Reddy et al., 1981, Reddy and 

Gaillard, 1981, Zuddas and Mucci, 1994, Shiraki and Brantley, 1995, Zuddas and Mucci,

1998, Lin and Singer, 2005, Nehrke et al., 2007, Tang et al., 2008a, Tang et al., 

2008b, Lopez et al., 2009, Gebrehiwet et al., 2012, Noiriel et al., 2012, Tang et al., 

2012). Calcite reactive site densities and solution conditions (e.g., aqueous {Ca2+}/

{CO3
2−}, temperature, background electrolytes, ionic strength, and solution pH) are 

widely known to affect calcite growth rates (Nehrke et al., 2007, Larsen et al., 

2010a, Larsen et al., 2010b, Stack and Grantham, 2010, Gebrehiwet et al., 

2012, Wolthers et al., 2012, Bracco et al., 2013, Stack, 2014). In some previous studies,

the surface areas of calcite seed crystals or aqueous {Ca2+}/{CO3
2−} were not clearly 

reported (Nancollas and Reddy, 1971, Reddy et al., 1981, Reddy and Gaillard, 

1981, Lopez et al., 2009), or the reaction temperature was quite different from this study

(Shiraki and Brantley, 1995). Thus, their reported growth rates cannot be compared with

those measured in this study.

In the studies of Gebrehiwet et al., 2012, Nehrke et al., 2007, Lin and Singer, 

2005, Zuddas and Mucci, 1998, and Noiriel et al. (2012), the {Ca2+}/{CO3
2−} were reported

(Table 2), and their experiments were conducted at similar temperatures (Table 2) to the

present study. Their experimental pH conditions were also similar to this study (pH 

8.16–9.01; Table 2), except for those of Nehrke et al. (2007) for which the pH was 10.2. 

The aqueous {Ca2+}/{CO3
2−} was close to 1 in the study of Lin and Singer (2005) and 

varied in the other four studies (Zuddas and Mucci, 1998, Nehrke et al., 

2007, Gebrehiwet et al., 2012, Noiriel et al., 2012). Using the relationship between 

aqueous {Ca2+}/{CO3
2−} and calcite growth rate established by Nielsen et al. (2012) in the 

ion-by-ion model, the reported calcite growth rates from solutions with the same 
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saturation index but with varied {Ca2+}/{CO3
2−} were used to calculate the growth rates at 

{Ca2+}/{CO3
2−} = 1. The detailed calculations can be found in Appendix A. These 

recalculated rates at {Ca2+}/{CO3
2−} = 1 (Zuddas and Mucci, 1998, Nehrke et al., 

2007, Gebrehiwet et al., 2012, Noiriel et al., 2012), as well as the rate measured by Lin 

and Singer (2005), are plotted in Fig. 4.

Table 2. Experimental conditions and recalculated calcite growth rates of previous macroscopic 

measurements.

References pH {Ca2+}/{CO3
2−} SI Ionic 

strength 
(M)

T 
(°C)

Electrolytes Reported growth 
rates with varied 
{Ca2+}/{CO3

2−} (R, 
µmol/m2/s)

Recalculated growth 
rate at {Ca2+}/
{CO3

2−} = 1 (R, 
µmol/m2/s)

Gebrehiwet 
et al. (2012)

8.5 0.032 0.95 0.1 25 CaCl2

NaHCO3

KCl

0.69 1.16

Nehrke et al.
(2007)

10.2 0.018 1.15 20 CaCl2

K2CO3

NaCl

1.12 2.22

10.2 0.022 0.70 0.1 1.05 1.80

Noiriel et al.
(2012)

8.16 94.9 0.15 0.006–
0.017

22 CaCl2

NaHCO3

0.0013 0.0023

8.41 74.7 0.57 0.0055 0.0107

8.25 70.9 0.42 0.0032 0.0060

8.20 115 0.82 0.0123 0.0280

Lin and 
Singer 
(2005)

