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Summary. Stochastic process models are widely employed for analyzing spatiotemporal

datasets in various scientific disciplines including, but not limited to, environmental monitor-

ing, ecological systems, forestry, hydrology, meteorology and public health. After inferring on

a spatiotemporal process for a given dataset, inferential interest may turn to estimating rates

of change, or gradients, over space and time. This manuscript develops fully model-based in-

ference on spatiotemporal gradients under continuous space, continuous time settings. Our

contribution is to offer, within a flexible spatiotemporal process model setting, a frame-

work to estimate arbitrary directional gradients over space at any given timepoint, temporal

derivatives at any given spatial location and, finally, mixed spatiotemporal gradients that

reflect rapid change in spatial gradients over time and vice-versa. We achieve such inference

without compromising on rich and flexible spatiotemporal process models and use nonsepa-

rable covariance structures. We illustrate our methodology using a simulated data example

and subsequently apply it to a dataset of daily PM2.5 concentrations in California, where

the spatiotemporal gradient process reveals the effects of California’s unique topography on

pollution and detects the aftermath of a devastating series of wildfires.
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1 Introduction

Spatiotemporal modeling has enjoyed much attention over last two decades; see, for example,

Cressie and Wikle (2011) and references therein. Such models assume a collection of real-

valued random variables {Z(s, t) : (s, t) ∈ <d × <}, where s denotes spatial coordinates

residing in the d-dimensional Euclidean space (usually d = 2 or 3 in spatial statistics), and t

is time with domain <, the real line. Depending upon the application, Z(s, t) can represent

an observed response such as an environmental pollutant or, perhaps, an underlying physical

process assumed to be generating the observeds response. The preferred modeling approach

is to specify a space-time covariance function for Z(s, t), which will ensure a valid joint

distribution for the realizations of the process over a finite collection of locations and time

points. Christakos (1992, 2000), Jones and Zhang (1997), Cressie and Huang (1999), Brown

et al. (2000), de Iaco et al. (2002), Gneiting (2002), Ma (2003) and Hartfield and Gunst

(2003) all offer classes of stationary space-time covariance functions.

Based upon observations obtained from a finite set of locations and timepoints, spa-

tiotemporal models interpolate Z(s, t) at arbitrary s and t. Interest, subsequently, can turn

to estimating rates of change, or gradients, over space and time, where rapid changes occur

over space and/or time. Examples include geographic features such as mountain ranges caus-

ing sharp spatial changes in precipitation levels, the degree of traffic congestion increasing

abruptly at rush hour, and sudden changes in land values in urban areas, (e.g., Majumdar

et al. 2006). In practice, it is difficult to distinguish between discontinuities in Z(s, t) from

rapid continuous change, especially when Z(s, t) is a residual surface. Model-based inference

on spatiotemporal gradients, as we propose below, seems much more tractable (analytically

and computationally) than inferring about discontinuities.

The factors underlying sudden changes in observed spatiotemporal data are often un-

known, and not easily accounted for. Here, estimating gradients exploiting the smoothness
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of the process becomes relevant and is often referred to as wombling, named after a seminal

paper by Womble (1951). Wombling has been explored in purely spatial contexts by Bar-

bujani et al. (1989), Fortin (1994, 1997), Fortin and Drapeau (1995), Banerjee et al. (2003),

Banerjee and Gelfand (2006), Liang et al. (2009) and Gabriel et al. (2011); see Banerjee

(2010) for an overview. More recently, Quick et al. (2013) carried out inference on purely

temporal (but not spatial) rates of change in asthma hospitalization in California.

Hitherto, inference on rates of change for spatiotemporal processes has gone unaddressed.

Here, we offer inference for directional gradients over space at any given timepoint, temporal

derivatives at any given spatial location, and mixed spatiotemporal gradients capturing rapid

change in temporal gradients over space and vice-versa. Rather than infer on discretized spa-

tiotemporal finite differences as approximations to gradients, which tend to become numeri-

cally unstable at sharper resolutions (Banerjee et al., 2003), we utilize limiting properties of

Gaussian processes to develop the required distribution theory for spatiotemporal gradients.

We deploy nonseparable covariance functions that ensure appropriately smooth specifica-

tions for Z(s, t). We construct valid cross-covariance functions that allow joint modeling

for Z(s, t) and its derivatives across space and time. We offer full distributional details for

Bayesian inference on the aforementioned gradients.

The remainder of this article evolves as follows. Section 2 outlines the notion of a spa-

tiotemporal gradient process, followed by the distribution theory necessary for inference.

