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The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device

provides a unique platform for investigating the underlying physics of self-regulating

drift-wave turbulence/zonal flow dynamics. A 3D drift-reduced nonlocal cold ion fluid

model which evolves density, vorticity, and electron temperature fluctuations, with proper

sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX.

The simulations show density gradient-driven drift-waves are the dominant instability in

CSDX. However, the choice of insulating or conducting end plate boundary conditions

affects the linear growth rates and energy balance of the system due to the absence or
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addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E×B

shear and sheath-driven temperature gradient instability.

The physics study is then followed by an extensive quantitative validation study.

For the direct comparison of nonlinear simulation results to experiment, a synthetic

Langmuir probe diagnostic is used to generate a set of synthetic observables which

are in turn used to construct the validation metrics. A significant improvement of

model-experiment agreement relative to the previous 2D simulations is observed. An

essential component of this improved agreement is found to be the effect of electron

temperature fluctuations on floating potential measurements, which introduces clear

amplitude and phase shifts relative to the plasma potential fluctuations in synthetically

measured quantities. Moreover, systematic simulation scans show that the self-generated

E ×B zonal flows profile is very sensitive to the steepening of density equilibrium

profile. To minimize the number of simulations required for uncertainty quantification,

a more advanced seed sampling methods for efficient sampling of the input parameter

space, and a rapidly converging non-intrusive Probabilistic Collocation method to map

out a probabilistic model response is implemented. This approach is shown to yield

significantly better constrained uncertainty estimates than conventional uniform sampling

methods for practical numbers of nonlinear simulations.
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Chapter 1

Introduction

With rapid growth of energy demand, our modern society is more than ever in need

of powerful yet environmentally friendly energy production solutions. Among current

options for long term energy needs, controlled thermonuclear fusion is an attractive, safe

and clean solution, with abundant fuel sources to power our infrastructure for a long

period of time. Due to its great potential, scientists have been working on controlling

fusion for over half a century. The typical fusion reactions include[Fre08]:

D+D→ He3(0.82MeV )+n(4.25MeV ) (1.1)

D+D→ T (1.01MeV )+ p(3.02MeV ) (1.2)

D+T → He(3.5MeV )+ p(14.1MeV ) (1.3)

The main obstacle to achieving net energy gain from fusion reactions is the con-

finement of the reaction fuel for a long enough time at sufficiently high temperatures and

densities to achieve a self-sustaining reaction[Law57]. One of the best ways to contain

the fuel is to maintain it in a plasma state and restrict the motion of the plasma using

magnetic fields. Different magnetic configurations for magnetically confinement of burn-

1
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ing plasma have been proposed; among them the tokamak and stellarator configurations

are the most studied. Currently, tokamaks have achieved the temperatures and pressure

necessary to produce fusion, however for plasma confinement times (τE) that are below

that needed for energy production.

The plasma confinement time, for a given sized tokamak, is inversely proportional

to the rate of cross-field transport in the tokamak[HH12], so it is of a great importance

to understand how to minimize that transport. However, neoclassical transport theory

(transport solely due to Coulomb collisions in toroidal magnetic fields) generally under-

predicts the experimental transport. The experimental data show that actual ion thermal

conductivity is anomalously large by a factor on the O (1−10) with respect to the neo-

classical χneo, while the electron heat conduction and particle diffusion coefficients are

each anomalous (non-collisional) by about two orders of magnitude larger than expected

from neoclassical theory[HBB+98].

It has been suggested the excess cross-field particle and energy transport is

primarily driven by microturbulence, which is driven by instabilities due to the presence

of free energy sources. These free energy sources are due to density gradient, temperature

gradients, and/or non-equilibrium distribution function[CS84]. These free energy sources

always exist in the normal operating conditions of a tokamak, such that turbulence

transport is commonly expected. Recent studies show that the saturation of plasma micro-

turbulence and transport can be mediated through self-generated zonal flow[DIIH05].

Understanding these turbulence induced effects on the plasma in the complex geometry

setting of tokamaks (especially in the high fluctuation amplitude of edge region) and in

the presence of multi-scale instabilities is a challenging task.

Numerical simulations have helped improve understanding of physical processes

and spatial and temporal structures in all kinds of turbulent settings. Validation studies of

numerical models which assess the accuracy and fidelity of these models in prediction
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(or postdiction in many cases) of experimental observations represent one of the clearest

and most direct means of quantifying our progress in developing a true understand-

ing of fusion-relevant systems. In some instances, e.g. in the core of tokamaks, the

simulations have uncovered new unexpected physics such as the Dimits shift of ITG

turbulence[DBB+00]. But in other instances, like in the edge of tokamaks, nonlinear

turbulent simulations do not yet agree enough with experiment to provide good physical

insight, let alone the ability for predictive analysis[Hol16]. At the same time, due to the

strong nonlinear dependence of turbulence statistics, the experimental input uncertainties

in the simulation can results in a wide variation in model response. Thus, to be able to

use numerical simulations effectively one needs to quantify the uncertainties associated

with the turbulence, and then systematically study the model response.

