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IMPERATIVE/
FUNCTIONAL/OBJECT-ORIENTED
AN ALTERNATIVE ONTOLOGY OF 
PROGRAMMATIC PARADIGMS FOR DESIGN

Kyle Steinfeld  
UC Berkeley 

Carlos Emilio Sandoval Olascoaga 
Massachusetts Institute of Technology

ABSTRACT

Distinctions between approaches to programming for design applications are marked by the 

split between Visual Programming Languages (VPLs) and Textual Programming Languages 

(TPLs).1 While this distinction has proven useful in characterizing the applicability of program-

ming languages to design applications, it struggles to address languages that hybridize visual 

and textual modes, and cannot account for other structural features beyond user interface. An 

alternative ontology, differentiated by programmatic paradigm2 suggests an improved method of 

assessment. This study applies a programmatic paradigm taxonomy to two programming envi-

ronments: Decodes and DesignScript. The former is a domain-specific TPL that exhibits qualities 

of an Imperative Programing Language (IPL) and an Object-Oriented Programming Language 

(OOPL). The latter, a VPL-TPL hybrid allows users to move between IPL, OOPL, and Functional 

Programming Language (FPL) modes. Proceeding through the analysis of case studies, this study 

yields a set of guidelines for the application of each of these paradigms.
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INTRODUCTION 

PROGRAMMATIC PARADIGMS

Programming paradigms are defined by the methods and struc-

tures used to develop a program. While different programming 

paradigms have emerged through time, two distinct paradigms, 

Declarative and Imperative, stand in stark contrast. While an im-

perative paradigm structures a program as a set of instructions to 

solve a problem in different states, a declarative paradigm solves 

a problem based on its description, with language-specific imple-

mentations. A number of further programming paradigms exist 

within and outside the range of declarative and imperative par-

adigms, most of them exhibiting characteristics and features of 

multiple programming paradigms. Modern programming languag-

es generally rely on a combination of four paradigms: functional, 

imperative, object-oriented, and logical.3 Following a rapid expan-

sion of the quantity and variety of programming languages in the 

1990s, the utility of these divisions has been called into question. 

Modern programming languages structures’ are rarely based 

on a single paradigm, and instead allow programmers to select 

the most appropriate method for a given problem. While some 

of these paradigms combine features of both Declarative and 

Imperative modes, for example, each proceeds through a unique 

set of methods, structures and terms. The distinctions offered by 

the archetypal paradigm described below offer a potentially useful 

roadmap to understanding the use of computer programming in 

design. Of the general programming paradigms, only three are 

regularly employed in a design context:

Imperative Programming Languages (IPL) are the most common 

programming paradigm used in mainstream languages. An 

IPL workflow can be understood as a series of steps exe-

cuted in a defined order, often described as an algorithm. 

“Flow Control” is a fundamental characteristic of an IPL, and 

is provided by loops, “if/else” statements and other similar 

structures. In this way, the basic operations in an imperative 

language are to perform, replicate tasks in sequence, and 

track state changes of the program as this process unfolds. 

Functional Programming Languages (FPL), rather than defining 

a series of steps to be performed and state changes, define 

a set of interrelated operations. While the logic of a program 

is defined through flow control in IPL, in FPL the logic of a 

program is solely described through the algorithm. In other 

words, FPL describes what the program should do, while 

an IPL describes how the program should do it. Rather than 

basing a computation on the state of a program, functional 

programming focuses on the evaluation of mathemati-

cal expressions, where the results are dependent on the 

function’s inputs. In functional programming, execution order 

is a by-product of a set of topological relationships defined 

between functions. Most Visual Programming Languages, in-

cluding the popular Grasshopper programming environment, 

exhibit characteristics of an FPL.

Object Oriented Programming Languages (OOPL) focus on the 

structure of data rather than transformations of that data, 

and are most often employed to encapsulate and modularize 

systems. An OOPL allows the integration of code and data 

into a single object: an abstract data type with fields or prop-

erties describing the object, and methods or operations for 

the objects. Object orientation facilitates modularization and 

extensibility, encouraging end-users to customize and extend 

more primitive languages. 

