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Abstract

Modeling of Branching and Plant Growth via a Modified Elastica

by

Timothy Nicholas Tresierras
Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor Oliver O’Reilly, Chair

One of the most remarkable sites in nature is the branched structure of plants. The branch-
ing enables the plant to increase its capability to photosynthesize and to support its flow-
ering structures. The shape of a plant’s branches depend on a wide range of factors, some
of which vary with the growth stage of the plant.

To accommodate the factors featured in plant growth, Euler’s original theory is modified
to include the effects of lateral accretion, tip growth, and residual (or growth) stresses. As
a result, a theory of deformable rods featuring time-varying intrinsic curvature, flexural
rigidity, moment of inertia, mass density, and length is developed. The resulting theory
is supplemented by a novel growth evolution equation. This equation is used to control
the evolution of the intrinsic curvature in response to changes in flexural rigidity and
moment of inertia. We also introduce a novel control curvature to address the deficiency in
accommodating residual (growth) stresses that are inherent in any rod theory. The novel
growth law is illustrated with a range of examples. It is also compared and related to earlier
published works on plant stem growth modeling.

Another contribution of the thesis is the development of a graphical technique to de-
termine the shape of branched structures. Here, a plant with multiple stem bifurcations is
considered and the graphical technique is used to explain the multiplicity of static configu-
rations that the plant can display. We close the dissertation with an outline of future work
on the modeling of plant growth and branching.
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Chapter 1

Introduction

The vines and stems of wooden and non-wooden plants display remarkable feats of
movement and growth at time-scales that are much slower than the human eye can perceive.
Circumnutation, twining, and gravitropism are among the various dynamic phenomena we
have yet to fully understand [3, 4]. One of the most remarkable sites in nature, however, is
the branched structure of plants. The shape of a plant’s branches depend on a wide range
of factors, some of which vary with the growth stage of the plant. Branching enables the
plant to increase its capability to photosynthesize and to support its flowering structures,
which typically manifests in divergent and discontinuous plant configurations, such as the
segmented growth shown in Fig. 1.1.

Figure 1.1: Shown above are several segmented branches of Schlumbergera truncata, also
known as Crab Cactus or Christmas Cactus. An isolated segment and the centerline of the
plant is outlined in the right branch.

According to a survey by Kurth [5], there are numerous models for predicting growth
and for predicting plant architecture. These models, based on botanical knowledge, range
from macro-scale simulations that use stochastic processes as a theoretical basis to mirco-
scale models that focus on isolated processes such as water conduction and transpiration.
Due to the complexity of plants, most models have yet to fully integrate external growth
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factors like light and water availability, hydraulics, mechanical stability, gas exchange and
carbon allocation, response to mechanical obstacles, and physiological constraints.

Our motivation is to develop a simplified mechanical model that accounts for various
plant growth phenomena for the purpose of mid-scale analysis. There are few mechanics-
based algorithms for predicting the growth and branching of plants. Several works have
pioneered the use of the dynamic theory of slender rod-like bodies for plant growth. The
work of Silk, Wang, and Cleland [6] uses Euler’s elastica to quantify the mechanics of the
rice panicle. In Fig. 1.2 we show an example of the configurational structure of the rice
panicle. The combined works of [3, 7, 8] outline a variety of problems ranging from the

Figure 1.2: A rice panicle, Oryza sativa, provides a motivational example of the various
simple plant forms we would like to model with a simplified rod theory. Silk et al. [1] makes
extensive observational analysis on the rice panicle using a simple beam model.

mechanics of climbing and twinning plants to intrinsic curvature’s role in tendril perversion.
Like most of these previous works based on a mechanical theory, we focus in this work

on slender rod-like bodies and their branchings. In a recent paper by Faruk Senan, O’Reilly,
and Tresierras [9], we modeled plant growth and branching using a rod-based theory fea-
turing Euler’s elastica. This work extended the works of Silk et al. [1] and Goreily et
al. [10], who recently used a modified theory of the elastica to model the “morphoelastic-
ity” of plant tendrils. The novel features of the model developed in [9] include a simple
evolution equation for the flexural rigidity and intrinsic curvature and the use of an inter-
mediate (growth) configuration, while additionally establishing an open-ended path toward
more elaborate rod theories which accommodate nonplanar motions, transverse shear, and
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torsion.1

Using a rod theory as a model for plants, we can pick a set of points along a curve in
the body as the centerline of the rod. When the plant experiences growth we find that
material points are continually being added to this centerline, while the lateral dimensions
of the rod are also changing. These changes are termed growth: the lateral (or secondary)
growth is known as cambial growth, and the tip (or primary) growth is due to the activity
of stem apical meristem cells. Additionally, a remodeling or morphogenesis can occur and
be considered as a set of changes in the constitutive properties of the body such as a change
in the modulus of elasticity. The change in parameters in time is known as an evolution.

To accommodate the factors featured in plant growth, Euler’s original theory is modified
in Chapter 2 to include the effects of lateral accretion, tip growth, and residual (or growth)
stresses. As a result, a theory of deformable rods featuring time-varying intrinsic curvature,
flexural rigidity, moment of inertia, mass density, and length is developed. The resulting
theory is supplemented by a novel growth evolution equation in Chapter 3. This equation
is used to control the evolution of the intrinsic curvature in response to changes in flexural
rigidity and moment of inertia. The resulting evolution equation is more realistic than the
one used in [9] because it can accommodate rapid tip growth and lateral surface accretion.
We also introduce a novel control curvature to address the deficiency in accommodating
the residual (growth) stresses that are inherent in any rod theory. The novel growth law is
illustrated with a range of examples. It is also compared and related to earlier published
works on plant stem growth modeling.

Another contribution of the thesis is developed in Chapter 4, where a graphical tech-
nique to determine the shape of branch structures is developed. In Chapter 5, a plant with
multiple stem bifurcations is considered and the graphical technique is used to explain the
multiplicity of static configurations that the plant can display. We close the dissertation
with an outline of future work on the modeling of plant growth and branching.

1Details on more elaborate rod theories can be found in Antman [11, 12], Green and Naghdi [13], and
Rubin [14].
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Chapter 2

A Simple Rod-Based Model for Plant

Growth

2.1 Introduction and Motivation

Euler’s theory of the elastica [15] can be the basis for a tractable plant model [9] and
is the simplest nonlinear theory of a deformable rod which features resistance to bending
and extension. Euler and Jakob Bernoulli (1744) developed the theory for elastic lines,
which yielded solutions known as the elastica curve (also simply referred to as the elastica)
and studied buckling. Later, elastica theory was generalized by F. and E. Cosserat (1907)
into a geometric theory with intrinsic directions at each point. We present our work in a
framework similar to those used in continuum theories of growth. Our treatment of the
balance laws for the elastica is strongly influenced by the works of Green, Naghdi and
their coworkers (see [13, 16, 14] and references therein). Although our modified elastica
can capture a rich assortment of plant growth characteristics, the model, unlike three-
dimensional continuum theories, cannot be used to estimate residual stresses which are
known to accompany many growth processes in biology.

To use a rod theory to model a growing plant stem, three configurations are needed.
In addition to the familiar present and reference configurations, a growth configuration is
defined. The curvature of the rod in this configuration is the intrinsic curvature κg. We
find that the present configuration relaxes to the growth configuration when all the applied
forces and moments are removed. We further adapt the elastica by including a time varying
intrinsic curvature κg [10] and time varying stiffness modulus D.

The agreement between the elastica curves in Fig. 2.1, and the rice panicle in Fig. 1.2
suggests that the elastica is an appropriate model for plants.

2.2 Configurations and Material Curves

To capture the kinematics of the elastica, we consider a reference configuration L0 where
the centerline is straight and the cross-sections are normal to this centerline. The centerline
is a material curve C. We use a coordinate ξ to parameterize this curve; we denote the end
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Figure 2.1: Four instances of a cantilevered elastica are simulated for four different initial
tangent vectors at the base (the arrows at the origin). The elasticae represent identical
homogeneous constant cross-section rods of unit length that are free of any contact force or
moment at the free tip.

points of C by ξ = ξA and ξ = ξB. To model the cross-sectional features, each point on C
is endowed with an area A, a moment of area I and a mass density ρ0. As time t evolves,
tip growth and mass deposition and accretion occur, so A, I, ρ0 are functions of t and ξ.
In addition, ξA and ξB are functions of time. We also anticipate that some constitutive
remodeling of the elastica will occur. This remodeling will be reflected in changes to its
constitutive equations.

We consider the reference configuration L0 to be embedded on a plane in E
3. The unit

normal to this plane is a constant vector E3. The position vector of a material point on C,
the centerline of the reference configuration, is given by r0 (ξ, t) and we choose our origin
O such that

r0 (ξ, t) = r0 (ξ, t)E2 + c (2.1)

where c is a constant vector and {E1,E2,E3} is a set of fixed right-handed Cartesian basis
vectors. The coordinate ξ is the arc-length coordinate for C in L0. We assume the existence
of a continuous segment of material points in L0.

The present configuration L of the elastica is assumed to be embedded on the same
plane in E

3. The present configuration shows the actual state of the elastica at time t. The
position of a point on C in the present configuration is given by the vector r = r (ξ, t).

A motion χ of the elastica is a mapping from L0 to L. This motion encompasses the
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χ

Figure 2.2: The elastica is represented by the rod centerline in three configurations, L0, Lg,
and L. Each centerline is a material curve C parameterized by the reference configuration’s
arc-length parameter ξ.

response of the elastica due to changes in mass, remodeling and the effects of impressed
forces and moments. It turns out that χ is not particularly useful. Instead, it is convenient
to construct an intermediate (or growth) configuration Lg. The configuration Lg can be
attained from L by removing the external forces and external moments on the elastica.
That is, Lg is the unloaded configuration (at time t) of L. We define the position of a point
on C in the growth configuration by the vector rg = rg (ξ, t). Due to the changes in area,
inertia, mass density and internal constitution, the configuration Lg also evolves in time.
Further, as illustrated in Figure 2.2, two motions χ1 and χ2 can be defined which relate L0

to Lg and Lg to L, respectively.
Through out this work we assume an inextensible elastica (i.e., unity stretch):

µ =
∂s

∂ξ
= 1, (2.2)

where s is an arc-length parameter in the present configuration. This constraint allows
us to neglect the use of the reference configuration, and to parameterize the growth and
present configuration with the coordinate s.

2.3 Kinematics

Prior to presenting the balance laws we present definitions of various kinematic quanti-
ties. The elastica is constrained to a plane and so it is torsion free. A practical right-handed
orthonormal basis for the centerline of the elastica is

[
et(s), en(s),E3

]
, where et(s) is the
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unit tangent vector and en(s) is the corresponding unit normal vector. The vectors et(s)
and en(s) are defined as follows:

∂r

∂s
= et = cos

(
θ(s)

)
E1 + sin

(
θ(s)

)
E2,

1

κ

∂et

∂s
= en = − sin

(
θ(s)

)
E1 + cos

(
θ(s)

)
E2,

(2.3)

where κ is the curvature1 in the present configuration and θ is the angle between the tangent
vector et and the horizontal unit vector E1. We note that in the present configuration L,

E1

E2

en(s) et(s)

r(s, t)

rg(s, t)

θ

θg

s = 0

s = L

s = L

R (Radius of Curvature)

L

Lg

g

|κ(s)| = 1
R

=
∣
∣∂θ
∂s

∣
∣ =

∣
∣
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∣
∣
∣
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∣
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Figure 2.3: The centerline of a rose stem as modeled by the elastica. The configuration
L is loaded by a self-weight body force induced by gravity, g = −gE2. The centerline of
the unloaded configuration Lg shows the intrinsic (growth) curvature κg. This centerline
is not necessarily straight. The inverse of the absolute value of curvature is the radius of
curvature.

κ =
∂θ

∂s
. (2.4)

1We have made use of a signed curvature as opposed to classical treatments of differential geometry
that represent curvature as a positive value.
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Likewise, the curvature of the rod in the growth configuration Lg is called the intrinsic
curvature κg and is defined by

κg =
∂θg

∂s
. (2.5)

The difference in curvature between the present and growth configurations is denoted

ν = κ− κg, (2.6)

and is called the relative strain (or strain). Figure 2.3 shows the basis [et(s), en(s),E3],
the curvature κ’s relation to the radius of curvature, and how the present configuration L
relaxes to the growth configuration Lg when all forces and moments are removed.