Section 3 embeds this distribution theory within a Bayesian modeling framework and de-

scribes how to carry out posterior predictive inference on spatiotemporal gradients. Section 4

presents a simulated data example, which aims to verify our proposed methodology on gra-

dients. In Section 5, we analyze air quality data (PM2.5, particulate matter less than 2.5

micrometers in diameter) from the Air Resources Board of the California Environmental

Protection Agency, where we use the spatiotemporal gradient process to identify the impact
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of mountain ranges on pollution surfaces and detect the aftermath of a devastating series of

wildfires in Northern California. Finally, Section 6 concludes the chapter with a discussion.

2 Spatiotemporal gradients

2.1 Calculus of spatiotemporal gradients

Let Z(s, t) be a (weakly) stationary real-valued spatiotemporal process on <d×< with mean

0 and finite second moment and covariance function Cov{Z(s, t), Z(s′, t′)} = K(∆, δ), where

∆ = s′− s and δ = t′− t for every pair of space-time coordinates (s, t) and (s′, t′) in <d×R.

This function must be positive-definite (e.g. Gneiting, 2002), which requires

Var

{
k∑
i=1

aiZ(si, ti)

}
=

k∑
i=1

k∑
j=1

aiajK(si − sj, ti − tj) > 0 (1)

for every finite collection of (si, ti) ∈ <d ×< and nonzero ai ∈ <, i = 1, 2, . . . , k.

The process Z(s, t) is L2 (or mean-squared) continuous at (s, t) if E{Z(s + ∆s, t+ ∆t)−

Z(s, t)}2 → 0 as (∆s,∆t) → 0. We say that Z(s, t) is mean-square (totally) differentiable

at (s, t) if there exist a d× 1 spatial gradient process, ∇sZ(s, t), and a real valued temporal

gradient process, ∇tZ(s, t), such that, for any given vector u ∈ <d and any real number v,

Z(s + hu, t+ hv) = Z(s, t) + huT∇sZ(s, t) + hv∇tZ(s, t) + o(h) as h→ 0 (2)

in the L2 sense for any scalar h. Equivalently, for any u ∈ <d and any v ∈ <, we require

lim
h→0

E

(
Z(s + hu, t+ hv)− Z(s, t)

h
− uT∇sZ(s, t)− v∇tZ(s, t)

)2

= 0 . (3)

We refer to Z(s, t) as the parent process from which ∇sZ(s, t) and ∇tZ(s, t) are derived.
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If we fix v = 0 in (2), then (3) supplies the spatial directional derivative process as

DuZ(s, t) = lim
h→0

Z(s + hu, t)− Z(s, t)

h
= uT∇sZ(s, t) . (4)

If we collect a set of p directions into a d× p matrix U = [u1 : u2 : . . . : up], we then obtain

a p× 1 process DUZ(s, t) = (Du1Z(s, t), Du2Z(s, t), . . . , DupZ(s, t))T . From (4), we see that

DUZ(s, t) = UT∇sZ(s, t). If, for instance, we take the standard (or canonical) Euclidean

basis vectors in <d as our set of directions, then p = d, U = Id and

∇sZ(s, t) = DIdZ(s, t) =

(
∂

∂s1
Z(s, t),

∂

∂s2
Z(s, t), . . . ,

∂

∂sd
Z(s, t)

)T
, (5)

where s =
∑d

i=1 siei, so the si’s are the coordinates of s with respect to the canonical

basis, and DeiZ(s, t) = (∂/∂si)Z(s, t). Henceforth, we refer to ∇sZ(s, t) in (5) as the

spatial gradient process. Since DUZ(s, t) = UT∇sZ(s, t), the directional derivative process

along a set of arbitrary directions is a linear transformation of the spatial gradient process,

and inference for DUZ(s, t) proceeds immediately from inference for ∇sZ(s, t). Also, when

inferring about DuZ(s, t) it suffices to consider u to be a unit vector (i.e., ‖u‖ = 1) since

DwZ(s, t) = ‖w‖DuZ(s, t) for any vector w that is parallel to u.

If u = 0 and v = 1 in (2), then (3) yields the temporal gradient process

∇tZ(s, t) =
∂

∂t
Z(s, t) = lim

h→0

Z(s, t+ h)− Z(s, t)

h
. (6)

We must assume Z(s, t) is mean-square totally differentiable for the directional gradient

processes to exist in every direction because the partial derivative processes in (5) and (6)

do not ensure differentiability of Z(s, t) along every direction.