PROGRAMMING LANGUAGES ADDRESSED  
IN THIS STUDY

Python, created in the late 1980s by Guido van Rossum, is a 

high-level interpreted, non-compiled, multi-paradigm language 

that combines elements of an IPL and OOPL. Python is intended to 

be a minimalist and highly readable language, favoring style over 

complexity. Designed with a basic core library and a simplified 

method for defining modules, it is easily extensible by end-users 

through dynamic typing. 

Decodes, created by Kyle Steinfeld in 2013 4, is a platform-inde-

pendent computational geometry library written for Python that 

includes a range of features specific to the domain of architectural 

design. This language forms the basis of all of the examples ex-

plored in the case study section of this paper.

An Associative Programming Language (APL), as defined by the 

creators of DesignScript, is a multi-paradigm programming lan-

guage, combining Imperative, Object Oriented, and Functional 

paradigms in a specific way, with additional functionality provided 

by actions termed ‘replication’ and ‘modifiers’. As implemented 

within DesignScript, code blocks are allowed to be defined as 

functional or imperative modes, enabling to switch between para-

digms. Functional blocks are the default mode and are termed as 

“Associative” blocks within the software. For simplicity, we will 

hereupon refer to these two types as “associative” vs “impera-

tive” blocks, following the convention found in previous writing.5          

The creators of DesignScript argue that the combination of topologi-

cal transformations with replication mechanisms and modifiers con-

stitute a more appropriate generative tool for the design domain. 
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Seen through the lens of programmatic paradigm, DesignScript is 

a hybrid programming language, combining object-oriented, im-

perative, and functional languages with domain-specific concepts. 

By combining the different programming paradigms, it supports 

replication operations common in Associative paradigms, and 

by allowing the user to switch into an Imperative paradigm at 

the same time enables specific iterative differentiation common 

in IPL. While flow control in imperative programming is provided 

by mechanisms such as loops and if-else statements, associa-

tive programming uses a concept of associative dependencies 

inherent within each statement to create a topological ordering 

of statements. It is asserted that this specific combination of fea-

tures selected from FPL and OOPL, and the possibility to intermix 

an IPL within the code represents a new programmatic paradigm 

that the authors of DesignScript term Associative Programming, 

a paradigm that better reflects the typical modeling operations 

found in architectural design.

METHODS

Discussed here are the structural and syntactical differences 

between IPLs and APLs most impactful in generative design, the 

rationale and practicalities of implementing design domain tasks 

in both paradigms, and the relative merits of each language in a 

selection of specific situations.

The study is presented in the context of a residency in the 

Autodesk IDEA Studio.10 Supported by this residency program, the 

authors re-implemented in DesignScript over fifty computational 

geometry lessons and code samples that had been previously 

written for Decodes. The specific case studies presented here are 

selected from lessons and examples developed for a forthcoming 

book,11 in contract to be published in 2015.

NOTABLE FEATURES OF SELECTED 
PROGRAMMING LANGUAGES

The contradictory features of IPLs and APLs facilitate certain ways 

of working in a design context, and discourage others. At times the 

contrast is acute, wherein one paradigm directly facilitates function-

ality where another forbids it (see object mutability, below). Other 

times the contrast is more subtle, wherein both paradigms allow for 

similar approaches to be taken, with one strongly supporting it while 

the other merely allows it, sometimes encumbering the user with 

complicated syntax (see list comprehension vs replication, below)

The following account of contrasting features and approaches to 

similar programming tasks is derived both in anticipation of and 

reflection upon domain-specific application, as discussed in the 

LITERATURE REVIEW

Many recent studies of the application of programming to design 

have focused upon distinctions of user interface, in particular the 

relative merits of visual programming and textual programing in a 

design context. In this section, we summarize the prevailing com-

parisons of visual and textual programming in a design context, 

and discuss how DesignScript disrupts this landscape, presenting 

itself as a hybrid language.

