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Abstract

This study explores the self-organizing neural network as a
model of lexical and morphological acquisition. We exam-
ined issues of generalization, representation, and recovery
in a multiple feature-map model. Our results indicate that
self-organization and Hebbian learning are two important
computational principles that can account for the psycho-
linguistic processes of semantic representation, morpho-
logical generalization, and recovery from generalizations
in the acquisition of reversive prefixes such as un- and dis-.
These results attest to the utility of self-organizing neural
networks in the study of language acquisition.

Introduction

Language learning is characterized by the learner’s ability to
generalize beyond what is heard in the input. One current
debate on connectionist models of language acquisition con-
cerns the issue of generalization (Elman, 1998). Probably
the best-known example in this debate has to do with the
acquisition of the English past tense: children generalize -af
to irregular verbs, producing errors like falled, breaked, and
comed. Connectionist researchers argue that their networks,
like human children, display generalizations in a U-shaped
pattern of learning (Rumelhart & McClelland, 1986;
MacWhinney & Leinbach, 1991; Plunkett & Marchman,
1991). In contrast, symbolic theorists argue that generaliza-
tion is rule-based (Pinker, 1991; Pinker & Prince, 1988).

Most of this debate has revolved around a specific cluster
of connectionist models, the back-propagation network as a
model of language acquisition. Several limitations are
known to the back-propagation algorithm, especially in the
context of language acquisition: in particular, back-
propagation relies on a gradient-descent weight adjustment
process to reduce the error between desired and actual out-
puts. According to the well-known “no negative evidence”
argument (Baker, 1979; Bowerman, 1988), children do not
receive constant feedback about what is incorrect in their
speech, or receive the kind of error corrections on a word-by-
word basis as provided to the back-propagation network.

In this study, we explore self-organizing neural networks,
in particular, the self-organizing feature maps as a potential
class of models of language acquisition. In contrast to back
propagation, self-organizing networks use unsupervised
learning that requires no presence of a supervisor or an ex-
plicit teacher; learning is achieved entirely by the system's
self-organization in response to the input. The self-
organizing process extracts an efficient and compressed in-
ternal representation from a high-dimensional input space
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and expresses this new representation in a map structure
(Kohonen, 1989). There are three important properties of
self-organizing feature maps that make them particularly
well suited to the study of language acquisition.

(1) Self-organization. Self-organization in these net-
works typically occurs in a two-dimensional map, where
each unit is a location on the map that can uniquely repre-
sent one or several input patterns. At the beginning of learn-
ing, an input pattern randomly activates one of the many
units on the map, according to how similar by chance the
input pattern is to the weight vectors of the units. Once a
unit becomes active in response to a given input, the weight
vectors of the unit and its neighboring units are adjusted so
that they become more similar to the input and will there-
fore respond to the same or similar inputs more strongly the
next time. In this way, every time an input is presented, an
area of units will become activated on the map (the activity
“bubbles”), and the maximally active units are taken to rep-
resent the input. Initially activation occurs in large areas in
the map, but gradually learning becomes more focused so
that only the maximally responding units are active. This
process continues until all the inputs have found some
maximally responding units.

(2) Representation. As a result of this self-organizing
process, the statistical structures implicit in the high-
dimensional space of the input are represented as topological
structures on a two-dimensional space. Because the network
develops activity bubbles to capture the input space, similar
inputs will end up activating the same units or units in
nearby regions, yielding a new similarity structure that be-
comes clearly visible on the map. This self-organized repre-
sentation has clear implications for language acquisition: the
formation of activity bubbles may capture critical processes
of the emergence of lexical categories in children’s acquisi-
tion of the lexicon. In particular, the network organizes in-
formation first in large areas of the map and gradually zeros
in on small areas; this zero-in process is a process from dif-
fuse to focused patterns of activity that leads to continuous
adaptation of the network’s representation. This process can
naturally explain many generalization errors reported in the
literature: for example, substitutions of put for give (“put
me the bread”) or fall for drop (“1 falled it”) reflects the
child’s recognition of diffuse lexical similarities but not the
focused fine distinctions between words (Bowerman, 1982).
Miikkulainen (1997) showed that in a lesioned self-
organizing feature map, behaviors of dyslexia (e.g., produc-
ing dog in response to sheep) can result from partial damage
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to the semantic representation (in effect a diffuse representa-
tion of meaning).