Since the processes ∇sZ(s, t) and ∇tZ(s, t) are well-defined and have explicit canonical
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representations with respect to partial derivatives, it is natural to consider gradient processes

arising from mixed derivatives. For example, we can construct the d×1 process ∇t∇sZ(s, t)

whose coordinates are given by mixed derivative in the L2 limit

lim
h→0

DeiZ(s, t+ h)−DeiZ(s, t)

h
=

∂2

∂t∂si
Z(s, t) for i = 1, 2, . . . , d . (7)

This is the temporal derivative of the spatial gradient, reflecting the continuous rate of change

in spatial gradients over time. Alternatively, we could first take the temporal derivative

followed by the spatial gradient, which yields the d×1 process ∇s∇tZ(s, t) with coordinates

lim
h→0

∇tZ(s + hei, t)−∇tZ(s, t)

h
=

∂2

∂si∂t
Z(s, t) for i = 1, 2, . . . , d . (8)

Assuming that all mixed second order partial derivatives are mean-square continuous at

every space-time coordinate (s, t), we can legitimately change the order of the derivatives so

that ∇t∇sZ(s, t) = ∇s∇tZ(s, t) almost surely for every space-time coordinate. Hence, we

can unambiguously define the d× 1 mixed derivative process as

∇s,tZ(s, t) = ∇s∇tZ(s, t) = ∇t∇sZ(s, t) . (9)

While equivalent, the practical interpretations of (7) and (8) may differ; e.g., it may be more

natural to think of ∇t∇sZ(s, t) when modeling the movement of a storm over time.

2.2 Distribution theory for spatiotemporal gradients

Let Z(s, t) be a univariate stationary zero-centered Gaussian random field GP (0, K(·, ·;θ)),

where θ is a collection of process parameters. For notational convenience, we suppress the

dependence on θ and simply write K(·, ·) for the stationary covariance function defined on
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<d×<. Based upon observations from a finite set of locations, say S = {s1, s2, . . . , sNs}, and

timepoints T = {t1, t2, . . . , tNt}, we wish to predict the different spatiotemporal gradients

outlined in Section 2.1 at an arbitrary space-time coordinate (s, t). This suggests developing

a multivariate process comprising the parent Z(s, t) and its derivative processes.

To be precise, let W(s, t) = (W1(s, t)
T , (∇tW1(s, t))

T )T be the 2(d+1)×1 process, where

W1(s, t) = (Z(s, t), (∇sZ(s, t))T )T and ∇tW1(s, t) = (∇tZ(s, t), (∇t∇sZ(s, t))T )T are each

(d+ 1)× 1. Its cross-covariance matrix CW(∆, δ) is 2(d+ 1)× 2(d+ 1) partitioned as

 Cov{W1(s, t),W1(s + ∆, t+ δ)} Cov{W1(s, t),∇tW1(s + ∆, t+ δ)}

Cov{∇tW1(s, t),W1(s + ∆, t+ δ)} Cov{∇tW1(s, t),∇tW1(s + ∆, t+ δ)}}

 , (10)

where each of the above blocks is (d+ 1)× (d+ 1). The cross-covariance matrix in (10) need

not be symmetric or positive definite (unlike a covariance matrix), but must satisfy:

(i) CW(∆, δ) = CW(−∆,−δ)T and (ii)
n∑
i=1

n∑
j=1

aTi CW(si − sj, ti − tj)aj > 0 , (11)

for every (∆, δ) ∈ <d × <, ai ∈ <2(d+1) \ {0}, and finite set of space-time coordinates

{(s1, t1), (s2, t2), . . . , (sn, tn)}. We write (10) in terms of the covariance function K(∆, δ)

and its derivatives by first constructing the corresponding finite-difference process and then

passing to limits. Since the finite difference processes arise as linear transformations of the

original process, the associated cross-covariance matrices are valid (i.e., they satisfy (11)) by

construction. This ensures that CW(∆, δ) in (10) is also valid because it arises as limits of

the valid finite-difference cross-covariances. The (i, j)-th block in (10) can be expressed as

 ∇i−1
t ∇

j−1
t K(∆, δ) (∇i−1

t ∇
j−1
t ∇sK(∆, δ))T

−∇j−1
t ∇i−1

t ∇sK(∆, δ) −∇i−1
t ∇

j−1
t HK(∆, δ)

 , i, j = 1, 2 ,
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where ∇t acts element-wise on vectors and matrices. See Web Appendix A for details.

We now turn to choosing K(∆, δ), which determines the smoothness of the spatiotem-

poral process realizations, thereby ensuring the existence of the spatiotemporal gradient

processes. When constructing the parent process, one could conceivably use separable mod-

els, which factor the spatiotemporal covariance function in terms of a purely spatial and

a purely temporal covariance function, e.g., K(||∆||, |δ|) = Ks(||∆||)Kt(|δ|). However, the

resulting correlations are sensitive to small perturbations in locations, since they are not

smoother away from the origin than they are at the origin (Stein, 2005).