VISUAL VS TEXTUAL

The introduction of VPLs and TPLs in design software has provided 

designers the capacity of understanding, entering, and modifying 

the inner workings of design software through programming, al-

lowing designers to customize software and provide flexibility. The 

intuitive nature and direct feedback allowed by VPLs make them 

easy to learn tools; a property that has helped to make VPLs (most 

notably, McNeel’s Grasshopper) among the most popular tools for 

generative design. Additionally, VPLs allow for an abstraction and 

diagrammatic representation of the design process, making them 

powerful tools in design pedagogy. While VPLs are good entry tools 

for designers, they pose scalability and complexity limitations.6 The 

structure and characteristics of TPLs, in contrast, make them well 

suited for more complex operations, allowing modularization, con-

trol mechanisms, and a multi-paradigm approach to programming. 

Additionally, TPLs present more possibilities for the development 

and implementation of generative systems, going beyond the linear 

parametric variation7 supported by VPLs.

DESIGNSCRIPT–A NEW PARADIGM?

As an exploratory, domain-specific design tool, DesignScript, 

combines conventional modeling, associative modeling, and 

programming, situating it at the midpoint of VPLs and TPLs.8 

DesignScript provides an associative language, which represents 

the flow of data in a human readable text notation,9 resembling 

the graph dependencies of VPLs, and combines it with conven-

tional programming capabilities. By combining both approaches 

to computational design, it is accessible to both novice and ex-

pert programmers. DesignScript is defined as a domain-specific 

language, providing methods to support geometric manipulation 

and representation appropriate to an architectural context, and 

supports simplified syntax rules, reducing restrictions associated 

with general programming languages. Its limited host-indepen-

dency (it is able to communicate with a range of Autodesk soft-

ware) allows a multi-disciplinary approach and enables different 

stages of design process–from design exploration to simulation 

and analytics. 

IMPERATIVE/FUNCTIONAL/OBJECT-ORIENTEDSTEINFELD, OLASCOAGA
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case-studies section, below. It was derived both as a report of op-

portunities seen and challenges faced during training on the APL, 

and upon reflection after re-implementing examples previously 

developed using the IPL. 

OBJECT MUTABILITY (IPL) VS GRAPH MAPPING (APL)

When extending the IPL by creating new objects, it is possible 

to continuously add new properties and modify the object after 

it is constructed, a condition known as mutability of a class.12 

Mutability of classes becomes useful when certain properties are 

not required for constructing an instance, but would be useful 

when later added by private methods. A common use-case of this 

feature may be found in class inheritance. In an IPL, a class can be 

constructed as a subclass of another class or classes, inheriting 

their properties and methods. Following the mutability principle, 

a subclass can also modify the parent class if needed. In a design 

domain context, object mutability simplifies workflow by allowing 

an exploratory approach to object-oriented programming (not add-

ing a property until it is needed), by encouraging a more relaxed 

syntax, and by allowing the user extension of a given type.

Differently, objects are immutable in an APL due to the graph 

structure of the language. Once an object is created and mapped 

to the graph, it is impossible to transform the object’s properties. 

While object immutability can provide security by avoiding the 

modification of an object by external agents, it can stymie the 

exploratory nature of the design process. In such a case, all the 

properties would have to be defined a-priori via the class construc-

tor. While the graph’s topological order and relationships would 

be constantly updating each variable, unless a property is initially 

defined within the constructor, the object won’t change. 

FUNCTIONS (IPL) VS MODIFIERS (APL)

As implemented in DesignScript, an APL incorporates the concept 

of modifiers, which allow for the creation of transformation blocks 

modifying an object, avoiding the creation of a new variable for every 

transformation operation. Modifiers facilitate common modeling op-

erations of repetition and variation of elements throughout a field. 

In contrast, geometric transformations in an IPL often rely on 

static functions that return a new (modified) instance of an ob-

ject, instead of modifying the original instance in-place. In order 

to avoid redundancy in naming operations and variables, it is 

possible to chain expressions together in an IPL, performing 

the set of transformation operations in a single expression. The 

original instance of the object can thusly be rewritten with a new 

transformed instance, as seen in (Figure 3).