(3) Hebbian learning. Hebbian learning is essentially a
co-occurrence learning mechanism, according to which the
associative strength between two neurons is increased if the
neurons are both active at the same time (Hebb, 1949). The
amount of increase is proportionally to the level of activa-
tion of the two neurons. Different self-organizing maps can
be connected via Hebbian learning, such as in Miikku-
lainen’s (1997) multiple feature-map model: initially all
units on one map are connected to all units on the other
map; as self-organization takes place, the associations be-
come more focused, so that in the end only the maximally
active units on the two (or more) maps are associated. Heb-
bian learning has strong implications for language acquisi-
tion in that it can account for how the child abstracts rela-
tionships between phonological, semantic, and morphologi-
cal properties of words on the basis of how often these prop-
erties co-occur and how strongly they are co-activated in the
representation.

Because of these properties, self-organizing networks (a)
allow us to track the development of the lexicon as an emer-
gent process more clearly in the network's self-organization
(from diffuse to focused patterns or from incomplete to
complete associative links); (b) allow us to model one-to-
many or many-to-many associations between forms and
meanings in the development of the lexicon and morphol-
ogy, and (c) provide us with a set of biologically more plau-
sible and computationally more relevant principles to study
language acquisition without relying on negative evidence to
learn. They are biologically more plausible because one
could conceive of the human cerebral cortex as essentially a
self-organizing map (or multiple maps) that compresses
information on a two-dimensional space (Spitzer, et al.,
1998). They are computationally more relevant because one
could argue that child language acquisition in the natural
setting (especially organization and reorganization of the
lexicon) is largely a self-organizing process that proceeds
without explicit teaching (MacWhinney, 1998).

In this paper I focus on the problem of the English rever-
sive prefixes that has been discussed by Whorf (1956) and
Bowerman (1982) in the context of morphological generali-
zation. In English, one can use the prefix un- to indicate the
reversal of an action in verbs like unbuckle, uncoil, undress,
unfasten, and untie, but not *unfill, *unhang, *unkick,
*unpush, or *unsqueeze. Why is un- allowed with some
verbs but not with others? Whorf hypothesized that there is
some underlying semantic category that licenses the use of
un- (roughly “‘a covering, enclosing, and surface-attaching
meaning”). Because this category functions only covertly
(i.e., by the restrictions it places on un-), he called it a
“cryptotype”. To Whorf, the problem is that the precise
meaning of the cryptotype is “subtle” or even “intangible”,
but the prefix that it licenses is productive. Bowerman ar-
gued that the notion of cryptotype, though elusive, might
play an important role in children’s acquisition of un-. Her
data showed that children produce generalization errors like
*unbury, *unhang, *unhate, *unopen, *unpress, *unspill,
or *unsqueeze starting from about age 3. She had two hy-
potheses on the role of cryptotype: (a) “‘generalization via
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cryptotype”, i.e., recognition of the cryptotype leads to
overly general uses (overgeneralizations); e.g., bury fits the
cryptotype just as cover does, so say *unbury. (b) “recovery
via cryptotype”, i.e., children use the cryptotype to recover
from overgeneralization errors; e.g., hate does not fit the
cryptotype meaning and only verbs in the cryptotype can
take un-, so stop saying *unhate.

But how could the child extract the cryptotype and use it
as a basis for morphological generalization or recovery,
when the cryptotype is intangible even to linguists like
Whorf? In Li (1993) Li & MacWhinney (1996) we at-
tempted to answer this question by simulating un- and its
cryptotype in a back-propagation network. We hypothesized
that cryptotypes are intangible only because traditional sym-
bolic methods are less effective for analyzing the complex
semantic structure: words in a cryptotype vary in the number
of relevant semantic features, the strength of activation of
each feature, and the degree of overlap of features. These
complex structural properties lend themselves naturally to
distributed representations and connectionist learning. We
trained a network to map semantic features of verbs to three
prefixation patterns: wun-, its competitor dis-, and no-
prefixation. Our results indicated that (a) the network formed
internal representations of semantic categories that corre-
sponded roughly to Whorf's cryptotype, on the basis of
learning limited semantic features of verbs and morphologi-
cal classes; (b) the network produced overgeneralization er-
rors similar to those reported by Bowerman (1982), Clark et
al (1995), and those observed in the CHILDES database.