A possible path to making progress on this complex problem is to reduce the

problem to a simpler one, by first validating models in a simple plasma device, and

then slowly move up to more and more complex situations. Linear plasma devices such

as Controlled Shear Decorrelation Experiment (CSDX) [BTA+05, YTH+10, XTH+10,

CTXM+13] due to their rather simplistic geometry are useful in studying source of the

basic underlying physics in detail. CSDX is inherently operates at low temperatures

and is highly collisional, similar to the scrape-off layer (SOL) of tokamak. It excludes

some of the toroidal-specific complexities such as ballooning instabilities while retaining

turbulence-shear flow interactions. The insight gained from validation studies and

uncertainty quantification of plasma turbulence in generalization the CSDX may therefore

apply to tokamak edge turbulence as well, or at least provide methods of analysis that

may be applied for simulations of larger magnetically confined devices.
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1.1 Instabilities and Turbulence

Turbulence is a ubiquitous phenomenon in fluids that has been recognized and

studied for a long time. It is often called the last unsolved problem in classical physics,

mainly because we cannot predict in detail how or why turbulence occurs or fully

predict its behavior. However, it is extremely important to gain an understanding of it in

laboratory plasmas and magnetically confined fusion devices because it largely governs

the particle and energy transport. Thus, a better understanding of plasma turbulence

can be expected to lead to a better prediction of future device performance. As Richard

Feynman remarks in his Lectures on Physics, "Turbulence is the most important unsolved

problem of classical physics."

Early studies on turbulence suggested that turbulence was a random process

that could only be described via statistical tools. Statistical descriptions of turbulence

are still widely accepted, of which perhaps the most important is work of [Kol62].

Nevertheless, modern studies of turbulence show that deterministic set of equations can

be used to model turbulence. [Lor63] showed that a deterministic equation derived from

the Navier-Stokes equation could exhibit random-like behavior which is sensitive to the

small changes of initial conditions. This deterministic approach shows that even though

the turbulence is not random, it still can be stochastic (stochastic refers to a variable

whose autocorrelation decays exponentially to zero), hinting that statistical studies will

be useful. Deterministic systems are stochastic when they are controlled by large number

of effective degrees of freedom[Fri13].

The turbulence state responsible for the anomalous transport in the magnetically

confined fusion devices is often called micro-turbulence, which is characterized by

density, potential, and temperature fluctuations of a few percent of background values, and

can be destabilized by density or shear layer or temperature gradients or inhomogeneities
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of the magnetic field[FBC+16]. In the core of tokamak where the temperatures are high,

O
(
104−105)eV , and plasma collisionality is low, intrinsically kinetic phenomena such

as Landau damping or finite Larmor radii effects calls for the more complicated multi-

species kinetic model (such as general Vlasov equation or gyrokinetic theory needed to

solve the species distributions fs(x,v, t) in the phase space), and the fluid model cannot

describe the turbulence. On the other hand, in the tokamak SOL, where the temperatures

and densities are much lower, O
(
1−102)eV , the plasma becomes highly collisional,

and the fluid models can be used to predict the turbulence fluctuations and transport.

Other major differences in SOL turbulence includes the open field line configuration, non-

Maxwellian distribution, exponential decay of density, and high turbulence fluctuations

with very strong intermittency.

Understanding the vast range of instabilities at different operating regimes of

a magnetically confined fusion device has proved to be one of the biggest challenges

in feasibility studies of fusion energy production. Nevertheless, at this point, many

aspects of turbulence and transport in the tokamak core are fairly well understood,

largely due to the success of gyrokinetic simulations[GIVW10]. However, the edge

transport in tokamak SOL at this point is still not very well understood[FBC+16]. The

challenge of understanding edge turbulence is mainly due to the complex geometry of

open field lines configuration, the large number of possible instabilities, and large range

of spatial and temporal scales of perturbations in plasmas from the Debye length and

plasma frequency ( O
(
10−3)cm and O

(
1011)s−1, respectively) to the machine size and

turbulence frequencies ( O
(
102)cm and O

(
103)s−1, respectively).

The focus of this thesis is on the specific turbulent processes in the CSDX

cylindrical linear plasma device, which has an open field line configuration with a modest

radial density gradient profile, resembling a simplified SOL setting without magnetic

shear. The overall length of CSDX device is ∼ 3m, and the vacuum vessel diameter
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is 20cm, and Argon gas is used for plasma generation operated with typical ∼ 4mTorr

Argon gas pressure. The power deposition into plasma is through m = 0 or m = 1 RF

helicon source, and disk-shaped electromagnet coils provides a solenoidal magnetic field

that can be varied up to 2.4kG. In Fig. 1.1, the schematic of CSDX linear device is

shown.

