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SEISMIC RESPONSE OF MULTIPLY SUPPORTED SECONDARY SYSTEMS
IN POWER PLANT STRUCTURES

By
Armen Der Kiureghian
Jerome L. Sackman
James M. Kelly
Department of Civil Engineering

University of California
Berkeley

ABSTRACT

This report describes a new approach to the seismic analysis of multiply supported multi-
degree-of-freedom secondary systems in power plant structures. It is intended to provide
rational methods to estimate the seismic response of piping in nuclear plants that are at once
computationally less expensive and more accurate than the current multiple-response spectrum
methods. Two methods are developed which utilize the modal properties of the structure alone
and the fixed base modal properties of the piping or secondary system. The first method can be
used with time history if ground motion records are available or with ground response spectra.
It provides proper combination rules which account for the effects of closely spaced modes.
Also included is the proper combination rule for response spectra when the ground motion has
multiple components. The second method uses input in the form of floor spectra at the support
points of the piping system. However, unlike the conventional multiple-response spectrum
method, the procedure developed here properly accounts for the correlation between motions at

different support points.



I. INTRODUCTION

The current methods of seismic analysis of secondary systems such as piping in nuclear
power plant structures are the single-response spectrum (SRS) method, multiple-response spec-
trum (MRS) method, and the time-history (TH) method. In all three methods, the analyst
begins with a specification of the motion of the points of attachment of the piping system
neglecting the interaction between the piping and the structure. In the SRS method, a single
input floor response spectrum for the piping system is employed which is the envelop to the
floor spectra at all attachment points. In the MRS method, the separate spectra at all attach-
ment points are utilized. These floor spectra are usually generated through time-history analysis
of the primary structure using an artificial ground motion history which is "compatible" with the
design ground spectrum for the site. The response of the piping system in both SRS and MRS
methods is obtained by combining modal components of piping response by approximate and ad

hoc procedures.

Numerical studies comparing results for these approximate methods with results obtained
by the TH method which, using complete time-history analysis of the piping system, is
presumed to be accurate, have indicated that the SRS and MRS methods can be excessively
conservative. On the other hand, the TH method requires a great deal of computation and is
impractical for economic reasons. Furthermore, the validity of using a "spectrum-compatible"
time history is very questionable in that there are no real earthquakes that have spectra that are
compatible with a smooth design spectrum and, in addition, it is well known that there are
severe problems of uniqueness with this approach, i.e., different time histories compatible with
the same design spectrum may lead to very different estimates of the peak piping response.
The concept of spectrum-compatible time histories is in contradiction with the basic methodol-

ogy of random vibration theory and can not be justified on rational grounds.

The problems associated with the spectrum approaches can be summarized as follows:
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1. Use of a single ground motion history which may not be characteristic of potential earth-
quakes at the site. This is true whether a real earthquake record or a spectrum compatible

time history is employed.

2.  Neglect of cross-correlations between components of ground motion when design is for

multi-directional ground excitation.

3. Improper combination of contributions from closely spaced structural modes in the com-
putation of the spectra at the piping support points, when a response spectrum or random

vibration method is used.

4, Improper combination of contributions from closely spaced modes of the piping system in

computing its peak dynamic response.

5. Neglect of cross-correlations between components of excitation at each support and

between the supports.

6. Neglect of interaction between the primary structure and the piping, which can be impor-

tant when some natural frequencies of the two subsystems are close to each other.

7. Neglect of the effect of nonproportional damping which can be significant in combined
structure-piping system even though the structure alone and the piping alone are propor-

tionally damped.

8. In addition, the fundamental question arises as to whether for a multi-degree-of-freedom
system the response spectrum method can be used when the input is itself the response of

a system, i.e., the primary system, which in general may not be a wide-band process.

