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Abstract

Symmetry is an important and unifying notion in many areas of physics. In quantum me-

chanics, it is possible to eliminate degrees of freedom from a system by leveraging symmetry

to identify the possible physical transitions. This allows us to simplify calculations and char-

acterize potentially complicated dynamics of the system with relative ease. Lately, quantum

computers have been used to explore symmetries of the physical systems they evolve. Previ-

ous works have focused on devising quantum algorithms to ascertain symmetries by means

of fidelity-based symmetry measures. Presented in this work are alternative symmetry-

testing quantum algorithms that are efficiently implementable on quantum computers. The

proposed approach estimates asymmetry measures based on the Hilbert–Schmidt distance,

which is significantly easier, in a computational sense, than using fidelity as a metric. The

method is derived to measure symmetries of states, channels, Lindbladians, and measure-

ments. It is applied to a number of scenarios involving open quantum systems, including

the amplitude damping channel and a spin chain, and symmetry tests are performed both

within and outside the finite symmetry group of the Hamiltonian and Lindblad operators.
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Chapter 1

Introduction

Before delving into the main contributions of this work, it is worthwhile to briefly review

the history of quantum computing. This is followed by a few generic remarks on present-era

NISQ devices and future outlooks towards fault-tolerant quantum computation.

1.1 Historical overview of quantum computing

In 1981, Richard Feynman, in a talk titled “Simulating Physics with Computers”, broached

the problem of simulating quantum systems on classical computers [1]. He noted that, in

order to do so, one would have to contend with an exponentially large number of variables in

system size, which is computationally unfeasible. To circumvent this fundamental inability

of classical computers to simulate complex, quantum mechanical physics, Feynman suggested

the use of a computational model that would itself leverage quantum mechanics. Since then,
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Feynman’s remarks have been widely recognized as having launched quantum computing as

a field of study in itself.

It soon became clear that quantum computers could afford an advantage in solving prob-

lems outside of the realm of quantum physics as well [2]. Perhaps the most consequential

such application of quantum computing came in the form of Shor’s algorithm, whereby Peter

Shor devised an efficient method to find the prime factors of large numbers [3]. Given the

relevance of prime factorization to public-key cryptography schemes, Shor’s algorithm caused

an explosion of interest in quantum computing. However, physicists rightly responded by

raising the issue of decoherence, which refers to the degradation of quantum information

due to environmental leakage [4–6]. This was followed by Shor’s pioneering work on devel-

oping a theory of quantum error correction and fault-tolerant quantum computation [7, 8].

Succeeding years saw a series of remarkable and independently-arrived-at theoretical results,

together said to constitute the so-called “threshold theorem”, which states that it is possible

to perform arbitrarily large quantum computations if error rates for individual gates are kept

below a certain constant threshold [9–13]. At the time, such theoretical results indicated

that, in principle, it was possible to scale up quantum computers to a point where they

could be employed to solve hard and meaningful problems. For a comprehensive historical

overview of quantum computation since Feynman, see Sections 1 and 2 of [14].
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1.2 Noisy Intermediate-Scale Quantum Era

The present generation of quantum devices have been designated in the literature as belong-

ing to the NISQ (which stands for Noisy Intermediate-Scale Quantum [15]) era. Owing to

their noisiness, a disadvantage stemming from a lack of error-correction, these devices are

not yet fit to perform computational tasks that would unambiguously place them ahead of

classical supercomputers. However, there are good reasons to believe that NISQ devices may

still be used to glean valuable insights about complex, many-body quantum systems, sim-

ulating which is a task especially intractable for classical computers. Among such devices,

one can make a distinction between analog and digital quantum simulators. Analog quan-

tum simulators are devices implemented in such a manner such that their dynamics closely

mimic the specific quantum systems which they are designed to simulate. Digital quantum

simulators, on the other hand, follow a gate-based and universal model of quantum compu-

tation, which may be programmed to simulate any desired quantum system. Experimental

platforms based on trapped-ions and superconducting circuits are examples of devices which

may be used to perform either digital or analog quantum simulation. Both approaches have

advantages and disadvantages associated with them, and it will be necessary to pursue both

in order to improve current methods of performing quantum simulation on NISQ devices.

Eventually, one of the major goals of this field is the realization of fault-tolerant quantum

computation (FTQC) on actual quantum devices, whereby the inherent noisiness of NISQ

devices is expected to be overcome by means of quantum error correction (QEC). The fun-
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(a) (b)

(c) (d)

Figure 1.1: Examples of various experimental platforms used for quantum computation: (a)
an IBM quantum device, consisting of superconducting qubits, (b) the Enchilada Trap, an ion
trap device developed by Sandia National Laboratories, (c) the X8 photonic chip quantum
processor unit (QPU) developed by Xanadu, (d) the neutral atom based QPU, called Aquila,
developed by Quera Computing, consisting of 256 physical qubits.

damental principle behind QEC is the incorporation of redundancy in quantum information,

that is, encoding of multiple physical qubits into a single logical qubit, which is done to

prevent the accumulation and spread of physical errors. Although the challenges associated

with QEC are numerous and significant [16], recent results such as [17] and [18] represent

groundbreaking efforts towards implementing the same.
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Chapter 2

Symmetry in Quantum Information

The following work is the result of a collaboration between the Radulaski Group at UC

Davis and the Wilde group at Cornell University [19]. The paper on which it is based was

co-written by the author of this thesis. The sections below contain general comments on the

fundamental role of symmetry in physics and quantum information theory, open quantum

systems, and some background on testing for symmetries on quantum computers.

2.1 Symmetry

Symmetry is a fundamental concept in physics, simplifying our understanding of the phys-

ical world [20, 21]. In quantum mechanics especially, symmetry is helpful for determining

which physical transitions are allowed [22–24] or in reducing the number of degrees of free-

dom needed to express a given physical system, thus making it easier to solve equations or
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optimization problems. In practical considerations, the interaction of the system with the

environment can lead to a loss of symmetry, or yet, enforce certain symmetries (Figure 2.1).

As such, the concept of symmetry has carried over to quantum information processing [25],

for understanding phenomena like entanglement [26–31], coherence [32–34], and reference

frames [24, 35]. The essential role of symmetry has elevated the concept itself to the status

of a quantum resource theory [36, 37], in which objects possessing symmetry are considered

freely available and those that break symmetry have value. Most recently, symmetry is being

used in quantum machine learning to improve the trainability of learning algorithms [38–40].

2.2 Open Quantum Systems

In this work, we are specifically interested in ascertaining symmetries of open quantum

systems using quantum algorithms. The problem of using quantum computers to simulate

and study the dynamics of a closed, isolated system, described by the Hamiltonian evolution

operator e−iHt, has been explored in considerable depth [41–46]. However, this scenario,

wherein the system in consideration undergoes perfectly unitary dynamics, is an idealization;

in practice, all quantum systems, including quantum computers themselves, are coupled to an

environment (sometimes also referred to as a bath) in one manner or other, thereby leading

to degradation of quantum information, in a process known as decoherence [47]. Therefore,

we refer to such systems as open quantum systems. Since the general advantage afforded by

quantum computers in studying physical quantum systems (namely, that of being able to

6



keep track of an exponentially large number of variables in system size) carries over to the

exploration of open quantum systems as well, in recent years, increasing attention has been

focused on devising quantum algorithms to study the non-unitary dynamics of these systems

[48–52].

There are, of course, challenges associated with simuating open quantum systems on

quantum computers; the non-unitariness of open quantum system dynamics often requires

the use of additional environment qubits in order to jointly evolve the system and bath as

a single unitary system. For instance, in our work, we use the Stinespring dilation form of

the amplitude damping channel in order to achieve unitary evolution of the same. However,

on the other hand, works such as [53] have considered leveraging the intrinsic noisiness of a

quantum computer to reduce the resource overhead for simulating open quantum systems.

2.3 Testing for symmetries on quantum computers

Motivated by its fundamental role in physics and related fields, the authors of [54, 55]

(cf. [56]) developed several quantum algorithms for testing symmetry of states, Hamiltonians,

channels, and measurements on quantum computers, and a sequel paper places the related

problems in the context of quantum computational complexity theory [57]. A number of these

algorithms are efficiently realizable on quantum computers, while others have computational

complexity provably beyond that of the standard BQP complexity class and thus are believed

to be difficult even for quantum computers to solve (here, BQP stands for bounded error
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Symmetry protecting

Symmetry breaking

Initial state Open System Interaction Evolved state

Figure 2.1: Interactions of systems with the environment can be symmetry preserving or
symmetry breaking. The figure depicts an illustrative example of water waves interacting
with wind that blows along different directions, potentially preserving or breaking the initial
symmetry. In the first example (top), the wind preserves the symmetric structure of the water
waves, so that the wind acts as a covariant channel, while in the second example (bottom),
the wind is too chaotic, breaks the symmetry, and thus does not act as a covariant channel.

quantum polynomial time; see [58, 59] for reviews on quantum computational complexity

theory). Another contribution of [54] was to develop variational quantum algorithms for

these more difficult problems, by replacing the operations of an unbounded “prover” with

parameterized quantum circuits; this approach works well in certain instances but does not

lead to provable computational runtimes (see [60, 61] for reviews of variational quantum

algorithms).
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One of the main contributions of the present work is to develop alternative symmetry-

testing algorithms that can be efficiently implemented on quantum computers. In contrast

to the prior approaches from [54, 55], we modify the measure being estimated by a quantum

computer. Whereas all of the algorithms from [54] estimate symmetry measures based on

fidelity [62], here we develop algorithms that estimate asymmetry measures based on the

Hilbert–Schmidt distance. Since estimating fidelity is considered to be a difficult problem

for a quantum computer (more precisely, complete for a complexity class called quantum

statistical zero knowledge [63]), while estimating the Hilbert–Schmidt distance is considered

easy for a quantum computer (more precisely, complete for BQP [64]), it is expected that

several of the symmetry testing algorithms from [54] are difficult for a quantum computer

while the symmetry testing algorithms developed here are easy for a quantum computer to

execute.
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Chapter 3

Outline of Contributions

In this work, we develop efficient symmetry testing algorithms for a number of scenarios

involving open quantum systems. Specifically, our contributions consist of the following:

1. Given a state ρ and a unitary representation {U(g)}g∈G of a groupG, our first algorithm

estimates the following asymmetry measure:

1

|G|
∑
g∈G

∥[U(g), ρ]∥22 , (3.1)

where

∥A∥2 :=
√

Tr[A†A] (3.2)

is the Hilbert–Schmidt norm of an operator A. This measure is a faithful asymmetry

measure, in the sense that it is equal to zero if and only if [U(g), ρ] = 0 for all g ∈ G,

the latter being the defining condition for symmetry of the state ρ with respect to the

representation {U(g)}g∈G [24, 25, 35].
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2. Given a quantum channel N and a unitary channel representation {U(g)}g∈G of a

group G, where U(g)(·) := U(g)(·)U(g)†, our next algorithm estimates the following

asymmetry measure:

1

|G|
∑
g∈G

∥∥(id⊗ [U(g),N ]) (Φd)
∥∥2
2
, (3.3)

where id denotes the identity superoperator, [U(g),N ] represents the superoperator

commutator (see, e.g., [24, Section II-C]), defined for superoperators A and B as

[A,B] := A ◦ B − B ◦ A, (3.4)

and

Φd :=
1

d

∑
i,j

|i⟩⟨j| ⊗ |i⟩⟨j| (3.5)

is the standard maximally entangled state of Schmidt rank d. Thus,

(id⊗ [U(g),N ]) (Φd) = (id⊗ (U(g) ◦ N )) (Φd)− (id⊗ (N ◦ U(g))) (Φd). (3.6)

As we show later on, the measure in (3.3) is a faithful asymmetry measure, in the sense

that it is equal to zero if and only if

[U(g),N ] = 0 ∀g ∈ G, (3.7)

or, equivalently, if and only if

U(g) ◦ N = N ◦ U(g) ∀g ∈ G. (3.8)

The latter is the defining condition for covariance symmetry of the channel N with re-

spect to the unitary channel representation {U(g)}g∈G [25, 65]. In words, the equality
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above means that the channel N commutes with every unitary channel representation

U(g) of a group element g ∈ G. Our algorithm for this task builds on an efficient

subroutine for estimating the Hilbert–Schmidt distance of the Choi states of two quan-

tum channels, which may be of independent interest for other purposes in quantum

computing.

3. As a special case of the above, we consider testing covariance symmetry of measurement

channels, which have the form ρ → M(ρ) :=
∑

x Tr[Mxρ]|x⟩⟨x|, where {Mx}x is a

positive operator-valued measure and {|x⟩}x is an orthonormal basis that encodes

the measurement outcome. Specifically, we provide an algorithm that estimates the

following asymmetry measure:

1

|G|
∑
g∈G

∥∥ΦM◦U(g) − ΦW(g)◦M∥∥2
2
, (3.9)

where {U(g)}g∈G and {W(g)}g∈G are unitary channel representations of a group G,

with the latter realizing a shift of the measurement outcome as

W(g)(|x⟩⟨x|) = |πg(x)⟩⟨πg(x)|, (3.10)

for πg a permutation. As discussed later on, this asymmetry measure is equal to zero if

and only if the measurement is covariant [66, 67], i.e., such that U(g)(Mx) is an element

of the POVM for all g ∈ G. Here again our algorithm builds on an efficient subroutine

for estimating the Hilbert–Schmidt distance between two measurement channels, which

we show is easier to perform than the aforementioned subroutine for general channels
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with quantum inputs and quantum outputs. We also believe that this subroutine

should be of independent interest for other purposes in quantum computing.

As a particular application of our algorithm for estimating (3.3), we investigate the

symmetry of Lindbladian evolutions, i.e., evolutions that correspond to the solution of the

well known Lindblad master equation [68]:

∂ρ

∂t
= L(ρ) := −i [H, ρ] +

∑
k

LkρL
†
k −

1

2
{L†

kLk, ρ}, (3.11)

where H is a Hamiltonian, {Lk}k is a set of Lindblad operators, and L is a superoperator

known as the Lindbladian. It is well known that the solution of (3.11) is the following

quantum channel:

eLt(ρ) =
∞∑
n=0

Ln(ρ)tn

n!
, (3.12)

where Ln denotes n repeated applications of the superoperator L. We accomplish symmetry

testing of a Lindbladian L by employing our algorithm for estimating (3.3) with the sub-

stitution N = eLt, and later on, we remark on how symmetry testing of the channel eLt is

equivalent to symmetry testing of the Lindbladian L.

Similar to how understanding symmetries of Hamiltonians can be helpful for deducing

which physical transitions are allowed and which are not, the same can be said for under-

standing symmetries of the more general Lindbladian evolutions. As a particular example

of this phenomenon, consider a Lindbladian in which the Hamiltonian is the photon number

operator [69] and there is one Lindblad operator, which is also the photon number opera-

tor. Then the only states that are invariant under the resulting channel eLt are the photon

13



number states and mixtures thereof, because every other state becomes dephased by this

evolution. Thus, under these dynamics and for long times, it is not possible to transition

from a probabilistic mixture of photon number states to a coherent superposition of them,

the latter of which is resourceful for estimation tasks in quantum metrology [70]. More gen-

erally, our algorithm is helpful for understanding symmetries of Lindbladian evolutions that

are efficiently realizable on quantum computers, by means of any of the several quantum

algorithms that have been proposed for simulating open systems dynamics [48, 49, 71–73]

(see [74] for a review).

Before proceeding with the content of this thesis, we note here that the symmetry testing

quantum algorithms proposed here, like those from [54, 55], are most useful in the regime in

which the states, channels, Lindbladians, or measurements being tested, as well as the group

representation unitaries being considered, involve a large number of qubits and are non-

trivial. In this regime, it is likely not possible to simulate these tests efficiently by means of

a classical computer, as shown in [55, 57], based on the conjecture that the complexity class

BQP strictly contains the complexity class BPP (the latter being the class of problems that

are efficiently implementable on a classical probabilistic computer). The previous statement,

less formally, is equivalent to the widespread belief that quantum computers, in principle,

are generally more powerful than classical computers. Furthermore, it is certainly of interest

to employ quantum computers for the task of learning symmetries (see, e.g., [75]), and we

consider the ability to test symmetries to be an important component of the learning process

(either while the learning is occurring or after learning has completed, as a way of testing

14



whether the learned symmetry is indeed correct).

In the rest of this thesis, we provide details of our algorithms and evaluate their per-

formance for some exemplary physical systems of interest. In particular, Chapter 4 reviews

some basic notation and concepts used throughout the rest of this work. Chapter 5 devel-

ops the theory behind our quantum algorithms for testing symmetry of states (Section 5.1),

channels (Section 5.3), and Lindbladians (Section 5.4). As part of our algorithm for test-

ing symmetries of channels, we develop an efficient subroutine for estimating the Hilbert–

Schmidt distance of the Choi states of two quantum channels (Section 5.2), which may be of

independent interest for other purposes in quantum computing. Specifically, this algorithm

significantly reduces the number of qubits needed for the estimation, when compared to a

naive approach to this problem. Section 5.5 particularizes the development for quantum

channels to the case of quantum measurement channels, proposing both a procedure for

estimating the Hilbert–Schmidt distance of the Choi states of two such channels, as well as

for estimating an asymmetry measure for a given measurement channel. In Chapter 6, we

test out our algorithms for estimating symmetries of Lindbladians for two example scenarios,

using Qiskit’s noiseless and noisy simulators [76]. Finally, in Chapter 7, we conclude with

a summary of our contributions, along with a discussion of prospects for implementing the

developed algorithms on near-term quantum hardware.
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Chapter 4

Notation and Background

This chapter provides some notation and background used throughout the rest of this thesis.

See [77–81] for further background on quantum information. A quantum state (density

operator) is described by a positive semi-definite operator with unit trace. A quantum

channel is a completely positive, trace-preserving superoperator. The Choi state ΦN of a

channel N is given by sending one share of a maximally entangled state Φd, defined in (3.5),

through the channel:

ΦN := (id⊗N )(Φd), (4.1)

where we have assumed that the input space of N is d-dimensional.

4.1 Hilbert–Schmidt distance

The Hilbert–Schmidt distance between two states ρ and σ, induced by the norm in (3.2), is

given by ∥ρ− σ∥2. It is faithful, in the sense that ∥ρ− σ∥2 = 0 if and only if ρ = σ. It obeys

16



the data-processing inequality for unital channels [82], but it does not obey it in general [83];

that is, the following inequality holds whenever N is a unital channel (satisfying N (I) = I,

where I is the identity operator):

∥ρ− σ∥2 ≥ ∥N (ρ)−N (σ)∥2 . (4.2)

When ρ and σ are multi-qubit states and one can prepare many copies of them on

a quantum computer, it is easy to estimate the square of their Hilbert–Schmidt distance

by means of the destructive SWAP test (reviewed in Section 4.2 below). This follows by

considering the expansion

∥ρ− σ∥22 = Tr[ρ2] + Tr[σ2]− 2Tr[ρσ], (4.3)

and the algorithm reviewed in the next section. In fact, it is known that estimating the

Hilbert–Schmidt distance of quantum states ρ and σ prepared by circuits is a BQP-complete

problem [64, Theorem 14], so that this problem captures and is equivalent to the full power

of quantum computation.

4.2 Review of destructive SWAP test

Let us define the unitary swap operator as

SWAP :=
∑
i,j

|i⟩⟨j| ⊗ |j⟩⟨i|, (4.4)

and note the following identity:

Tr[CD] = Tr[SWAP(C ⊗D)], (4.5)
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which holds for arbitrary linear operators C and D and plays a key role in our algorithms

that follow. Recall that, if the SWAP operator acts on qubit systems, then

SWAP =
∑

i,j∈{0,1}

(−1)ij Φij, (4.6)

where

Φ00 = Φ+, Φ10 = Φ−, Φ01 = Ψ+, Φ11 = Ψ−. (4.7)

In the above, Φ+ ≡ |Φ+⟩⟨Φ+|, Φ− ≡ |Φ−⟩⟨Φ−|, Ψ+ ≡ |Ψ+⟩⟨Ψ+|, and Ψ− ≡ |Ψ−⟩⟨Ψ−| are the

standard Bell states, defined through

|Φ±⟩ := 1√
2
(|00⟩ ± |11⟩) , |Ψ±⟩ := 1√

2
(|01⟩ ± |10⟩) . (4.8)

This means that the SWAP observable for qubits can be measured by means of a Bell

measurement and classical post-processing, a fact that is used in the destructive SWAP test

method for measuring the SWAP observable [84] (see also [85, 86] and Eqs. (26)–(37) of [64]

for a review of this method).