Figure 1.1: (a) Schematic of the CSDX linear plasma device, including the setup of the
measurement diagnostics.

In a brief look at the CSDX device, the typical plasma density range is in

O
(
1011−1013)cm−3, electron temperature O (1)eV , and ion temperature O

(
10−1)eV ,

where the drift-waves are the dominant drive instability in the turbulence drive[BTA+05].

In addition, the choice of end plate where the open field lines meet the material surface,

may trigger additional instabilities, such as the sheath-driven Kelvin-Helmholtz (KH)

and sheath-driven electron temperature gradient instabilities[XRD93, FRR+15]. More-

over, the transfer of energy to low frequency flows, acts as a self-regulating system of

drift-wave/zonal flow turbulence[XTH+09]. The basic physics principles of the relevant

instabilities and turbulence suppression occurring in the CSDX experiments are explained

below.
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1.1.1 Drift-wave Instability

The collisional drift-wave instability exists in a plasmas with density inhomo-

geneity and finite resistivity, and occurs due to the interaction between the dynamics

perpendicular and parallel to the magnetic field arising from the combined effects of

spatial gradients, ion inertia, and adiabaticity (rapid transfer of energy) of the electrons

in parallel direction. The physics of drift-wave instability can be explained through a

decreasing density gradient profile perpendicular to the magnetic field, shown in Fig. 1.2.

Figure 1.2: Physical mechanism of drift-wave instability[CS84].

Here, the only driving force of the instability is the pressure gradient T ∇n0 (in

this introduction section to the drift-waves, we have assumed constant temperatures T ).

In this case, zeroth-order electron diamagnetic drift is

v∗e =
∇pe× ẑ

enB
=− Te

eB
∇n0

n0
ŷ. (1.4)

Since drift-waves have finite parallel wavelength k‖, electrons can flow along the

magnetic field to establish a thermodynamic equilibrium among themselves. When there
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is no resistivity, electrons will obey the linearized Boltzmann relation,

ñ
n0

=
eφ̃

Te0

. (1.5)

At point A in Fig. 1.2 where the density is larger than the equilibrium, ñ and as a

result φ̃ is positive. Similarly at point B, ñ and φ̃ are negative. This difference will create

a first-order electrical field perturbation Ẽ between A and B, and The resulting electric

field perturbation will cause a E×B drift in the x direction, ṽx = Ẽy/B =−ikyφ̃/B. Since

there is a gradient ∇n0 in the x direction, the E×B drift will bring plasma of different

density to a fixed point. Assuming quasi-neutrality, one can find dispersion relation as,

ω

ky
=− T

eB
∇n0

n0
= v∗e (1.6)

Thus, the waves travel with the electron diamagnetic drift velocity in y direction

and are called the drift-waves, and satisfy the k‖� ky and vthi � ω/k‖� vthe conditions.

Since ω is non-imaginary, there is no growth rate associated with this drift. Dispersion

relation of Eqn. 1.6 can be obtained through linearized the Hasegawa-Mima equation for

adiabatic electrons[HM78].

However, the drift-waves can become unstable, when the parallel resistivity (η‖)

modifies the the adiabatic response. In this case, the modified Boltzmann relation reads

as

ñ
n0

=
eφ̃

Te0

ω∗+ ibσ‖
ω + ibσ‖

. (1.7)

where b =
Tek2

y
miωci

, ω∗ = kyv∗e , and σ‖ =
k‖ωce ωci

k2
y νei

= 1
η‖

. The parallel resistivity then

causes the potential distribution φ̃ to lag behind the density distribution ñ, This phase

shift causes ṽx to be outward where the plasma has already been shifted outward, and
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vice versa; hence the perturbation grows. In the presence of resistivity and polarization

drifts, the dispersion relation shown in Eqn. 1.6 will be modified to

ω
2 + iσ‖(ω−ω∗) = 0. (1.8)

When σ‖ is non-zero, ω is always complex, creating one branch of unstable

modes. We should note that the drift-wave instability is a type of dissipative instability,

and growth rates of the instability is proportional to the parallel resistivity of plasma.

The drift-wave instability dispersion relation can be obtained from Hasegawa-Wakatani

equations[HW83].

1.1.2 Transition to Turbulence

The concept of transition to turbulence was implicitly introduced by [Lan44] and

later revised by [RT71]. According to [Lan44], turbulence is reached at the end of an

indefinite superposition of successive oscillatory bifurcations, each bringing its unknown

phase into the dynamics of the system. In contrast, [RT71] mathematically showed

that quasi-periodicity is not generic when nonlinearities are acting. They identified

turbulence with the stochastic regime of deterministic chaos characterized by long term

unpredictability due to sensitivity to initial conditions and reached only after a finite and

small number of bifurcations.