In this report we address a number of these problems. Two methods are developed which
utilize the modal properties of the structure alone and the fixed base modal properties of the
piping or secondary system. The first method can be used with time history if ground motion
records are available or with ground response spectra. It provides proper combination rules
which account for the effects of closely spaced modes in the primary as well as in the secondary

systems. Also included is the proper combination rule for response spectra when the ground
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motion has multiple components. It is a characteristic of the formulation of the problem in this
method that it avoids the introduction of the pseudo-static displacement (which gives rise to the
so called secondary stresses) and thus eliminates the unresolved question of the proper combi-
nation of secondary stresses with the primary or "dynamic" stresses. This method has the
advantage that it bypasses the the need for generating floor spectra and the above mentioned

problems associated with the standard MRS method.

The second method uses the formulation of the first method recast in the form of floor
response spectra to provide an improved MRS method. It uses input in the form of floor spec-
tra at the support points of the secondary system. However, unlike the conventional MRS
method, the procedure developed here properly accounts for the correlation between motions at
different support points. It should be clear that significant correlation between the support exci-
tations exist, since the support point motions result from a single ground motion filtered
through the structural system. The effect of closely spaced modes in each of the two subsys-

tems is also included in this method.

Both methods developed herein can be used when the design input ground motion has
multiple components. The interaction between the primary and secondary systems is not
included in this analysis. However, this effect will be included in the continuation of this

research work.

II. FORMULATION IN TERMS OF GROUND RESPONSE SPECTRUM

Consider a structure with N degrees of freedom subjected to a single ground‘ motion time
history i (), which may be one of three orthogonal components of the complete ground
motion. Attached to this structure is an n+m degree of freedom secondary system, which may
represent an extended equipment item or a piping system. The attached degrees of freedom of
the secondary system are identified by i=1,2,...,m and the unattachment degrees of freedom
are identified by i= m+1,...,n+m. In the structure, the degrees of freedom of the attachment

points are identified by /= N—m+1,...,N, as shown in Fig. 1.
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The structure is modeled by conventional mass, M, damping, C, and stiffness, K,
matrices and modal damping is assumed. The secondary system is also modeled in this way

again with modal damping assumed in the modes of the fixed base system.

The basic equation of motion of the structure is

MU+CU+KU = CRit, + KRy, +F 0))
where F is the N-vector of interaction forces between the structure and the secondary system

and R is the influence vector that couples the ground motion to the degrees of freedom of the

structure. We note that F has the following form

0
where f is an m-vector of interaction forces exerted by the secondary system on the primary

system. The response N-vector, U, can be similarly partitioned in the form

v~ (v}

The corresponding equation for the secondary system is

TS A il W B

where m, ¢, and k are the fixed base properties of the secondary system, ¢, and k. are coupling

m, 07
0 m

matrices and m,,, ¢,, and k, are matrices associated with the attachment points of the secon-
dary system. Note that the full matrices in Eq. 2 are the appropriate matrices for the response

of the secondary system considered as a free system. Equation 2 can be separated into two

equations:
mii +cu+ku = —c.u.—k.u, 3)
m,ii, +cpi, +eli+kuc+tkfutf=0 (@)

The complete solution for the combined system involves a simultaneous solution of Eqgs.
1,3, and 4 for the unknown vectors U and u in terms of the specified ground motion i, (¢).
This is a formidable undertaking for all but the simplest systems and has only been done

correctly for the case of a single-degree-of-freedom secondary system attached to one point of a
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primary system, i.e. n=m=1, in Refs. [3]. The basic difficulty is the interaction between the
systems and primarily the influence of f on the response of the primary system. The standard
simplifying approach is to neglect the influence of f on U and this will be followed here,
although a continuing aspect of this project is to include this interaction since it is clear that

there are systems for which this interaction can not be neglected.

Neglecting this interaction, the equations to be solved are Eq. 1 with F=0 and Eq. 3.
This means that the motion of the structure is determined as if the secondary system were
absent and then the resulting motion at the attachment points is used as base input motion to

the secondary system.
It is common practice in seismic analysis of structures and of secondary systems to use a
modal approach, especially if a response spectrum method is to be used. Let

¢=- [Q, ¢, --- N] be the modal matrix of the structure containing the modal vectors ®,;

and 0} be the diagonal matrix of the corresponding natural frequencies ;. The fixed base

modal matrix of the secondary system is denoted by ¢ = [¢1 ¢ - ¢,,] and the diagonal
matrix of the natural frequencies w; is denoted by w.