2.4 Forces and Moments

The contact force n and the contact moment m are usually supplemented by the as-
signed force ρf and assigned moment ma. However, in this dissertation we assume ma = 0.
In Fig. 2.4 we illustrate the contact force, contact moment, and assigned force relative to a
thin cross-sectional slice of a rod. Using (2.3), the contact force n in the rod is decomposed

et(s) = ∂r

∂s

m+(s) + ∂m

n+(s) + ∂n

(
ρ(s)∂s

)
f

A(s)

centerline

Figure 2.4: An example of the force and moment balance on an infinitesimally thin cross-
sectional slice of a continuous interval of a rod. The contact force n−(s) and contact
moment m−(s) are not shown.

as
n = ntet + nsen, (2.7)

where nt and ns are called the tension and shear forces, respectively.
We introduce point supplies of linear momentum F and angular momentum relative to

the origin MO. Arc-length coordinates of a point s at which these supplies act is denoted
s = γ. We denote by M the resultant moment of these supplies about r(γ, t),

M = MO − r (γ, t) × F. (2.8)
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The objects M, MO, and F all live in the present configuration L.

2.5 Branching and Discontinuities

In this section we use jump conditions to address rod discontinuities. Discontinuities
occur at points called nodes. As illustrated in Fig. 2.5, a node can be

• A point at which the rod centerline is only C0 (i.e., not continuously differentiable).

• A bifurcation point in which a single branch splits into two or more branches.

• A point where a singular force F or moment M is applied.
U

p
st

re
am

D
ow

ns
tr

ea
m

node 1

node 2 node 3

E1

E2

F

g

(1)

(2)

(3)

(4) (5)

s = 0

s = γ1
s = γ2 s = γ3

base

Figure 2.5: Upstream and downstream directions are labeled and shown by arrows. Various
branches are labeled in parenthesis. The labeled nodes represent three general discontinuities
that we focus on in this dissertation.

Jump conditions allow us to account for multiple branches, tip growth, and singular loads
(e.g., a piece of fruit).2

2In the following, we use the term branch or stem in a general sense to describe a continuous segment
of a configuration that terminates at either a nodal point or a free end and can be used synonymously with
the term rod.
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Figure 2.5 shows a system of rods representing a multi-branch structure under the
influence of gravity. Moving along any particular rod, we refer to upstream as the direction
in which moving along the rod through the nodes brings one closer to an anchored base.
Likewise, downstream is moving in the opposite direction (i.e., toward the branch tips).
At a particular node, we call a branch leading toward the upstream direction an upstream
branch, and we call a branch leading toward the downstream direction a downstream branch.
We observe that plants, have a contractive flow in the upstream direction, i.e., the number
of upstream branches at a node is always equal to or less than the number of downstream
branches at a node (See Fig. 2.5). The image is reminiscent of the forked pattern in a river
delta, is why we refer to upstream as the direction in which the branching system contracts.

To make use of jump conditions, we need to define upstream and downstream limits of
functions. For an arbitrary function X (s), the jump condition, [[X ]], denotes the change of
the function X (s) across a node s = γ:

X± = lim
σ→0

X (s± σ), [[X ]] = X+ − X−, (2.9)

where σ > 0, X+ is the value of the function just downstream of a node s = γ, and X− is
the value of the function just upstream of a node s = γ.

2.5.1 Generalized Branching Points

For nodes at the tip of a branch, we set X+ = 0. For node 2 and node 3 in Fig. 2.5 we
can use the previous definition of the operation [[·]]. However, for branching points, such as
node 1 in Fig. 2.5, we must generalize [[·]].

Imagine a continuous branch L1 bifurcating into two branches L2 and L3. We param-
eterize these configurations by the arc-length coordinates s1, s2, and s3, respectively, and
we choose these parameterizations such that at the branching point s1 = s2 = s3 = γ.
Further, on L1, s1 ≤ γ, whereas on L2, s2 ≥ γ, and on L3, s3 ≥ γ. Given an arbitrary
function X defined on all three branches

(
X = Xi(si) on branch Li

)
, we define

[[X ]]3 = lim
σ→0

(
X3(s3 = γ + σ) + X2(s2 = γ + σ) − X1(s1 = γ − σ)

)
, (2.10)

where σ > 0 and the subscript 3 on [[·]]3 indicates that three functions are involved in the
calculation.3

2.6 Balance Laws and Jump Conditions

We now recalled the balance laws for the modified elastica, postulated in [9]. In depar-
ture from [9], we assume inextensibility.

We endow material curve with a mass density per unit length of ρ. This density is a
product of the cross-sectional area A and the mass density per unit volume ρ∗. As a result,

3It should be clear from this definition how [[·]] is a special case of [[·]]
3

and how the latter can be extended
to branching points featuring the bifurcation of four or more branches.
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ρ can change if mass is added in such a way as to increase A. At each point on the curve
we also assign a moment of inertia I. We note that the three scalar fields ρ, A and I are
functions of s and t.

A theory that accommodates plant growth needs to include discrete and continuous
sources of mass. The discrete sources of mass are active during tip growth, while the
continuous sources are active during secondary growth. This secondary growth results in
a thickening of the plant stem. In a one-dimensional theory, the addition of mass causes
the mass per unit length and the inertia change. Our balance laws are more general than
those which appear in the standard literature on rod theories. In the subsequent sections
we consider a segment of the material curve bounded by the material points s = s1 and
s = s2.

2.6.1 Balance of Inertia

For an arbitrary rod segment, we postulate the following inertial balance laws:

d

dt

∫ s2

s1

ρds− [ρṡ]s2

s1
︸ ︷︷ ︸

=

∫ s2

s1

(
ρm0 +M0 δ(s− γ)

)
ds,

d

dt

∫ s2

s1

ρIds− [ρIṡ]s2

s1
︸ ︷︷ ︸

=

∫ s2

s1

(
ρmI +M I δ(s− γ)

)
ds, (2.11)

where δ(·) is the Dirac delta distribution, ρm0 is a distributed mass source, ρmI is a
distributed inertia source, M0 is a singular supply of mass, and M I is a singular supply of
moment of inertia. The underbraced terms in (2.11) arise because material can be added
to the segment in question. That is, ṡ1,2 6= 0. Related terms appear in the other balance
laws we present.

The balance laws (2.11) are equivalent to

ρ̇ = ρm0,
d

dt
(ρI) = ρmI , (2.12)

and the corresponding jump conditions

[[ρ]] γ̇ = M0, [[ρI]] γ̇ = M I . (2.13)

2.6.2 Balance of Momentum

Motivated by (2.12), we define a derivative which captures the time-rate of change of a
kinematical variable due to changes in ρ and ρI:

m

ρf= ρm0f,
m

ρIf= ρmIf, (2.14)

where f = f(s, t). Thus,
m

ρṙ= ρm0ṙ,

m

ρIθ̇= ρmI θ̇. (2.15)
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We now consider an arbitrary length of the material curve C which is bounded by the
coordinates s1 and s2. To accommodate growth, we allow s1 and s2 to be time-dependent.
The balance of linear momentum is

d

dt

∫ s2

s1

ρṙds− [ρṙṡ]s2

s1
−

∫ s2

s1

m

ρṙ ds = [n]s2

s1
+

∫ s2

s1

ρf ds+

∫ s2

s1

F δ(s− γ) ds. (2.16)

The balance of angular momentum is

d

dt

∫ s2

s1

HOds− [HOṡ]
s2

s1
−

∫ s2

s1

m

HO ds = [r × n + m]s2

s1

+

∫ s2

s1

(r × f + ma) ρds

+

∫ s2

s1

MO δ(s− γ) ds,

(2.17)

where the angular momentum HO relative to the origin O is defined as

HO = ρr × ṙ + ρIθ̇E3, (2.18)

which is specified per unit length of s.
The local forms of the balance laws are obtained from (2.16) and (2.17) with the help

of (2.12):

ρr̈ = ρf +
∂n

∂s
,

ρIθ̈E3 = ρma +
∂r

∂s
× n +

∂m

∂s
. (2.19)

From the balance laws (2.16) and (2.17), we also find that the following jump conditions
must hold at s = γ(t):

[[n + γ̇ρṙ]] + F = 0,
[[

m + γ̇ρIθ̇E3

]]

+ M = 0. (2.20)

It can be shown that (2.19) and (2.20) are collectively equivalent to (2.16) and (2.17).

2.7 Equations of Motion for an Elastica

Our model captures two forms of movement. Growth-related movement is due to time-
related changes in material properties, while reactionary movement is due to the time
rate of change components in the equations of motion. The time scales of these forms of
movement can differ by several orders of magnitude.
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We are only concerned with growth related movement, and so we model a plant with
static equations of motion. Under this restriction, the balance laws4 take the following
form,

ρf +
∂n

∂s
= 0,

∂m

∂s
+
∂r

∂s
× n = 0, (2.21)

where s is arc-length, ρf is the body force per unit length, n is the contact force, m is the
contact moment, and r is the position vector. The jump conditions at a static discontinuity,
which respectively correspond to the previous equations, are

[[n]] + F = 0, [[r × n + m]] + MO = 0, (2.22)

where F is a singular force and MO is a singular moment relative to the origin. Additionally,
we assume that the position vector at any dislocation point r(γ) is always continuous.

In order to capture intrinsic curvature, we prescribe the following simple free energy
function ρψ:

ρψ =
1

2
D(κ− κg)2, (2.23)

where D is the bending stiffness (flexural rigidity) of the rod. As in [9], the local form of
the balance of energy leads to the following constitutive equation for m:

m = D

(
∂θ

∂s
−
∂θg

∂s

)

E3

= D(κ− κg)E3

= Dν E3.

(2.24)

2.7.1 A Discontinuity Equivalence

As shown in Fig. 2.6, there is an equivalent approach to the treatment of a branching
discontinuity and a discontinuity due to a singular force and moment. In Fig. 2.6 the
leading end branch of a three-branch configuration is reduced to an equivalent two-branch
configuration with a singular force F and singular moment M imposed at the tip.

A singular moment relative to the node at s = γ is given by

M = MO − r(γ) × F.

Because r(γ) is continuous, the nodal jump equations (2.22)1,2 expand into the following:

n+ − n− + F = 0,

m+ −m− + M = 0.
(2.25)

4Equation (2.21)
1

is the local balance of linear momentum and equation (2.21)
2

is the local balance of
angular momentum. We omit showing the local form of the balance of energy. However, the local form of
the balance laws are identically satisfied by our constitutive equation for m.
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Figure 2.6: The loading and torque at the node s = γ due to branch (2) on the branched con-
figuration on the left is equivalently represented by the singular force and moment imposed
on the node at the tip of the branched configuration on the right.

Initially accounting for branch (2) in Fig. 2.6 at the node s = γ, we let F = 0 and M = 0

and find that

n− = n+,

m− = m+.
(2.26)

However, if we assume that the downstream branch is reduced to an equivelent singular
force and moment imposed at the node s = γ, then n+ = 0, and m+ = 0, and (2.25)1,2

becomes

n− = F,

m− = M,
(2.27)

where F and M can after be expressed as function of the angle θ at s = γ in the upstream
branch (1).

The equivalent approaches expressed by (2.26)1,2 and (2.27)1,2 are used in Chapter 5.
From the previous example we find that an arbitrary number of branches at a node can be
accommodated and that the equivalent reduction can continue until we arrive at a single
base branch.

2.8 Single Stem ODEs

In plant biology models, it is important to account for the geometric taper that is often
present in branches. It is equally important to attempt to capture the non-homogeneous
nature of constitutive parameters along the branches.
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In order to properly generalize the equations of motion for our use as a plant model,
we first consider that the force and moment at the free end, s = L, of a single cantilevered
branch are zero. At the base of this single branch, s = 0, the vertical force is comprised of
the branch weight and there is no horizontal force component. We extend this concept to
configurations with several branches. Every every node is subject to a vertical contact force
n which is equal to the total weight of the branch(es) downstream of the node. It follows
from Section 2.7.1 that the vertical contact force n is equivalent to a vertical singular force
F.

node

E1

E2

g

s

L

−m(s)

−n(s)

Figure 2.7: The union of the dashed and solid line represents a branch hanging under its
self-weight that is free at one end and connected to a node at another end. The integration
interval between an arbitrary value of the arc-length parameters s and L is represented by
the solid line. The value of the integral in (2.28) is the weight of the branch between an
arbitrary on the of the rod and the tip s = L.