From the theory of nonlinear phenomena, two major types of transition exist.

In a supercritical transition, a continuous evolution of states is observed as the control

parameter is increased. In contrast, the subcritical transition is characterized by the

coexistence of several possible locally stable states at a given value of the control

parameter, and an hysteresis behavior as the control parameter is varied.

A simple explanation of subcritical and supercritical nonlinear phenomena can be
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discussed by the evolution of the amplitude |A| coupling with itself for the most unstable

mode in the Landau equation[Lan44],

d|A|2
dt

= 2γ1|A|2−α|A|4,

where γ1 is the linear growth rate of the instability, α is the Landau parameter, and α|A|4

is the nonlinearity.

In a case where γ1 > 0, and α > 0, the analytical solution of the Landau equation

as t→ ∞, |A| → (2σ/l)1/2 for any initial amplitude of A0. This value of Ae = (2σ/l)1/2

is called a fixed point attractor with a basin of attraction consisting of all values of A0,

since any initial state asymptotically evolves to it. Attractors are important objects in the

field of dissipative dynamical equations. Note that the linear problem is unstable, but

the nonlinear problem solution asymptotes to a fixed value. This is called supercritical

stability, where the linear stability analysis governs the evolution of mathematically

infinitesimal perturbations.

In the other case of Landau equation, if α < 0, γ1 < 0, and A0 > Ae, the solution

is unstable and breaks down at finite time. Note that if Ae < A0 the solution decays to

zero at t→ ∞, however for large enough initial amplitude of A0 the solution is unstable

and breaks down at finite time, which is known as subcritical instability. In reality, the is

unphysical, and the simple Landau equation is not sufficient to find the attractor solution

with only one degree of freedom. Perhaps the most known study of subcritical instability,

is the transition from laminar flow to turbulent flow at a critical Reynolds number in

neutral fluid pipe flow experiments[Pop01].
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1.1.3 Zonal Flow Generation

Fluid turbulence is generally a 3D phenomena, but under certain conditions,

plasma turbulence can be described as a 2D phenomena. Whenever vortex tube stretching

is week or non-existent (∇‖v‖ = 0), the turbulence exhibits a dual cascade of energy and

enstrophy (mean squared vorticity) in which both are conserved. The instability energy is

injected at some integral length-scale, in which the enstrophy transfers to smallest scales

while energy is being transferred to largest scales[DIIH05]. The process of forward

cascade can be described through breaking of eddies and viscous damping of the broken

eddies. On the other hand, the process of inverse cascade can be illustrated by merging of

vortecies and construction of larger spatial structures. Eventually, spatially large (respect

to eddy size) coherent structures will be formed. Schematic of dual cascade energy

spectrum in a typical 2D turbulence setting is shown in Fig. 1.3.

Figure 1.3: Dual cascade energy spectrum[DII10].

Note that the dual cascade shown in Fig. 1.3 is for the simple case of Euler 2D

incompressible fluid equations. Note that depneding on the 2D turbulence model, the
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cascade slopes changes. Moreover, it worths mentioning that in the CSDX, the scales

are compromised, meaning the energy injection scale (L−1
n ) is close to dissipation scale

(ρ−1
s ).

In the context of tokamak plasmas, the term zonal flow refers to the large scale

toroidally and poloidally symmetric but radially localized band-like flow structures,

i.e., it is an m = n = 0 electrostatic fluctuation with finite radial wavenumber. Here, m

denotes the poloidal (azimuthal) mode number and n denotes the toroidal (axial) mode

number. The zonal flow concept in plasma physics is similar to the quasi-two-dimensional

atmospheric and oceanic flows along the latitude line in geophysics. Another feature

of zonal flows is that in a large aspect ratio torus it has zero real frequency. Figure 1.4

shows a schematic of the typical structures of zonal flows.

Figure 1.4: Schematic of zonal electric field and zonal flow in a poloidal cross-
section. The hatched region and dotted region denote the positive and negative charges
respectively[DIIH05].

Because zonal flows occur within a magnetic flux surface where plasma pressure

is constant, they cannot tap expansion free energy stored in the equilibrium gradients,

etc. that are normal to the surface, and as a result they can only be driven by nonlinear

interactions that transfer energy from other instabilities, e.g. drift-wave, into this m =
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n = 0 mode. That is why the zonal flow can essentially act as a regulatory process to

reduce the turbulence intensity and transport. Also because of the zonal flow symmetry,

they do not generate additional energy or particle transport, and are not subject to Landau

damping and primarily damped by collisional processes. Finally, field line bending

stabilizes Kelvin Helmholtz instability of zonal flow. All the above features are thought

to make zonal flows a benign reservoir of free energy in the system[DIIH05]. Thus,

the zonal flow can be saturated by the drift-turbulence, and thus acts to regulate the

turbulence amplitude.