The response of the structure is represented by

U=®Q (%)

where Q is the N vector with components Q;, given by

O, +2B,0,0,+ 070, =T, 2B,n,ag+n;ug] . I=12,..N ©)

where B, is the damping coefficient and I'; is the participation factor for the /-th mode of the

structure, with

_o/MR
® /Mo,

The term 2B,Q ;i, is generally neglected in view of the small damping coefficient. The modal

r, )

matrix @ is partitioned into

®,
o-[2]



in terms of which

U.=-0.Q 9)
For the secondary system the corresponding solution, dropping the small damping term
on the right-hand side, is

u= ¢q (10)
where g, is given by

Tk
.q'l+zﬁl‘ulq.l+mlqu-_% ’ i-1)2)---an (11)
i

where m;= ¢ 'm¢, is the i-th modal mass of the fixed base secondary system. It is convenient

to manipulate Egs. 5-11 using Laplace transforms. Denoting the Laplace transform of a quan-

tity by a superposed bar and p as the transform parameter, we have

u=¢q (12)
l_Jc:-ﬁc-ocﬁ (13)
with
Tk -
G -- - ¢ik.u. : 14)
ml[P +231¢°1P+wi]
and
2
0, = LY u as)

P+2BQ,p+ 0] ¢
Substituting Eq. 13 in Eq. 14

X ¢k ®u =
I=1 m/[P2+ Bwipto /2]

Using this expression together with Eq. 15 in Eq. 12,

q= -

]

_ n N r szZ -
=23y ; ’2’ XU (16)
j=1]=1 [p +2B,¢_n,p+w,][p +23,ﬂ,p+01]

¢1'ch° cl - ¢ ,chtb cl
mr‘"lz ¢17]i¢1

The term vy ;= is a mixed participation factor.

The absolute acceleration of the k-th nodal point of the secondary system is given by #,

where
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- n N 0120)2 be)
==Y Y buyul ; ' Ug
=] [p +2[3,w,p+w,2][p2+2310 1p+012]
0? w}

n N
-3 ¥ k=m+l,.,m+n (17)

Uy

miist " p+2Bwiptel pPP+2BQp+QF T
where ¥, is the effective participation factor for the absolute acceleration of the k-th node of
the secondary system associated with modes i and I of the secondary and primary systems,

respectively, given by

Vr=buyual, (18)

Under the assumption of small damping the solution of Eq. 17 is the convolution of ii,

and the function obtained by inversion of the summation terms. This becomes

n N v
() == |33 —E 0, exp(—B w0 sinw ¢
1-11-11_ _w_,
Q
Na Y . .
+3 Y 7 Q@ exp(—B;Q,0)sinQ ;] * i, (s) (19)
==l Q25
W

where the * notation implies a convolution of two functions, i.e.,

f() * g0 -ff(t—'r)g('r)d'r =ff(‘r)g(t—'r)dr
0 0

In Eq. 19 there are n+ N modal contributions with the appropriate amplification factors for each
contribution. It is clear from this result that if there are equal frequencies in the primary and
secondary systems (i.e., tuning) the result in its present form is invalid. The reason for this is
that in the analysis it was assumed that the contribution coming from the damping terms was
small in comparison to those arising from differences in frequencies. When these differences
become very small (i.e., tuning) this assumption is no longer valid and it becomes necessary
to include the contributions from the damping terms. Although this contribution can be
included, it complicates the interpretation of the results in terms of response spectra. This

problem will be dealt with fully in a later report.