For convenience, we briefly review the destructive SWAP test [84] for estimating the

overlap term Tr[ρσ], where ρ and σ are n-qubit states, with ρ a state of qubits 1, . . . , n

and σ a state of qubits n + 1, . . . , 2n. The idea behind it is a consequence of the following

observation:

Tr[ρσ] = Tr[SWAP(n)(ρ⊗ σ)] (4.9)

=
∑

k⃗,ℓ⃗∈{0,1}n
(−1)k⃗·ℓ⃗ Tr[Φk⃗ℓ⃗ (ρ⊗ σ)], (4.10)
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where

k⃗ ≡ (k1, k2, . . . , kn), ℓ⃗ ≡ (ℓ1, ℓ2, . . . , ℓn), (4.11)

Φk⃗ℓ⃗ ≡ Φk1ℓ1
1,n+1 ⊗ Φk2ℓ2

2,n+2 ⊗ · · · ⊗ Φknℓn
n,2n , (4.12)

and we used the identity in (4.6), as well as the fact that

SWAP(n) = SWAP⊗n (4.13)

=

(∑
k1,ℓ1

(−1)k1ℓ1 Φk1ℓ1
1,n+1

)
⊗ · · · ⊗

(∑
kn,ℓn

(−1)knℓn Φknℓn
n,2n

)
(4.14)

=
∑

k⃗,ℓ⃗∈{0,1}n
(−1)k⃗·ℓ⃗Φk⃗ℓ⃗. (4.15)

By setting Z ≡ (K⃗, L⃗) to be a multi-indexed random variable taking the value (−1)k⃗·ℓ⃗

with probability

p(k⃗, ℓ⃗) := Tr[Φk⃗ℓ⃗ (ρ⊗ σ)], (4.16)

we find from (4.9)–(4.10) that its expectation is given by

E[Z] =
∑

k⃗,ℓ⃗∈{0,1}n
(−1)k⃗·ℓ⃗ Tr[Φk⃗ℓ⃗ (ρ⊗ σ)] = Tr[ρσ]. (4.17)

This observation then leads to the following quantum algorithm (destructive SWAP test) for

estimating Tr[ρσ], within additive error ε and with success probability at least 1− δ, where

ε > 0 and δ ∈ (0, 1).

Algorithm 1 Given are quantum circuits to prepare the n-qubit states ρ and σ.

1. Fix ε > 0 and δ ∈ (0, 1). Set T ≥ 2
ε2
ln
(
2
δ

)
and set t = 1.

19



ρ

• H k1

• H k2

• H k3

σ

ℓ1

ℓ2

ℓ3

Figure 4.1: Depiction of the core quantum subroutine given in Steps 2.-3. of Algorithm 1, for
the three-qubit states ρ and σ. This algorithm estimates the overlap Tr[ρσ].

2. Prepare the states ρ and σ on 2n qubits (using the ordering specified in (4.12)).

3. Perform the Bell measurement {Φk⃗ℓ⃗}k⃗ℓ⃗ on the 2n qubits, which leads to the measure-

ment outcomes k⃗ and ℓ⃗.

4. Set Zt = (−1)k⃗·ℓ⃗.

5. Increment t.

6. Repeat Steps 2.-5. until t > T and then output Z := 1
T

∑T
t=1 Zt as an estimate of Tr[ρσ].

Figure 4.1 depicts the core quantum subroutine of Algorithm 1. By the Hoeffding in-

equality (recalled as Theorem 1 below), we are guaranteed that the output of Algorithm 1

satisfies

Pr
[∣∣Z − Tr[ρσ]

∣∣ ≤ ε
]
≥ 1− δ, (4.18)

due to the choice T ≥ 2
ε2
ln
(
2
δ

)
.
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Clearly, by the expansion in (4.3) and repeating Algorithm 1 three times, one can use

O
(

1
ε2
ln
(
1
δ

))
samples of ρ and σ in order to obtain an estimate of (4.3) within additive error

ε > 0 and with success probability not smaller than 1− δ, where δ ∈ (0, 1).

Theorem 1 (Hoeffding Inequality [87]) Suppose that we are given T independent sam-

ples Y1, . . . , YT of a bounded random variable Y taking values in the interval [a, b] and having

mean µ. Set YT := 1
T
(Y1+ · · ·+YT ) to be the sample mean. Let ε > 0 be the desired accuracy,

and let 1− δ be the desired success probability, where δ ∈ (0, 1). Then

Pr[|YT − µ| ≤ ε] ≥ 1− δ, (4.19)

as long as T ≥ M2

2ε2
ln
(
2
δ

)
, where M := b− a.
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Chapter 5

Quantum Algorithms for Testing

Symmetries

5.1 Testing symmetries of states

Let us now introduce a simple quantum algorithm for testing symmetry of the state ρ with

respect to the unitary representation {U(g)}g∈G of a group G. Specifically, the goal is

to estimate the normalized commutator norm in (3.1). As discussed around (3.1), this

asymmetry measure is equal to zero if and only if [U(g), ρ] = 0 for all g ∈ G. To start off, we

establish the following lemma, which provides a direct link between the asymmetry measure

in (3.1), and an approach we can use for estimating it on a quantum computer.

Lemma 1 Given a state ρ and a unitary representation {U(g)}g∈G of a group G, the fol-
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lowing equality holds:

1

|G|
∑
g∈G

∥[U(g), ρ]∥22 = 2
(
Tr[ρ2]− Tr[ρTG(ρ)]

)
, (5.1)

where TG is the twirl channel given by

TG(·) :=
1

|G|
∑
g∈G

U(g)(·)U(g)†. (5.2)

Proof. Consider the following equalities:

∥[U(g), ρ]∥22 = ∥ρU(g)− U(g)ρ∥22 (5.3)

=
∥∥ρ− U(g)ρU(g)†

∥∥2
2

(5.4)

= Tr[ρ2] + Tr[(U(g)ρU(g)†)2]− 2Tr[ρU(g)ρU(g)†] (5.5)

= 2
(
Tr[ρ2]− Tr[ρU(g)ρU(g)†]

)
, (5.6)

where the second equality is due to the unitary invariance of the Hilbert–Schmidt norm, the

third from the expansion in (4.3), and the final one from cyclicity of trace. Thus, we see

that

1

|G|
∑
g∈G

∥[U(g), ρ]∥22 =
1

|G|
∑
g∈G

2
(
Tr[ρ2]− Tr[ρU(g)ρU(g)†]

)
(5.7)

= 2
(
Tr[ρ2]− Tr[ρTG(ρ)]

)
, (5.8)

concluding the proof.

Now suppose that the state ρ is an n-qubit state and efficiently preparable on a quantum

computer, either by a quantum circuit or other means, and that, for all g ∈ G, there exists
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a circuit that efficiently realizes the n-qubit unitary U(g). Then the idea for estimating the

asymmetry measure in (3.1) is simple: Perform the destructive SWAP test (Algorithm 1)

to estimate Tr[ρ2] and perform the same test, using instead ρ and its twirled version TG(ρ),

to estimate Tr[ρTG(ρ)]. When estimating the latter term, we modify Algorithm 1 to be as

follows:

Algorithm 2 Given is a quantum circuit to prepare the n-qubit state ρ and circuits to

generate the unitaries in the representation {U(g)}g∈G.

1. Fix ε > 0 and δ ∈ (0, 1). Set T ≥ 2
ε2
ln
(
2
δ

)
and set t = 1.

2. Pick g ∈ G uniformly at random. Prepare the states ρ and U(g)ρU(g)† on 2n qubits

(using the ordering specified in (4.12)).

3. Perform the Bell measurement {Φk⃗ℓ⃗}k⃗ℓ⃗ on the 2n qubits, which leads to the measure-

ment outcomes k⃗ and ℓ⃗.

4. Set Zt = (−1)k⃗·ℓ⃗.

5. Increment t.

6. Repeat Steps 2.-5. until t > T and then output Z := 1
T

∑T
t=1 Zt as an estimate of

Tr[ρTG(ρ)].

Thus, by combining the estimates of Tr[ρ2] and Tr[ρTG(ρ)] according to (5.1), it follows

that this approach uses O
(

1
ε2
ln
(
1
δ

))
samples of ρ in order to obtain an estimate of the
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asymmetry measure in (3.1) within additive error ε > 0 and with success probability not

smaller than 1− δ, where δ ∈ (0, 1).

5.2 Estimating the Hilbert–Schmidt distance of the

Choi states of channels

Let us now introduce a method for estimating the Hilbert–Schmidt distance between the

Choi states of two quantum channels, as a generalization of the destructive SWAP test

used for estimating the Hilbert–Schmidt distance between two states. This algorithm has

applications beyond symmetry testing, for example, in quantum channel compilation as a

generalization of compiling states (see [88] for the latter).

To begin with, recall that two channels N and M are equal if and only if their Choi

states are equal [78, Section 4.4.2]; i.e.,

N = M ⇔ ΦN = ΦM, (5.9)

where the Choi states ΦN and ΦM are defined in (4.1). One way to determine whether the

equality above holds approximately is to employ the Hilbert–Schmidt distance of the Choi

states: ∥∥ΦN − ΦM∥∥
2
, (5.10)

where the Hilbert–Schmidt norm is defined in (3.2). This is due to the positive definiteness
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or faithfulness of the norm, i.e.,

∥∥ΦN − ΦM∥∥
2
= 0 ⇔ ΦN = ΦM. (5.11)

Using the expansion in (4.3), consider that

∥∥ΦN − ΦM∥∥2
2
= Tr[(ΦN )2] + Tr[(ΦM)2]− 2Tr[ΦNΦM]. (5.12)

The following lemma gives a way of rewriting the overlap Tr[ΦNΦM] in terms of the SWAP

observable, and it is critical to our simplified approach for estimating the Hilbert–Schmidt

distance between the Choi states of two channels.

Lemma 2 Let N and M be channels with Choi states ΦN and ΦM, respectively, and d-

dimensional inputs. Then

Tr[ΦNΦM] =
1

d2
Tr[SWAP(N ⊗M)(SWAP)]. (5.13)

Proof. Consider that

Tr[ΦNΦM] = Tr[(id⊗N )(Φd)(id⊗M)(Φd)] (5.14)

=
1

d2

∑
i,j,k,ℓ

Tr[(|i⟩⟨j| ⊗ N (|i⟩⟨j|)) (|k⟩⟨ℓ| ⊗M(|k⟩⟨ℓ|))] (5.15)

=
1

d2

∑
i,j,k,ℓ

⟨ℓ|i⟩⟨j|k⟩ ⊗ Tr[N (|i⟩⟨j|)M(|k⟩⟨ℓ|)] (5.16)

=
1

d2

∑
i,j

Tr[N (|i⟩⟨j|)M(|j⟩⟨i|)] (5.17)

=
1

d2

∑
i,j

Tr[SWAP (N ⊗M) (|i⟩⟨j| ⊗ |j⟩⟨i|)] (5.18)
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=
1

d2
Tr[SWAP (N ⊗M) (SWAP)]. (5.19)

The penultimate equality follows from (4.5).