class AmmannA3Tile(object):
 def __init__(self,xf=Xform(), lineage=”RT”,scale=-
None):
 self.lineage = lineage
 self.xf = xf
 self._xf_scale = Xform.scale(1/TAU) #0.618033
 self.scale = scale

 def _cs_from_base_pts(self,pt_o=0,pt_x=1,pt_y=2):
 pt_0 = self._base_pts[pt_o]
 pt_x = self._base_pts[pt_x]-self._base_pts[pt_o]
 pt_y = self._base_pts[pt_y]-self._base_pts[pt_o]
 return CS(pt_0, pt_x, pt_y)
 
 # world base Points for this tile
 @property
 def base_pts(self):
 return [p*self.xf for p in self._base_pts]
 
 # draw a PGon from the Points
 def to_pgon(self):
 pg = PGon(self.base_pts[:self.boundary_base_pt_
cnt])
 pg.name = self.lineage
 return pg 
 
class AmmannA3TileA(AmmannA3Tile):
 # the idealized base Points for all Tiles of type A
 @property
 def _base_pts(self):
 return [ 
 Point(0.0, 0.0),
 Point(TAU_3, 0.0),
 Point(TAU_3, TAU_2),
 Point(TAU_3-TAU_2, TAU_2),
 Point(TAU_3-TAU_2, TAU),
 Point(0, TAU)
 ]
 
 def inflate(self):
 xf_pos = self._cs_from_base_pts(0,1,5).xform 
 b0 = AmmannA3TileB(self.xf * xf_pos * self._xf_
scale,
 self.lineage+”,b0”)
 
 xf_pos = self._cs_from_base_pts(1,2,0).xform 
 a0 = AmmannA3TileA(self.xf * xf_pos * self._xf_
scale,
 self.lineage+”,a0”)
 return [b0,a0]
 
 @property
 def boundary_base_pt_cnt(self): return 6

Object mutation in IPL (Sandoval, Steinfeld, 2014)1

p = { 
 Circle.ByCenterPointRadius(Point.ByCoordi-
nates(0,0,0), 5.0); 
 Translate(40, 0, 0); 
 Transform(CoordinateSystem.Identity(),
 CoordinateSystem.BySphericalCoordinates(
 CoordinateSystem.Identity(), 10, 15, 25)); 
};

An object modifier in DesignScript (Sandoval, Steinfeld, 2014)2
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LOOPS AND LIST COMPREHENSIONS (IPL) VS  
REPLICATION (APL)

Associative programming introduces the concept of “replica-

tion”: the ability to interchangeably use collections and single 

values, a feature that provides significant flexibility to the de-

signer. When a collection is passed to a functional component, 

the function is executed once for each given element in the 

collection, simplifying the propagation of common design oper-

ations. The topological relationships characteristic of associative 

programming allow for transformations and changes between 

different data types, from single elements to collections, when a 

variable is modified.

“List Comprehensions”, a functional programming feature in 

Python, provides a similar abstraction mechanism, enabling the 

simplification of a script. However, as the syntax involved can 

be cumbersome, they are limited to low-dimensional data struc-

tures, and are rarely employed on more than two-dimensional 

arrays of objects. 

Expanding upon this distinction, associative programming sim-

plifies the task of weaving numeric type lists together using 

“Zipped Replication”. Building upon a series of replication op-

erations, when a number of collections are matched the corre-

sponding elements are evaluated or “woven” together using the 

syntax seen below.

Nested ‘for’ loops are similarly simplified and structured with 

“Cartesian Replication”: when two or more collections are 

matched together, all members of the collections are evaluated 

by cross-referencing them with every member of the collections 

in “N” dimensions. 

In this way, it is possible to define the sequence of the replica-

tions occurring with the ‘replication guides’, making it possible 

to easily modify the structure of the data.

CASE STUDIES

In this section, we present an analysis of a selection of case 

studies, chosen from a body of examples both pedagogical 

and derived from practice. These case studies are taken from a 

larger collection of code samples fully detailed in a forthcoming 

book, The Architect’s Field Guide to Computation (working title)13 

in contract to be published by Routledge in 2015. See www.

decod.es for list of all case study examples translated, including 

notes on the relevant APL/IPL comparisons drawn from each. 