9.01 1.0 0.72 0.1 25 CaCl2

Na2CO3

KCl

2.38 2.38

Zuddas and 
Mucci 
(1998)

3.3 × 103 0.15 0.1 25 CaCl2

Na2CO3

NaCl
NaHCO3

0.0004 0.0018

2.8 × 103 0.23 0.0005 0.0022

2.6 × 103 0.25 0.0006 0.0026

2.2 × 103 0.33 0.0006 0.0027

1.5 × 103 0.48 0.0006 0.0025

1.3 × 103 0.54 0.0007 0.0027

1.2 × 103 0.60 0.0007 0.0026

1.1 × 103 0.61 0.0007 0.0027

0.9 × 103 0.70 0.0008 0.0029
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Fig. 4. Calcite growth rates measured by QCM-D and other macroscopic techniques.

As shown in Fig. 4, the macroscopic growth rates measured by QCM-D (this study), Lin 

and Singer (2005), and Gebrehiwet et al. (2012) were similar, and were approximately 

1.5 orders of magnitude higher than those measured by Nehrke et al. (2007), and were 

approximately two orders of magnitude higher than those measured by Noiriel et al. 

(2012) and Zuddas and Mucci (1998). The discrepancies could partly result from the 
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differences in the electrolyte compositions, pH, temperature, and ionic strength of 

solutions (Table 2) (Ruiz-Agudo et al., 2011a, Ruiz-Agudo et al., 2011b). Moreover, 

these discrepancies might also result from the surface area normalization (Hodson, 

2006). In Nehrke et al. (2007) and this study, the geometric surface area used for 

growth rate normalization was measured by optical microscopy; whereas Zuddas and 

Mucci, 1998, Lin and Singer, 2005, Gebrehiwet et al., 2012 and Noiriel et al. 

(2012) used specific surface areas measured by BET. Irrespective, the surface areas 

measured by either BET or microscope does not represent the real reactive site 

densities on mineral surfaces (Fischer et al., 2012). A systematic investigation of how to 

quantify surface reactive site densities is an important future direction but is not the 

focus of this paper.

4.2. Comparison of calcite growth rates measured by QCM-D and AFM

Many calcite growth experiments have been conducted using in situ AFM (Teng et al., 

2000, Perdikouri et al., 2009, Larsen et al., 2010a, Larsen et al., 2010b, Stack and 

Grantham, 2010, Ruiz-Agudo et al., 2011a, Ruiz-Agudo et al., 2011b, Bracco et al., 

2012, Bracco et al., 2013). Most of these studies used measured step velocities to 

determine spiral growth rates on the 101¯4 surface (Teng et al., 2000, Ruiz-Agudo et al.,

2011a, Bracco et al., 2013). To make these rates comparable with QCM-D data, the 

step velocity (vs, m/s) and step density (ρstep, µm−1) measured by AFM on single spirals 

(Teng et al., 2000, Bracco et al., 2013) are needed to calculate the macroscopic calcite 

growth rate (R, µmol/m2/s, Fig. 5) using Eq. (3):

(3)R=ρstepvsh/Vm×109

where Vm is the molar volume of calcite (36.93 cm3/mol), h is the step height of an 

individual molecular layer (0.31 nm). Neither Larsen et al. (2010a) nor Perdikouri et al. 

(2009) reported step densities. Thus, those step velocities could not be converted to 

macroscopic growth rates. In the studies of Bracco et al., 2013, Teng et al., 2000, 

and Ruiz-Agudo et al. (2011a), step velocities with aqueous {Ca2+}/{CO3
2−} ≈ 1 were 

measured using AFM. Step densities (ρstep, µm−1) were also measured and reported 

in Bracco et al. (2013) and Teng et al. (2000), whereas Ruiz-Agudo et al. (2011a) used 

an average value of 0.026 ± 0.015 to represent the slope (slope = ρstep×h) of the calcite 

surface, which can be used to calculate the step densities (ρstep). Therefore, using the 

step velocity and step density values reported in these three studies, macroscopic 

calcite growth rates (R, µmol/m2/s) were calculated using eqn. (4) and were compared 

with our QCM-D measurements (Fig. 5). In Bracco et al. (2013) and Ruiz-Agudo et al. 