If it is now assumed that the input data is a ground response spectrum S(w,8), which
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represents the mean maximum absolute acceleration experienced by an SDOF oscillator with
frequency w and damping factor B subject to the ground motion iig, then Eq. 19 can be used to
obtain a prediction for the mean peak value of #;. The mean peak value of the contribution
from mode i is given in \terms of S(w,B,. There are several app;oximate methods for combi-
nation of these contributions. If for example the natural frequencies of the two subsystems are
well spaced for each subsystem and between the two subsystems (and the input is wide band),
then the SRSS rule is acceptable and the result will take the form

2

n| N v,
E[max|iik(t)|]- Y X — 7 $%w.B)
S = S K78
0y
2 12
N| n ¥
+Y (3 | s4Q,B8) (20)
=fi= Q2
w;

where E” is the expectation operator. Alternatively, if closely spaced natural frequencies
occur the appropriate summation rule should take into account the correlation between the
modal responses. This can be done by use of the procedure outlined by Der Kiureghian [1,2]
where the following expression for the modal correlation coefficient for wide-band inputs is

introduced

SVCICﬂﬂ/(Cﬂi+§jaJ)aﬂj
(af—a,z)2+4§,§jaiaj(a,-2+a}) +4(§,2+Cjz)a,2a12

where a; and a; are modal frequencies (i.e., w, or Q) and {; and {, are the corresponding

2n

Po,iy =

damping factors (i.e., 8, or Bj). Following the procedure outlined in [2], the estimated peak

value of g is

=S

E[max [ (0] = [2 300,y AxiAyS @B S ,8)

n N
+2Y Y po,uAxiAuS(w,B)S(Q,B)
i=11=1

N N 12
+ 2 EpOJJAHAuS(Q I,B[)S(ﬂ y Bj)] (22)
I=1J=1

where the amplification factors 4, and A4,; are given by
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N v n v
Am'z—Lr; Ay = K
B[ 5 (or
01 ®

It is important to point out that this formulation avoids the artificial separation of the
secondary system response into a quasi-static and a dynamic part. Thus no consideration need
be given to the unresolved problem of properly combining these parts. Another advantage of
the approach presented here is that the solution is expressed in terms of known properties of
the basic subsystems; the modal properties of the combined system are not required. Further-
more, no time-history analyses using spectrum-compatible ground motion inputs to produce

floor response spectra at the attachment points are required.
III. FORMULATION IN TERMS OF FLOOR RESPONSE SPECTRA

The solutions given in Egs. 20 or 22 which provide the equipment or piping response
directly in terms of the ground response spectrum can be cast in terms of floor response spec-
tra. As pointed out previously, the MRS method has associated with it several difficulties.
However, it has certain desirable features from a practical point of view. The most important
of these is that once the floor spectra are given any number of equipment items or piping sys-
tems can be analyzed independently of the primary structure properties, provided proper
account is taken of the cross-correlations between the motions at different support points. As
mentioned before, the conventional MRS method neglects these correlations. In the method to
be presented here, a procedure for including these correlations is developed based on random

vibration techniques.

For the purpose of developing a multiple correlated response spectrum method, which for
convenience will be referred to as the MCRS method, we introduce the specific response his-
tory function 7x(w,B;t), which is the absolute acceleration time history of a hypothetical SDOF
oscillator with frequency w and damping factor 8 located at the K-th attachment point of the

primary structure. For small damping, the Laplace transform of rx(w,B;?) is given by

w? N Y 9} -
( 23
p2+2Bwp+w2 =1 p2+2310 1p+ Q; “s P) ( )

?K(w’ﬁ;p) -
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where
Yxi=T @ (24)
in which I'; is given in Eq. 7 and ® ; is the K-th component of the I-th mode of the structure.

We note that the floor acceleration response spectrum at the K-th attachment point, Sx(w,8),

is in fact the peak value of 7x(w,B;¢) for the duration of the disturbance.