As exemplified in Fig. 2.7, we integrate (2.21)1 from an arbitrary point on the branch
to the tip s = L:

n(L) − n(s) = g

∫ s

L

−ρ(s̄)ds̄E2, (2.28)

where gravity g = −gE2 has been prescribed, L is the total length of a branch segment,
and ρ is a function of the arc-length parameter s. By defining the integral in the previous
equation as

P =

∫ s

L

−ρ(s̄)ds̄, (2.29)

we simplify (2.28) as follows
n(L) − n(s) = PgE2. (2.30)
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The body force prescription is weight in the vertical (−E2) direction, and so the ad-
ditional contact forces due to other branches will be strictly vertical. Thus, n(L) is given
by

n(L) = nL2
E2. (2.31)

We define the vertical component nL2
by a downward force F = −nlE2 imposed at the

tip of the branch. The following equations arise from (2.30) for the similarly decomposed
components of n(s) = n1E1 + n2E2:

n1 = 0,

n2 = −(Pg + nl).

These forces can also be decomposed into tension, nt = n(s) · et and shear, ns = n(s) · en

forces:

nt = −(Pg + nl) sin(θ),

ns = −(Pg + nl) cos(θ).
(2.32)

Using (2.21)1, (2.21)2, (2.24) and (2.6) with the prescription that a gravitational force
acts on the rod (i.e., f = −gE2) and utilizing (2.32)2, we arrive at the equations of motion,5

θ′ = ν + κg,

ν ′ =

(
Pg + nl

D(s, t)

)

cos(θ) −
D′(s, t)

D(s, t)
ν,

P ′ = −ρ(s, t),

(2.33)

where D(s, t) and ρ(s, t) are prescribed functions of arc-length and time. The function κg

will later be replaced by a temporal evolution equation.
Since the rod can be translated anywhere in the plane, the following equations,

X ′ = cos θ(s),

Y ′ = sin θ(s),
(2.34)

which determine the position vector

r = XE1 + YE2 (2.35)

in the plane, remain independent from the third-order system (2.33). Also, the most
convenient boundary condition for the state P is

P(L, t) = 0. (2.36)

The additional boundary conditions for (2.33)1,2 will be discussed in the following chapters.
The equations in (2.33) can also be derived using a variational method. This derivation

is shown in Appendix A. The energy functional used in this method of derivation is
exploited in Chapter 4.

5The prime ′ indicates a partial derivative with respect to the parameter s.
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2.8.1 The Special Case of ODEs for a Single Stem

If we assume that the modeled branch is homogeneous and has a constant cross-sectional
area (i.e., the mass per unit length of the rod, ρ, and the bending stiffness D are constant),
then by integrating (2.21)1 from an arbitrary point on the branch to the tip s = L we
obtain

n(L) − n(s) = ρg(L− s)E2. (2.37)

As in the previous section we find a reduced order system:

θ′ = ν + κg,

ν ′ =
1

D
(ρg(L− s) + nl) cos(θ).

(2.38)

This second-order system is used in numerous illustrative examples in Chapter 4.
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Chapter 3

Growth

3.1 Introduction and Motivation

In addition to lateral and axial growth, plants can control their movement as they grow.
The different types of plant movement are known as tropisms e.g., phototropism and grav-
itropism. Phototropism is movement influenced by light. Gravitropism (or geotropism) is
a movement in a stem or root influenced by gravity. In particular, stems tend to experi-
ence negative gravitropism: growth opposite the direction of the pull of gravity [1]. In this
chapter we use gravitropism to motivate a model of growth related movement.

Negative gravitropism can occur is several different ways. One of these is known as
turning (or bending), and can be induced by the plant hormone auxin [17]. As illustrated

Auxin Transport
Leads to

Elongation Zone

g (Gravity vector)

Figure 3.1: The elongation zone, typically at the tip of a non-wooden stem, experiences a
higher concentration of the plant hormone auxin at the stem underside. Compared to the
topside of the stem, the higher concentration leads to faster cell expansion, resulting in an
upward curvature in the elongation zone.

in Fig. 3.1, the plant hormone becomes concentrated on the bottom side of the stem. A
higher concentration promotes faster cell expansion (or differential growth) and induces an
upward curvature. The prevalence of this mechanism varies from species to species. Most
non-wooden plants rely on turning in the elongation zone at the tip of the growing stem.

Wooden stems in contrast tend to rely less on turning and instead have been observed
to develop tension wood (or residual growth stress) on the upper-side of a branch in the
secondary xylem [2], see Fig. 3.2. According to Malan [18], growth stresses are generated
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Bark

Pith

Primary Xylem

Secondary Xylem

Vascular Cambium

Figure 3.2: A cross-section of a wooden stem showing the general location of the secondary
xylem, where tension wood has been observed to develop on the upper-side of the non-vertical
segments of a branch.

within woody tissue as a result of the tendency of differentiating cells to contract during
cell maturation. Layers of cells added to the stem are laid down in a state of tension, which
has a cumulative effect of counterbalancing compressive forces. In other words, The tension
wood prevents a downward collapse of the branch as additional torque is produced by the
addition of mass during further primary and secondary growth.

3.2 Equations of Motion and Evolution

In general, a plant moves by changing its geometric and constitutive properties that
constitute its configuration. We recall the equations of motion, (2.33) that were derived in
Chapter 2,

θ′ = ν + κg(s, t),

ν ′ =

(
Pg + nl

D(s, t)

)

cos(θ) −
D′(s, t)

D(s, t)
ν,

P ′ = −ρ(s, t),

based on a modified theory of Euler’s inextensible elastica. Although the equations of
motion are ODEs, the parameters can vary in time and along the arc-length s, which
allows us to account for features such as stem taper, lateral accretion of material, plant
morphogenesis, and remodeling. Jump conditions (2.22)1,2 account for significant singular
loads and moments at branching nodes, as well as tip growth. The model allows us to
choose a simple constitutive equation (2.24), where D = EI is again a bending stiffness
parameter (where E is the modulus of elasticity, and I is the cross-sectional area moment
of inertia). Again, κ is the curvature of the present configuration L, and κg is the curvature
of the growth configuration Lg.1

1We sometimes use the symbol for curvature of a particular configuration to refer to the configuration
e.g., “...the growth configuration κg...”.
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In this chapter we establish evolution equations that can be used in conjunction with
the equations of motion to capture various growth phenomena in both wooden and non-
wooden plants. The term evolution refers to the temporal change of a rod’s constitutive
parameters (e.g., D, ρ) and intrinsic curvature κg. We assume a relationship between the
constitutive parameters and the intrinsic curvature. Furthermore, we assume that a positive
rate of change in rigidity D independently influences the change in intrinsic curvature κg.
However, we acknowledge that additional influences on the intrinsic curvature κg can be
present. Our evolution equations account for this additional influence.

We initially consider two ways in which rigidity changes over time. The first is by a
lateral accretion of material and the second is by a remodeling of the rod’s constitutive
properties. We usually treat stiffness D as one parameter. However, when we refer to
remodeling we are implying that Ė > 0 results in the temporal change in D. Likewise,
when we refer to accretion we are implying that İ > 0 results in the temporal change in
D. In the subsequent sections we address how the present and growth configurations are
affected by a decrease in stiffness caused either by Ė < 0 or by İ < 0.

3.3 Previous Works on Growth

In Faruh Senan et al. [9], a simple evolution equation for remodeling was established for
an evolving growth configuration based on the assumption of a static present configuration.
Figure 3.3 reproduces a simulation in [9] for a rod undergoing pure remodeling without
lateral accretion or tip growth. The simulation shows a growth (intrinsic) configuration
approaching the shape of the static present configuration as the stiffness parameter D
increases over time due to constitutive remodeling. The simulation captures a common
phenomenon in plants that was observed by Goriely et al. [10].

The evolution equation in [9] is based on the assumption of a constant moment in
time, ṁ = 0, along the arc-length and fails to capture realistic growth movement when
lateral accretion or tip growth become significant. In other words, the evolution law fails
when the change in moment along the arc-length is significant due to the addition of
material. Without applying an evolution law, Figure 3.4 shows the effect of a uniform
rod hanging lower as the tip is allowed to grow in time. Applying the simple evolution
law and allowing the stiffness parameter D of the initial rod to increase in time due to
constitutive remodeling, Figure 3.4 shows that the rod tends to hang lower than the rod
that does not undergo remodeling. If the simulation is allowed to continue, the growing
rod with the simple evolution experiences a quicker collapse. This is contrary to what we
see happen in nature. According to Yamamoto and Yoshida [2], wooden plants rely on
significant asymmetric residual stresses in their non-vertical limbs to support an expansive
system of branches. Clearly, the residual stress has not been accounted for in the simple
evolution law used in [9].

Yamamoto and Yoshida demonstrate the importance of residual stress by showing that
the tip of a growing stem can only grow outward and upward to within ceratin limits before
eventually hanging lower to the ground. As noted by Yamamoto and Yoshida in [2], this is
in contrast to some researchers who believe that a plant stem can continually grow upward
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Lg Movement in Time
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Figure 3.3: The thick curve represents the static present configuration L of a uniform
constant cross-section rod with rigidity that is increasing with time (i.e., remodeling). The
thin curves represents progressive instances of the rod’s growth configuration Lg in time.
Initially straight, the growth configuration approaches the static present configuration. The
stiffness parameter D evolves according to a prescribed first order ODE step response.

by having a preferred angle of growth at the tip of the stem. We agree with Yamamoto
and Yoshida on the importance of residual growth stress.

Figure 3.5 shows simulations2 of the progressive tip growth of a stem with the elon-
gation zone (at the tip) having a preferred angle θp = 30◦, where the tip growth angle is
defined relative to the horizontal. The thicker stem in the figure shows the point at which
additional tip growth does not lead to any significant outward and/or upward growth. The
simulations in Fig. 3.5 duplicate results by Yamamoto and Yoshida [2], but do so using
different numerical methods. Based on these results they deduced the importance of the
development of growth stress in wooden branches, which leads to a more expansive branched
configurations as compared to non-wooden plants. Residual growth stresses are typically
insignificant in non-wooden plants because the process of turning in the elongation zone at
the tip of a stem is typically enough to obtain a negative tropism or upward movement.

Relative to the model established in Chapter 2, the process of growing a limb with a
preferred angle at the tip, (Fig. 3.5), is the same as growing an arbitrarily shaped initial

2The details of the simulation are discussed in Section 3.6.3.
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Figure 3.4: The same initial rod in Fig. 3.3 is now allowed to have the tip of the rod grow
in time. The rod undergoing constitutive remodeling hangs lower over time compared to the
rod that does not have an evolution law imposed on it.

growth configuration Lg
o whose curvature κg remains constant in time. In [2], Yamamoto

and Yoshida devise a numerical growth model which makes implicit use of a growth con-
figuration and a posteriori method for accounting for the effects of residual growth stress
on branch curvature.

3.4 A Continuous Evolution Equation for κg

In this section we present a continuous evolution equation for κg. In the previous section
we discussed various problems with the simple evolution equation in our earlier work [9].
The evolution law that we discuss here solves these problems by accounting for residual
stresses and allowing for rapid lateral accretion and tip growth.
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Elongation Zone
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Y

0
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-1

Figure 3.5: Progressive configurations depicting tip growth of a branch with a preferred
angle θp = 30◦ of tip growth, where the tip growth angle is defined relative to the horizontal.
The branch is homogeneous, with a uniform cross-section. The sinusoidal shape of the thick
branch can be observed in mature maritime pine branches [2].

3.4.1 Postulated Form of the General Evolution Equation for κg

We postulate the following continuous evolution equation for κg when Ė ≥ 0 and İ ≥ 0,

κg(s, t) =
Doκ

g
o +

∫ t

t0

[
Ḋ(s, τ)

(
κ(s, τ) + κc(s, τ)

)]
dτ +

∫ t

t0

(
D(s, τ)κ̇g

I(s, τ)
)
dτ

D(s, t)
, (3.1)

where Do = D(s, to), κ
g
o = κg(s, to), and κc(s, t) = 0 when İ = 0. Under special conditions,

when
κ̇g

I = ˙κ+ κc, (3.2)

we can evaluate the integral in (3.1) to obtain

κg(s, t) =
Do

(
κg

o − κo − κc
o

)
+D(s, t)

(
κ(s, t) + κc(s, t)

)

D(s, t)
(3.3)

where κo = κ(s, to) and κc
o = κc(s, to). That is

Do

(
κg − κ− κc

)
= constant. (3.4)
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However, we have determined that this special conservation does not fit our general use of
the evolution equation.