(2011a), a Ksp value of 10−8.48 was used, the same as in this study. The SI values reported
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in Teng et al. (2000) were originally calculated with Ksp = 10−8.54, but were recalculated 

here using Ksp = 10−8.48.

1. Download high-res image     (316KB)

2. Download full-size image

Fig. 5. Calcite growth rates measured by QCM-D and AFM and predicted by the ion-by-
ion and the SBGH models.

The macroscopic growth rates inferred from these in situ AFM studies (Fig. 5) were, in 

general, consistent with the rates measured by QCM-D (Fig. 5), validating that both 

QCM-D and in situ AFM can be used to accurately capture the macroscopic growth rate
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of calcite at low SI. This finding suggests that AFM can likely capture the representative 

growth mechanisms at low SI. As shown in Fig. 5, the growth rates measured by QCM-

D in this study were in good agreement with those measured by Ruiz-Agudo et al. 

(2011a) and Teng et al. (2000) at SI > 0.10, and were approximately 2–5 times higher 

than those measured by Teng et al. (2000) at close to equilibrium conditions (SI < 0.1). 

Finally, our QCM-D derived rates and those of Teng et al. (2000) and Ruiz-Agudo et al. 

(2011a) were about one order of magnitude higher than those measured by Bracco et 

al. (2013).

As the growth rates (Fig. 5) were calculated using Eq. (3), the discrepancies in those 

growth rates could derive either from errors in step velocity or step density. Accordingly, 

the step velocities measured by AFM under similar SI conditions (Table 3) were 

compared. The obtuse step velocities reported by Bracco et al. (2013) and Teng et al. 

(2000) at SI ≈ 0.4 were quite similar, 7.89 and 8.10 nm/s (Table 3), respectively. The 

sum of obtuse and acute step velocities (Vsum, Table 3) measured by Bracco et al. 

(2013) and Ruiz-Agudo et al. (2011a) at SI ≈ 0.8 were also similar, 14.47 ± 3.3 and 

10.14 ± 1.34 nm/s, respectively. The small discrepancies (within 40%) in measured step 

velocities of these calcite crystals growing from solutions under similar SI conditions 

might be attributed to the differences in solution pH and the composition and 

concentration of solution electrolytes (Detailed discussion in Appendix A).

Table 3. Experimental conditions, and the measured/calculated step velocities (vs) and step densities (ρstep)

of calcite in previous AFM studies and the current QCM-D study.

Referenc
es

pH {Ca2+}/
{CO3

2−}
SI Ionic 

streng
th (M)

T 
(°
C)

Electroly
tes

Measured vs (10−9

m/s)
Calculated vs 
by SBGH 
model 
(10−9 m/s)

Calculated vs 
by ion-by-
ion model 
(10−9 m/s)

Measured ρstep(µ
m−1)

Bracco et
al. 
(2013)

9.0
7

1.27 0.7
7

0.005 N/
A

CaCl2

NaHCO3

10.10
(vsum:14.47)a

9.82 23.78 2.86

8.6
8

1.02 0.4
1

0.004 7.89 5.08 8.20 1.41

Teng et 
al. 
(2000)

8.5
0

1.04 0.0
5

0.10 25 CaCl2

NaHCO3

NaCl

0.52 1.28 0.65 2.33

0.0
9

1.18 1.78 1.25 2.27

0.1
4

1.63 2.32 2.00 2.44

0.1
5

1.89 2.42 2.24 1.96
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Referenc
es

pH {Ca2+}/
{CO3

2−}
SI Ionic 

streng
th (M)

T 
(°
C)

Electroly
tes

Measured vs (10−9

m/s)
Calculated vs 
by SBGH 
model 
(10−9 m/s)

Calculated vs 
by ion-by-
ion model 
(10−9 m/s)

Measured ρstep(µ
m−1)