STEINFELD, SANDOVAL

3

4

5

def modifier(geometry):
 geometry *= Xform.translation(
 Vec(40)*Xform.change_basis(CS(),-
CylCS(Point(10,1,5))))
 return geometry
a = modifier(Circle(Plane(), 5.0))

A function in Decodes / Python (Sandoval, Steinfeld, 2014)

# Imperative
array1 = [0,1,2]
list = []
for i in array1:
 list.append(i * 2)

print list
>> [0,2,4]

# Imperative (list comprehension)
array1 = [0,1,2]

print [i * 2 for i in array1]
>> [0,2,4]

Loops and List Comprehension in Decodes / Python (Sandoval, Steinfeld, 2014)

Replication in DesignScript (Sandoval, Steinfeld, 2014)

//Associative
array1 = {0,1,2};

Print(array1 * 2);
>> {0,2,4}
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CASE STUDY 1: A DESIGN SPACE OF COLORS

A simple color space exploration demonstration, this example 

allowed for familiarization with a particular feature of the APL: 

replication. A three-dimensional design-space representation 

of individual colors is constructed based on the combination 

of lower-dimensional collections. In the context of an IPL, the 

exploration relies on nested loops. Differently, an APL approach 

takes advantage of “Cartesian Replication”; it first replicates a 

given operation a number of times by passing a collection, and 

then interrelates multiple collections with each other based on 

“Cartesian Guides”. This approach enables the intuitive manage-

ment and development of simple data structures, allowing differ-

ent combinations between collections based on the modification 

of the “Cartesian Guides”. 

CASE STUDY 2: A DESIGN SPACE OF CURVES

Curves can be parameterized and geometrically expressed via 

multIPLe mathematical forms. In the context of the IPL, curve ob-

jects were developed using parametric equations: they are the re-

sult of vector / point functions replicated within interval of values. 

Essentially, the curve function is replicated by looping throughout 

the interval of values creating an array of points.

The example develops two different mathematical curve func-

tions, and interpolates values between them, stacking them 

vertically to resemble tower-plate configurations. In the context 

of the IPL a nested loop is used to generate the curves and define 

their vertical location. While in the context of an APL, Cartesian 

Replication is used to perform 3D combinations between collec-

tions, defining the curves and their vertical position with a single 

operation. Further exploration of the APL approach demonstrated 

advantages in the easy transformation of the resulting collections’ 

data structure, thus allowing different curve configurations that 

vary between vertical, radial, and diagonal.

CASE STUDY 3: FLOCKING

As a simple flocking code, this example allowed the exploration 

of the graph structure features of the APL. Traditional flocking 

examples are based on the capacity of individual agents to be 

aware of other agents. In the context of an IPL, flow control 

through conditional statements is employed for context aware-

ness. Through the associative relationships of variables in the APL, 

it is possible to define graph-like relationships between the agents, 

thereby eliminating the need for flow control structures. While it is 

possible to extend the IPL and the APL, the APL’s graph structure 

make objects immutable; an immutable object forces the designer 

7
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#Imperative
array1 = [0,1,2]
array2 = [3,4,5]

list = []
for i, element in enumerate(array1):
 list.append(element + array2[i])

print list
>> [3,5,7]

#Imperative (list comprehension)
array1 = [0,1,2]
array2 = [3,4,5]

print [element + array2[i] for i, element in enu-
merate(array1)]
>> [3,5,7]

Imperative list combination (Sandoval, Steinfeld, 2014)

Associative zipped replication (Sandoval, Steinfeld, 2014)

//Associative
array1 = {0,1,2};
array2 = {3,4,5};

Print(array1 + array2);
>> {3,5,7}

#Imperative
array1 = [0,1,2]
array2 = [0,1,2]

list = []
for i in array1:
 for n in array2:
 list.append(Point(i,n))

print list
>> [Point(X=0, Y=0, Z=0), Point(X=0, Y=1, 
Z=0),Point(X=0, Y=2, Z=0) 
,{Point(X=1, Y=0, Z=0), Point(X=1, Y=1, Z=0), 
Point(X=1, Y=2, Z=0)
,{Point(X=2, Y=0, Z=0), Point(X=2, Y=1, Z=0), 
Point(X=2, Y=2, Z=0)]

Imperative nested list combination (Sandoval, Steinfeld, 2014)
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to define all object properties, a disadvantage for the exploratory 

nature of generative design in the domain. Through the development 

of the example, the object had to be rewritten constantly to accom-

modate object immutability. 