3.4.2 Special Case Conservation

We remark on the use of the special condition (3.2) used to develop (3.3). Rearranging
(3.3) we find that

Do

(
κo − κg

o + κc
o

)
= D(s, t)

(
κ(s, t) − κg(s, t) + κc(s, t)

)
, (3.5)

a general form of a conservation. In [9] the special condition is satisfied with the assump-
tion that κ̇ = 0, i.e., the present configuration remains static, and that κc = 0. These
assumptions reduce (3.5) to

Do

(
κo − κg

o

)
= D(s, t)

(
κo − κg(s, t)

)
, (3.6)

which is an expression for the conservation of moment in time along the arc-length.

3.4.3 The Relation of κc to Residual Stress

The novel function in (3.1) is the new parameter, κc(s, t), which represents an induced
curvature related to the change in stiffness. The source of this induction is typically related
to differential growth or asymmetric residual stress in newly grown layers of material. The
exact relationship between the curvature induction and the residual stress or differential
growth must be prescribed, but for this dissertation we assume this prescription exists.

Residual growth stress is a significant factor in wooden plants and many times becomes
a problem for the lumber industry. Lumber with high residual stress manifests itself when
the tree is felled. Severe splitting develops in log ends followed by further splitting and
distortion during conversion into sawn boards. Growth stresses develop in trees as they
grow, which, as stated earlier, has a cumulative effect that results in counterbalancing com-
pressive forces in the central part of the stem. This counterbalance can eventually exceed
the maximum crushing strength of wood, causing numerous slip planes and compression
failures; a condition generally known as “brittle heart” [18].

In a standard three-dimensional continuum mechanics based theory we can capture the
residual stresses that form within a body, Hoger et al. [19]. A one-dimensional rod theory,
however, does not capture the localized residual stress across the cross-section of the body.
Thus, we find that κ and κg are incapable of accounting for the effects of residual stress.
We introduce κc as an additional parameter to correct this deficiency.

Figure 3.6 demonstrates the subtle abstract use of κc. If we have two arbitrarily shaped
rods, L1 and L2,(i.e., two rods with arbitrary curvature profiles) of equal length that can
be fitted together to form a composite rod, we will find that residual stress exists within
the composite rod when the two curvature profiles of L1 and L2 differ. The function κc in
this example is the relative curvature between the two rods and is proportionally related
to the residual stress in the composite rod.
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Figure 3.6: Two rod configurations, L1 and L2, are of equal length L and have identical
curvature profiles between s = 0 and s = s∗. The parameter κc marks the difference in
curvature along the arc-length. These two rods form a composite rod configuration L12,
where κc = 0 in s ∈ [0, s∗) represents a zone with zero residual stress and κc 6= 0 in
s ∈ [s∗, L] is a residually stressed zone.

The parameter κc acts like a control input for the plant. Unlike the plant’s ability
to change geometric and constitutive properties, the ability to control induced curvature
along the arc-length of the stem over time gives the plant the most versatile control over
its movement. The advantage of this evolution law with κc acting as a control input will
be demonstrated in the subsequent sections as we show that one can setup problems by
either prescribing a control input and then determine the plant’s movement or prescribe
the movement and determine a sufficient control input. The design of the control law for
κc also depends on the particular tropism that is being modeled.

3.4.4 The Relevance of κg
I to Evolution

We also introduce the new parameter, κg
I(s, t), in (3.1), which represents an induced

curvature independent of the change in stiffness parameter. The source of this induction is
typically not related to growth and reflects influences by non-growth related residual stress
or a change in the intrinsic curvature independent of evolution, e.g., elastic hysteresis.
Again, the exact relationship between the curvature induction and the residual stress must
be prescribed. The exact meaning and implications of the parameter will become apparent
in the following development in Section 3.5. However, κg

I in typically not a parameter
whose change is controlled by the plant and thus our treatment focuses primarily on κc

and (asymmetric) residual growth stress.
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3.5 General Evolution Equation Features and Discrete

Approximations

In order to motivate the use of the general evolution equation (3.1), we develop an
evolution equation for a simple composite rod. We then adapt this problem into a dis-
crete lateral accretion problem and derive a discrete recursive formula for the evolution
of the growth configuration. The discrete evolution equation can then be shown to be an
acceptable approximation of the general evolution law given the proper initial assumptions.

3.5.1 Determining the Unloaded Configuration of a Composite

Rod

As illustrated in Fig. 3.7, we imagine a cantilevered rod that is straight in its initial

Lg
1

L1 Lg
2

s = L

s = 0

F(L)

M(L)

κg
1 = 0(s) κ1(s) = κg

2(s)

E1

E2

Figure 3.7: The image on the left is the growth configuration Lg
1 of rod 1. The middle

image is the present configuration L1 of rod 1, and the image on the right is the growth
configuration Lg

2 of rod 2.

(growth) configuration Lg
1 and then bent into a deformed (present) configuration L1 by a

force F and moment M at the tip s = L. We will call this rod 1 (see the left and middle
drawings in Fig. 3.7). The moment in rod 1 is

m1 = D1(κ1 − κg
1). (3.7)

Without a loss of generality, now suppose that a second hollow rod (with the hollow void
being equal to the space of the deformed rod 1) has an intrinsic (growth) curvature κg

2(s)
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equal to the (present) curvature of rod 1, κ1(s). This rod will be called rod 2 (see the right
image in Fig. 3.7) and the moment in this rod will be represented by

m2 = D2(κ2 − κg
2). (3.8)

Finally, suppose that rod 1 is fitted into the void of rod 2. We seek to determine the
unloaded configuration of this composite rod.

We represent the moment in the composite rod by

m = D(κ− κg), (3.9)

and make the following prescriptions:

m = m1 +m2, D = D1 +D2, κ1 = κ2 = κ. (3.10)

Equation (3.9) is thus equivalent to

m = D1(κ− κg
1) +D2(κ− κg

2). (3.11)

In (3.9), when κ = κg, then m = 0. If m = 0, then the rod combination is no longer loaded
and occupies its unloaded (growth) configuration.3 Assuming that m = 0 in (3.11) and
solving for κg we find the solution for the intrinsic (growth) configuration of the composite
rod:

κg =
D1κ

g
1 +D2κ

g
2

D1 +D2

, (3.12)

a result that can be expressed as

κg =
D1κ

g
1 + (D −D1)κ

g
2

D
. (3.13)

The combination is a weighted sum of the two intrinsic curvature profiles with the weight
being the respective rod rigidity.

As mentioned above, the prescription of κg
2 is arbitrary and that equations (3.12) and

(3.13) are still valid when κg
2 6= κ1. Additionally, D is not restricted to be constant, i.e.,

the rods can vary in cross-sectional area and be non-homogeneous.

3.5.2 Discrete Growth: Lateral Accretion

Below we re-imagine the problem of the composite rod in the context of a single interval
of discrete lateral growth in a stem. We assume that accreted material during a growth
step does not contribute sufficient weight-induced torque to significantly change the present
configuration.4 As exemplified in Fig. 3.8, the initial growth and present configuration of
the stem, Lg and L, respectively, are identical to rod 1 in our previous example. However,

3Generally, m = 0 does not infer that m1 = 0 and m2 = 0. And thus rod 1 and rod 2 hold residual
stress in the unloaded composite configuration.

4In Section 3.4.1 we establish a simple criterion for an appropriate growth interval.
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we have now added a body force induced by the acceleration field g. We define Lg
δ as the

newly added layer of lateral growth represented by the image on the right in Fig. 3.8. We
decompose the curvature of this growth layer Lg

δ into two components,

κg
δ(s) = κ(s) + κc(s). (3.14)

We argue that if the accreted material does not have any differential growth (or does
not have any asymmetric residual growth stress) then the newly accreted material layer
has the same curvature as the present configuration, as shown by Lg

δ1 in Fig. 3.8. If
differential growth (or an asymmetric residual growth stress) is present, then the curvature
of the accreted growth layer will deviate from the present configuration, as shown by Lg

δ2

in Fig. 3.8. We define the curvature κc as the deviation of the growth layer curvature from
the present configuration.

Lg

L

Lg
δ2

Lg
δ1

κg
δ1(s) = κ(s)

s = L

s = 0

F(L)

M(L)

g

κg = 0(s)

κ(s)

κg
δ2(s) = κ(s) + κc(s)

E1

E2

Figure 3.8: The initial growth configuration Lg and present configuration of the stem L, the
left and middle image, respectively, represent a stem prior to a discrete interval of lateral
growth. A body force induced by the acceleration field g in addition to a singular force F

and moment M at the tip, s = L, is imposed on the present configuration L. We define
Lg

δ as the newly added layer of lateral growth represented by the image on the right. When
κc(s∗) = 0, the curvature of the present configuration L and the curvature of growth layer
Lg

δ are equal at s = s∗. The growth configuration Lg
δ1 exemplifies the condition where κc = 0

for all s ∈ [0, L] and Lg
δ2 exemplifies the condition where κc is not necessarily zero on the

interval s ∈ [0, L].

The new growth configuration Lg
new, a composite of the lateral growth layer Lg

δ and the
initial growth configuration Lg, has an associated growth configuration curvature κg

new that
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is found using a similar procedure as in Section 3.5.1,

κg
new =

Doκ
g +Dδκ

g
δ

D
, (3.15)

where Dδ is the stiffness of the lateral growth layer Lg
δ . Using (3.14), the curvature κg

new

can also be expressed as

κg
new =

Doκ
g + (D −Do)(κ+ κc)

D
, (3.16)

where Do and D are the stiffness of the stem prior to and after the accretion of material,
respectively, and whose difference is

D −Do = Dδ. (3.17)

If we continually grow discrete layers of material, (3.16) provides a recursive formula
for the update of the growth configuration,

κg
n =

Dn−1κ
g
n−1 + (Dn −Dn−1)(κn−1 + κc

n)

Dn
, n ∈ Z

+, (3.18)

where n is the growth step. The values of κc and D are prescribed and act as control input
for growth related movement.

3.5.3 A Discrete Evolution Equation for κg Based on Constitutive

Remodeling

We assume that the remodeling of a uniform rod results in an evolution equation of a
form similar to (3.16) with κc = 0:

κg
new =

Doκ
g + (D −Do)κ

D
. (3.19)

The parameter κc appears to have no physical relevance when an evolution occurs due
to pure remodeling, and so we restrict κc = 0 when I is constant. We will now show
that this assumption appears in the explicit solution for the special case evolution law for
constitutive remodeling derived in [9].

In [9], an evolution law is established based on a static present configuration L for a
rod that does not undergo axial or lateral growth, but whose stiffness D is changing due to
constitutive remodeling. The derivation of an evolution law for this specialized case begins
with the equation of the rod’s moment

m(s, t) = D(s, t) (κ(s, t) − κg(s, t)) . (3.20)

Differentiating (3.20) with respect to time gives

ṁ = Ḋ(κ− κg) +D(κ̇− κ̇g), (3.21)
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where the superposed dot implies a partial derivative with respect to time. The static
present configuration implies that the time derivative κ̇ = 0, while no new material that
would contribute to a change in the moment arm implies that ṁ = 0. Imposing ṁ = 0 and
κ̇ = 0 on (3.21) and solving for κ̇g yields

κ̇g =
Ḋ

D
(κ− κg). (3.22)

This is the evolution law developed in [9].
From (3.22), we separate variables and integrate:

∫ κg(s,t)

κg(s,0)

1

κ− κg
dκg =

∫ D(s,t)

D(s,0)

1

D
dD. (3.23)

That is,

log

(
κ(s, t) − κg(s, 0)

κ(s, t) − κg(s, t)

)

= log

(
D(s, t)

D(s, 0)

)

. (3.24)

Using the notation, D(s, 0) = Do and κg(s, 0) = κg
o, we solve for κg:

κg(s, t) =
Do(s)κ

g
o(s) +

(
D(s, t) −Do(s)

)
κ(s, t)

D(s, t)
. (3.25)

This is the assumed form of the evolution equation (3.19) due to remodeling.