In this study, we examine the representation of crypto-
types, the generalization of prefixes, and the recovery from
generalizations in a self-organizing feature-map model. As
discussed above, self-organizing feature maps learn on the
basis of self-organization, produce representations in a map
structure, and form associative connections via Hebbian
learning. These properties have recently been implemented
in DISLEX, a multiple feature-map model of the lexicon
(Miikkulainen, 1997). In this study, we use DISLEX as a
basis to simulate generalization, representation, and recov-
ery. We think that the self-organizing and Hebbian learning
processes as simulated in DISLEX can help us to understand
the representational basis of morphological generalization
and the learner’s recovery from generalizations.

Method

Network Architecture

DISLEX is a multiple feature-map model of the lexicon, in
which different self-organizing maps dedicated to different
types of linguistic information (orthography, phonology, or
semantics) are connected through associative links via Heb-
bian learning. During learning, an input pattern activates a
unit or a group of units on one of the input maps, and the
resulting bubble of activity propagates through the associa-
tive links and causes an activity bubble to form in the other
map. If the direction of the associative propagation is from
phonology or orthography to semantics, comprehension is
modeled; production is modeled if it goes from semantics to
phonology or orthography. The activation of co-occurring
lexical and semantic representations leads to continuous or-



ganization 1n these maps, and to adaptive formations of as-
sociative connections between the maps. Figure | presents a
schematic diagram of the architecture of the model.

Figure 1: A multiple feature-map model of the lexicon (Miik-
kulainen, 1997)

In this study. we applied DISLEX to the examination of
lexical and morphological acquisition. We constructed two
self-organizing maps, each of the size of 25 x 25 units, one
for the organization of phonological input (henceforth the
phonological map), and the other for the organization of
semantic input (the semantic map). We used no orthographic
maps since we were modeling acquisition in young children
who are preliterate.

Input Representations

The input data to our network were 228 verbs based on Li
(1993) and Li and MacWhinney (1996). Forty-nine of them
were verbs with the prefix un-, 19 of them were verbs with
the competitor prefix dis-, and the remaining 160 were verbs
with no prefixes (un- and dis- both indicate the reversal of
the action of the verb, as in untie and disassemble). The
relative higher proportion of the last type of verbs (i.e., zero
verbs) as compared with un- and dis- verbs was intended to
reflect the distribution of these forms in the input to chil-
dren.

Previous connectionist models of language acquisition
have often relied on the use of artificial input/output repre-
sentations (e.g., randomly generated patterns of phonological
or semantic representations) or representations that are con-
structed ad hoc by the modeler. For example, in our previous
studies we represented each verb as a pattern of 20 semantic
features, selected on the basis of our linguistic analyses (see
Li, 1993; Li & MacWhinney, 1996). However, the use of
this type of representation is subject to the criticism that the
model works just because of the presence of these features in
the representation. In this study, we wanted to use more
linguistically grounded input data to simulate lexical and
morphological acquisition. Thus, we represented our inputs
as follows.

Phonological representations to our network were
based on a syllabic template coding developed by MacWhin-
ney and Leinbach (1991). Instead of a simple phonemic rep-
resentation, this representation reflects current autosegmental
approaches to phonology, according to which the phonology
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of a word is made up by combinations of syllables in a met-
rical grid, and the slots in each grid made up by bundles of
features that correspond to phonemes, C's (consonants) and
V's (vowel). The MacWhinney-Leinbach model used 12 C-
slots and 6 V-slots that allowed for representation of words
up to three syllables. For example, the 18-slot template
CCC VV CCC VV CCC VV CCC represents a full tri-
syllabic structure in which each CCCVV is a syllable (the
last CCC represents the consonant endings). Each C is rep-
resented by a set of 10 feature units, and each V by a set of 8
feature units.

Semantic representations to our network were based
on the lexical co-occurrence analyses in the Hyperspace Ana-
logue to Language (HAL) model of Burgess and Lund
(1997). HAL represents word meanings through multiple
lexical co-occurrence constraints in large text corpora. In this
representation, the meaning of a word is determined by the
word’s global lexical co-occurrences in a high-dimensional
space: a word is anchored with reference not only to other
words immediately preceding or following it, but also to
words that are further away from it in a variable co-
occurrence window, with each slot (occurrence of a word) in
the window acting as a constraint dimension to define the
meaning of the target word. Thus, a word is represented as a
vector that encodes the multiple constraints (dimensions) in
a high-dimensional space of language use. We used 100 di-
mensions for the unit length of the vectors.