We adapt a class of nonseparable covariance functions in Gneiting (2002), and use

K(∆, δ) =
σ2

(φ2
t |δ|2 + 1)

(
1 +

φs||∆||
(φ2

t |δ|2 + 1)
1/2

)
exp

[
− φs||∆||

(φ2
t |δ|2 + 1)

1/2

]
, (12)

which yields a mean-square differentiable temporal process. This completes our specifica-

tions for CW(∆, δ), which, by construction, is a valid cross-covariance because the required

derivatives of K(∆, δ) exist. Therefore, the collection of random variables {W(si, tj) :

(si, tj) ∈ S × T } has a well-defined multivariate normal distribution with a positive-definite

2NsNt(d + 1) × 2NsNt(d + 1) variance-covariance matrix, which is an NsNt × NsNt block

matrix and the block associated with the pair of space-time coordinates (si, tk) and (sj, tl)

is given by the 2(d+ 1)× 2(d+ 1) matrix CW(sj − si, tl − tk).

For subsequent inferential development, we will be particularly interested in the joint

distribution of the set {Z(si, tj) : (si, tj) ∈ S × T } and the spatiotemporal gradient process

at an arbitrary space-time coordinate (s0, t0). We collect the Z(si, tj)’s into anNsNt×1 vector

by first stacking them over time to form an Nt × 1 column Z(si) for each si ∈ S, and then

stacking the Z(si)’s to form Z = (Z(s1)
T ,Z(s2)

T , . . . ,Z(sNs)
T )T . Note that Z ∼ N(0,ΣZ),

where ΣZ is the NsNt × NsNt variance-covariance matrix whose elements correspond to

7



each pair of space-time coordinates in S × T . The element associated with (si, tk) and

(sj, tl) is K(∆ij, δkl), where ∆ij = sj − si and δkl = tl − tk. From (12), it is clear that

ΣZ = σ2RZ(φs, φt), where RZ(φs, φt) is the corresponding correlation matrix.

Let ∇Z(s, t) =
(
(∇sZ(s, t))T ,∇tZ(s, t), (∇s,tZ(s, t))T

)T
be the (2d + 1)× 1 spatiotem-

poral gradient process comprising the spatial, temporal and mixed derivatives of Z(s, t).

For any arbitrary space-time coordinate (s0, t0), we can write Cov{∇Z(s0, t0),Z} as the

(2d + 1) × NsNt matrix partitioned as ∇K0 = [∇K0,1 : ∇K0,2 : . . . : ∇K0,Ns ], where each

∇K0,i is (2d + 1) × Nt with j-th column ∇K(∆i0, δj0) and with ∇K(∆, δ) being defined

analogously to ∇Z(s, t). Hence, the joint distribution of Z and ∇Z(s0, t0) is

 Z

∇Z(s0, t0)

 ∼ N


0

0

 ,

 ΣZ (∇K0)
T

∇K0 C∇Z(0, 0)


 , (13)

where C∇Z(0, 0) is the cross-covariance matrix of ∇Z(s, t) evaluated at (0, 0). Since Z(s, t)

and ∇Z(s, t) are subsets of a valid process W(s, t), the positive-definiteness of the above

variance-covariance matrix is implicit. The conditional distribution of the spatiotemporal

gradient process ∇Z(s0, t0) given Z is, therefore, a well-defined normal distribution. Subse-

quently, we show how to carry out posterior predictive inference on the gradient process.

3 Hierarchical modeling and inference

In the following we work with d = 2 and consider the spatiotemporal process model

Y (s, t) = µ(s, t) + Z(s, t) + ε(s, t) , (14)
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where µ(s, t) captures large scale variation or trends (e.g., a regression model), Z(s, t) is

an underlying spatiotemporal process, and ε(s, t) is a zero centered white noise process to

capture micro-scale variability and other unstructured random disturbances in the data. For

(14), inferring on gradients associated with Z(s, t) is more general than on gradients associ-

ated with Y (s, t). The white-noise process in (14) introduces a discontinuity in Y (s, t), so

∇Y (s, t) does not exist. However, if µ(s, t) is smooth enough so that ∇µ(s, t) exists, then the

formulation in Sections 2.1 and 2.2 allow legitimate inference for ∇E[Y (s, t) |µ(s, t), Z(s, t)],

which is simply the sum of the gradients for µ(s, t) and Z(s, t). Without the white noise

process in (14) (e.g., in models with no “nugget”), we can legitimately infer on ∇Y (s, t). We

adopt the Bayesian paradigm, which conveniently accommodates each of the above settings

including, in particular, full inference for ∇Z(s, t) at arbitrary s and t.

The model in (14) is applicable to settings where Y (s, t) exists for every space-time

coordinate in <d×<. While the data will be collected only over a finite subset S×T ⊂ <d×<,

inference may be sought at any location and time point, e.g., interpolation and prediction.

For notational convenience, we will assume that every location in S produces observations

over the same set of time points in T , but this assumption is not necessary and, in fact, does

not apply to our data analysis in the subsequent sections.

We now extend (14) to a Bayesian hierarchical model. Following customary assumptions,

we model the trend using regressors indexed by both space and time, i.e., µ(s, t) = x(s, t)Tβ,

and model Z(s, t) as a spatiotemporal process specified by the covariance kernel in (12).