CASE STUDY 4: REACTIVE SPACING OF 
TOOLPATHS

Similarly to curves, surfaces can be geometrically expressed using 

parametric equations. In the context of the IPL, the construction of 

a surface requires only a parametric function, but its representation 

(surrogate) is constructed with 3D nested loops. In the context of 

the APL, Cartesian Replication is used to combine collections in 3D, 

constructing surfaces without the need of nested loops. At the same 

time, surface directionality is easily modified with Cartesian Guides. 

In an IPL a nested loop is used to combine collections and create 

UV values to evaluate the surface at given parameters. Through 

the loops, points are structured in a nested 2D collection to create 

polylines between them. In an APL approach, Cartesian Replication 

evaluates a surface at the given parameters and structures them ac-

cordingly with Cartesian Guides. 

CASE STUDY 5: PARAMETRIC MODEL OF ICD / 
ITKE RESEARCH PAVILION

In the context of the APL, the code allowed a scalable design explo-

ration, starting with the design of a single element. Once a single 

element was properly defined, the replication functionality allowed 

increasing the scale and number of elements computed without 

rewriting the operations, by passing a collection, instead of a single 

element to the initial code. 

In the context of the IPL, the initial code and explorations developed 

for a single element had to be rewritten, packaged and modularized 

when scaling up to multiple elements. The example showed the 

limitations of a purely functional approach within the APL. While it is 

possible to easily replicate a function that requires a single variable 

as an input, it is not possible to weave multiple lists together into a 

new multi-dimensional collection in order to replicate functions that 

require multiple parameters as inputs. Within the APL, it is possible to 

use IPL code blocks to complement the functional approach. 

DISCUSSION

Upon reflection, the case study described above yields a set of sug-

gested guidelines for the context-appropriate application of the IPL 

and APL programming paradigms. These guidelines are impactful to 

STEINFELD, SANDOVAL

Associative Cartesian Replication (Sandoval, Steinfeld, 2014).

//Associative
array1 = {0,1,2};
array2 = {0,1,2};

Print(Point.ByCoordinates(array1<1>,array2<2>,0));
>> {{Point(X=0, Y=0, Z=0), Point(X=0, Y=1, Z=0), 
Point(X=0, Y=2, Z=0)} 
,{Point(X=1, Y=0, Z=0), Point(X=1, Y=1, Z=0), 
Point(X=1, Y=2, Z=0)}
,{Point(X=2, Y=0, Z=0), Point(X=2, Y=1, 
Z=0),Point(X=2, Y=2, Z=0)}}

9

10

#Imperative
array1 = [0,1,2]
array2 = [0,1,2]

list = []
for i in array1:
 sublist = []:
 for n in array2:
 sublist.append(Point(i,n))
 list.append(sublist)

print list
>> [[Point(X=0, Y=0, Z=0), Point(X=0, Y=1, Z=0), 
Point(X=0, Y=2, Z=0)] 
,[Point(X=1, Y=0, Z=0), Point(X=1, Y=1, Z=0), 
Point(X=1, Y=2, Z=0)]
,[Point(X=2, Y=0, Z=0), Point(X=2, Y=1, Z=0), 
Point(X=2, Y=2, Z=0)]]

Imperative nested structured list combination (Sandoval, Steinfeld, 2014)
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design pedagogy and practice, both as a way of choosing appropri-

ate programming languages for a given task, and as a use guide for 

programming environments (such as DesignScript) that hybridize the 

two approaches. In such a hybrid environment, one may selectively 

apply imperative and associative models. The guidelines found be-

low may assist the user of such hybrid software in the selection of 

IPL and APL features of the language. 

GUIDELINE ONE–APPROPRIATE USES OF 
REPLICATION

An APL largely simplifies replicating operations throughout 

collections of objects. Replication mechanisms allow an easy 

propagation and interrelation of single or multiple collections, pro-

viding the designer more control over shaping the resulting data 

structures. Anytime a designer is exploring different collection 

data structures by modifying their relationships, an APL will en-

able a clearer syntax and code in comparison to an IPL’s “nested 

loops” strategy. Replication operations in nested collections that 

are common to the architectural design domain can be easily 

implemented with an APL (up to three-dimensions). Similarly, the 

relationships between the resulting data structures can be con-

trolled through “Cartesian Guides”, enabling an exploratory coding 

characteristic of initial design phases. 