Using Egs. 17 and 23, and rearranging orders of summation, the equipment absolute
acceleration at the k-th degree of freedom, ii;, can be written in terms of functions rx in

Laplace transform space in the form

- n N & ® 0} n
u(p) = -3 z¢kl¢l - 2d e ig(p)
M mel (21280 p+ol|[i228,0 0+ 0]
n by Nz 0l -
-—3 k’; Y1 X bukax®x ALy i (p)
=1 M i j=1( k=111 [p2+23,w,p+w,2][p2+2B,n,p+Q}]

?K((D iaB l’p)

- f P z[iw

=1 M@ | Kuml| }=1
n m -
- "‘Ein thx’K(whﬁi;P) (25)
=1 K=l
where
.. (26)
mw ;
n
Kik = 2,9 ukck Q@7
=1

In the above expression, ¢ represents the k-th component of the i-th modal vector of the
fixed base equipment and k.x is the element in the /-th row and K-th column of the coupling

stiffness matrix k..
To develop the MCRS method the power spectral density of the response, Giikiik(‘”)’ is

utilized. From Eq. 25, this can be written as

n _n m m
Gy, iik("’) - }.‘,l}:lx KiX kJ ?.‘.1 Lle KK JL G"'m"'u("’) (28)
i=1j= =1L=

where G'f'm'r'L,("’) is the cross-power spectral density of 7x(w,,8,;¢) and 7 (w ;B ;1) and w is the

Fourier transform parameter. Using Eq. 23, the cross power spectral density is
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G-,-Kl-,-u(w) = w}ojh(w) hw) Gy g (@) (29)
where GUK UL(w) is the cross-power spectral density of the acceleration responses of the struc-

ture at support points K and L and is given by

N N
Gy, UL(“’) - EEIQ 0 3Y x/Y o Hi(w) Hi(w) nyu‘(m) 30)

in which Gu‘ug(“’) is the power spectral density of the input ground motion. The functions

h(w) and H;(w) in the preceding equations are oscillator frequency response functions given

by

1
wl-0?+2iBww
1
0}-w?+2iB)0

and the superposed asterisks denote complex conjugates.

h(w) = (31)

H[(w) - (32)

The most important statistical response quantity of practical interest is the mean square,
which is equal to the area underneath the power spectral density function. Considering one-

sided power spectral densities, the mean-square of iy, denoted by Ag i, from Eq. 28 is

n n m m
Mok ™ 2, DX kX ki & 2 KikK Lo, KiL (33)
P iy K=1L=1
where
Xo‘ KiLj ™ J‘: G-,-m-,-u(w) dw
= 0} h(w) W) Gy, j (@) d (34)
0

In the special case when the modal frequencies of the secondary system are well spaced, it is
anticipated that the modal cross terms in Eqs. 28 and 33 (i.e., those for i j) will be negligible
in comparison to the diagonal terms (i.e., those for i=j). It can be shown that for terms with

i= j only the real part of G;; ; (w) makes a contribution. The typical term of interest in Eq.
UK UL

33 then takes the form

No.xiz = 0 jo' | hy(w) |2Re[ny yL(m)] dw (35)
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A careful examination of the integrand in the preceding equation reveals a behavior which
permits a simple approximation to be made under a broad set of conditions. Observe that for a
lightly damped secondary system, the term |h,(w)|? is very sharply peaked at w =w, On the

other hand, the term Re[GUK gL(w)], which as shown in Eq. 30 is made up of contributions

from all modes of the primary structure, is relatively slowly varying in . Because of this, most
of the contribution to A x;; comes from the neighborhood of w,;, which permits the integral to

be approximated by

jjl h(w) |2Re[GUK vL“"’] do = Re[GUK g, (@ ,)] i | hy(w) | 2de (36)

Using this approximation and introducing the coefficient

RC[GUK UL(m ,)] -

nxL(w) = 7 172
[GUK U'K(w nGu, v, (w ,)]

Ao, xiL; in Eq. 35 can be written as

Ao kiLi == w;‘Re[GUKgL(w,)]J;|h,~(m)|2dw

=i (@ I)IGUKUK("’ P Gy, ,-;L(w ,)] I/Z_I; | hy(@) |2dew

112 o 12
[w I4GU,_ Uz_(w ,~)J; | hy(w) |*do (38)

=qxlw) lw ?GUK UK(“’ ,)f | hy(w) | 2dw

0
Now using the approximation expressed in Eq. 36 in the opposite sense, GUK ,-;K(w ) and
GUL UL(w ) in Eq. 38 can be taken inside the integral and their arguments, ,, replaced by w.