3.5.4 Generalized Discrete Evolution Equation

A change in curvature may occur independently of κc or during an instance of a con-
figuration remodeling without accretion. We add the parameter κg

I to account for this
situation. As a result, we find the generalized discrete evolution equation to be

κg
n =

Dn−1κ
g
n−1 + (Dn −Dn−1)(κn−1 + κc

n)

Dn
+ (κg

In − κg
In−1), n ∈ Z

+. (3.26)

The recursive formulation (3.26) is an adequate estimate for the continuous evolution
of κg if the change in the present configuration between each growth step is small. More
specifically, if |∆(κ+ κc)| << 1 and ∆D << 1 for an interval of time ∆t, then the general
evolution equation (3.1), with a slight abuse of notation, can be estimated as

κg =
Doκ

g
o +

(
κ+ κc

) ∫ t

t0
Ḋ(s, τ) dτ +D

∫ t

t0
κ̇g

I(s, τ) dτ

D
. (3.27)

Invoking the fundamental theorem of calculus we find the previous equation becomes

κg =
Doκ

g
o + (D −Do)(κ+ κc)

D
+ (κg

I − κg
Io), (3.28)

a form reminiscent of equation (3.26).
Equation (3.28) should not be confused with the special case of the continuous evolution

equation (3.3), which is due to the constraint κ̇g
I = ˙κ+ κc. The estimate (3.28) is due to

|∆(κ+ κc)| << 1 and ∆D << 1, which is a more likely and practical constraint. However,
(3.28) and (3.3) are equivalent expressions when κ, κc, and κg

I are constants.
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3.6 Analysis and Implementation of Evolution Equa-

tions and Control Laws

In this section we examine two general methods of using the evolution equation (3.1).
One method is to prescribe the control input κc(s, t) and stiffness evolution D(s, t), and
then to determine L(s, t), the movement of the plant configuration due to growth. The
second method is to prescribe the growth movement L(s, t) and stiffness evolution D(s, t),
and then to determine κc(s, t).

Restating (3.1),

κg(s, t) =
Doκ

g
o +

∫ t

t0

[
Ḋ(s, τ)

(
κ(s, τ) + κc(s, τ)

)]
dτ +

∫ t

t0

(
D(s, τ)κ̇g

I(s, τ)
)
dτ

D(s, t)
,

we define the integrals in (3.1) as

Kc =

∫ t

t0

[
Ḋ(s, τ)

(
κ(s, τ) + κc(s, τ)

)]
dτ,

Kg
I =

∫ t

t0

(
D(s, τ)κ̇g

I(s, τ)
)
dτ.

(3.29)

The term Kc(s, t) quantifies the net change in the intrinsic curvature κg due to lateral
accretion, while the term Kg

I (s, t) quantifies the net change in the intrinsic curvature κg

due to influences independent of lateral accretion.

3.6.1 Determining Growth Related Movement

Recalling the general equations of motion (2.33) and that

κ(s, t) = ν(s, t) + κg(s, t),

we substitute the postulated growth law (3.1) into (2.33) and develop the following set of
ODEs,

θ′ = ν +
Doκ

g
o +Kc(s, t) +Kg

I (s, t)

D(s, t)
,

ν ′ =

(
Pg + nl

D(s, t)

)

cos(θ) −
D′(s, t)

D(s, t)
ν,

P ′ = −ρ(s, t),

K̇c = Ḋ(s, t)

(

ν(s, t) + κc(s, t) +
Doκ

g
o +Kc(s, t) +Kg

I (s, t)

D(s, t)

)

,

K̇g
I = D(s, τ)κ̇g

I(s, τ),

(3.30)

Given valid prescriptions forD(s, t) and ρ(s, t), we can choose κc(s, t) and κg
I(s, t) as control

input to induce plant movement.
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Parameter Case A Case B Case C

E 1.000 1.000 30 × 103 kg/cm2

ρ∗ 4.231 4.231 0.9400 g/cm3

R0 1.050 1.050 0.1500 cm
∆R 0.010 0.050 0.0241 cm
L0 1.000 1.000 5.0000 cm
∆L 0.100 0.100 5.0000 cm
FN 0.000 0.000 8.6200 g
N 3.000 3.000 11

Table 3.1: The process of growth illustrated in Fig. 3.9 is simulated for three cases, where
E is the modulus of elasticity, ρ∗ is density, R0 is the cylindrical radius of the primary
growth segment, δR is the vertical thickness of a new added lateral growth layer, L0 is the
initial length the stem, ∆L is the incremental length of primary growth, FN is a distributed
load on the segment of primary growth, and N is the total number of incremental primary
growth segments. Cases A and B are both non-dimensionalized with respect to initial length
L0.

We now use a finite difference method to perform three simulations (Cases A, B, and
C) using (3.30). For each simulation the rod undergoes primary and secondary growth as
shown in Fig. 3.9. We assume that the evolution of κg is due to lateral accretion and no
remodeling occurs. Furthermore, we assume that κc = 0 and κg

I = 0 for all time. Table 3.1
lists the parameters for each simulation. Cases A and B are both non-dimensionalized
simulations with respect to initial length L0 and are vertically cantilevered at one end
(s = 0) and free at s = L. Case C is a dimensionalized simulation, which uses parameters
provided by Yamamoto and Yoshida [2] to recreate a simulation for a progressively grown
configuration representing a J. chinensis branch. The branch in Case C is horizontally
cantilevered at one end (s = 0) and free at s = L.

In Fig. 3.10 we show progressive simulations for Case A of the rod growing and evolving
due to lateral accretion. The evolution of the intrinsic (growth) curvature κg and the change
in the present configuration curvature κ over time for Case A are shown in Fig. 3.11 and
Fig. 3.12, respectively.
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∆L

∆R

R0
N = 1

N = 2

Primary Growth

Secondary Growth

Figure 3.9: The process of growth simulated in Cases A, B, and C for two growth steps:
N = 1 and N = 2. The primary growth step length is ∆L with a cylindrical radius of R0

about the centerline. In addition to primary growth, at each growth step a tapered layer
of secondary growth is added to the rod with a thickness of N∆R at the base. The rod
maintains axial symmetry about the centerline.

Likewise, in Fig. 3.13 we show the progressive simulations for Case B of the rod growing
and evolving due to lateral accretion. The evolution of the intrinsic (growth) curvature κg

and the change in curvature κ of the present configuration over time for Case B are shown
in Fig. 3.14 and Fig. 3.15, respectively.
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Figure 3.10: Three successive simulations of a rod exhibiting tip growth and evolving due
to a tapered lateral accretion of material are shown. The parameters for the simulation are
outlined under Case A in Table 3.1.
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Figure 3.11: The original intrinsic curvature profile κg (N = 0) along with two addition
sequential profiles that reflect the evolution of the intrinsic curvature after two growth steps
are shown above. The intrinsic curvature profiles correspond respectively to the rods shown
in Fig. 3.10.
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Figure 3.12: The original present configuration curvature profile κ along with two addi-
tion sequential profiles that reflect the change in the present configuration curvature after
two growth steps are shown above. The curvature profiles correlate to the rods shown in
Fig. 3.10.

Y

X

T
ip

G
row

th

N = 0

N
=

1N
=

2

Incr. t

0

0 0.5

-0.5

Figure 3.13: Three successive simulations of a rod exhibiting tip growth and evolving due
to a tapered lateral accretion of material are shown. The parameters for the simulation are
outlined under Case B in Table 3.1.
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Figure 3.14: The original present configuration curvature profile κ along with two addi-
tion sequential profiles that reflect the change in the present configuration curvature after
two growth steps are shown above. The curvature profiles correlate to the rods shown in
Fig. 3.13.
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Figure 3.15: The original present configuration curvature profile κ along with two addi-
tion sequential profiles that reflect the change in the present configuration curvature after
two growth steps are shown above. The curvature profiles correlate to the rods shown in
Fig. 3.13.
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The only difference in the simulation parameters in Case A and Case B is the value
for ∆R. In Case A and Case B, ∆R = 0.01 and ∆R = 0.05, respectively. By comparing
Fig. 3.16 and Fig. 3.17 we can see how a greater change in the stiffness parameter D (Case
B having the greater change over time) results in the intrinsic curvature approaching the
present configuration curvature more quickly. Case B also has a larger taper, which prevents
the present configuration from collapsing as quickly toward the downward direction. The
advantage of a taper is prevalent in many plant structures.

−5
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Figure 3.16: A comparison of the intrinsic curvature profiles and present configuration
curvature profiles for the rods shown in Fig. 3.10 are shown above.
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Figure 3.17: A comparison of the intrinsic curvature profiles and present configuration
curvature profiles for the rods shown in Fig. 3.13 are shown above.

In Fig. 3.18 we compare our simulated results, Case C, with Yamamoto and Yoshida.
We find that our results slightly deviate from Yamamoto and Yoshida. However, at the tip
of each 5 cm primary growth interval Yamamoto and Yoshida imposed a singular vertical
force that we estimated with a distributed force FN across each 5 cm primary growth
interval. Taking this into consideration, we are well within a valid range of their results.
By contrast we also show in Fig. 3.18 how the final tapered configuration would look not
undergone an evolution and having a constant intrinsic curvature κg = 0 (i.e., being a
straight rod when in the growth configuration). We find that the Yamamoto and Yoshida
growth methodology must make an implicit use of an evolving growth configuration.
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Figure 3.18: The three curves represent simulated primary and secondary growth of three
tapered rods. The results for Case C (the middle curve) were intended to reduplicate results
by Yamamoto and Yoshida [2]. Yamamoto and Yoshida simulation (the bottom curve)
imposed a vertical singular force every 5 centimeters, while Case C utilizes an equivalent
disturbed force across the arc-length. Also shown is a tapered rod configuration (the top
curve) having not undergone an evolution and having a constant intrinsic curvature κg = 0.

3.6.2 Driving the Present Configuration through a Desired Path

The use and implementation of κc is best exemplified by deriving a control input that
will induce a desired movement. To derive a control law for κc that will allow us to drive
the initial present configuration toward a desired configuration over an interval of time we
assume that κ̇ = f , where f is an arbitrarily prescribed movement for the branch

(
e.g.

f = 1
τ
(κdesired − κ)

)
. This implies that

ν̇ = f − κ̇g. (3.31)

We can invert (3.1) to solve for κc and arrive at

κc =
D

Ḋ
(f − ν̇ − κ̇g

I) − ν. (3.32)

This is the desired general control law. We generally assume that we know κg
I or that

κg
I = 0. It is easy to see from (3.32) that if Ḋ = 0 then the required control value κc
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becomes indeterminate. This again reinforces the notion that κc is an induced sense of
curvature that is strictly related to the change in stiffness.

Given f and sufficient boundary conditions we can derive θ(s, t) and κ(s, t) which rep-
resents the desired movement of the present configuration. After establishing an initial
present configuration we evolve D and any other prescribed evolution of parameters over
an appropriate time interval and solve for the resulting ν via (2.33)2,3,

ν ′ =

(
Pg + nl

D(s, t)

)

cos(θ) −
D′(s, t)

D(s, t)
ν,

P ′ = −ρ(s, t).

We then determine ν̇, solve for κc using (3.32), and solve for the change in κg with the
equation κg = ν − κ.

The following is a simple demonstration, shown in Fig. 3.19, of a constant cross-section
uniform rod that undergoes lateral accretion and exhibits tip growth over time. We desire
to find κc(s, t) such that κ̇ = 0 for all time regardless of the change in moment throughout
the configuration. Again we assume that κg

I = 0. A static present configuration implies
that f = 0 and

κc = −
D

Ḋ
ν̇ − ν. (3.33)

In Fig. 3.19 we see that as the tip of the branch grows, the present configuration
remains constant due to growth stresses imposed by the control law. Also, we see that
we can capture the phenomenon of the intrinsic curvature profile approaching the present
curvature profile. Compared to Fig. 3.3, Fig. 3.19 exhibits results we are more likely to see
in nature. A measure of the strain at the base of the rod ν(0), shown in Fig. 3.21, reveals
that the absolute value of the strain |ν(0)| decreases with time. By contrast, the moment
at the base of the rod m(0) = D(0)ν(0), shown in Fig. 3.22, reveals that the absolute value
of the moment |m(0)| increases with time due to the rod’s tip growth.
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Figure 3.19: The thick curve is a homogeneous rod of constant cross-section. The stiffness
of the rod uniformly increases approximately 13 times the original value in accordance to a
first order step function shown in Fig. 3.20. The time of the growth interval is divided into
100 equal units. The rod grows 1/5 the original length at it’s tip. The thin curve represents
the intrinsic configuration Lg of the original portion of the rod at distinct points in time,
t = [0, 5, 10, 20, 40, 80, 100].