Now suppose that the channels N and M each accept n qubits as input and output m

qubits. Then each of the terms in (5.12) can be efficiently measured on a quantum computer.

For example, to measure the last term Tr[ΦNΦM], one could prepare the tensor-product

state ΦN ⊗ΦM and then perform a destructive SWAP test, as recalled in Algorithm 1. This

approach, which we consider to be a naive approach in light of Algorithm 3 below, requires

2(n +m) qubits in total, for a circuit width of 2(n +m) qubits. However, what follows as

a consequence of Lemma 2 is that there is a simpler procedure for estimating Tr[ΦNΦM],

which requires preparing only 2n qubits at the input and acting on 2m qubits at the output,

and thus for a circuit width of max{2n, 2m} qubits.

Indeed, Lemma 2 establishes that

Tr[ΦNΦM] =
1

22n
Tr[SWAP(m) (N ⊗M) (SWAP(n))], (5.20)

where the superscript notation explicitly indicates the number of qubits on which the swap

operator acts. Next recall (4.13)–(4.15), which implies that

1

22n
Tr[SWAP(m) (N ⊗M) (SWAP(n))]

=
1

22n

∑
i⃗,⃗j∈{0,1}m

∑
k⃗,ℓ⃗∈{0,1}n

(−1)i⃗·⃗j+k⃗·ℓ⃗ Tr[Φi⃗⃗j (N ⊗M) (Φk⃗ℓ⃗)], (5.21)

where

i⃗ ≡ (i1, i2, . . . , im), j⃗ ≡ (j1, j2, . . . , jm), (5.22)
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k⃗ ≡ (k1, k2, . . . , kn), ℓ⃗ ≡ (ℓ1, ℓ2, . . . , ℓn), (5.23)

Φi⃗⃗j ≡ Φi1j1
1,m+1 ⊗ Φi2j2

2,m+2 ⊗ · · · ⊗ Φimjm
m,2m, (5.24)

Φk⃗ℓ⃗ ≡ Φk1ℓ1
1,n+1 ⊗ Φk2ℓ2

2,n+2 ⊗ · · · ⊗ Φknℓn
n,2n . (5.25)

Eq. (5.21) and Lemma 2 are the key insights that lead to a simplified quantum algorithm

for estimating the term Tr[ΦNΦM], which requires only 2n qubits at the input and 2m qubits

at the output. In the above, we have implicitly used the following ordering: the channel N

acts on input qubits 1, . . . , n and produces output qubits 1, . . . ,m, the channel M acts on

input qubits n+1, . . . , 2n and produces output qubits m+1, . . . , 2m, and the qubits for the

Bell states are labeled as subscripts above. By setting Y ≡ (I⃗ , J⃗ , K⃗, L⃗) to be a multi-indexed

random variable taking the value (−1)i⃗·⃗j+k⃗·ℓ⃗ with probability

p(k⃗, ℓ⃗, i⃗, j⃗) = p(⃗i, j⃗ |⃗k, ℓ⃗) p(k⃗, ℓ⃗), (5.26)

where

p(k⃗, ℓ⃗) :=
1

22n
, (5.27)

p(⃗i, j⃗ |⃗k, ℓ⃗) := Tr[Φi⃗⃗j (N ⊗M) (Φk⃗ℓ⃗)], (5.28)

we find from (5.20)–(5.21) that its expectation is given by

E[Y ] =
1

22n
Tr[SWAP(m) (N ⊗M) (SWAP(n))] = Tr[ΦNΦM]. (5.29)

The observation in (5.29) then leads to the following quantum algorithm for estimating

Tr[ΦNΦM], within additive error ε and with success probability not smaller than 1−δ, where

ε > 0 and δ ∈ (0, 1).
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Algorithm 3 Given are quantum circuits to implement the channels N and M.

1. Fix ε > 0 and δ ∈ (0, 1). Set T ≥ 2
ε2
ln
(
2
δ

)
and set t = 1.

2. Generate the bit vectors k⃗ and ℓ⃗ uniformly at random.

3. Prepare the Bell state Φk⃗ℓ⃗ on 2n qubits (using the ordering specified in (5.25)).

4. Apply the tensor-product channel N ⊗M (using the ordering specified after (5.25)).

5. Perform the Bell measurement {Φi⃗⃗j }⃗i,⃗j on the 2m output qubits, which leads to the

measurement outcomes i⃗ and j⃗.

6. Set Yt = (−1)i⃗·⃗j+k⃗·ℓ⃗.

7. Increment t.

8. Repeat Steps 2.-7. until t > T and then output Y := 1
T

∑T
t=1 Yt as an estimate of

Tr[ΦNΦM].

Figure 5.1 depicts the core quantum subroutine of Algorithm 3. By the Hoeffding in-

equality (recalled as Theorem 1), we are guaranteed that the output of Algorithm 3 satisfies

Pr
[∣∣Y − Tr[ΦNΦM]

∣∣ ≤ ε
]
≥ 1− δ, (5.30)

due to the choice T ≥ 2
ε2
ln
(
2
δ

)
.

By employing Algorithm 3 three times, we can thus estimate (5.12) within additive error

ε and with success probability not smaller than 1 − δ, by using O
(

1
ε2
ln
(
1
δ

))
samples of the

channels N and M.
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|k1⟩ H •

N

• H i1

|k2⟩ H • • H i2

|k3⟩ H • • H i3

|ℓ1⟩

M

j1

|ℓ2⟩ j2

|ℓ3⟩ j3

Figure 5.1: Depiction of the core quantum subroutine given in Steps 2.-5. of Algorithm 3,
such that the quantum channels N and M have three-qubit inputs and outputs. This algo-
rithm estimates the overlap Tr[ΦNΦM] of the Choi states of the channels. In this example,
the algorithm begins by preparing the classical state |k1, k2, k3, ℓ1, ℓ2, ℓ3⟩, where the values
k1, k2, k3, ℓ1, ℓ2, ℓ3 are chosen uniformly at random, followed by a sequence of controlled NOTs

and Hadamards. Before the channels are applied, the state is thus |Φk⃗ℓ⃗⟩, as described in Al-
gorithm 3. After the channels are applied, Bell measurements are performed, which lead to
the classical bit string i1i2i3j1j2j3. In the diagram, we depict the realization of the channels
N and M as black boxes, but in a simulation of them, one might make use of additional
environment qubits that are prepared and then discarded.

5.3 Testing symmetries of channels

In this section, we leverage the methods for estimating the Hilbert–Schmidt asymmetry

measure for states (Section 5.1), as well as the method for estimating the Hilbert–Schmidt

distance between the Choi states of channels (Section 5.2), in order to develop an approach

for estimating the covariance symmetry of a quantum channel N with respect to a unitary

channel representation {U(g)}g∈G.

Recalling the superoperator commutator notation defined in (3.4), we are interested in
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estimating the following asymmetry measure:

1

|G|
∑
g∈G

∥∥(id⊗ [U(g),N ]) (Φd)
∥∥2
2
. (5.31)

As discussed around (3.3), this asymmetry measure is equal to zero if and only if N ◦U(g) =

U(g) ◦ N holds for every g ∈ G.

We begin with the following lemma:

Lemma 3 Given a quantum channel N and a unitary channel representation {U(g)}g∈G,

the following equality holds:

1

|G|
∑
g∈G

∥∥(id⊗ [U(g),N ]) (Φd)
∥∥2
2
=

2

d2
Tr[SWAP(N⊗N )(SWAP)]

− 2

d2
Tr

[
SWAP

(
1

|G|
∑
g∈G

(U(g) ◦ N )⊗ (N ◦ U(g))

)
(SWAP)

]
. (5.32)

Proof. Consider that, for all g ∈ G,

∥∥(id⊗ [U(g),N ]) (Φd)
∥∥2
2

=
∥∥ΦU(g)◦N − ΦN◦U(g)

∥∥2
2

(5.33)

= Tr[(ΦU(g)◦N )2] + Tr[(ΦN◦U(g))2]− 2Tr[ΦU(g)◦NΦN◦U(g)] (5.34)

= 2
(
Tr[(ΦN )2]− Tr[ΦU(g)◦NΦN◦U(g)]

)
, (5.35)

where we made use of the expansion in (4.3), as well as the equalities

Tr[(ΦU(g)◦N )2] = Tr[(ΦN )2], Tr[(ΦN◦U(g))2] = Tr[(ΦN )2]. (5.36)

The equalities in (5.36) follow because

Tr[(ΦU(g)◦N )2] = Tr[{(id⊗(U(g) ◦ N ))(Φd)}2] (5.37)
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= Tr[{(id⊗N )(Φd)}2] (5.38)

= Tr[(ΦN )2], (5.39)

Tr[(ΦN◦U(g))2] = Tr[{(id⊗(N ◦ U(g)))(Φd)}2] (5.40)

= Tr[{(UT (g)⊗N )(Φd)}2] (5.41)

= Tr[{(id⊗N )(Φd)}2] (5.42)

= Tr[(ΦN )2]. (5.43)

The equalities in (5.38) and (5.42) in turn follow because the function Tr[σ2] depends only on

the eigenvalues of σ, and its eigenvalues are invariant under the action of a unitary channel.

The equality in (5.41) follows from the transpose trick [78, Exercise 3.7.12]; i.e., the identity

(id⊗U)(Φd) = (UT ⊗ id)(Φd) holds for every unitary channel U , where the transpose channel

is defined as UT (·) = UT (·)U , with U the matrix realized from U by entrywise complex

conjugation. Now employing Lemma 2, we can write

Tr[(ΦN )2] =
1

d2
Tr[SWAP(N⊗N )(SWAP)], (5.44)

Tr[ΦU(g)◦NΦN◦U(g)] =
1

d2
Tr[SWAP((U(g) ◦ N )⊗ (N ◦ U(g)))(SWAP)], (5.45)

which finally implies the claim in (5.32).

In order to estimate the channel asymmetry measure in (5.31), it follows from Lemma 3

that we can make use of Algorithm 3 to estimate the following two quantities:

1

d2
Tr[SWAP(N⊗N )(SWAP)], (5.46)

32



1

d2
Tr

[
SWAP

(
1

|G|
∑
g∈G

(U(g) ◦ N )⊗ (N ◦ U(g))

)
(SWAP)

]
, (5.47)

subtract the estimates, and multiply by two. For estimating the quantity in (5.47), similar

to how we did in Algorithm 2, we can slightly revise Algorithm 3 such that g ∈ G is chosen

uniformly at random in each step.