0.1
6

2.44 2.52 2.44 1.89

0.1
7

2.52 2.62 2.60 4.00

0.2
3

3.59 3.23 3.75 5.56

0.3
0

5.18 3.93 5.31 7.14

0.3
9

8.10 4.87 7.67 9.09

0.4
6

9.46 5.64 9.84 11.11

0.5
6

13.10 6.84 13.50 11.11

Ruiz-
Agudo et
al. 
(2011a,b)

8.5
0

1.00 0.8
1

0.10 25 CaCl2

NaHCO3

NaCl

10.14 (vsum)a 10.47 26.56 100.00

QCM-D 8.2
2

1.05 0.0
2

0.009 25 CaCl2

NaHCO3

1.99b 0.78 0.25 5.11

8.2
2

1.05 0.1
0

0.010 2.62b 1.89 1.40 6.74

8.2
1

1.02 0.3
0

0.013 3.10b 3.93 5.31 11.66

8.2
0

1.07 0.5
0

0.017 11.20b 6.11 11.30 12.36

Note: vs is the obtuse step velocity.

a

vsum is the sum of obtuse and acute step velocity.

b

The step velocities were not directly measured but calculated using Eq. (4), as the step densities 

and growth rates were measured via VSI and QCM-D, respectively.

Considering the minor differences in measured step velocities (Table 3, within 40%), the

much larger discrepancies in macroscopic growth rates among these previous AFM 

studies must mainly originate from differences in step densities of the calcite seed 

crystals. As shown in Table 3, the step density measured by Teng et al. (2000) at SI ≈ 

0.40 was 9.09 µm−1, 6.4 times larger than that measured by Bracco et al. (2013) at 
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1.41 µm−1, whereas that reported by Ruiz-Agudo et al. (2011a) at SI ≈ 0.80 was 

100 µm−1, 36 times larger than that measured by Bracco et al. (2013) at 2.86 µm−1.

The larger discrepancies in step densities were also the main cause of the growth rates 

differences between QCM-D and AFM measurements. Using the step densities 

measured by VSI (Fig. A6), the step velocities were calculated from QCM-D growth 

rates based on Eq. (4). These calculated step velocities (Table 3, 1.99 nm/s at SI = 0.10,

3.10 nm/s at SI = 0.30 and 11.20 nm/s at SI = 0.50) are within a factor of ∼1.1–1.6 of the 

values (Table 3, 1.18 nm/s at SI = 0.09, 5.18 nm/s at SI = 0.30, and 13.10 nm/s at 

SI = 0.56) reported in Teng et al. (2000), whereas larger difference existed in step 

densities. The measured step densities determined by VSI (Table 3, 5.11 µm−1 at 

SI = 0.10, 11.66 µm−1 at SI = 0.30 and 12.36 µm−1at SI = 0.50) were ∼1.1–2.3 times the 

values (Table 3, 2.27 µm−1 at SI = 0.09, 7.14 µm−1 at SI = 0.30 and 11.11 µm−1 at SI = 0.56)

reported in Teng et al. (2000) at similar SI conditions.

The significant differences in step densities of calcite crystals may be due to the 

application of different processes in the generation and pretreatment of calcite seed 

crystals among the various studies. In these previous AFM studies, Iceland spar calcite 

crystals were used, whereas, in the current QCM-D study, calcite seed crystals were 

generated on SAM coatings. Furthermore, different crystal pretreatments were 

used. Teng et al. (2000)pretreated their calcite crystals with a slightly supersaturated 

and near equilibrium solution for 1 h before the in situ AFM measurements. Bracco et al.