Customary prior specifications produce the posterior distribution p(θ,Z |Y) proportional to

U(φs | aφs , bφs)× U(φt | aφt , bφt)× IG(σ2 | aσ, bσ)× IG(τ 2 | aτ , bτ )×N(β |µβ,Σβ)

×N
(
Z |0, σ2RZ(φs, φt)

)
×

Ns∏
i=1

Nt∏
j=1

N(Y (si, tj) |x(si, tj)
Tβ + Z(si, tj), τ

2) , (15)
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where Y is the set of all observed Y (si, tj)’s and θ = {φs, φt, σ2, τ 2} is the set of process

parameters in the spatiotemporal and the white-noise processes. The parametrizations for

the standard densities are as in Carlin and Louis (2009, Appendix A). We assume all the

other hyperparameters in (15) are known.

We use Markov chain Monte Carlo (MCMC) to draw samples from the posterior dis-

tribution in (15) using Gibbs steps for all parameters except φs and φt, which will be

updated using Metropolis steps. Sampling-based Bayesian inference is advantageous here

as it seamlessly delivers inference on the residual space-time effects. That is, for an arbi-

trary space-time coordinate (s0, t0), we can sample from the posterior predictive distribu-

tion p(Z(s0, t0) |Y) =
∫
p(Z(s0, t0) |Z,θ)p(θ,Z |Y)dθdZ using composition sampling. To

be precise, for each posterior sample for the parameters in (15), say {β(j),θ(j),Z(j)}, we

draw Z(s0, t0)
(j) from p(Z(s0, t0) |Z(j),θ(j)) for j = 1, 2, . . . ,M , where M is the number of

(post-burn-in) posterior samples. Predicting the outcome at (s0, t0) is also straightforward:

drawing Y (s0, t0)
(j) from its full conditional distribution, N(x(s0, t0)

Tβ(j)+Z(s0, t0)
(j), τ 2(j)),

where we assume that x(s0, t0) is available, yields samples from the posterior predictive dis-

tribution p(Y (s0, t0) |Y). Thus, the sampler adapts easily to situations where Y (s0, t0) is

missing or unobserved, as these values can be estimated directly from their posterior predic-

tive distributions. In practice, we recommend selecting s0 by laying a grid over (a subset of)

the spatial domain and sample Z(s0, t0) at each location in the grid for a given time, t0.

Turning to inference for gradients, we seek the joint posterior predictive distribution,

p(∇Z(s0, t0) |Y) =

∫
p(∇Z(s0, t0) |Y,Z,θ)p(Z |Y,θ)p(θ |Y)dθdZ

=

∫
p(∇Z(s0, t0) |Z,θ)p(Z |Y,θ)p(θ |Y)dθdZ (16)

where the second equality follows from the fact that the gradient process is derived entirely
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from its parent process, so p(∇Z(s0, t0) |Y,Z,θ) does not depend upon Y. From (13), it

follows that p(∇Z(s0, t0) |Z,θ) is multivariate normal with mean (∇K0) Σ−1Z Z and variance-

covariance matrix C∇Z(0, 0) − (∇K0) Σ−1Z (∇K0)
T . Sampling from (16) proceeds, again,

using composition: for each θ(j) and Z(j), we draw ∇Z(s0, t0)
(j) ∼ p(∇Z(s0, t0) |Z(j),θ(j)),

which results in draws from (16). Therefore, inference on spatiotemporal gradients proceeds

in posterior predictive fashion, and requires only the post-convergence MCMC samples for

the spatiotemporal model parameters. See Web Appendix B for derivations of ∇K0.

4 Simulated Data Example

To demonstrate the effectiveness of our methods, we present an experiment using data gener-

ated from a true underlying gradient process, enabling us to validate our Bayesian estimation

of spatiotemporal gradients. Our data is generated from Ns = 100 locations on a grid on the

unit square with coordinates (si1, si2), for i = 1, . . . , Nt. Each site is observed Nt = 9 times

at evenly spaced increments, t ∈ {1, 2, . . . , 9}, and all locations are observed at each time

point, giving us a total of N = 100×9 = 900 observations. To analyze these data, we use an

intercept-only regression model, allowing the Gaussian process to capture all spatiotemporal

variability. Our results are based on 10,000 iterations of the MCMC sampler, discarding the

first 5,000 as burn-in.

We generate our data from a model where the true gradient is available in closed form:

Y (si, tj) ∼ N
(
5 [sin(si13π) + cos(si23π) cos(tjπ/7)] , τ 2

)
. (17)

The reason we chose the expression in (17) is two-fold: not only does it allow us to assess

the quality of our gradient estimates, but it also features an interesting interaction between

space and time. Specifically, in the si2 direction, our spatial gradients evolve over time,
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allowing us to determine if our mixed gradients (and thus the spatial and the temporal

gradients) are able to accurately estimate the true values, and if our model is capable of

detecting significant mixed gradients. By contrast, the si1 direction does not evolve over

time, providing us with temporal replicates of their gradients to help identify locations in

which the gradient estimation performed well and where it did not. We can also check how

our mixed gradients perform when there are truly no interesting trends to be found.