Remark 1 More generally, a quantum channel N can possess a covariance symmetry of the

following form:

N ◦ U(g) = V(g) ◦ N ∀g ∈ G, (5.48)

where {U(g)}g∈G and {V(g)}g∈G are unitary channel representations of a group G. This

more general symmetry occurs especially in the case in which the dimensions of the channel

input and output differ (as is the case, e.g., for the quantum erasure channel [78]).

We note here that all of the observations from this section apply to this more general

case. Namely, the asymmetry measure from (5.31) generalizes to

1

|G|
∑
g∈G

∥∥ΦN◦U(g) − ΦV(g)◦N∥∥2
2
=

2

d2
Tr[SWAP(N⊗N )(SWAP)]

− 2

d2
Tr

[
SWAP

(
1

|G|
∑
g∈G

(V(g) ◦ N )⊗ (N ◦ U(g))

)
(SWAP)

]
, (5.49)

where the equality follows from essentially the same proof given for Lemma 3. Then we can

again make use of Algorithm 3, in a similar fashion as discussed around (5.47), in order to

estimate the asymmetry measure above.
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5.4 Testing symmetries of Lindbladians

In this section, we apply the symmetry testing algorithm from Section 5.3 to the task of

measuring the symmetry of a Lindbladian L, as defined in (3.11). Given that the channel

realized by the master equation in (3.11) is eLt, our basic idea is to test for symmetry of this

channel by means of the algorithm from Section 5.3. As discussed previously, this amounts

to estimating the two terms in (5.46) and (5.47) using Algorithm 3, but with the replacement

N → eLt, and combining the estimates according to (5.32). The result is to form an estimate

of the following asymmetry measure:

a(L, t, {U(g)}g∈G) :=
1

|G|
∑
g∈G

∥∥(id⊗ [U(g), eLt]) (Φd)
∥∥2
2
, (5.50)

In order to do so, we require a means by which the channel eLt can be realized or simulated.

We can accomplish the latter by employing one of several quantum algorithms for simulating

Lindbladian evolutions [48, 49, 71–73] (see [74] for a review).

The basic condition for symmetry of a Lindbladian L with respect to a unitary channel

representation is as follows [89–91]:

L ◦ U(g) = U(g) ◦ L ∀g ∈ G. (5.51)

An alternative definition for symmetry of a Lindbladian L with respect to a unitary channel

representation {U(g)}g∈G is similar to what we defined in (3.7)–(3.8), for channel symmetry

[89–91]:

eLt ◦ U(g) = U(g) ◦ eLt ∀t ∈ R, g ∈ G. (5.52)
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In the following proposition, we recall the well known fact that these two definitions are

actually equivalent:

Proposition 1 The symmetry condition in (5.52) holds if and only if it holds for the Lind-

bladian L, so that

Proof. Suppose that (5.52) holds. We then find that

∂

∂t

(
eLt ◦ U(g)

)∣∣∣∣
t=0

=
∂

∂t

(
U(g) ◦ eLt

)∣∣∣∣
t=0

. (5.53)

The left-hand side then evaluates to L◦U(g) and the right-hand side to U(g)◦L, concluding

the proof of the if-part of the proposition. To see the other implication (the only-if part),

suppose that (5.51) holds. Then

eLt ◦ U(g) =
∞∑
ℓ=0

(
Lℓ ◦ U(g)

)
tℓ

ℓ!
=

∞∑
ℓ=0

(
U(g) ◦ Lℓ

)
tℓ

ℓ!
= U(g) ◦ eLt, (5.54)

where the second equality follows from repeated application of (5.51).

In fact, the main finding of [89] establishes a much stronger result: the symmetry condi-

tion in (5.51) is equivalent to the existence of a representation of L of the form in (3.11), such

that the completely positive map (·) →
∑

k Lk(·)L†
k is covariant with respect to {U(g)}g∈G

and [U(g), H] = 0 for all g ∈ G.

For small t, we perform a Taylor expansion of the Lindbladian term contained in the

asymmetry measure as defined in (5.50), in order to elucidate a relation between approximate

symmetry of the channel eLt and the Lindbladian L:

1

|G|
∑
g∈G

∥∥(id⊗ [U(g), eLt]) (Φd)
∥∥2
2

(5.55)
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=
1

|G|
∑
g∈G

∥∥(id⊗[U(g), id+Lt+O(t2)]
)
(Φd)

∥∥2
2

(5.56)

=
1

|G|
∑
g∈G

∥∥(id⊗ ([U(g), id] + [U(g),Lt] + [U(g), O(t2)]
))

(Φd)
∥∥2
2

(5.57)

=
1

|G|
∑
g∈G

∥∥(id⊗ ([U(g),L]t+ [U(g), O(t2)]
))

(Φd)
∥∥2
2

(5.58)

=
t2

|G|
∑
g∈G

∥∥(id⊗[U(g),L]) (Φd)
∥∥2
2
+O(t3). (5.59)

5.5 Measurement channels

In this section, we consider a special case of the developments in Sections 5.2 and 5.3, when

the channels of interest are measurement channels, meaning that they can be written in the

following form:

N (ω) =
∑
x

Tr[Nxω]|x⟩⟨x|, (5.60)

where ω is an input state being measured, {Nx}x is a positive operator-valued measure

(POVM) (satisfying Nx ≥ 0 for all x and
∑

x Nx = I), and {|x⟩}x is an orthonormal basis,

such that the classical state |x⟩⟨x| encodes the measurement outcome.

We begin by providing an algorithm for estimating the Hilbert–Schmidt distance of the

Choi states of two measurement channels (Section 5.6). In principle, since measurement

channels are a particular kind of channel, one could simply apply Algorithm 3 for this

task. However, our developments below demonstrate that this algorithm can be significantly

simplified in this case, as a consequence of the channel outputs being classical.
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After that, we then recall the definition of covariance symmetry of measurement channels

and devise an algorithm for testing this symmetry (Section 5.6.1). We note that this kind

of symmetry is a special case of the channel symmetry mentioned in Remark 1.

5.6 Estimating the Hilbert–Schmidt distance of the

Choi states of measurement channels

We are interested in estimating the Hilbert–Schmidt distance between the Choi states of two

measurement channels, defined as in (5.61) below. Since measurement channels are indeed

channels, the expression for the Hilbert–Schmidt distance is precisely the same as that given

in (5.12).

We begin our development with the following lemma, which shows how the various terms

in (5.12) simplify when N and M are measurement channels.

Lemma 4 Let N and M be measurement channels with d-dimensional inputs, so that

N (ω) =
∑
x

Tr[Nxω]|x⟩⟨x|, M(ω) =
∑
x

Tr[Mxω]|x⟩⟨x|, (5.61)

where {Nx}x and {Mx}x are POVMs. Then

Tr[ΦNΦM] =
1

d2

∑
x,y

δx,y Tr[(Nx ⊗My) (SWAP)]. (5.62)

Proof. Recalling (5.14)–(5.17), we find that

Tr[ΦNΦM] =
1

d2

∑
i,j

Tr[N (|i⟩⟨j|)M(|j⟩⟨i|)] (5.63)
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=
1

d2

∑
i,j

Tr

[(∑
x

Tr[Nx|i⟩⟨j|]|x⟩⟨x|

)(∑
y

Tr[My|j⟩⟨i|]|y⟩⟨y|

)]
(5.64)

=
1

d2

∑
i,j,x,y

Tr[Nx|i⟩⟨j|] Tr[My|j⟩⟨i|] Tr[|x⟩⟨x|y⟩⟨y|] (5.65)

=
1

d2

∑
i,j,x,y

δx,y Tr[Nx|i⟩⟨j|] Tr[My|j⟩⟨i|] (5.66)

=
1

d2

∑
x,y

δx,y Tr[(Nx ⊗My) (SWAP)], (5.67)

concluding the proof.

If the inputs to the channels are n-qubit states and the outputs are m-bit strings x⃗ and

y⃗, then following the development and notation from (5.20)–(5.25), we can write

Tr[ΦNΦM] =
1

22n

∑
x⃗,y⃗

δx⃗,y⃗ Tr[(Nx⃗ ⊗My⃗) (SWAP(n))] (5.68)

=
1

22n

∑
x⃗,y⃗∈{0,1}m

∑
k⃗,ℓ⃗∈{0,1}n

δx⃗,y⃗ (−1)k⃗·ℓ⃗ Tr[(Nx⃗ ⊗My⃗) (Φ
k⃗ℓ⃗)]. (5.69)

Now, by setting Z ≡ (X⃗, Y⃗ , K⃗, L⃗) to be a multi-indexed random variable taking the value

δx⃗,y⃗ (−1)k⃗·ℓ⃗ with probability

p(x⃗, y⃗, k⃗, ℓ⃗) = p(x⃗, y⃗|⃗k, ℓ⃗) p(k⃗, ℓ⃗), (5.70)

where

p(k⃗, ℓ⃗) =
1

22n
, (5.71)

p(x⃗, y⃗|⃗k, ℓ⃗) = Tr[(Nx⃗ ⊗My⃗) (Φ
k⃗ℓ⃗)], (5.72)

we find from the above that its expectation is given by

E[Z] = Tr[ΦNΦM]. (5.73)
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This leads to the following quantum algorithm for estimating Tr[ΦNΦM], within additive

error ε and with success probability not smaller than 1− δ, where ε > 0 and δ ∈ (0, 1).

Algorithm 4 Given are quantum circuits to implement the measurement channels N andM.

1. Fix ε > 0 and δ ∈ (0, 1). Set T ≥ 2
ε2
ln
(
2
δ

)
and set t = 1.

2. Generate the bit vectors k⃗ and ℓ⃗ uniformly at random.

3. Prepare the Bell state Φk⃗ℓ⃗ on 2n qubits (using the ordering specified in (5.25)).

4. Apply the tensor-product measurement channel N ⊗ M (using the ordering specified

after (5.25)), which leads to the measurement outcomes x⃗ and y⃗.

5. Set Yt = δx⃗,y⃗ (−1)k⃗·ℓ⃗.

6. Increment t.

7. Repeat Steps 2.-6. until t > T and then output Y := 1
T

∑T
t=1 Yt as an estimate of

Tr[ΦNΦM].