To illustrate the process, consider a simplified azimuthal momentum balance for

an incompressible inviscid 2D plasma fluid in cylindrical plasma as

∂uθ

∂ t
+

∂uθ ur

∂ r
= µuθ , (1.9)

where uθ ur is the Reynolds stress, and µ is dissipative damping rate. Therefore, kinetic

energy evolution of such equation in spectral space reads as

∂ |uθ (k)|2
∂ t

−2kr ∑
k1,k2,k

ℑ(u∗θ (k)uθ (k1)ur(k2)) =−µ|uθ (k)|2, (1.10)

where uθ (k) is transformed azimuthal velocity at wavenumber k. The second term in

above equation, shows nonlinear kinetic energy transfer in k space across spatial scale

via three-wave coupling.

Considering zonal flow to have kZF = kZF r̂, and generally assuming |k1|, |k2| �

|kZF
r |, triplet bracket {kZF ,k1,k2} shows energy transfer between two big drift wavevec-

tors to zonal wavevector. Assuming kρs� 1 and electrostatic E×B drift velocity, i.e.

u(k) =−(ikφ(k)× ẑ/B0), we can rewrite Eq.1.11 in form of φ(kZF),
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∂ |φ(kZF)|2
∂ t

−ℜ ∑
k1,k2

Tu(k1,k2)〈(φ∗(kZF)φ(k1)φ(k2)〉= γ|φ(kZF)|2, (1.11)

where Tu is wave-wave coupling coefficient. The equation is showing that kZF is formed

by linear growth rate/damping of the mode with energy transferred into this mode.

It is important to note that zonal flow has been widely accepted as a component to

regulate turbulence and transport. Mean shear flow tilts turbulence eddies, and elongates

them while narrowing radial extend of eddies. The increase of kr, reduces effective step

size (∆l) in turbulence diffusivity χturb ≈ ∆l2/τcorr, thus reducing turbulence transport.

This zonal flow creation comes at the cost of drift-wave energy reduction, thus DW-ZF

turbulence is a self-organizing system, where the scale of the drift wave intensity envelope

sets the scale of the zonal flow.

1.1.4 Sheath-driven Instabilities

In the SOL region of different tokamaks e.g. limiter or divertor tokamak config-

uration (see Fig. 1.5), magnetic fields outside of last closed flux surface or separatrix,

meet the material surface at an arbitrary angle. Since the end plates are cutting through

the field lines, depending on the type of the end plate material, they can provide a free

source of energy into the plasma, driving instabilities.

Where the open field lines meet the conducting material surface, a transition

region between the end plate and plasma will be formed. In the special case where the

magnetic field is perpendicular with respect to an absorbing wall e.g. in CSDX, the

plasma-wall transition consists of two subregions (see Fig. 1.6): the Debye sheath, and a

collisional pre-sheath[Sta00]. The Debye sheath is a small region adjacent to the wall,

generally several Debye lengths long, and has a net positive charge (ni > ne) that shields
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Figure 1.5: Schematic of (a) limiter, and (b) divertor tokamak configuration[OKWZ16].

the negative charge on the wall. The sheath does not completely shield the negative wall,

however, and a small electric field penetrates into the main plasma (the ambipolar field),

which mostly serves to accelerate the cold ions toward the wall, and slightly retard the

electrons before entering the sheath. In the main plasma the quasi-neutrality (ne = ni)

holds.

Figure 1.6: Schematics of Debye sheath and collisional pre-sheath of typical plasma
near the end plate.

The ions gets accelerated through the Debye sheath, reaching about the ion sound

speed (cs) at the sheath entrance[Sta00]. This potential difference across the sheath
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reflects slow electrons that enter the sheath. The electrons approximately maintain a

cutoff Maxwellian velocity distribution throughout the sheath, and at the wall, their

velocity is retarded by a Boltzmann factor due to the potential difference[LRT11]. In

that setting, the total parallel current toward the end plate in the absence of secondary

electron emissions from ion and electron bombardment is,

j‖sh
=±en0cs

[
1− exp

(
Λ− e(φ −φw)

Te

)]
, (1.12)

where φw is the wall potential, Λ = log
√

me/2πmi is the sheath factor, and the ± sign

indicates the different directions of plasma current to the wall for the different end plates.

The finite parallel current and potential at the sheath entrance could essentially tap

in free sources of energy into the bulk of plasma. The typical sheath-driven instabilities

due to the presence of conducting end plate configuration includes sheath-driven electron

temperature gradient instability (also known as conducting wall modes), and KH modes

generated by sheath-driven equilibrium E×B. We briefly discuss them in the following

sections.