Our Bayes-MCMC procedure accurately estimated the error variance parameter as τ 2 =

0.93 with a 95% CI of (0.84, 1.04), covering its true value of 1. We also fared well regarding

the spatiotemporal random effects, Z, with 96% of the 900 CI’s for Z(si, tj) covering their

true values. Gradients are computed on a grid comprised of points si0 = (si01, si02) where

si0j ∈ {0.05, 0.15, . . . , 0.95} for j = 1, 2 at times t0 ∈ {1, 2, . . . , 15}. Overall, our gradient

estimation methods performed quite well: 99% of our estimated gradients’ CI’s covered their

true values. In Figure 1, we display the true temporal and the si2 mixed gradients at t0 = 3

compared to their estimated values, as well as a map displaying significant gradients. Our

estimated gradients appear to accurately capture the true underlying gradient surface, and

we generally see significant gradients where we would expect. For instance, the temporal

gradient at location (0.5, 0.5) in Figure 1(a) is roughly equal to 0 and this location appears

to be in the middle of a downward slope in the vertical axis. Looking at this location in

Figure 1(b), we find that this location indeed has a significantly negative gradient in the

si2 direction. Also, though not shown, we find zero significant mixed gradients in the si1

direction, as we had anticipated.

Figure 1(b) also highlights an important issue regarding statistical significance in the

mixed gradients. Based on our work, detecting significant mixed gradients near the bound-

aries of the spatial domain can be difficult. For instance, when computing mixed gradients

in the si2 direction (i.e., the “north/south” gradient), the estimated mixed gradients in the

12



middle panel of Figure 1(b) accurately reflect the true underlying gradient process. However,

the horizontal bands across the top and bottom of the spatial domain fail to consistently

achieve significance. We believe this is due in part to the fact that we’re conducting in-

ference two levels of derivatives removed from the estimated spatio-temporal process, and

thus we encounter a considerable amount of variability in these estimates. Furthermore, this

issue is particularly exacerbated across these bands, as we can essentially only learn about

the gradient process from a single direction. As such, we are less concerned with detecting

significance in the mixed gradients; instead we focus our attention on the patterns observed.

This example illustrates how an investigation of the spatiotemporal gradient process could

be used to identify important missing covariates. Based on the lack of interesting patterns in

the mixed gradients found in the si1 direction, this suggests that the missing factors do not

substantially vary in this direction. On the other hand, the patterns observed in Figure 1(b)

indicate the potential for an important factor that moves in the si2 over time. Recalling the

structure in (17), we see that both of these conclusions are accurate.

5 Data Analysis

Our data consist of concentrations of PM2.5 (in parts per million; ppm) measured at mon-

itoring sites throughout the state of California and were collected by and obtained from

the Air Resources Board of the California Environmental Protection Agency. We observe

777 observations collected during June 2008 from 79 monitoring sites across the state. Of

these, 10 sites record observations nearly every day (26+ days out of 30), while the rest are

observed only observed once every three to six days. For instance, we observe data from 78

of our monitoring sites on June 11, yet only nine sites are observed on the 9th and ten sites

on the 10th, 12th and 13th.
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In Figure 2(a), we display the locations from which our data were observed, with black

circles denoting sites observed once every three to six days and red triangles denoting sites

observed on an almost daily basis. Note that while the monitoring sites are relatively well

dispersed throughout the state, only two monitoring sites in Northern California (and only

one as far north as Sacramento) are observed daily. This lack of information may pose

challenges such as a decrease in precision, which may lead to a difficulty to detect significance

in the gradient process developed in Section 3. This sparsity of observations may also be

seen in Figure 2(b), which displays the distribution of the observed PM2.5 concentrations.

In addition to exact spatial coordinates (in latitude and longitude), each monitoring site

is attributed with an elevation covariate. For convergence purposes, we have centered and

scaled elevation to avoid unnecessary correlation between samples of our slope and intercept

coefficients. We use the sinusoidal projection si1 = Eλ cos θ and si2 = Eθ, where E =

6371km is the radius of the earth, and θ and λ denote latitude and longitude, respectively.

Distances were computed by letting one spatial unit equal 100km, while temporal distances

were computed by letting one temporal unit equal one week. In order to make informed

decisions regarding air quality warnings, public health officials rely on statistical models

to predict each day’s pollution levels. In the analysis of pollution data, weather-related

covariates such as wind speed and wind direction are typically included, however the only

covariate information available to us here is the elevation of the monitoring site.