(2013) pretreated their calcite crystals with an SI = 1.0 solution for 1 h, whereas Ruiz-

Agudo et al. (2011a) did not pretreat their freshly-cleaved calcite crystals. In the current 

study, the seed crystal surfaces were pretreated with an SI = 0.7 solution. In the 

classical spiral growth model, the step spacing, the reciprocal of the step density, is 

determined by the critical step length at the top of the hillock, a function of the 

solution supersaturation with respect to calcite (Teng et al., 1998, Teng et al., 2000). To 

completely reset the step spacing of a given growth hillock, growth must proceed at a 

fixed SI for a sufficiently long time for the first step, nucleated under that condition, to 

propagate across the entire width of the growth hillock. The total time required to reset 

the step spacing will depend on the step velocity and the spacing (and thus size) of the 

growth hillocks. For example, Bracco et al. (2013) observed that after switching growth 

solutions of varied SIs, the step velocity of calcite could quickly (within 20 min) reach 

steady-state under different SI, while it took a much longer time (>40 min) for the step 

density to reach steady-state under some solution conditions, especially those with low 

calcium-to-carbonate ratios. In other words, the surface step density may not only be 

affected by the instantaneous solution saturation state but may also inherit step spacing 
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from the previous solution, i.e., a memory artifact (Bracco et al., 2013, Stack, 2014). The

use of different generation and pretreatment processes for calcite seed crystals used in 

these studies may have affected the step densities on the calcite crystals and therefore 

resulted in the discrepancies in the calculated macroscopic calcite growth rates. The 

comparison made here points out the importance of quantifying step densities for 

interpreting overall growth rates and sheds some light on the effects of pretreatment on 

step density.

4.3. Comparison of calcite growth rates measured by QCM-D and AFM with model 
predictions

Both macroscopic and microscopic models have been developed to describe calcite 

growth and dissolution processes (Burton et al., 1951, Zhang and Nancollas, 

1990, Zuddas and Mucci, 1994, Zhang and Nancollas, 1998, Zuddas and Mucci, 

1998, De Yoreo, 2003, De Yoreo et al., 2009, Andersson et al., 2016). Burton et al. 

(1951) developed the terrace-ledge-kink (TLK) theory, which was applied by Teng et al., 

1998, Teng et al., 1999, Teng et al., 2000 and Larsen et al. (2010a) to model calcite 

growth from aqueous solutions. However, De Yoreo et al. (2009) pointed out that the 

application of TLK theory is not valid for calcite, as the kink formation rate limits calcite 

growth. Instead, a model of kink creation, propagation and collision (CPC), developed 

by Zhang and Nancollas, 1990, Zhang and Nancollas, 1998, is believed to capture the 

kink density-dependent growth rate of calcite accurately. More recently, Nielsen et al. 

(2012) developed an ion-by-ion model based on the CPC approach to predict calcite 

growth rates as a function of solution composition. Another process-based crystal 

growth model was also developed in previous studies, i.e., the Stack-Bracco-Grantham-

Higgins (SBGH) model (Stack and Grantham, 2010, Bracco et al., 2012, Bracco et al., 

2013, Bracco et al., 2016a, Bracco et al., 2016b). A third microkinetic model was 

developed by Andersson et al. (2016) to predict step velocity of calcite growth under 

varied aqueous conditions, but this model does not predict the step density and, thus, 

cannot estimate the macroscopic calcite growth rates as do the ion-by-ion and SBGH 

models. Therefore, only the ion-by-ion and SBGH model predictions were compared 

with the rates measured by QCM-D, and detailed descriptions of the two models are 

in Appendix A.

The growth rates predicted by the ion-by-ion (solid blue line in Fig. 6) and SBGH models

(solid red line in Fig. 6) as a function of SI with {Ca2+}/{CO3
2−} = 1 were compared with the

rates measured by QCM-D (black markers in Fig. 6). Both the ion-by-ion and SBGH 

models underpredicted the growth rates measured by QCM-D, especially at low SI. 
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Based on the discussion in Section 4.2, the discrepancies in calcite growth rates 

between measurements and model predictions may also arise mainly from the 

differences in step densities instead of step velocities. Therefore, steady-state step 

densities and step velocities predicted by both models (details of the calculation are 

provided in Appendix A) were compared with the QCM-D and VSI measurements (Table

3). Over the SI range of 0.02–0.50, differences in measured and predicted step 

velocities varied from 0.8 to 600% (Table 3); whereas the differences in measured and 

predicted step densities were much higher, varying from 87 to 1865% (Table 3). 