42

0 5 10 20 40 80 100

2

6

10

14

time

st
iff

n
es

s
D

Figure 3.20: A graph of the stiffness D of the rod in Fig. 3.19 over time.
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Figure 3.21: A graph of the strain ν at the base of the rod in Fig. 3.19 over time.
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Figure 3.22: A graph of the moment m = Dν at the base of the rod in Fig. 3.19 over time.

3.6.3 Discussion of Tip Growth in Simulation

In various simulations, thus far, we have encountered tip growth. In the context of our
evolution equations we can think of the newly developed intrinsic curvature at the tip as
being apart of the initial intrinsic curvature profile κg

o even though it changes and grows
in length over time. We assume that the initial intrinsic curvature profile κg

o is completely
known for the entire desired final arc-length L, except that initially the values of D and ρ
are zero between the arc-length values of Lo and L. Often we have prescribed no preferred
angle of growth at the tip, which is indicative of a straight section of Lg

o. However, for
the simulation in Fig. 3.5 we developed the following preferred angle control law as a
prescription for κg

o in the elongation zone at the tip,

κg(Lo + n∆L) =
θd − θtip(Lo + n∆L)

∆L
, (3.34)

where Lo is the original total length of the branch, n is the current time growth step
number, ∆L is the step length, and θd is the preferred angle of growth. Equation (3.34)
gives us a curve initial intrinsic curvature. If evolution is present then once the curvature
is prescribed at the tip it can then evolve away from this value according to the evolution
equations.

3.6.4 Decomposition of κg

From (3.1) we can decompose κg into the relevant contributions of the change in κg

over time. Adding
(
Dκg

o −Dκg
o

)
/D to the left side of (3.1) and rearranging terms we can
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arrive at

κg = κg
o +Kg

SS +Kg
AS +

Kg
I

D
, (3.35)

where

Kg
SS =

∫ t

t0

[
Ḋ(s, τ)

(
κ(s, τ) − κg

o(s)
)]

dτ

D
,

Kg
AS =

∫ t

t0

[
Ḋ(s, τ)κc(s, τ)

]
dτ

D
.

(3.36)

The integral Kg
SS represents the change in κg due of the development of symmetric residual

stresses in the growth layer. The integral Kg
AS represents the change in κg due to the

development of asymmetric residual stresses in the growth layer. Again, the asymmetric
residual stress is the means by which heavy branches remain upright.

3.7 Comments on Decreasing Stiffness

In the previous sections we have developed evolution equations for the intrinsic curvature
κg based on the time-related increase of the stiffness parameter D, either by an increase
of the modulus of elasticity E or by an increase of the cross-sectional moment of inertia
I. In the following we discuss the issue of decreasing stiffness by first considering a few
physical examples. However, a conclusive model for the change in the growth and present
configurations due to a drop in stiffness D is left for future work.

A straight piece of dry spaghetti provides an example of a softening rod. After allowing
a strand of spaghetti to briefly soften in boiling water, we allow the strand to hang in
an inverted configuration (i.e., holding it upright with your fingers at the base). We find
that the strand’s, formally straight, growth configuration will approach the present hanging
configuration as it dries (and the modulus of elasticity E increases) as predicted by (3.25).
In this new present configuration, we again allow the stiffness to decrease (possibly by
the introduction of stream). According to the evolution equation for remodeling (3.25)
we would find a very non-physical result. The growth configuration would return to its
initial straight configuration. If we were to continue to decrease the stiffness, the growth
configuration would continue to diverge from the present configuration. In reality, we
find that the growth configuration remains constant and that the present configurations
changes by hanging lower to the ground due to the configuration’s inability to support it’s
own self-weight.

We find that we can generally assume that an evolution of κg influenced by the present
configuration does not occur when stiffness decreases. Instead, the intrinsic (growth) cur-
vature κg of a uniform rod with no residual stress will be held constant as stiffness decreases
due to either Ė < 0 or İ < 0.

The situation is different for a rod with residual stress. It is possible for the stiffness
to change in a way that allows a shift in the balance of residual stress that changes the
growth configuration. How to properly model this situation will be one of the subjects of
our future work.
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Chapter 4

Preferred Configurations

When we model plants, we assume that the simulated configurations that represent
a natural configuration are stable configurations. In other words, the determination of
stability of our simulated configurations becomes important in determining whether the
configurations accurately portray physical configurations. In the following sections, we
define stability and then give a brief overview of classical and modern treatments of rod
stability with respect to a buckling column. We then develop a numerical analysis technique
called the S-curve, which allows us to isolate a preferred set of stable rod configurations for
a single rod and identify a phenomenon that will be called jumping points. The preferred
set of configurations does not always encompass all of the stable configurations in a family
of solutions for a particular rod. However, we contend that the preferred set represents a
set of physically realizable solutions. In the next chapter we extended the use of isolating
preferred configurations to configurations with multiple branches. Our discussion and use
of the S-curve is based on the equations of motion (2.33). Although, much of our work is
exemplified using the reduced order equations of motion (2.38),

∂θ

∂s
= ν + κg,

∂ν

∂s
=

1

D

(
ρg(L− s) + nl

)
cos(θ).

4.1 Rod Stability

Stability requires that the configuration of a rod, under a small perturbation, return to
its original configuration. More formally, we define stability for a rod configuration by the
following definition:

Definition (Asymptotic Stability) The configuration corresponding to the static position
vector ro(s) ∀s ∈ [0, L] is said to be stable if, given ǫ > 0, there exists a δ = δ(ǫ) > 0
such that, for any non-static solution, r(s, t), satisfying ||r(s, t) − ro(s)||I < δ (where ||·||I is
a norm on R

2), then ||r(s, t) − ro(s)||I < ǫ for t > to, to ∈ R, and there exists a constant
b > 0 such that, if ||r(s, t) − ro(s)||I < b, then limt→0 ||r(s, t) − ro(s)||I = 0.1

1The solution of r(s, t) satisfies the non-static equations of motion for an elastica.
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For an arbitrary vector function v(s) on the configuration we define the norm ||v(s)||I as
the following:

||v(s)||I =

∫ L

0

v(s∗) · v(s∗)ds∗. (4.1)

In order for any rod configuration to fulfil the requirement of asymptotic stability we assume
a sufficient amount of internal friction.

4.2 The Buckling Column and Stability

The classic problem of the tallest prismatic, i.e., constant cross-section, column that
does not buckle under its own self-weight was solved by Euler [20, 21]. Euler’s solution
provides a boundary for rod stability for a simplified configuration. This boundary is
marked by the threshold of the column that buckles versus the column that does not
buckle under its own self-weight. Since then, others such as Keller and Niordson [22, 23],
have revised the conditions of the classical problem to investigate the tallest tapered cross-
section column given a constant volume. The starting point of these investigations were
all based on the Bernoulli-Euler beam theory, where curvature is proportional to bending
moment. Keller and Niordson reformulated the classical Euler problem into an eigenvalue
problem, where the least eigenvalue was maximized over a class of shapes. In [24] the
critical height of an unloaded column under its own self-weight is said to be the fourth root
of the least eigenvalue of a certain Sturm-Liouville operator. Most recently, the method
used by Keller and Niordson was revisited by Cox and McCarthy [24] and Neu and Farjoun
[25], who question certain assumptions and conclusive results made by Keller and Niordson
[22, 23].

The aforementioned work shows that the analytical determination of rod stability for
simple configurations under specialized constraints is a non-trivial body of work. In the
sequel, we introduce numerical methods to aid in stability analysis for reasonably more
complex configurations than those previously mentioned. However, in order to make a
transparent relation of our analysis method to the previously mentioned analytical treat-
ments, we introduce a problem similar to that of Euler’s prismatic column.

4.2.1 Euler’s Column and a Cantilevered Rod

Using (2.38), we setup a boundary value problem for a single cantilevered rod under
the influence of gravity that is free from contact forces and moments at the tip s = L while
being constrained at the base s = 0 by a force and moment. We prescribe zero intrinsic
curvature, κg = 0, over the entire length of the rod.

Given the above prescriptions, nl(L) = 0 and κg(s) = 0, ∀s ∈ [0, L], (2.38) becomes

∂θ

∂s
= κ,

∂κ

∂s
=
ρg

D
(L− s) cos(θ).

(4.2)
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Clearly, (4.2) can be non-dimensionalized by the length of the rod L in the following way:

∂θ

∂ŝ
= κ̂,

∂κ̂

∂ŝ
= α

(
1 − ŝ

)
cos(θ),

(4.3)

where
α =

ρg

D
L3, κ̂ = κL, ŝ =

s

L
. (4.4)

The parameter α is inversely proportional to stiffness and can be thought of as a non-
dimensional compliance (or inverse stiffness) parameter.

−0.6 0 0.6
0

0.5
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X

Y

Figure 4.1: When α = 8 the inverted rod, the middle configuration of unit length, is unstable
and will fall to one of two stable configurations, the left or right configuration, if slightly
perturbed. Thus, a BVP with boundary conditions of κ̂(1) = 0 and θ(0) = 90◦ will have
three solutions: two stable and one unstable.

Euler initially found that a homogeneous constant cross-section column under its own
self-weight has a critical height of

Lc =

(
9D

4ρg
j2
−1/3

)1/3

, (4.5)

where j−1/3 ≈ 1.8663 is the least positive root of the Bessel function of order −1/3. Thus,
when the cantilevered rod is in an inverted configuration and represents a column under its
own self-weight at a critical height Lc, the critical non-dimensional compliance parameter
αc is

αc =
9

4
j2
−1/3 ≈ 7.84 . (4.6)
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The column is unstable for any value of α > αc.
In Fig. 4.1, three simulated rods represent the configurations that arise for an intrin-

sically straight rod of unit length with α = 8 and boundary conditions of κ̂(1) = 0 and
θ(0) = 90◦. There are two stable configurations and one unstable configuration (represented
by the column).

The first boundary condition is a prescribed moment at the tip, which in the case of
the simulations shown in Fig. 4.1 is the constraint of having zero moment at the tip. From
(2.24), zero moment implies zero strain (i.e., κ̂(1) = 0) since D is always non-zero. A
problem arises in choosing the second boundary condition as it is unclear from our choice
whether the rod is stable or unstable.

Generating configurations with a shooting method demonstrates that for some bound-
ary conditions there are multiple solutions that are a combination of stable and unstable
configurations. Insight into rod stability versus our choice of boundary conditions is gained
through a numerical comparison of closely related configurations generated from a series of
IVPs.

4.3 The S-curve
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θbase

Hanging Column

Hanging Column
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Incr. θtip

Figure 4.2: S-curve: The value of θtip is varied at 5◦ intervals between the set [−90◦, 270◦]
with α = 15. The intervals of θtip are represented by circles on the curve. Points on the
continuous S-curve represents all the possible configurations for a single free-end rod that has
unstable configurations. The X in the middle represents the inverted rod, which is unstable
for this system. The crosses represent the same straight hanging rod configuration. Since
θtip is prescribed at equal intervals it can be observed that there is a non-uniform stretch to
the curve.
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Again, working with the simplified non-dimensionalized form of the equation of motion
(4.3), we choose to integrate backwards from the rod tip, ŝ = 1, to the base, ŝ = 0. For
simplicity we let

κtip = κ̂(1),

θtip = θ(1),

κbase = κ̂(0),

θbase = θ(0).

(4.7)

We are given the initial value condition κtip = 0 and choose a value of θtip from a range of
values between [0◦, 360◦]. Proceeding to integrate backwards, we find that each value of θtip
corresponds to a unique rod configuration. From a series of IVP configurations generated
in a way just described, we create the S-curve.

κ
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630◦270◦90◦−90◦−450◦

θbase

Hanging ColumnHanging Column

Column

Figure 4.3: S-curve: The same curve in Fig. 4.2 is shown with the range of θbase expanded
to show the periodic nature of the S-curve within 360◦ interval of θbase. The value of θtip is
varied at 10◦ intervals between the set [−450◦, 630◦] with α = 15.

The S-curve takes advantage of our ability to numerically store the strain and angle
states at the tip and base of a rod. The S-curve, exemplified in Fig. 4.2, is a curve pa-
rameterized by θtip with the X-axis and Y-axis representing the base angle θbase and the
non-dimensional strain2 at the base κbase, respectively. The curve has non-uniform stretch
since equal intervals of θtip tend not to produce equal arc-length intervals along the curve.
We observe the stretch in Fig. 4.2 and Fig. 4.3 by the relative change in arc-length dis-
tance between circles on the S-curve. Again, the circles represent equal intervals of θtip. In
Fig. 4.3 we observe that the S-curve is generally periodic with respect to 360◦ intervals of
θbase. Additionally, each value of the non-dimensionalized compliance α results in a unique
continuous S-curve, where each point on the S-curve in a 360◦ interval of θbase corresponds
to a unique rod configuration.