Task and Procedure

Upon training of the network, a phonological input repre-
sentation of the verb was inputted to the network, and si-
multaneously, the semantic representation of the same input
was also presented to the network. By way of self-
organization, the network formed an activity on the
phonological map in response to the phonological input,
and an activity on the semantic map in response to the se-
mantic input. Depending on whether the verb is prefix-able
with un- or dis-, the phonological representation of un- or
dis- was also co-activated with the phonological and the se-
mantic representations of the verb stems. At the same time,
through Hebbian learning the network formed associations
between the two maps for all the active units that responded
to the input. The network’s task was to create new represen-
tations in the corresponding maps for all the input words and
to be able to map the semantic properties of a verb to its
phonological shape and its morphological pattern.

To observe effects of learning on the network’s representa-
tion, generalization, and recovery, we designed four stages to
train the network. (1) A verb’s phonological representation
was co-activated with its semantic representation on a one-
to-one basis, which means that the network saw only the
verb’s phonological representation and its semantic represen-
tation simultaneously. This was done to model the whole-
word learning stage, at which children have not analyzed
morphological devices as entities separate from the verb
stems (Bowerman, 1982). (2) One-to-one mapping was re-
laxed, so that the phonological and semantic representations
of verb stems (e.g., tie, connect), prefixed verbs (untie, dis-
connect), and the prefixes themselves (un-, dis-) were all co-
activated in the network. (3) Twenty-five novel verbs were



introduced to the network in order to test whether generaliza-
tions would occur in our network as in children's speech.
These were verbs on which previous studies have reported
children’s generalizations (e.g, *ungrip, *unpress, and
*untighten; see Bowerman, 1982; Clark et al., 1995). Gen-
eralization was tested by inputting the verbs to the network
without having the network self-organize the verbs or learn
the phonological-semantic  associations.  (4)  Self-
organization and Hebbian learning resumed for the novel
verbs introduced at Stage 3 in order to test if the network
could recover from generalizations.

All simulations were run on a SUN Ultra 1 workstation,
using the DISLEX codes configured by Miikkulainen
(1999).

Results and Discussion

To analyze the simulation results, we focus here on three
levels of analysis: the network’s representation of verb se-
mantics, its patterns of morphological generalization, and its
ability to recover from generalization errors.

The Representation of Cryptotype

In this study, we wanted to analyze whether our network
developed structured representation as a function of the self-
organization of verb semantics. In particular, we wanted to
see how the patterns of activity formed in the maps can cap-
ture Whorf’s notion of cryptotype.

As discussed earlier, a distinct property of self-organizing
feature maps is that the structures in the network’s new rep-
resentation are clearly visible as activity bubbles or patterns
of activity on the two-dimensional map; this property obvi-
ates the need of extra steps of mathematical analysis (e.g.,
cluster analysis or principal component analysis) as required
in other connectionist networks. In our network, the self-
organization process extracted the semantic structures from
the high-dimensional space of the HAL semantic vectors and
expressed them on the two-dimensional map as concentrated
patterns of activity. Figure 2 presents a snapshot of the net-
work’s self-organization of 120 verbs after the network was
trained for 600 epochs at Stage 1.

An examination of the semantic map shows that the net-
work has clearly developed forms of representation that cor-
respond to the category of cryptotype that Whorf believed
governs the use of un-. In Li and MacWhinney (1996) we
suggested that a connectionist model provides a formal
mechanism to capture Whorf's cryptotype, in that there can
be several “mini-cryptotypes™ that work collaboratively as
interactive “gangs” (McClelland & Rumelhart, 1981) to
support the formation of the larger cryptotype. The idea of
“mini-cryptotype” is realized most clearly in the emerging
structure of the self-organizing map.

Our network, without the use of ad hoc semantic features,
formed clear “‘mini-cryptotypes™” by mapping similar words
onto nearby regions of the map. For example, towards the
lower right-hand corner, verbs like lock, clasp, latch, lease,
and button are mapped to the same region of the map, and
these verbs all share the “binding/locking” meaning. A simi-
lar mini-cryptotype also occurs towards the lower left-hand
corner, including verbs like snap, mantle, tangle, ravel,
twist, tie, and belr. Still a third mini-cryptotype can be

cryptotypes
[zinulation file: uni-sinu
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in
verbs for 600
epochs. The upper panel is the phonological map (in capital
letters), and the lower panel the semantic map. Words longer
than four letters are truncated.