Similarly, the model predicted step velocities and step densities were compared with the

AFM measurements (Table 3). Over the SI range of 0.05–0.56, differences in measured 

and model-predicted step velocities varied from 2 to 90% (Table 3), whereas the 

differences in measured and predicted step densities were much higher, varying from 25

to 270% (Table 3). This is because the step densities predicted by both models did not 

account for “memory effects” as discussed in Section 4.2. After crystal pretreatment, 

step velocities can quickly respond to changes in solution composition and could be 

predicted by both the ion-by-ion and SBGH models using the current solution 

compositions; whereas step densities require much longer time to reach a steady-state 

and could be significantly affected by the pretreatment procedures. The comparisons of 

model-predicted step densities and step velocities with AFM and QCM-D/VSI 

measurements confirmed the ability of both models to predict step velocities using the 

current solution conditions, meanwhile suggesting that better predictions could be 

achieved if transient-state step densities could be taken into account.
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Fig. 6. Calcite growth rates measured by QCM-D as well as predicted by the ion-by-ion 
and SBGH models.

As larger discrepancies in growth rates originated from differences in step densities, a 

second set of model calculations was conducted. The step densities measured by VSI 

were fitted as a function of SI (Fig. A6), and these were combined with the model 

predicted step velocities to calculate the growth rates using Eq. (4). Results of the 

calculation are plotted as dashed lines in Fig. 6. Compared with the original SBGH and 
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ion-by-ion model predictions (solid red and blue lines, respectively) using predicted step

densities, the modified predictions (dashed red and blue lines) using fitted step densities

from VSI measurements agreed much better with the measured growth rates (black 

markers) by QCM-D (Fig. 6). The good agreement between the predictions using spiral-

growth models (dashed lines in Fig. 6) and the QCM-D measurements also indicated 

that single-spiral growth was the dominant mechanism in our study for calcite growth 

under near-equilibrium conditions (i.e., low SI).

5. Conclusions

Quantitative determination of mineral precipitation rates is essential for successful 

prediction of the fate of nutrients and contaminants, as well as for the safety and 

efficiency of many surface and subsurface operations. For example, accurate prediction 

of calcium carbonateprecipitation rates is critical to determine the efficiency of 

sequestration of toxic metals such as strontium and selenium (Putnis et al., 2013), but 

the dearth of accurate growth rates at close to equilibrium conditions limits how well we 

can predict calcite precipitation at the reservoir scale using reactive transport modeling. 

In this study, QCM-D was successfully applied for the first time to quantify macroscopic 

calcite growth rates at atmospheric pressure under close to equilibrium conditions, and 

the method developed was validated with traditional techniques. This novel method can 

be adopted for many different applications and could greatly benefit both 

the geochemistry and nanochemistry communities.

The calcite growth rates measured by QCM-D were compared with results of previous 

studies using other macroscopic and microscopic techniques, as well as with ion-by-ion 

and SBGH model predictions. Whereas discrepancies between experimental and model

results will not be resolved in a single study, the present study provides valuable 

insights on the importance of reactive site density in the quantification of calcite growth 

rates and illustrates the importance of coupling macroscopic and microscopic rate data 

to interpret these rates accurately. Nevertheless, the agreement between growth rates 

measured by QCM-D, AFM and model predictions using steady-state step velocities 

and the measured step densities highlight the ability of these models to predict calcite 

growth rates. The discrepancy among the measured and the predicted step densities 

likely result from a memory artifact, i.e., step density was not only controlled by the 

reactive solution composition but also affected by the pretreatment solution conditions. 

The memory artifact implies that a revised model, which considers not only the steady-

state step density but also the transient-state step density changes after solution 

condition changes, could predict better calcite growth rates. A systematic investigation 
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of the effects of pretreatment solution conditions on step densities of calcite 

seed crystals, which could help design such models, is an important future direction of 

research.
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