2In this case, the non-dimensional strain ν̂ equals curvature κ̂ since κ̂g = 0.
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4.3.1 S-curve’s Relation to the Tallest Column

Recall that a low value of α represents a stiff, light or short rod, while a high value of
α represents a very flexible, heavy or long rod. As α is varied to produce various S-curves
there is a bifurcation point, α = αb, where S-curves corresponding to values of α < αb can
be represented by a graph, i.e., all the configurations have a unique correspondence to a
value of θbase.

Decreasing α

a) b) c)

θbase

κ̂

0.04

−0.04

3

−3

8

000

−8

270◦270◦270◦ 0◦0◦0◦ −90◦−90◦−90◦

Figure 4.4: For a free end rod without intrinsic curvature we find that when α is less
than 7.84 the curve can be represented by a graph. Also, notice that as α decreases the
degree of non-uniform stretch in the curve also decreases. As the value of α approaches the
representation of a rigid straight rod the curve approaches the analytical solution of Dκ ≈
−mrgL

2
cos(θ). a) The curve with α = 30 contains stable and unstable configuration. b) The

graph with α = 7.845 shows the bifurcation points between the family of α-configurations
with unstable solutions and without unstable solutions. The inverted rod (or column) is
critically stable. c) The graph with α << 1 contains configurations which are all stable
configurations. The graph is a negative cosine with respect to the origin.

For the case of a straight cantilever (i.e., a rod without intrinsic curvature and no force
and no moment at the tip) αb = 7.84. This particular bifurcation point is the same as the
critical buckling point Euler calculated for a column under its own self-weight. As we vary
α, as exemplified in Fig. 4.4, we find that as the compliance parameter approaches a value
of α << 1, the functional relationship between κbase and θbase approaches the analytical
solution for a rigid straight rod,

Dκbase ≈ −
mrgL

2
cos(θbase), (4.8)

where mr = ρL is the total mass of the rod.

4.3.2 Using the S-curve for Stability Analysis

The parameter α is insufficient to determine when unstable configurations appear for
rod configurations more complex than a homogeneous constant cross-section cantilever.
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Additionally, we desire a means of distinguishing stable and unstable solutions. Thus,
the S-curve is an insightful tool for stability analysis. Furthermore, there is an additional
phenomenon where certain rod configurations will act similar to critically stable rods,
but will jump to more stable configurations if perturbed in a particular way. These rod
configurations exist as distinct points on the S-curve and are call jumping points.

Finding a preferred set of stable configurations and jumping points with the S-curve
is achieved by adding an additional axis to the curve. As we mentioned previously, each
point on the S-curve represents a rod configuration. Each configuration has an associated
potential energy.
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(E

n
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)

5
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0

0

−5

−5
0◦

450◦
360◦

270◦
180◦

90◦

−90◦
−180◦

−270◦
θbase

(Angle)

Figure 4.5: The three dimensional curve represents a homogeneous constant cross-section
cantilever with α = 15. The projection of the curve onto the strain-angle plane is the S-
curve shown in Fig. 4.3. The projection of the curve onto the strain-angle plane and the
energy-angle plane is shown in Fig. 4.6.

Using the energy functional used to re-derive the equations of motion (2.33) in Appendix
A, the total potential energy of a particular configuration is represented by3

V =

∫ L

0

[
1

2
D(s)(θ′ − κg(s))2 + P(s)g sin(θ) + nl sin(θ)

]

ds, (4.9)

3See Appendix A for an explanation of the grouped terms in (4.9).
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where the energy V can also be non-dimensionalized with respect to the rod length L,
which is denoted as V̂ .

A plot with the third axis representing the energy given by (4.9) along with the S-curve
is shown in Fig. 4.5. A view of the plot projected onto the strain-angle plane is shown at
the top of Fig. 4.6. In this view we have our typical S-curve. A view of the plot projected
onto the energy-angle plane is shown at the bottom of Fig. 4.6.

We make the following conjectures with respect to the three-dimensional curve in order
to make use of the S-curve:

• In the strain-angle plane4, intervals of θbase where the value of θbase corresponds to a
unique configuration, represents an interval of stable configurations.

• In the energy-angle plane, the point on the projected curve that corresponds to the
lowest energy is a stable configuration.

• Starting at a point on the curve that represents a stable configuration, as we move
along the curve with respect to an increasing or decreasing curve parameter θtip we
pass through points that represent additional stable configurations until we reach a
jumping point.

• A jumping point in the strain-angle plane is identified by a point that borders an
interval of stable configurations. At that point on the S-curve the following holds
true

∂ν̂

∂θbase
= ∞. (4.10)

• At a jumping point, if the configuration is perturbed in a direction away from neigh-
boring stable configurations on the curve then the configuration will jump to a point
on the curve in the energy-angle plane that corresponds to lowest energy for a value
of θbase equal the value of θbase at the jumping point.

Using the previous conjectures we can isolate a set of stable configurations. The thick
curves in Figure 4.6 represent the stable configurations, while the vertical arrows indicate
the location and direction of jumping points.

This method of determining a stability set can be extended to reasonably more complex
rod configurations. In Fig. 4.7 the S-curve is generated for a rod with intrinsic curvature
κg 6= 0, varying density ρ, and varying stiffness D along the length of the rod. The rod is
anchored at the base, but has a vertical singular force F imposed at the tip. Again, the
preferred stable configurations are represented by points on the thick curve.

4For brevity, an explicit reference to the strain-angle plane or energy-angle plane refers to the projection
of the three-dimensional curve onto that plane.
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Figure 4.6: The value of θtip is varied at an interval of [−90◦, 270◦] with α = 15. This
S-curve represents all the possible configurations for a single free-end rod with no intrinsic
curvature. The X in the middle represents the inverted rod, which is unstable for this
system. The crosses represent the same straight hanging branch configuration. The stable
configuration are represented by points on the thick curve, while the unstable configurations
are represented by points on the thin curve. The vertical arrows represent the location and
direction of jumping point with the actual jumping point at the end of the arrow and the
new stable configuration at the arrowhead.

For particular situations, the previous conjectures allow us to separate the stable and
unstable solutions. However, it is possible to not completely isolate the entire set of stable
solutions in the S-curve. We have found that the stable solutions we cannot isolate are
typically not attained by physical plant configurations and given a sufficiently large per-
turbation the rod configuration will settle into the set of stable solutions we have isolated
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with our S-curve analysis. In the next chapter, the isolated stable configuration set is used
in the process of generating solutions for stable branched configurations.

8

4

0

0

−4

2

−2

0◦

0◦

270◦

270◦

180◦

180◦

90◦

90◦

−90◦

−90◦

Figure 4.7: This S-curve represents a rod with intrinsic curvature κg 6= 0, varying (sinu-
soidal) density ρ, and varying (sinusoidal) stiffness D along the length of the rod. The rod
is anchored at the base, but has a vertical singular force F imposed at the tip. The stable
configuration are represented by points on the thick curve, while the unstable configurations
are represented by points on the thin curve. The vertical arrows represent the location and
direction of jumping point with the actual jumping point at the end of the arrow and the
new stable configuration at the arrowhead. The dashed vertical lines section out a 360◦

interval that the S-curve repeats every 360◦ of θbase.
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4.3.3 Physical Example of a Simplified S-curve

For the particular rod used to generate the curves in Fig. 4.2 and Fig. 4.3, we recall
that the rod has zero intrinsic curvature. The observed symmetry is peculiar to the case
where intrinsic curvature is zero along the arc-length and a prescribed load at the tip is
absent.

In Fig. 4.8(a) we show several successive rod configurations represented by the the
circles on the S-curve in Fig. 4.3 based on the constant 10◦ iterative change in the value
of θtip. The configurations are solved backward (starting at the X-Y origin) via an IVP
using initial conditions at the tip of the rod. In Fig. 4.8(b) we rearrange the solutions in
Fig. 4.8(a) so that the base of all the rods meet at the X-Y origin.

−1 −0.5 0 0.5
−0.5

0

0.5

1

−0.5 0 0.5 1
−1

−0.5

0

0.5

X

Y Incr. θtip

Incr. θbase

X

Y

a) b)

Figure 4.8: The value of θtip is varied at 10◦ intervals between the set [−90◦, 0◦] with α = 15.
We recall that there are unstable solutions in the complete family of solutions for this value
of α. a) The free tip of any rod is marked by a cross that coincides with the origin, while
the base of a rod is marked by an X. b) The free tip of any rod is marked by a cross, while
the base of a rod is marked by an X that coincides with the origin.

A novel physical analogy for the representation in Fig. 4.8(b) is a sheet of paper held at
one end by the one’s fingertips (see Fig. 4.9). One can trace the same progressive pattern
of configurations by starting with the paper dangling straight down and slowly rotating the
gripped end of the paper about an axis that is coincident with the paper’s horizontal edge.
By our physical example we intuitively find that all the solutions in Fig. 4.8(b) are stable.

If one keeps turning the sheet, eventually the sheet jumps to another stable configu-
ration. This phenomenon is captured and indicated on the S-curve by the two jumping
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Z-axis

Figure 4.9: A physical representation of the solutions in Fig. 4.8b can be made by dangling
a sheet of paper straight down and then turning the base counter-clockwise about the labeled
Z-axis.

points in Fig. 4.6. We find that once the configuration jumps, a back tracking of the base
angle does not return the rod to the previous configuration. Thus, the jumps are one-way
transition to a new stable configuration.

With respect to Fig. 4.8, we increase the θtip interval to [−90◦, 90◦] and display the
results in Fig. 4.10(a). Due to symmetry, mirroring of the solutions in Fig. 4.10(a) about
the Y-axis would represent a set of solutions on the θtip interval [−90◦, 270◦].

In Fig. 4.10(a) we start with the configuration of a hanging straight rod and turn about
the Z-axis at the base. At a certain base angle the value of θbase stops increasing as θtip
increases. We show this transition point in more detail in Fig. 4.10(b). This transition
point marks the jumping point between stable configurations and unstable configurations
shown in Fig. 4.2. As in the simulation, the paper sheet from our physical example will
jump to a new stable configuration when the base angle attains a similar point.
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Figure 4.10: The value of θtip is varied at 10◦ intervals between the set [−90◦, 90◦] with α =
15. a) The free tip of any rod is marked by a cross, while the base of a rod is marked by an X
that coincides with the origin. An additional mirroring of these solutions about the Y-axis
would give a complete set of all the potential solutions for this α-configuration and produce
a set of solutions on the θtip interval [−90◦, 270◦]. b) As we move from left to right along
the curve we find that there is a point where θbase can no longer increase thus suggesting a
point of demarcation between a stable region and unstable region of configurations.
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Chapter 5

Computing the Equilibria of

Branched Plant Stems

In this chapter, we use our earlier work from Chapters 2 and 4 to simulate configurations
with multiple branches. We do not incorporate the work on growth that we developed
in Chapter 3. Indeed, a unifying model for the growth of configurations with multiple
branches1 is left as a subject for future work. However, our method of simulating multiple
branches was developed with the intention of simulating growth in the future.

5.1 Using the S-curve for Multiple Branches

As in the case of a single rod, the S-curve is used to isolate a preferred set of branched
configurations. This is done by generating individual S-curves for each branch. Beginning at
free-end branches, i.e., branches that are the furthest downstream of a single base branch2,
each S-curve of a downstream branch or branches are used to generate an S-curve for a
neighboring upstream branch until the base branch is reached (see Fig. 5.1).

Typically, we choose not to impose a singular force F or singular moment M at the
tip of free-end branches. As a result, the boundary conditions at the extremities of the
branched structure are

F1(θ
1
tip) = 0,

M1(θ
1
tip) = 0,

(5.1)

where θtip and θbase are angles at the downstream and upstream end of an individual
branch, respectively. The indices quantify branch level in a branch hierarchy, (cf. Fig. 5.1).
Equations (5.1)2 and (2.24) imply that

ν1(θ
1
tip) = 0. (5.2)

1For simplicity, we refer to configurations with multiple branches as branched configurations.
2Due to contractive flow, we assume that all branched configurations terminate upstream at a single

base branch.
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Figure 5.1: An example of branch hierarchy is shown. More complex tree structures may
require a different labeling system. Branches are labeled in parenthesis with two coordinates:
(x, y) The first coordinate, x, is the branch level, where the higher the number, the closer
the branch is to the base branch. The second coordinate, y, is the individual branch number
at a particular branch level.