Figure 2: Phonological and semantic representations

DISLEX after the network was trained on 120

found in the upper left-hand corner, including hear, say,
speak, see, and tell, verbs of perceptions and audition. Fi-
nally, one can observe that embark, engage, integrate, as-
semble, and unite are being mapped toward the upper right-
hand corner of the map, which all seem to share the “con-
necting” or “putting-together” meaning and interestingly,
these are the verbs that can take the prefix dis-. Of course,
the network’s representation at this point is still incomplete,
as self-organization is moving from diffuse to more focused
patterns of activity; for example, the verb show, which
shares similarity with none of the above mini-cryptotypes,
is grouped with the binding/locking verbs. What is crucial,
however, is that these mini-cryptotypes form the semantic
basis for the larger cryptotype of un- verbs. As shown in
the figure, the network has mapped most verbs in the cryp-
totype to the bottom layer of the semantic map, and these
are the verbs that can take the prefix un-.

Representation and Generalization

Neural networks are considered to be able to generalize to
novel patterns (Elman, 1998). But do they show the same
types of generalization as children do? And on what basis do
they generalize? Our simulation results indicate that our
network was not only able to capture the elusive cryptotype
category by way of self-organization, but also able to gener-
alize on the basis of its representation of the cryptotype. For
example, the network produced overgeneralization errors that
match up with empirical data when tested for generalization
at Stage 3, including *unbreak, *uncapture, *unconnect,
*unfreeze, *ungrip, *unpeel, *unplant, *unpress, *unspill,




*unstick, *untighten, etc. These overgeneralizations were
based both on the network’s representation of the meaning
of verbs and on the associative connections that the network
formed through Hebbian learning in the semantics-
phonology mapping process.

First, most of these overgeneralizations involve verbs that
fall within the un- cryptotype. These verbs (e.g., connect,
freeze, grip, peel, plant, press, spill, stick, and tighten) were
mapped to the bottom layer on the semantic map within
which we identified the network’s representation of the cryp-
totype. Earlier, we pointed out two hypotheses regarding the
role of cryptotype in children’s acquisition of un- according
to Bowerman: “generalization via cryptotype” and “recovery
via cryptotype”. Our results here are consistent with the
generalization via cryptotype hypothesis, that is, the repre-
sentation of cryptotype leads to overly general uses of un-
(see also discussion of the clench example below). Consis-
tent with our previous simulations, we found no flagrant
violations of the cryptotype in the network's generalizations
such as *unhate or *untake (as in Bowerman'’s data); hence
there was no basis for the recovery via cryptotype hypothe-
sis, that is, that the learner can use the representation of
cryptotype to recover from overgeneralizations.

Second, all the above generalizations were simulated pro-
duction errors, in which case patterns of activity in the se-
mantic map were propagated through associative links to the
phonological map. The ability to simulate both comprehen-
sion and production through associative connections is a
distinct property of DISLEX (see Network Architecture).
The associative connections formed via Hebbian learning
provide the basis for the production of overgeneralization
errors. For example, the semantic properties of righten and
clench are similar and they were mapped onto nearby regions
of the semantic map. During learning, the semantics of
clench and unclench were co-activated, and the phonology of
clench, unclench, and un- were also co-activated. When the
semantics and the phonology of these items were associated
through Hebbian learning, the network can associate the
semantics of tighten with un- because of clench, even
though the network learned only the association for un-
clench and not un-tighten (i.e., at an earlier stage tighten
was not included in the training). This associative process of
correlating semantic features, lexical forms, and morpho-
logical devices simulates the process of learning and gener-
alization in children’s productive speech, and shows that
overgeneralizations can naturally result from the semantic
structures in the lexical representation (which in turn is a
result of self-organization) and from the associative learning
of semantics and phonology.

Finally, generalization errors in our data were not limited
only to morphological generalizations. We also found lexi-
cal generalizations similar to those reported by Bowerman
(1982) and Miikkulainen (1997) (see Introduction). Most
important, these generalizations demonstrate further the in-
timate relationship between representation and generaliza-
tion. For example, our network produced see in response to
say, detach in response to delete, begin in response to be-
come, due to its representation of these pairs of words in the
same region on the phonological map. These generalizations
well resemble lexical errors in surface dyslexia (Miikku-
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lainen, 1997). Similarly, the network comprehended see as
speak, arm as clasp, and unscrew as hook, due (o its repre-
sentation of these pairs of words in the same region on the
semantic map, and these generalizations resemble lexical
errors in deep dyslexia. Again, self-organization of lexical
information and Hebbian learning of associative connections
account for the origin of this type of lexical generalizations.