This technique, however, has its limits: while with an APL it is pos-

sible to explore a one-dimensional collection of generic objects 

through replication, producing nested combinations between 

collections in this way is limited to collections of numeric types. In 

this case, an IPL would be preferred, and is able to operate on any 

object type. Similarly, an IPL allows “weaving” or combining multI-

PLe collections into a new collection.

GUIDELINE TWO–CONDITIONALS

While the APL allows some degree of flow control with the imple-

mentation of “in-line conditionals”, equivalent to an “if/else” state-

ment, more intricate flow control is more cumbersome. At the same 

time, APL’s “in-line conditionals” are limited to a single statement 

and cannot be combined with additional conditional statements. 

Whenever flow control through conditional statements requires more 

than a binary evaluation, or a conditional statement modifies multiple 

variables or further conditional statements, an IPL should be used.

GUIDELINE THREE–DESIGN EXPLORATION 
THROUGH TYPE DEFINITION

While both IPL and APL languages allow user extension through 

dynamic typing, the APL’s graph structure does not allow object 

11

//Associative
array1 = {0,1,2};
array2 = {0,1,2};

Print(Point.ByCoordinates(array1<2>,array2<1>,0));
>> {{Point(X=0, Y=0, Z=0), Point(X=1, Y=0, Z=0), 
Point(X=2, Y=0, Z=0)} 
,{Point(X=0, Y=1, Z=0), Point(X=1, Y=1, Z=0), 
Point(X=2, Y=1, Z=0)}
,{Point(X=0, Y=2, Z=0), Point(X=1, Y=2, Z=0), 
Point(X=2, Y=2, Z=0)}}

Associative Cartesian Replication (Sandoval, Steinfeld, 2014).
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mutability. When exploring a design through the definition of new 

object types, specific properties often need to be added dynam-

ically after the object has been constructed. In this use case, an 

IPL should be used. This includes extending an object through a 

subclass; with an APL, the subclass will only share the same prop-

erties of the parent class.

GUIDELINE FOUR – RECURSIVE STRUCTURES

Recursive solutions, where the result of an operation depends on 

previous instances of the operation, generally depend on defining 

loops. An APL relying only on the replication of function calling 

increases the challenge and complexity of recursive operations. 

Furthermore, nested recursive operations cannot be implemented by 

the APL. For ease of implementation, designs that rely heavily on re-

cursive operations, such as fractals, should be performed with an IPL.

IMPACT AND FUTURE WORK

The comparison between the implementation in an APL and an IPL of 

the selected case studies has yielded a number of suggested guide-

lines for an application of each paradigm within the domain of study. 

Expanding this selection of case studies will allow the exploration and 

comparison between both paradigms; the graph structure character-

istic of the APL has a particular potential for future study. While most 

of the selected case studies employ the graph structure to propagate 

transformations and operations across the nodes of the graph, a large 

potential lies in defining graph relationships between the objects re-

placing IPL’s flow control. Similarly, future case study implementations 

hold the potential to determine the application of the APL’s graph struc-

ture for analysis and optimization operations commonly encountered 

in the domain.

Features of both TPLs facilitate certain ways of working within a para-

digm and sometimes forbid a particular functionality. As the APL inves-

tigated here, DesignScript is quite new, new applications are likely to be 

discovered as the language continues to develop. In particular, the abil-

ity to combine collections of any type would allow the incorporation of 

the clarity and syntax simplicity characteristic of the APL into the design 

process and present further incentive to this framework over an IPL. 

In the context of the residency in the Autodesk IDEA Studio, the case 

studies were implemented the APL’s textual IDE. Current development 

work focuses on merging the APL with the VPL “Dynamo”. Once com-

pleted, the hybrid VPL-TPL will extend the abstraction mechanisms of 

the APL, unveiling further domain specific implementation guidelines.
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