The singular force F, singular moment M, and strain ν are functions of θtip, the variable
initial condition that is used to generate an S-curve.

After generating S-curves for the free-end branches, we use the discontinuity equivalence
developed in Section 2.7.1 and let the branches just upstream of the initial free-end branches
become equivalent free-end branches with imposed singular forces F2(θ

2
tip) and singular

moments M2(θ
2
tip). The initial conditions for the strain are developed from the downstream

(free-end branch) S-curves and the downstream branch’s equations of motion (2.33). The
new initial conditions ν2(θ

2
tip) are developed from the S-curves downstream of the branch

and satisfy the jump condition (2.22)2. The singular force F2 is generally a constant
vertical force and satisfies the jump condition (2.22)1. Relative to two branches at a node
(one being an upstream branch and the other being a downstream branch) the following
relation between angles holds:

θi
base = θi+1

tip + θoffset, (5.3)

where θoffset is the difference between the angles subtended to the vertical by the tangent
vectors to the two branches at the node (cf. Fig. 5.2(a)). This iterative process continues
until the base branch is reached. A schematic of the process for a base branch with two
free-end branches is shown in Fig. 5.2.
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a)

b)

Strain as a function of θtip

Free-end Branch

S-curve for Free-end Branch

S-curve for Free-end Branch 1

S-curve for Free-end Branch 2

Weight of Downstream Branches

S-curve for Base Branch

OUTPUT

OUTPUT

OUTPUT

θ+
offset θ−offset

θtip

θbase

Node

ν(θtip) = 0

Weight of Branches

Figure 5.2: Sending S-curves upstream: For a three-branch configuration, a) the S-curves
for free-end branches are generated, b) at the node the S-curves of the free-end branches
are combined so that offset angle θoffset is accommodated and the jump condition (2.22)2 is
satisfied. This information, along with the combined weight of the free-end branch is used
to create an S-curve for the base branch.
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The strain ν is generally a single-valued function of θbase. However, for certain S-curves
this is not the case. In this situation, we can construct the S-curve by combining several
discontinuous functions. Using the S-curve from Fig. 4.6, an example of this construction
is shown in Fig. 5.3. One function is due to an increasing θbase variable, while the other
function is due to a decreasing θbase variable.
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180◦

180◦

90◦

90◦

−90◦

−90◦

θbase

θbase

Function for Increasing θbase

Function for Decreasing θbase

Figure 5.3: The S-curve from Fig. 4.6 is decomposed into two functions each with a disloca-
tion discontinuity. Each function is sent upstream to form a single S-curve with overlapping
segments.
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5.2 Simulating Configurations with Multiple Branches

In Fig. 5.4 we show a simulation of two S-curves representing two free-end branches
each with jumping points being compressed into a single S-curve at the node. There are
four states when the base branch is vertical. When the tip of the base branch is at 90◦,
these stable states correspond to: branch 1 leaning left, branch 2 leaning right; branch
1 leaning right, branch 2 leaning left; branch 1 leaning left, branch 2 leaning left; and
branch 1 leaning right, branch 2 leaning right. An S-curve is generated for the base branch
and is shown in Fig. 5.6. Notice how the four potential solutions for one set of boundary
conditions manifests in the S-curve.

ν

2

4

0

−2

−4

0◦ 270◦180◦90◦−90◦

θbase

Nodal Output

branch 1

branch 2

Figure 5.4: The construction of a composite S-curve for case of two free-end branches
connected to a base branch with zero offset angle: θoffset = 0. Jumping points are denoted
by an ×. Notice that, close to θbase = 90◦, there are four steps in this curve representing
four possible configurations. Also, the curve is contracted vertically due to the fact that the
base is much stiffer than the branches, and thus the strain is much smaller. A scaled figure
of the nodal output is shown in Fig. 5.5.
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Figure 5.5: The nodal output (i.e., composite S-curve) from Fig. 5.4.
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Figure 5.6: The composite S-curve in Fig. 5.4 is decomposed into four segments, which
combine to form the total S-curve of the base branch. Various segments of the partial
S-curves overlap to form a complete S-curve.
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5.2.1 Branched System Simulation

We close this chapter with an example illustrating the possible configurations of a
complex branched structure. In this case, we consider a base which bifurcates, and each of
the resulting branches also bifurcates. As a result, we end up with a plant with 7 branches.
The question we seek to address is the static equilibrium configurations of the resulting
structure. To find these configurations, we use the S-curve method discussed earlier.

With the help of the S-curve, a range of possible configurations of a (7)-branch con-
figuration are shown in Fig. 5.7. Here, the base angle is increasing in a counter-clockwise
manner. The branch tips have a constant intrinsic curvature along the arc-length parame-
ter and there are offset angles for each branch at the nodes. The process of constructing a
series of S-curves from the free-end branches down to the base branch allows us to choose
the initial conditions of an angle and corresponding strain at the base and integrate out
towards the free-end branch tips in order to determine the spatial configuration. Along the
way, we use individual branch S-curves to supply us with initial conditions at each node.

a) b)

c) d)
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Figure 5.7: Configurations of a plant with seven branches with a varying base angle. The
free-end branches have a constant intrinsic curvature with respect to the arc-length param-
eter. The base angle for the base branch at each segment is: a) 80◦; b) 84◦; c) 88◦; d)
92◦.
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Chapter 6

Future Work

The work in this dissertation has established a foundation for further research in areas
involving physical experiments and an extension of our current model and theory. Our
foremost desire is to strengthen collaboration with botanists and plant biologists in order
to begin experiments on a select set of free standing wooden and non-wooden plants.
However, before our physical experiments can advance, we must establish a streamline
approach that combines the elements of growth developed in Chapter 3 and branching
developed in Chapter 5. As we mentioned in Section 3.7, a proper model for decreasing
stiffness has also yet to be established. Likewise, we would like to extended our current
planar rod theory into a three-dimensional theory.

Working with a botanist, we would like to devise experiments to rigorously test the
accuracy of our model. In the same way that Silk et al. [1] chose the rice panicle for her
research, we too would begin our physical experiments with plants that embody a simple
structure with straightforward constitutive properties. Initial plant experimentation and
consultation with a biologist are also essential steps toward the development of control
laws, similar to those developed in Chapter 3, that would capture various plant tropisms.

Our current model would also be enhanced by determining how to handle decreasing
stiffness. In Section 3.7 we discussed the case of decreasing stiffness for a rod without
residual stress and stated that during a uniform softening of the rod, the growth configu-
ration remains constant. However, for a rod under residual stress a change in the stiffness
can result in a change in the growth configuration. Recalling the rod in Fig. 3.6, now
redisplayed in Fig. 6.1, we notice that if the stiffness of the configuration L1 softens, then
the curvature of the composite configuration L12 would change in such a way as to bend
the tip of the configuration L12 upward as the curvature of the configuration L2 becomes
dominant. We have created several prototype models to deal with decreasing stiffness, but
further research is required to properly develop these initial models.
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Figure 6.1: Two rod configurations, L1 and L2, are of equal length L and have identical
curvature profiles between s = 0 and s = s∗. The parameter κc marks the difference in
curvature along the arc-length. These two rods form a composite rod configuration L12,
where κc = 0 in s ∈ [0, s∗) represents a zone with zero residual stress and κc 6= 0 in
s ∈ [s∗, L] is a residually stressed zone.

The union of growth and branching into one model requires further investigation using
numerical methods. Over the course of this work, various numerical problems, involving the
transition from theory to simulation, were solved. Most of the numerical issues surrounded
the implementation of the S-curve. For example, due to the inherent stretch of the curve,
shown in Fig. 4.4, the calculation of the S-curve would slow down tremendously in areas
where intervals of θtip, the variable that parameterizes the S-curve, would yield a relatively
small interval of arc-length on the S-curve. An algorithm was devised that increases the
size of θtip intervals in response this particular slow down. A particular unresolved problem
is a complication due to growth that occurs when a branch changes its dimensions or
constitutive properties. The S-curve of the branch experiencing growth also changes, which
causes all of the S-curves of branches upstream to change. Again, there are several prototype
algorithms we have devised to combine growth and branching, but more work is needed to
develop them.

Finally, we would like to extend out current planar rod theory into a three-dimensional
theory for the chief purpose of modeling torsion and properly capturing the spatial con-
figurations of the plants we desire to model. It is unknown to us if the S-curve can be
generalized to a three-dimensional model. We do know that if it does exist, the set of
preferred configurations the S-curve predicts can be reduced due to the lack of torsional
rigidity in the rod.
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Appendix A

The Equations of Motion for the

Elastica from a Variational Principle

It is well-known that the equations of motion for the elastica (2.33) can be derived from
a variational principle. Specifically, once the energy functional for the branching rod is
prescribed,

V =

∫ L

0

F (θ, θ′)ds, (A.1)

then the equations of motion are determined from the Euler Lagrange equation:

d

ds

(
∂F (θ, θ′)

∂θ′

)

−
∂F (θ, θ′)

∂θ
= 0. (A.2)

In this appendix, we outline the procedure for prescribing V and showing how it results in
the equations of motion (2.33). The resulting V is a component in the construction of the
S-curves.

The proposed functional F is a sum of the strain energy, self-weight potential energy,
and vertical load potential at the tip of the rod. For free tip branches, this load potential
is zero. In words, the functional is expressed as

V = Strain Energy + Distributed Potential Engery + Singular Potential Energy.

That is,

V =

∫ L

0

[
1

2
D(s)(θ′ − κg(s))2 + ρ(s)gz(s) +W sin(θ)

]

ds, (A.3)

where κg is intrinsic strain, z(s) is vertical height at s, ρ(s) is the density per unit length,
and W is a constant vertical load at the tip of the rod. The expression for z(s) is

z(s) =

∫ s

0

sin(θ(t))dt. (A.4)

Likewise, the height of the load, W , is
∫ L

0

sin(θ(t))dt. (A.5)
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To show the compatibility of V with the equations of motion, we first note that the
general change of order of integration for the following bounds is1

∫ L

0

∫ s

0

f(x, s)dxds =

∫ L

0

∫ L

s

f(x, s)dsdx. (A.6)

Equation (A.3) can be rearranged using the following sequence of steps:

V =

∫ L

0

[
1

2
D(s)(θ′ − κg(s))2 + ρ(s)g

∫ s

0

sin(θ(x)) dx+W sin(θ)

]

ds

=

∫ L

0

1

2
D(s)(θ′ − κg(s))2 ds+ g

∫ L

0

∫ s

0

ρ(s) sin(θ(x)) dxds +

∫ L

0

W sin(θ) ds

=

∫ L

0

1

2
D(s)(θ′ − κg(s))2 ds+ g

∫ L

0

∫ L

s

ρ(s) sin(θ(x)) dsdx+

∫ L

0

W sin(θ) ds

=

∫ L

0

1

2
D(s)(θ′ − κg(s))2 ds+ g

∫ L

0

sin(θ(x))

∫ L

s

ρ(s) dsdx+

∫ L

0

W sin(θ) ds

=

∫ L

0

[
1

2
D(s)(θ′ − κg(s))2 + g sin(θ(s))

∫ L

s

ρ(x) dx+W sin(θ)

]

ds

=

∫ L

0

[
1

2
D(s)(θ′ − κg(s))2 + g sin(θ(s))

∫ s

L

−ρ(x) dx+W sin(θ)

]

ds.

(A.7)

Now, F (θ, θ′) is

F =
1

2
D(s)(θ′ − κg(s))2 + g sin(θ)

∫ s

L

−ρ(x) dx+W sin(θ). (A.8)

If we now define the integral,

P =

∫ s

L

−ρ(x) dx, (A.9)

then the previous expression for F simplifies to

F =
1

2
D(s)(θ′ − κg(s))2 + P(s)g sin(θ) +W sin(θ). (A.10)

Substituting F (θ, θ′) into the Euler-Lagrange equation and using the definition for ν gives

D′(s)ν +D(s)ν ′ − (P(s)g +W ) cos(θ) = 0. (A.11)

This is the general equation for equilibrium of a branch (which can be a part of a larger
branched system). Solving for ν and letting W = nl we arrive at the equations (2.33).

1In (A.6), the arc-length parameter s is a variable of the integral and the bounds.