Figure 5.2 depicts the core quantum subroutine of Algorithm 4. By the Hoeffding in-

equality (recalled as Theorem 1), we are guaranteed that the output of Algorithm 4 satisfies

Pr
[∣∣Y − Tr[ΦNΦM]

∣∣ ≤ ε
]
≥ 1− δ, (5.74)

due to the choice T ≥ 2
ε2
ln
(
2
δ

)
.
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|k1⟩ H •

N

x1

|k2⟩ H • x2

|k3⟩ H • x3

|ℓ1⟩

M

y1

|ℓ2⟩ y2

|ℓ3⟩ y3

Figure 5.2: Depiction of the core quantum subroutine given in Steps 2.-4. of Algorithm 4, such
that the measurement channels N and M have three-qubit inputs and three-bit outputs. This
algorithm estimates the overlap Tr[ΦNΦM] of the Choi states of the measurement channels.
In this example, the algorithm begins by preparing the classical state |k1, k2, k3, ℓ1, ℓ2, ℓ3⟩,
where the values k1, k2, k3, ℓ1, ℓ2, ℓ3 are chosen uniformly at random, followed by a sequence of
controlled NOTs and Hadamards. Before the measurement channels are applied, the state is

thus |Φk⃗ℓ⃗⟩, as described in Algorithm 4. The measurement channels are then applied, leading
to the classical bit string x1x2x3y1y2y3. In the diagram, we depict the realization of the
measurement channels N and M as black boxes, but in a simulation of them, one might make
use of additional environment qubits that are prepared and then discarded.

By employing Algorithm 4 three times, we can thus estimate (5.12) for two measurement

channels N and M within additive error ε and with success probability not smaller than

1− δ, by using O
(

1
ε2
ln
(
1
δ

))
samples of the measurement channels N and M.

5.6.1 Testing symmetries of measurement channels

A POVM {Nx}x is covariant if there exists a unitary representation {U(g)}g∈G of a group

G such that

U(g)†NxU(g) ∈ {Nx}x ∀g ∈ G, x. (5.75)
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Covariant POVMs have been studied previously [66, 67, 92, 93], and they appear in several

applications, including state discrimination [94] and estimation [95]. Connecting to our

previous notion of channel symmetry from Remark 1, a measurement channel N is covariant

if there exist unitary channel representations {U(g)}g∈G and {W(g)}g∈G such that

N ◦ U(g) = W(g) ◦ N ∀g ∈ G. (5.76)

Plugging into (5.60), the condition in (5.76) becomes

∑
x

Tr[U(g)†NxU(g)ρ]|x⟩⟨x| =
∑
x

Tr[Nxρ]W (g)|x⟩⟨x|W (g)† ∀g ∈ G. (5.77)

Given that the output system is classical, we can restrict the unitary W (g) to be a shift

operator that realizes a permutation πg of the classical letter x, so that

W (g)|x⟩ = |πg(x)⟩, (5.78)

and thus (5.77) becomes

∑
x

Tr[U(g)†NxU(g)ρ]|x⟩⟨x|X =
∑
x

Tr[Nxρ]|πg(x)⟩⟨πg(x)|X (5.79)

=
∑
x

Tr[Nπ−1
g (x)ρ]|x⟩⟨x|X . (5.80)

Since this equation holds for every input state ρ, we conclude that the following condition

holds for a covariant measurement channel:

U(g)†NxU(g) = Nπ−1
g (x) ∀g ∈ G, x, (5.81)

coinciding with the definition given in (5.75).
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We are interested in testing the covariance symmetry of the measurement channel N ,

and we can do so by testing the following asymmetry measure:

1

|G|
∑
g∈G

∥∥ΦN◦U(g) − ΦW(g)◦N∥∥2
2
, (5.82)

related to the asymmetry measure from (5.31). By invoking Lemma 3, we find that

1

|G|
∑
g∈G

∥∥ΦN◦U(g) − ΦW(g)◦N∥∥2
2
=

2

d2
Tr[SWAP (N ⊗N ) (SWAP)]

− 2

d2
Tr

[
SWAP

(
1

|G|
∑
g∈G

(W(g) ◦ N )⊗ (N ◦ U(g))

)
(SWAP)

]
. (5.83)

Now invoking Lemma 4, we conclude that

Tr[SWAP (N ⊗N ) (SWAP)] =
∑
x,y

δx,y Tr[(Nx ⊗Ny) (SWAP)], (5.84)

and

Tr

[
SWAP

(
1

|G|
∑
g∈G

(W(g) ◦ N )⊗ (N ◦ U(g))

)
(SWAP)

]

=
1

|G|
∑
g∈G

∑
x,y

δπg(x),y Tr
[(
Nx ⊗ U †(g)NyU(g)

)
(SWAP)

]
. (5.85)

The latter equality follows because N ◦ U(g) is a measurement channel with measurement

operators
{
U †(g)NxU(g)

}
x
while W(g) ◦ N is a measurement channel with measurement

operators {Nπ−1
g (x)}x. As such, we can employ Algorithm 4 to estimate both terms in (5.84)

and (5.85), and thus estimate (5.82) by subtracting them and multiplying the result by 2
d2
.

For estimating the latter term, in each step of the algorithm, we pick g ∈ G uniformly at

random, as before.
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Chapter 6

Simulations of Symmetry Testing

Quantum Algorithms

In this section, we first describe two examples of open quantum systems, namely, the am-

plitude damping channel and a two-qubit spin chain. We subsequently present simulation

results obtained from Qiskit implementations of the aforementioned systems, wherein we

test them for symmetry with respect to the finite discrete group Z2.
1

In the case of the amplitude damping channel, we use the algorithm discussed around

(5.46)–(5.47) to estimate the asymmetry measure in (5.32) and then plot the same as a

function of Γt, where Γ represents the rate of decay per unit time and t denotes time.

We find that, for all values of Γt, when testing for Z symmetry (i.e., when our chosen

1All code used to run simulations, generate plots, and perform proof-related calculations is available at
https://github.com/radulaski/SymmetryTestingQuantumAlgorithms.
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unitary group representation for Z2 is {U(g)}g∈Z2 = {I, Z}), the asymmetry measure is

approximately equal to zero with accuracy ϵ = 0.01. On the other hand, we find that the X

asymmetry measure diverges from zero with increasing values of Γt, which is consistent with

the well known fact that the amplitude damping channel is not symmetric with respect to the

representation {I,X}. Later in this section, we show that it varies with Γt as 1
2

(
1− e−Γt

)2
,

which is consistent with our simulation results.

Similarly, we test a two-qubit spin-chain system for SWAP, Z1Z2, and X1X2 symmetries.

We find symmetry to be preserved in the first two cases, wherein the corresponding asymme-

try measures are found to be equal to zero. In the case of the X1X2 symmetry test, however,

we find that symmetry is broken. Later in this section, we derive the precise formula accord-

ing to which the X1X2 asymmetry measure is found to depend on Γ, t, and J . Both of the

aforementioned examples are discussed in more detail in the subsequent sections, along with

the obtained simulation results and the methods whereby the simulations were performed.

6.1 Amplitude damping channel

The amplitude damping channel is a quantum channel that models loss of energy from a

system to its environment. This can be used to describe open quantum systems that interact

with their environment via processes such as spontaneous emission of a single photon from

a two-level atomic system.

Continuous-time amplitude damping is generated by a Lindbladian using the raising

44



Figure 6.1: Illustration of the action of the Γ = 1 amplitude damping channel on the Bloch
sphere over time. All states decay exponentially fast to |0⟩.

operator σ+ := (X + iY )/2 as a jump operator:

L(ρ) = Γ

(
σ+ρσ− − 1

2

{
σ−σ+, ρ

})
, (6.1)

where Γ ≥ 0 represents the rate of |1⟩ → |0⟩ decay per unit time and σ− := (σ+)† =

(X − iY )/2. We can obtain the superoperator eLt representing time evolution under this

Lindbladian for a time t by mapping Hilbert space operators to Liouville–Fock superoperators

under the rule

AρB 7→ (B⊺ ⊗ A)|ρ⟩⟩, (6.2)

where A and B are Hilbert space operators, and |ρ⟩⟩ is the “vectorized” version of the density

operator, formed by stacking the columns of ρ. Applying this to the Lindbladian yields

L(ρ) = Γ

(
σ+ρσ− − 1

2

{
σ−σ+, ρ

})
(6.3)

7→ L|ρ⟩⟩ := Γ

(
σ+ ⊗ σ+ − 1

2
I ⊗ (σ−σ+)− 1

2
(σ−σ+)⊗ I

)
|ρ⟩⟩, (6.4)
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so that the time evolution superoperator corresponds to

eLt = exp



0 0 0 Γt

0 −Γt
2

0 0

0 0 −Γt
2

0

0 0 0 −Γt


=



1 0 0 1− e−Γt

0 e−Γt/2 0 0

0 0 e−Γt/2 0

0 0 0 e−Γt


. (6.5)

The action of this matrix on a vectorized density matrix is

eLt|ρ⟩⟩ = eLt



ρ00

ρ10

ρ01

ρ11


=



ρ00 + (1− e−Γt)ρ11

e−Γt/2ρ10

e−Γt/2ρ01

e−Γtρ11


. (6.6)

De-vectorizing the above, we find that

eLt(ρ) =

ρ00 + (1− e−Γt)ρ11 e−Γt/2ρ01

e−Γt/2ρ10 e−Γtρ11

 . (6.7)

It is well known that the time-independent amplitude damping channel Dγ for a probability

of decay γ can be represented by Kraus operators as

K0 :=

1 0

0
√
1− γ

 , K1 :=

0
√
γ

0 0

 , (6.8)

so that

Dγ(ρ) = K0ρK
†
0 +K1ρK

†
1 =

ρ00 + γρ11
√
1− γρ01

√
1− γρ10 (1− γ)ρ11

 . (6.9)

The equivalence of the two representations of the amplitude damping channel in (6.7) and

(6.9) shows that γ = 1− e−Γt.
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6.1.1 Dependence of X asymmetry measure on Γt

Proposition 2 For the amplitude damping channel in (6.7), the X asymmetry measure

defined from (5.50) is given by

a(L, t, {I,X}) = 1

2
(1− e−Γt)2, (6.10)

where X is the σX Pauli matrix.