Mechanisms of Recovery from Generalizations

Our last analysis of the simulation results involves the net-
work’s ability to recover from generalization errors. The
network in Li (1993) and Li and MacWhinney (1996) suf-
fered, by and large, from the failure to recover from overgen-
eralization errors. This failure, we hypothesized, was due to
the gradient-descent error-adjustment process used in back-
propagation. Can our self-organizing network recover from
generalizations? If so, what computational mechanisms
permit its recovery?

Our network displayed a significant ability of recovery
from generalization errors. When tested for generalizations at
Stage 3, no learning took place in the network for self-
organization or associative connection. When tested for re-
covery at Stage 4, self-organization and Hebbian learning
resumed. Within 200 epochs of new learning during this
stage, our network recovered from the majority of the over-
generalizations tested at Stage 3. Recovery in this case is a
process of restructuring of the mapping between
phonological, semantic, and morphological patterns, and the
restructuring is based on the network’s ability to reconfigure
the associative links through Hebbian learning, in particular,
the ability to form new associations between prefixes and
verbs and the ability to eliminate old associations that were
the basis of erroneous generalizations.

As discussed earlier, adjustment of associative connections
via Hebbian learning in DISLEX is proportional to how
strongly the units in the associated maps (phonological and
semantic maps in this case) are co-activated. When a given
phonological unit and a given semantic unit have fewer
chances to become co-activated, the strengths of their asso-
ciative links are correspondingly decreased. For example, un-
and righten were co-activated because of clench at Stage 3; at
Stage 4 un- and clench continue to be co-activated, but un-
and righten do not get co-activated. Hebbian learning deter-
mines that the associative connection between un- and
clench remains to be strong, but that between un- and
tighten gets eliminated, thereby simulating what happens at
the final phase of the U-shaped learning when errors disap-
pear. This result models the process that children’s overgen-
eralizations are gradually eliminated when there is no audi-
tory support in the input about specific co-occurrences that
they expect (MacWhinney, 1997). Of course, in the real
learning situation, the strength of the connection between
un- and tighten may also be reduced by a competing form
such as loosen that functions to express the meaning of
*untighten (e.g., Clark, 1987, MacWhinney, 1987).

Hebbian learning coupled with self-organization provides a
simple but powerful computational principle to account for
the recovery process. Restructuring of associative connec-
tions often goes hand-in-hand with the reorganization of the
corresponding maps. For example, at Stage 4, the network



developed finer representations for verbs such as clench and
tighten: as the associative strengths of these verbs to un-
varied, their representations also became more distinct. This
process in our simulation is consistent with the criteria ap-
proach of Pinker (1989) which argues that children recover
from generalizations by recognizing fine and subtle semantic
and phonological properties of verbs (although we do not
assume as Pinker does that fine distinctions among verbs
rely on the child’s innate capacity). Interestingly, in the few
cases in which our network did not recover from generaliza-
tions, the network was unable to make the fine distinctions
between verbs on the basis of meanings; for example, be-
cause it was unable to separate on the semantic map stick
from screw, press from zip, and freeze from bolt, it contin-
ued to produce the erroneous *unstick, *unpress, and
*unfreeze. This inability might be due to resource limita-
tions (i.e., size of the map); we are currently investigating
this problem using much larger feature maps (e.g., map of
50 x 50 units).

Conclusion

In this paper I showed that self-organizing neural networks
can be used successfully to model and provide insights into
language acquisition, particularly with respect to issues of
generalization, representation, and recovery. Our simulated
DISLEX model, without receiving hand-crafted features, was
able to capture elusive semantic categories such as Whorf’s
cryptotype, display overgeneralization errors as children do,
and recover significantly from overgeneralizations. Although
the simulation results presented here are preliminary, we
think that they serve to deepen the link between previous
empirical and modeling results and new models in neural
networks. Future research in this direction will involve the
development of more realistic training schedules (e.g., in-
cremental learning), the use of input representations that are
grounded in children’s language (e.g., semantic vectors based
on lexical co-occurrence analysis of the CHILDES database),
and the development of network architecture that is better
suited to the task of morphological acquisition (e.g., use of
separate morphological maps that allow the interaction
among morphemes and verb stems on both phonological and
semantic levels).
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