A summary of our full model’s parameter estimates can be found in Table 1. As expected,

the regression coefficient for elevation is significantly negative, suggesting that locations

at higher elevation tend to have lower levels of pollution. The samples of our variance

parameters, τ 2 and σ2, can be used to compute the posterior distribution for σ2/(σ2 + τ 2),

which has a median (95% CI) of 0.986 (0.98, 0.99), indicating that 98.6% of the residual

variability in our data is being explained by the spatiotemporal process. This high a value
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is not surprising given the limited number of covariates in our model. Finally, our spatial

and temporal range parameters, φs and φt, can be interpreted as controlling how quickly the

correlation between two observations drops off. For instance, the spatial correlation between

two observations 100 km apart but recorded at the same time has a 95% CI of (0.44, 0.59),

and the temporal correlation between two observations recorded at the same location 2 days

apart has a 95% CI of (0.21, 0.44). Similarly, the spatiotemporal correlation between two

observations 100 km and 2 days apart has a 95% CI of (0.17, 0.32).

Figure 3 displays the maps of the fitted values (i.e., Ŷ (si, tj) = x(si, tj)
T β̂ + Ẑ(si, tj)) for

each of the days in the study period. Given our limited number of covariates, the majority

of the variation in this figure is due to the variability in Z; as such, our focus will be on

the underlying spatiotemporal process. Here, we do not see much day-to-day variability

during the first 3 weeks of the month, save for a slight increase on June 12. Things change

dramatically during the week of June 22, however, when a rash of wildfires in Northern

California occurred, causing substantial levels of particulate matter to be released.

In Figure 4, we display maps of the spatial gradients for the transition between June 12

and June 13; for comparison purposes, we also display a topographical map of California

in Figure 4(c). These maps represent a typical day during the first three weeks of June,

when the topography of California appears to play a major role in the patterns we see. For

instance, we can clearly see that the Coast Ranges (along the coast from northern California

to the Los Angeles area) and Transverse Ranges (stretching from west to east, creating the

northern border of Los Angeles) appear to strongly influence the gradient estimates. During

this three-week time period, we fail to detect any significant gradient activity.

The gradient story changes dramatically at the start of our fourth week, however, when

a series of dry thunderstorms crossed the northern half of the state on June 20 and June

21, bringing with it over 5,000 lightning strikes and causing over 2,000 fires (California
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Department of Forestry and Fire Protection, 2008). As these fires spread over the course of

the weekend, levels of PM2.5 increased substantially, as evidenced by the map of temporal

gradients from June 21 in Figure 5. Over the course of the following week, we find a

large number of significant temporal gradients, corresponding first to the increased levels of

smoke and ash being released into the air. As the military and fire departments from across

the nation battled the fire, we see levels begin to drop at the end of the month. As in our

simulated example, identifying significance in the mixed gradient surfaces proves challenging.

While this may be due in part to the sparsity of monitoring sites in Northern California, this

may also indicate that the wildfires remained contained to one (albeit large) area. Maps of

all of the spatiotemporal gradients can be found in the Web Appendix C.

6 Discussion

We have outlined a fully process-based inferential framework for infinitesimal rates of change

in space and time within a Bayesian setting, expanding upon earlier work on rates of change

in purely spatial or in discrete-space continuous-time settings. Full posterior distribution

of spatiotemporal gradients can be obtained in a posterior predictive fashion at arbitrary

locations and timepoints. This is attractive from an execution standpoint because we do

not need to recompute the posterior distribution of the model parameters when inference is

sought on new locations and timepoints; e.g., we can store the post burn-in posterior samples

of the model parameters and estimate the spatiotemporal gradients using composition sam-

pling, which is fast and exact. Our sampling-based Bayesian framework outlined in Section 3

also easily adapts to finding gradients from misaligned or unbalanced spatiotemporal data,

where the outcome may not have been observed in the same set of locations across time.
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Turning to our analysis of the California air pollution data, supplying the posterior

distribution for the spatiotemporal gradients can help investigators determine the nature of

the important factor(s) not accounted for in our mean model. During the first 3 weeks of

June 2008, the spatial gradients consistently display a trend corresponding to the topography

of California. This could also be inferred by the lack of interesting patterns in the mixed

gradients during this period, suggesting that the observed spatial gradients were due to

“fixed” spatial features. Then, once the lightning storm passed and left a trail of wildfires

in its wake, we suddenly observe new patterns in our gradients. Based on our results, it

appears the pollution levels increase primarily over time rather than over space; i.e., once

the storm hit and the fires started, pollution levels in the affected areas rose dramatically

over the entire region. As such, while we see some activity in both the spatial and mixed

gradients, the majority of the action here occurs in the temporal gradient process. If our

data were collected at a finer spatiotemporal resolution, we may have been able to track the

trajectory of the storm as it set the state’s forests ablaze using our entire gradient process.