This results in

Mo, ki = M kL@ D/No, kikiXo, LiLs (39)

The next step is to relate the mean square values to the floor response spectrum ordi-
nates. It is well known that the mean peak response is related to the root-mean-square of the
response through a peak factor which varies slowly with the average frequency of the response
and depends weakly on the shape of the power spectral density function [2]. This relationship

leads to the following expressions for the response quantities of interest in this study:
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VAo, kiki = —I-E{maxl'r'x(w,,ﬁ,; l)|] - "l—sx(whﬁl) (40)
Di Di
E[maxliik(t)|l - p\/Xo‘kk 41

in which px and p are peak factors for the processes rx and i, respectively. Using Eq. 40 in

Eq. 39, one obtains

A0, KiLi ™ MKL (w 1) Sk (w B 1) A} (w »B 1) (42)

PixPu
Substituting this result in Eq. 33, and recalling that only terms i=j are included in this approx-

imation, the mean square of the equipment response is obtained as

n m m l
Mok = 2X0Y L rxkungo) Sx(w,B)SL(wsB) (43)
jml  KwmlLel PixPiL

Finally, using Eq. 41, the mean of the peak acceleration response of the secondary system at
the k-th degree of freedom is obtained as

E[max|iik(t)|] -

jm]l  K=lL=l

n m m 2 1/2
ZX lzcl 2 2 KKK ILMKL (@ )] “‘E—SK (@ B 1) S (@ »B 1)] (44)
PikPiL
It has been shown [2] that peak factor ratios of the form L are close to unity and for practical

Pix

applications can be set equal to 1. Thus, Eq. 44 simplifies to

l:‘[maxliik(t)|] -

The only term in this expression which remains to be determined is nx; (w,;). This coefficient,

n m m 1/2
EIX 131’(21 zl'f KK LM KL (w DSk (w »B i) St (w B /)I (45)
= =1L

which plays the role of the correlation coefficient between the responses rx(w,8;t) and

7. (w8 1), can be obtained, using Egs. 37 and 30, as

N N
Y Yol kY Hyw)
[=1J=1

nkLlw,) = N 1% 77 (46)
21210 N kY ko Hy(w) ,2”210 1LY yHy )
=)= =
where
Hy(w) = Re| Hy(w ) Hj(w))] @7)

It should be pointed out that ng;(w,) as defined in Eq. 37 is not formally a correlation

coefficient, although it serves the purpose of one in this approach.



-15-

Equation 45 represents a modal combination rule for the MCRS method which explicitly
accounts for the correlation between floor spectra. Note, however, that that equation does not
include the contributions that may arise from correlation between modal responses of the
secondary system. Cross terms are needed to account for these contributions. Although the
support excitations are not wide-band processes, it is anticipated that the expression for correla-
tion between modal responses in Eq. 21, which is based on response to a white-band input, will
provide a reasonable approximation. The bases for this expectation are that in general the cross
terms are important only when the modal frequencies are very close to each other, and that for
such cases, especially in the presence of small dampings of the secondary system, the modal
correlation coefficient is influenced only by the shape of the input power spectral density func-
tion in the immediate neighborhood of the two frequencies. Note that in the limit as the fre-
quencies and damping of the two modes become equal, the expression in Eq. 21 yields a value
of unity for pg ;, as it should. Because of this property, the expression for pg ; provides good
approximation in the region of importance where the correlation is strong, i.e., for frequency
ratios close to unity. Thus, using Eq. 45 in conjunction with Eq. 21 and employing the pro-

cedure in Ref. [2],

n n

E[max| i ()| ] =13 3 X kX PO,y

=] jm]

m m 172
2 z K ikK LM KL (w 1) Sk (w »B i) hY) (w »B I)]