Proof. Let us consider two channels, denoted by Dγ and X . Dγ is the amplitude damping

channel, where γ denotes the probability of decay. Its action on a density matrix ρ is defined

as in (6.9). The action of X is defined as X (ρ) = XρX†. Using these definitions, we calculate

the actions of these channels on the elementary matrices {|i⟩⟨j|}i,j∈{0,1} as follows:

Dγ(|0⟩⟨0|) = |0⟩⟨0| X (|0⟩⟨0|) = |1⟩⟨1|

Dγ(|0⟩⟨1|) =
√
1− γ|0⟩⟨1| X (|0⟩⟨1|) = |1⟩⟨0|

Dγ(|1⟩⟨0|) =
√
1− γ|1⟩⟨0| X (|1⟩⟨0|) = |0⟩⟨1|

Dγ(|1⟩⟨1|) = γ|0⟩⟨0|+ (1− γ)|1⟩⟨1| X (|1⟩⟨1|) = |0⟩⟨0|

Next, we define two channels {N ,M}, as follows:

N := X ◦ Dγ, M := Dγ ◦ X . (6.11)

The actions of the above defined channels with respect to a density matrix ρ are given by

N (ρ) = X (Dγ(ρ)) and M(ρ) = Dγ(X (ρ)). Again, we may use the above definitions to

calculate the following actions:
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N (|0⟩⟨0|) = |1⟩⟨1| M(|0⟩⟨0|) = γ|0⟩⟨0|+ (1− γ)|1⟩⟨1|

N (|0⟩⟨1|) =
√
1− γ|1⟩⟨0| M(|0⟩⟨1|) =

√
1− γ|1⟩⟨0|

N (|1⟩⟨0|) =
√
1− γ|0⟩⟨1| M(|1⟩⟨0|) =

√
1− γ|0⟩⟨1|

N (|1⟩⟨1|) = (1− γ)|0⟩⟨0|+ γ|1⟩⟨1| M(|1⟩⟨1|) = |0⟩⟨0|

Let us consider a general unitary representation of the finite discrete group Z2, given by

{U(g)}g∈Z2 = {I,W}, where I is the two-qubit identity operator, and W is some two-qubit

unitary operator satisfying W 2 = I. Furthermore, let the unitary channels constituting

{U(g)}g∈Z2 and corresponding to I and W be denoted by I and W respectively. We may

then define the asymmetry measure given in (5.50), with respect to some Lindbladian channel

eLt and the aforementioned unitary representation {I,W}, as follows:

a(L, t, {I,W})

=
1

2

∑
g∈Z2

∥∥(id⊗ [U(g), eLt]) (Φ2
)∥∥2

2
(6.12)

=
1

2

(∥∥(id⊗ [I, eLt]) (Φ2
)∥∥2

2
+
∥∥(id⊗ [W , eLt

]) (
Φ2
)∥∥2

2

)
(6.13)

=
1

2

(∥∥(id⊗ [W , eLt
]) (

Φ2
)∥∥2

2

)
(6.14)

=
1

2

(∥∥∥ΦW◦eLt − ΦeLt◦W
∥∥∥2
2

)
(6.15)

Now, in order to compute our desired asymmetry measure, we simply substitute the

Lindbladian channel eLt by Dγ, and the unitary channel W by X . We then have

a(L, t, {I,X})

=
1

2

(∥∥ΦX◦Dγ − ΦDγ◦X
∥∥2
2

)
(6.16)
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=
1

2

(∥∥ΦN − ΦM∥∥2
2

)
(6.17)

=
1

2

(
Tr
[(
ΦN )2]+ Tr

[(
ΦM)2]− 2Tr

[
ΦNΦM]) (6.18)

= Tr
[(
ΦDγ

)2]− Tr
[
ΦNΦM] , (6.19)

where the last line follows because Tr
[(
ΦDγ

)2]
= Tr

[(
ΦN )2] = Tr

[(
ΦM)2], which in turn

follows from (5.36). Additionally, from (5.17), we know that for any two quantum channels

N and M, the overlap term Tr
[
ΦNΦM] may be expressed as

Tr
[
ΦNΦM] = 1

d2

∑
i,j

Tr [N (|i⟩⟨j|)M(|j⟩⟨i|)] . (6.20)

Using the above formula, we find that

|i⟩⟨j| Tr [Dγ(|i⟩⟨j|)Dγ(|j⟩⟨i|)] Tr [N (|i⟩⟨j|)M(|j⟩⟨i|)]

|0⟩⟨0| 1 1− γ

|0⟩⟨1| 1− γ 1− γ

|1⟩⟨0| 1− γ 1− γ

|1⟩⟨1| γ2 + (1− γ)2 1− γ

We can now calculate each of the two terms in (6.19). For Tr
[(
ΦDγ

)2]
, we have:

Tr
[(
ΦDγ

)2]
=

1

d2

∑
i,j

Tr [Dγ(|i⟩⟨j|)Dγ(|j⟩⟨i|)] (6.21)

=
1

4

[
1 + 1− γ + 1− γ + γ2 + (1− γ)2

]
(6.22)

=
1

2

[
γ2 − 2γ + 2

]
. (6.23)

For Tr
[
ΦNΦM], we have

Tr
[
ΦNΦM] = 1

d2

∑
i,j

Tr[N (|i⟩⟨j|)M(|j⟩⟨i|)] (6.24)

49



=
1

4
[1− γ + 1− γ + 1− γ + 1− γ] (6.25)

= 1− γ. (6.26)

Plugging the above obtained results into (6.19), and recalling the identification γ = 1− e−Γt

made in the previous section, we conclude that

a(L, t, {I,X}) = γ2

2
=

(1− e−Γt)2

2
. (6.27)

We have thus computed X asymmetry measure both as a function of the overall probability

of decay γ, as well as the probability of decay per unit time, Γ, and time t.

We note here that it is interesting to compare the value in Proposition 2 with Proposi-

tion IV.2 of [96]. The latter proposition evaluated an asymmetry measure of the amplitude

damping channel in terms of the normalized diamond distance, which is another method for

measuring the distance between two quantum channels. Therein, a value of 1
2

(
1− e−Γt

)
was

reported. Thus, both measures increase with increasing Γt, as would be expected for any X-

asymmetry measure for the amplitude damping channel; however, they increase differently,

due to the differing choices of measures.

6.1.2 Amplitude damping channel simulation results

We used Qiskit’s QasmSimulator to simulate the execution of Algorithm 3 on an idealized

quantum processor in order to calculate the X and Z symmetries of the amplitude damping

channel. We implement the (non-unitary) amplitude damping channel Dγ by means of a
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Figure 6.2: Simulated results of applying Algorithm 3 to measure X and Z asymmetries
of the single-qubit amplitude damping channel, using Qiskit’s noiseless QasmSimulator. The
simulation shows that the system maintains Z symmetry for any value of amplitude dissipation
Γt, while X symmetry is lost for Γt > 0. The measure of X asymmetry closely matches the
analytical expression 1

2

(
1− e−Γt

)2
in the absence of noise. All simulations were run with a

total number of shots determined by the Hoeffding inequality (Theorem 1) with ϵ, δ = 0.01.

unitary extension Dγ, which requires an additional “environment” qubit:

Dγ =



0
√
γ −

√
1− γ 0

0 0 0 1

1 0 0 0

0
√
1− γ

√
γ 0


, (6.28)

so that

Dγ(ρ) = Tr1
[
Dγ (|0⟩⟨0| ⊗ ρ)D†

γ

]
. (6.29)

Using (6.28) to implement the amplitude damping channel, we constructed Algorithm 3 in

Qiskit and used it to measure the X and Z asymmetries of the channel. We executed the
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Figure 6.3: Simulated results of applying Algorithm 3 to measure X and Z symmetries of the
single-qubit amplitude damping channel, using Qiskit’s FakeLima backend. The simulation
shows that the system maintains Z symmetry for any value of amplitude dissipation Γt, while
X symmetry is lost for Γt > 0. The measure of X asymmetry deviates slightly from the
analytical relationship 1

2

(
1− e−Γt

)2
due to the simulated depolarizing noise. All simulations

were run with a total number of shots determined by the Hoeffding inequality (Theorem 1)
with ϵ, δ = 0.01.

algorithm on Qiskit’s QasmSimulator, which emulates an idealized quantum processor with

no decoherence. The results, plotted in Figure 6.2, show the expected Z symmetry and X

asymmetry, in agreement with the analytical expression.

We also executed the same symmetry tests using Qiskit’s FakeLima backend, which pro-

vides a depolarizing noise model with parameters estimated from a real quantum processor.

These results are plotted in Figure 6.3. The Z asymmetry remains zero, while the X asym-

metry shows a slight reduction relative to the analytical expression, which accords with the

presence of depolarizing noise.
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6.2 XX Spin chain

Systems of spin-1/2 particles with nearest-neighbor exchange interactions have been stud-

ied for nearly a century and are foundational models in the exploration of magnetism in

condensed matter physics [97]. See Figure 6.4 for a visualization. In the context of quan-

tum information, spin chains have been studied for potential applications to quantum state

transfer. We consider an open XX Heisenberg spin chain consisting of two particles, each of

which is subject to amplitude damping dissipation. This system is governed by the Lindblad

master equation

L(ρ) = −i[H, ρ] +
2∑

i=1

Li(ρ), (6.30)

where the Hamiltonian H is given by

H = J(X1X2 + Y1Y2), (6.31)

and each Li term acts on qubit i and is an amplitude dissipation Lindbladian, as defined in

(6.1). In the above, J ≥ 0 represents the rate at which excitations hop from one site in the

chain to the other.

6.2.1 Spin-chain asymmetries as a function of Γt

Since amplitude damping dissipation is a longitudinal interaction, this system is manifestly

Z1Z2-symmetric for any amount of damping Γt. Conversely, the X1X2 symmetry of the

Hamiltonian is broken by nonzero energy dissipation. Finally, the interactions between the
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Figure 6.4: Visualization of a spin chain. Each particle’s spin couples to that of its neighbors
at a rate J . We use Algorithm 3 to examine various symmetries of a two-particle spin chain.

two halves of the system are symmetrical, and so the system is manifestly symmetric under

a SWAP of the two particles. Here we use direct calculation of (5.50) to show the Z1Z2 and

SWAP symmetries, and calculate the measure of X1X2 asymmetry as a function of Γt.

Proposition 3 For the open two-qubit XX spin chain defined in (6.30), the Z1Z2, SWAP,

and X1X2 asymmetry measures defined from (5.50) are given by

a(L, t, {I, Z1Z2}) = 0, a(L, t, {I, SWAP}) = 0, (6.32)

and

a(L, t, {I,X1X2}) =
e−2tΓ (−t2Γ2 cos(4J)− 16J2 cosh(tΓ) + (16J2 + t2Γ2) cosh(2tΓ))

32J2 + 2t2Γ2
.

(6.33)

Proof. We calculate the Choi states in (6.15) in terms of the superoperator representations

of the channels W and eLt. Applying the prescription (6.2) to the terms of the Lindbladian
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(6.30) and operator W , we obtain

W 7→ W ⊺ ⊗W, (6.34)

and

L 7→ −i((I ⊗H)− (H⊺ ⊗ I)) +
∑
i

Γ

(
σ+
i ⊗ σ+

i − 1

2
I ⊗ (σ−

i σ
+
i )−

1

2
(σ−

i σ
+
i )⊗ I

)
. (6.35)

The latter is straightforwardly exponentiated to obtain a superoperator matrix form of eLt.