Some alternate methods present themselves immediately. One could, for example, con-

struct finite-difference spatiotemporal processes, e.g.,
Z(s + hu, t+ h)− Z(s, t)

h
. Inference

for such processes is straightforward and requires no new methodological developments.

Furthermore, these processes may be able to approximate the gradient processes effectively.

However, we may encounter numerical instabilities with finite difference processes when infer-

ence is sought at finer resolutions, i.e., smaller values of h (e.g., Banerjee et al., 2003). While

the distribution theory for gradients becomes more complicated as we pass to L2 limits, we

obtain tractable joint distributions that do not encounter any numerical problems.

Also, we have focused only upon fully process-based models, where space and time are

both treated as continuous. There are a variety of alternate models, such as dynamic linear

models, that model spatiotemporal data. These alternate models, almost invariably, treat
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only one of space and time as continuous. For example, dynamic linear models usually treat

space as continuous but time as discrete. We can still infer about spatial gradients over

time, but not about temporal derivatives. Extensions to non-Gaussian data are achieved by

replacing the Gaussian likelihood in (14) with an exponential family.

Finally, we provide some pointers toward future work. Our developments naturally ex-

tend to machine learning and functional regression contexts, where Z(x, t) is now a dynamic

Gaussian process on the predictor space and inference is sought on the rates of change of

this process, both with respect to the predictors x and time t. We also intend to extend

this work to massive datasets by extending the theory for gradients to dimension-reducing

spatiotemporal (or dynamic functional regression) processes. Our current work can also be

extended to gradient analysis for spatiotemporal Dirichlet processes, building upon earlier

work in purely spatial settings by Guindani and Gelfand (2006). When the number of spatial

locations and/or temporal units become large, implementing spatiotemporal processes be-

come cumbersome. Inference can still proceed from dimension-reducing and computationally

scalable predictive process models that can be adjusted with tapered covariance functions

(e.g., Sang and Huang, 2011). While gradients can be estimated from the predictive pro-

cess (see, e.g., Liang, Banerjee and Carlin, 2009), choosing an appropriately smooth tapered

covariance function will likely perform better. Lastly, we intend to explore gradient theory

in cases where second-order stationarity is not a valid assumption. This extension is non-

trivial as nonstationary covariance functions do not submit themselves as easily to inference

for estimation on gradients.
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Supplementary Materials

Web Appendices referenced in Sections 3, 4, and 5 are available with this paper at the

Biometrics website on Wiley Online Library.
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(a) Temporal Gradient

(b) si2 Mixed Gradient

Figure 1: Comparison of the true temporal and the si2 mixed gradients for a particular time
point and their posterior median values based on our gradient theory. The color scheme here
goes from highly negative (blue) to highly positive (red), centered around 0 (light gray), with
locations of observed locations plotted as open circles. The third panel highlights significant
gradients; i.e., gradients whose 95% CI’s contain 0 are assigned value 0, while gradients
whose 95% CI’s do not contain 0 are assigned their posterior medians.

Parameter Median (95% CI) Parameter Median (95% CI)
β0 (Intercept) 16.561 (16.414, 16.707) σ2 (S-T Var) 306.457 (247.138, 404.785)
β1 (Elevation) -1.654 (-2.589, -0.606) φs (Spatial) 1.647 (1.407, 1.863)
τ 2 (Error Var) 4.415 (3.315, 5.855) φt (Time) 4.908 (3.944, 6.876)

Table 1: Parameter estimates from the analysis of the PM2.5 data. φs is on a scale of 1 unit
= 100 km, and φt is on a scale of 1 unit = 1 week.
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(a) Monitoring Sites (b) Histogram of PM2.5

Figure 2: Left panel displays the locations of the monitoring sites observed in the PM2.5
data. Black circles denote sites observed once every three to six days, while red triangles
denote sites observed nearly daily. Right panel displays the distribution of observed PM2.5
concentrations (in ppm).

Figure 3: Predicted levels of PM2.5 for the month of June 2008. The maps are situated so
that the first column of days are on Sunday, the second are Mondays, etc.
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(a) Eastern Gradient (b) Northern Gradient

(c) Topographical Map (d) Spatial Gradient Key (per 100km change)

Figure 4: Estimated spatial gradient plots for the transition period between June 12 and June
13, as well as a topographical map of California for comparison purposes. Spatial gradients
in the southern portion of the state appear to correspond to the Transverse Ranges, which
wrap around north and east of Los Angeles. We are also able to identify the valley that runs
vertically through the state.

(a) Temporal Gradient (b) Temporal Gradient Key (per 1 week change)

Figure 5: Estimated temporal gradient plots for the transition period between June 21 and
June 22. Positive gradients in the northern California likely correspond to wildfires resulting
from a series of lightning storms on the afternoon of June 21.
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