K=1L=1

m m 1/2y1/2
2 ZKjKKjLnKL(‘”j) SK(wj,ﬁj)SL(m/,ﬁj)] 2] (48)

K=1L=1

IV. DISCUSSION

The main results of this study are Egs. 19, 22, and 48. These equations provide the
response of a multiply attached secondary system, such as a piping system in a power plant, in
terms of the properties of the primary system alone and the properties of the secondary system
alone. The basic difference between the three equations is the form used to describe the input

excitation.
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Equation 19 is for the case when the input excitation is given in the form of a determinis-
tic ground acceleration time history. The system parameters required for the evaluation of that
equation are the modal frequencies and damping ratios of the primary system alone and of the
fixed base secondary system, and the coefficients ¥,;, which can be interpreted as mixed
effective participation factors. The latter, defined in Eq. 18, are expressed in terms of the
modal vectors and participation factors of the primary system, the modal vectors of the fixed
base secondary system, and the stiffness matrix of the unattached secondary system. As stated
before, this result ignores the effect of interaction between the primary and secondary systems
and is valid only when there is no tuning or near tuning of the two subsystems. The principal
advantage achieved is circumventing the necessity of solving the eigenvalue problem for the
combined system. It is pointed out that although this formulation may be useful in analyzing
the response of a secondary system for a recorded earthquake ground motion, it is not useful
for design purposes. As has already been noted, since future ground motions are unknown, the
proper procedure is to use a stochastic approach. In earthquake engineering, this can be accom-

plished through the use of the response spectrum, as is done in Eqs. 22 and 48.

Equation 22 gives the mean peak response of the secondary system directly in terms of
the ground mean response spectrum. The system parameters involved are the same as those
mentioned in the preceding paragraph. The limitations of the formulation are also the same,
i.e., interaction is ignored and tuning between the two subsystems is not allowed. Note that
closely spaced modes in each of the subsystems are permitted because the significant correlation
between such modes is included through the cross terms. The major advantage of this formula-
tion is that one avoids introducing the floor spectra as an intermediary device and, hence,
avoids all the problems associated with their use. Another advantage is that the response spec-
trum method is more accurate in this formulation than it is for the formulation employing the
floor spectra. The reason for this is that generally the ground motion is a broader band excita-
tion than are the floor motions, which leads to greater accuracy in the modal combination rules.

A potential disadvantage of this formulation from a practical standpoint is that the analyst of
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the secondary system must use the modal properties of the primary system explicitly. This
might be inconvenient in situations where for one reason or another the analyst of the secon-

dary system does not wish to deal with the properties of the primary system.

Equation 48 gives the mean peak response of the secondary system in terms of floor spec-
tra and 1k, (@), a matrix function the elements of which are normalized, dimensionless cross-
floor coefficients. These coefficients, which depend only on the properties of the primary sys-
tem, play the role of correlation coefficients between the floor motions. The expression
includes the effect of correlation between modal responses of the secondary system. The floor
spectra can be developed using the method of Ref. [3] directly in terms of the ground spectra.
Note that the method in that reference can deal with the problem of tuning between modes of
the primary and secondary systems and with closely spaced modes in the primary system.
Thus, the method represented by Eq. 48 is valid for any distribution of the frequencies of the
primary and secondary systems. Besides this important advantage, this approach is convenient
from a practical point of view because once the floor spectra and the coefficient functions
nx.(w) have been supplied, the secondary system can be analyzed without knowledge of the
properties of the primary system. This can be observed in Eqs. 26 and 27 where coefficients x 4
and « i, which appear in Eq. 48, are seen to be functions only of the secondary system proper-
ties. The disadvantage of this approach is the approximations employed in Eq. 36 and in pass-
ing from Eq. 45 to Eq. 48. Finally, one potential advantage of this approach is that the effect of
interaction between the primary and secondary systems may be included with some
modification of Eq. 48 employing the interaction floor spectra in Ref. [3]. Numerical studies

are in progress to evaluate the accuracy of this method.
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