Sheath-driven Electron Temperature Gradient Instability

In an unbiased grounded and conducting endplate φw = 0, and when there is no

equilibrium current drive along the magnetic field, the perturbation of parallel current

can be written as

j̃‖sh
=±en0cs

(
eφ̃

Te0

−Λ
T̃e

Te0

)
. (1.13)

Conductive walls trigger a linear instability in presence of electron temperature

gradient. The physics of this instability is actually of the drift wave variety, but unlike the

drift-waves, the pressure-potential coupling mechanism is through the sheath boundary
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rather than adiabatic response. A very simple dispersion relation[BCR+93] can be found

by axially integrating the current conservation equation,

en
ΩciB

∂∇2
⊥φ̃

∂ t
Lz = 2 j̃‖sh

, (1.14)

and using it in an electron temperature fluctuations equation (neglecting direct axial net

loss),

∂ T̃e

∂ t
Lz + ṽ⊥e ·∇Te0 = 0. (1.15)

resulting in dispersion relation,

ω
2 + i

b
a2 ω + i

c
a
= 0, (1.16)

where a = kyLTe , b =
ΩcimiLz

csTe0L2
Te

, c =
ΩciΛLz

cs
, and LTe =

d lnTe0
dr . Like the drift-wave dispersion

relation, ω is complex where a branch of ω is always positive imaginary and unstable.

Sheath-driven Kelvin Helmholtz Instability

Moreover, since the equilibrium parallel current is vanishing, for a grounded

conducting end plate (φw = 0), the zeroth order approximation of Eqn. 1.12 for the sheath

entrance reads as

φ0 = ΛT0. (1.17)

If there is zeroth order electron temperature gradient, the addition of a potential

gradient (resulting in a corresponding E0×B =−∇φ0×B flow profile) cause another

linear instability at the sheath entrance. The Kelvin Helmholtz (KH) instability, which is

a fluid instability, as opposed to a plasma-specific instability, is a 2D instability and is
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caused by the radial gradient of the E×B velocity.

The KH instability is a convective vorticity instability[HTK87], meaning it can

be described by the simple vorticity equation,

∂Ω

∂ t
=−v ·∇Ω. (1.18)

The physical process can be explained as follow. Imagine a boundary layer

separating two flows that have equal speeds but velocities going in different directions.

Since the vorticity is just the curl of the velocity, this boundary layer is a vortex sheet.

Now a sinusoidal vorticity perturbation on this sheet causes a sinusoidal ripple in the

elevation of the sheet. This ripple brings parts of the sheet into regions where the

background flow is positive and other parts of the sheet into regions where the flow

is negative. The vorticity on the sheet is then advected by this background flow in

such a way that it reinforces the initial sinusoidal vorticity perturbation, thus causing

instability[Fri13].

Usually, KH modes are damped in a system with strong magnetic shear[Bur97].

However, in weak magnetic shear SOL, or in CSDX where the magnetic shear is absent,

this instability can be an important source of turbulence drive.

1.2 Dissertation Outline

This dissertation presents the results of numerical plasma turbulence studies of

the CSDX linear plasma device. This thesis is structured by first deriving the equa-

tions, numerical implementation, and verification of a minimal fluid model of the CSDX

experimental conditions. Most previous CSDX experiments are studied with anodized in-

sulating end plates, however, a few dedicated CSDX experiments incorporated grounded

conducting end plate conditions. Hence, in Chapter 2 a set of suitable reduced equations
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from general two-fluid Braginskii formula with proper boundary conditions is derived

to describe the instabilities and turbulence observed in the experiment. The model then

implemented numerically, and the solutions are verified with analytical expectations. In

Chapter 3, the linear and nonlinear physics of end plate boundary conditions on the tur-

bulence is studied, and compared with the previous experimental and simulation results.

The turbulence in tokamak SOL can be influenced because of the end plate configurations.

Hence, the puzzling question of the impact of boundary conditions on the turbulence is

pursued as the first avenue of this thesis in Chapter 3.

The initial results of verification and physics study performed in Chapters 2-

3, yet lead to another question of goodness of model in capturing the experimental

measurements. Hence, as the second focus of this thesis, the validity of this model in

reproducing the experimental results for the insulating boundary case are studied in

Chapter 4. The quantitative validation study of turbulence models have always been

an important and challenging task in both fluid and plasma turbulence communities.

Linear sensitivity of model to the input uncertainties is discussed, followed by extensive

validation study of nonlinear simulation results. In the validation process, the impact of

synthetic diagnostics on the simulation results is investigated. The validation study of

conducting boundary condition simulation is discussed in Appendix A.