Applying these representations to (4.1), inserting these Choi states into (6.15) and sim-

plifying with the aid of the computer algebra system Mathematica (code available with the

arXiv post for [19]), for the three cases of interest W ∈ {Z1Z2, SWAP, X1X2} we obtain the

expressions given in the proposition.

6.2.2 Spin-chain simulation results

To emulate the dynamics described by (6.30) on a quantum processor as part of the algorithm

discussed around (5.50), we must address two issues. First, the dissipative terms in L must

be replaced by unitary extensions acting on additional “environment” qubits, in order to

make them implementable by unitary gates. Second, noncommuting terms in L make it

necessary to use Trotterization to implement eLt.

We Trotterize the Lindbladian following the prescription in [98, Proposition 2]:

eLt = exp

(
t

m∑
i=1

Li

)
≈

(
m∏
i=1

eLit/2N

1∏
j=m

eLit/2N

)N

, (6.36)
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Figure 6.5: Simulation results for application of Algorithm 3 to the two-qubit spin chain using
Qiskit’s noiseless QasmSimulator. We test the system forX1X2, Z1Z2, and SWAP symmetries.
In the latter two cases, the system exhibits symmetry; the asymmetry measure deviates from
zero only due to sampling error. In contrast, the system’s lack of X1X2 symmetry is evident
for nonzero values of Γt, and the value of the asymmetry measure in this case agrees closely
with the analytical result from (6.33).

The specific ordering of terms in this product (forwards and then backwards) results in the

first and second orders of the Taylor expansions of the left and right sides of (6.36) to agree

exactly.

We note that the terms −i[Hj, (·)] arising from the Hamiltonian induce unitary evolution,

and so can be implemented simply as e−iHjt. The two dissipative Lindblad terms can be

implemented using Dγ, the unitary extension of the amplitude damping channel (6.28),

provided that the environment qubit is reset to zero before each application ofDγ. Therefore,
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Figure 6.6: Simulation results for application of Algorithm 3 to the two-qubit spin chain using
Qiskit’s FakeLima backend, which includes realistic depolarizing noise. We test the system for
X1X2, Z1Z2, and SWAP symmetries. As in the noiseless simulation (Figure 6.5), we verify
Z1Z2 and SWAP symmetries, and X1X2 asymmetry, although the latter deviates from its
analytical expression slightly due to the depolarizing noise.

each Trotter step of the spin chain Lindbladian can be implemented using

m∏
i=1

eLit/2N 7→ e−iX1X2t/2Ne−iY1Y2t/2ND1
1−e−Γt/2ND

2
1−e−Γt/2N , (6.37)

1∏
i=m

eLit/2N 7→ D2
1−e−Γt/2ND

1
1−e−Γt/2N e

−iY1Y2t/2Ne−iX1X2t/2N . (6.38)

This implementation is essentially the same as that presented in Figure 1 of [49], up to a

Trotterization of the unitary dynamics, and reordering of the Trotter terms.

We used this formulation to implement Algorithm 3 in Qiskit. We then executed it on

Qiskit’s QasmSimulator to test the 2-particle spin chain system for X1X2, Z1Z2, and SWAP

symmetries, using a number of shots determined by Hoeffding inequality (Theorem 1) with
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ϵ, δ = 0.01. The resulting estimates of the asymmetry measure are plotted in Figure 6.5,

where we can see that Z1Z2 and SWAP symmetries are maintained in the presence of am-

plitude damping, while X1X2 symmetry is broken to the degree specified in (6.33).

As in the case of our previous simulations of the amplitude damping channel, we also

test our spin-chain system for symmetry in the presence of a depolarizing noise model. We

do this, as before, by running our code using Qiskit’s FakeLima backend. Consistent with

the nature of the noise model imported, we find in Figure 6.6 that the obtained plot of the

X1X2 asymmetry measure is slightly reduced with respect to the analytical expression as

given in (6.33), while both Z1Z2 and SWAP symmetries appear to be preserved.
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Chapter 7

Conclusion and Discussion

In this work, we proposed asymmetry measures for quantum states, channels, and mea-

surements, as well as efficient quantum algorithms for estimating these measures. A key

component of the algorithms for channels and measurements are methods for efficiently es-

timating the overlap of their Choi states. We demonstrated the channel symmetry testing

algorithm in two cases: the single-qubit amplitude damping channel and an open XX spin

chain subject to amplitude dissipation. In both cases, we simulated our algorithm using

Qiskit’s simulator and found excellent agreement with the analytical expression of the asym-

metry measure. Finally, we discussed which near-term QPU architectures maximize the

system size to be tested using the developed algorithms.

Prospects for implementing on near-term quantum hardware—The developed

quantum algorithms for symmetry testing can be readily implemented on near-term quan-

tum hardware, as well as potentially guide the development of architectures for upcoming

59



All-to-All Connected 
QPU A

All-to-All Connected 
QPU B

En
ta

ng
le

m
en

t d
is

tri
bu

tio
n

a)

c)b)

Qubits A

Qubits B

Environment B

Environment A

Qubit Active gate Inactive gate

Subcircuit A

Subcircuit B

SWAP test

state preparation

qubit pair entanglement

measurement

1

2

3

Measurement channel 
symmetry test

bit preparation

qubit pair entanglement

measurement

subcircuit gates

1

2

3

4

Choi state overlap

bit preparation

qubit pair entanglement

measurement

subcircuit gates

qubit pair entanglement

1

2

3

4

5

Figure 7.1: Examples of the compatibility of symmetry testing quantum algorithms with
quantum processing units (QPUs) of variable connectivity. a) The two subcircuit abstraction of
the developed algorithms and their implementation steps. The top chip represents subcircuit A
and the bottom the subcircuit B. b) A two-dimensional array of qubits can explore symmetries
in open quantum systems using a one-dimensional chain of nearest-neighbor interactions. c)
Two all-to-all connected QPUs with pre-entangled system qubits in an event-ready scheme
can explore symmetries of measurements for arbitrary qubit interactions.
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quantum testbeds. We have implemented the Lindbladian symmetry testing algorithm in

such a way that the number of physical qubits in hardware is at least four times the number

of qubits in the model. The depth of the circuit depends on the selection of Trotterization

parameters, and for a specific quantum processing unit (QPU), these parameters should be

selected within the hardware coherence limits.

Furthermore, the qubit connectivity has an important practical role in enabling imple-

mentation of the developed algorithms. Each of the algorithms requires the model to be

mapped twice to physical qubits in what we will call subcircuits A and B (Figure 7.1).

Entangling gates are applied to pairs of qubits in subcircuits A and B close to the begin-

ning and/or the end of the algorithm, while the rest of the algorithm requires only local

gates inside the subcircuits. This algorithmic split into two computing layers that are cross-

connected only once or twice during the implementation of the symmetry testing algorithms

lends itself well to upcoming QPU architectures on the IBM Quantum roadmap [99], Crossbill

and Flamingo, for the purposes of maximizing the computable model size. These multi-chip

processors are connected either with a smaller number of higher fidelity quantum gates im-

plemented via short chip-to-chip connectors (Crossbill), or a larger number of slower and

lower-fidelity quantum gates implemented via long-range couplers (Flamingo). In terms of

symmetry testing algorithms where subcircuits A and B would be implemented on differ-

ent chips, the Crossbill architecture would be suitable for models with a smaller number

of qubits and deeper quantum algorithms, while the Flamingo architecture would be more

suitable for larger systems that are either implemented via shallower circuits or are executed
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for algorithms that require only one time-step entanglement via the long-range connectors

(SWAP test or measurement channel symmetry test).

Some of the existing monolithic quantum processors can be used to efficiently implement

symmetry testing of open quantum systems in one-dimensional chain Hamiltonians, which

are zoned into subcircuits A and B, as shown in Figure 7.1b. Here, the nearest-neighbor

connectivity can be supported by the Google Sycamore superconducting architecture [100],

while the beyond-the-nearest-neighbor interaction and multi-qubit interactions can be imple-

mented using QuEra Aquila [101] and recent neutral atom quantum hardware advances [102],

respectively.

For testing models with higher connectivity, all-to-all connected QPUs, like those of-

fered by IonQ [103] and Quantinuum [104] trapped ion hardware or by solid state spin-qubit

systems [105], can provide more versatility. Since qubits in these systems can generate spin-

photon entanglement, multiple QPUs can be connected via photon-mediated entanglement

distribution and double the model size in the symmetry testing algorithms (Figure 7.1c).

Here, the success of the entanglement distribution is statistical and can be utilized in the

event-ready scheme, a frequently employed approach introduced in [106] where photons

originating from separate entangling processes in non-local systems become entangled on

a beam-splitter and their quantum state projected in a photon-detection process. Obtaining

the desired quantum state in the measurement usually takes multiple attempts, and further

processing takes place only upon its confirmation when pairs of qubits in separate systems

are projected onto desired Bell states. This process is suitable for implementation of the
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measurement symmetry test (Figure 7.1a) which requires entanglement between subcircuits

A and B only at the beginning of the algorithm. To be able to expand this two-QPU im-

plementation from measurement symmetry testing to the state, channel, and Lindbladian

symmetry testing, additional work is needed to adapt the protocol to non-deterministic Bell

measurements.
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[82] David Pérez-Garćıa, Michael M. Wolf, Denes Petz, and Mary Beth Ruskai. “Con-

tractivity of positive and trace-preserving maps under Lp norms”. In: Journal of

Mathematical Physics 47.8 (Aug. 2006). arXiv:math-ph/0601063, p. 083506. doi:

10.1063/1.2218675. eprint: https://doi.org/10.1063/1.2218675. url: https:

//doi.org/10.1063/1.2218675.

[83] Masanao Ozawa. “Entanglement measures and the Hilbert–Schmidt distance”. In:

Physics Letters A 268.3 (Apr. 2000). arXiv:quant-ph/0002036, pp. 158–160. issn:

0375-9601.

[84] Juan Carlos Garcia-Escartin and Pedro Chamorro-Posada. “SWAP test and Hong-

Ou-Mandel effect are equivalent”. In: Physical Review A 87.5 (5 May 2013). arXiv:1303.6814,

p. 052330. doi: 10.1103/PhysRevA.87.052330. url: https://link.aps.org/doi/

10.1103/PhysRevA.87.052330.

[85] Todd A. Brun. “Measuring polynomial functions of states”. In: Quantum Information

and Computation 4.5 (Sept. 2004). arXiv:quant-ph/0401067, pp. 401–408.
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