Another important question in the validation study of turbulence simulation is the

uncertainty quantification due to the presence of experimental measurement uncertainties.

Thus, the third focus in this thesis is a study of advanced uncertainty quantification and

seed sampling methods presented in Chpater 5, with application to plasma turbulence

simulations.

In the end, the findings of this work is summarized, and possible future avenues

of study for continuation of this work is proposed in Chapter 6.

Furthermore, previous experimental studies in CSDX had indicated a transition
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from the coherent modes at low magnetic fields to a state of broadband turbulence at

higher magnetic fields. At the same time, by increasing the magnetic field further, the

turbulence in the CSDX goes through changes that lead to steepening of mean density

and ion pressure profiles, onset of strong E×B sheared flows, reduction of turbulence,

and reduction in turbulent radial particle transport. Thus, the preliminary simulations

of this magnetic field scan is reported in Appendix B of this dissertation to assess how

much of these physics can be captured by the minimal collisional drift-wave model, as

basis for future investigations. The code setup and its details is discussed in Appendix C,

to enable and facilitate the reproduction of results in future works.



Chapter 2

Model Derivation and Verification

Studies

In a general description, the plasma can be described by the distribution function

fs(x,v, t) of each species in the phase space. The plasma behavior can be described by

kinetic equations, which evolves the distribution function of species,

∂ fs

∂ t
+v ·∇ fs +

es

ms
(E+v×B) · ∂ fs

∂v
=

(
∂ fs

∂ t

)
C
. (2.1)

where
(

∂ fs
∂ t

)
C

is the collisional operator. In the hot plasma, where the plasma is nearly

collisionless, the collisional operator can be dropped, resulting in Vlasov equation.

However, the dominant collisions in a plasma are Coulomb collisions, and the collision

term takes the form of the Fokker-Planck operator. Solving the Fokker-Planck equation

numerically for problems that require time intervals too much larger than the electron-

cyclotron time is computationally expensive[FBC+16].

Therefore, model reduction up to some certain approximation is necessary for

the feasibility of computational time. In the CSDX highly collisional regimes where

21
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the electron mean free path is much smaller than the parallel lengthscale λm f p,e/Lz ∼

O(10−2), the kinetic effects are negligible and plasma can be approximated through

fluid equations by integrating the distribution moments in the velocity space. The fluid

equations are derived by taking moments of the Fokker-Planck equation to create coupled

equations of the independent variables, density ns, velocity vs, and temperature Ts[Bra65].

Braginskii two-fluid equations[Bra65] for plasma species can describe the general plasma

fluid behavior:
∂ne

∂ t
+v ·∇ne +∇ · (nev) = 0 (2.2)

mene
∂v
∂ t

+menev ·∇v+∇pe +∇ ·Πe + ene (E+v×B) = Re (2.3)

3
2

∂ pe

∂ t
+

3
2

v ·∇pe +
5
2

pe∇ ·v+Πe : ∇v+∇ ·qe =We (2.4)

∂ni

∂ t
+u ·∇ni +∇ · (niu) = 0 (2.5)

mini
∂u
∂ t

+miniu ·∇u+∇pi +∇ ·Πi− eni (E+u×B) = Ri (2.6)

3
2

∂ pi

∂ t
+

3
2

u ·∇pi +
5
2

pi∇ ·u+Πi : ∇u+∇ ·qi =Wi (2.7)

in which, u is ion velocity, v is electron velocity, Π is the viscosity tensor, R is momentum

exchange between species (ion-electrons, ion-neutrals, etc.) and W is the energy transfer

between different species.

2.1 Derivation of Nonlocal Drift-Reduced Cold-Ion Fluid

Model

To simplify the Braginskii equations further to an even more reduced model,

several ordering assumptions motivated by the CSDX experimental conditions are used.
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Since Ωciτi ∼ O(10−1) in the CSDX (Ωci = eB/mic is the ion cyclotron frequency

and τi = 1/νii is the ion-ion collision frequency), a standard two-Laguerre-polynomial

Chapman-Enskog closure scheme[Bra65] is used,

Re =
nej
σ‖
−0.71n∇Te (2.8)

Ri =−Re−nimiνinu (2.9)

Wi =
3me

mi

n(Te−Ti)

τe
(2.10)

We =−Wi +
j ·R
ne

=−3me

mi

n(Te−Ti)

τe
+

j2

σ‖
−0.71

j ·∇Te
e

(2.11)

where, j = ne(u−v) is net plasma current, and σ‖ = 1.96ne2τe/me is electrical conduc-

tivity.

Assuming plasma quasi-neutrality (ne≈ ni≈ n) valid for kλD� 1 and having cold

ions in CSDX Ti/Te ∼O(10−1), the ion temperature equation and ion density equation

can be dropped. Moreover, in this thesis the parallel component of ion momentum

equation is neglected, and its effects on the turbulence deferred to a future study.

For electron density equation, defining E×B drift velocity as vE =− 1
B0

∇φ × ẑ,

the electron density (Eqn. 2.2) as,

∂n
∂ t

+vE ·∇⊥n+v‖ ·∇‖n+n∇ ·vE +n∇‖v‖ = 0. (2.12)

Assuming density homogeneity along magnetic field, and replacing v‖ = u‖−

j‖/ne, and neglecting ion parallel velocity, and adding a perpendicular density diffusion

sink as Dn∇2
⊥n where Dn ∝ ρ2

s /τe (ρs is the electron gyroradius and τe is electron collision
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frequency), the above equation reads as,

∂n
∂ t

+vE ·∇⊥n+n∇ ·vE =
∇‖ j‖

e
+Dn∇

2
⊥n. (2.13)

The next step is to obtain a relation for parallel current density from electron

momentum (parallel component of Eqn. 2.3). Assuming electron inertia and electron-

electron viscosity terms are negligible compared to other terms, the equation reads

as

0+∇pe +0+ en(−∇φ +v×B) = en
j

σ‖
−0.71n∇‖Te. (2.14)

Applying pe = nTe, along the magnetic field, the equation can be rewritten as

j‖ = σ‖

(
1.71

e
∇‖Te +

Te

en
∇‖n−∇‖φ

)
. (2.15)

From the perpendicular momentum equations and current density equation (∇ ·j=

0), one can derive the vorticity equation, where the current is j = j‖ẑ+ en(u⊥− v⊥).

In collisional drift-wave, the parallel current is primarily carried by the light electrons,

while the perpendicular current is primarily carried by the ions, because electron inertia

is much smaller than ions ω/Ωce � ω/Ωci (dropping electron polarization effect respect

to ion polarization). Thus, the equation simplifies to,

−∇⊥ · (enu⊥) = ∇‖ j‖. (2.16)

The perpendicular ion component of above equation can be obtained from Eqn.

2.6. By solving for the ion velocity in the Lorentz force term, the perpendicular ions
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velocity has four terms,

u⊥ = uE×B +upol +uvis +uin

=−∇φ × ẑ
B0

− mi

eB2
0

∂∇⊥φ

∂ t
− mi

eB2
0

vE ·∇(∇⊥φ)+µ⊥
mi

eB2
0

∇
2
⊥ (∇⊥φ)−νin

mi

eB2
0
(∇⊥φ) .

(2.17)

in which since the magnetization factor X = Ωciτi ≈ 1 in CSDX, the µ⊥ ion-ion viscosity

needs to be approximated with generalized viscosity formula[Bra65],

µ⊥ = v2
thi

τi
2.23+1.2(2X)2

2.33+4.03(2X)2 +(2X)4 (2.18)

Thus, by combining the Eqns. 2.16-2.17, we can obtain the plasma potential

vorticity equation. Since ∇⊥ · ẑ×∇⊥ operator vanishes, and the plasma potential vorticity

equation reads as,

mi

B2
0

∂Ω

∂ t
+

mi

B2
0

∇⊥ · (nvE ·∇⊥(∇⊥φ)) = ∇‖ j‖+µ⊥
mi

B2
0

∇⊥ ·
(
n∇

2
⊥(∇⊥φ)

)
−νin

mi

B2
0

Ω.

(2.19)

At this point, we make two additional approximations to make solving the equa-

tion easier numerically: One in the advection term where we are taking density into the

divergence (called Boussinesq approximation) and other is the viscosity term which we

are simply approximating with the laplacian of generalized vorticity,

mi

B2
0

∂Ω

∂ t
+

mi

B2
0

vE ·∇Ω = ∇‖ j‖+µ⊥
mi

B2
0

∇
2
⊥Ω−νin

mi

B2
0

Ω, (2.20)

where Ω = ∇⊥ · (n∇⊥φ) is the generalized potential vorticity. Note that the density

is radially varying on a scale comparable to the gyroradius ρs/Ln ≤ O(1), hence the

nonlocality effects must be preserved and density cannot be taken out of the divergence.
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Here, nonlocality refers to the effects of keeping the density term inside the perpendicular

divergence and retaining the radial variation of profiles across the radii.

For the electron energy equation, in the limit of Ωciτi < 1 we have qe =−κe
‖∇Te−

0.71Tej/e where κe
‖ = 3.16nTeτe/me is parallel heat conductivity, and hence the electron

energy equation reads as,

3
2

n∂Te

∂ t
+

3
2

nvE ·∇Te +
5
2

nTe∇ ·v−∇ ·
(

0.71
Tej‖

e
+κ

e
‖∇

2
‖Te

)
=−3

me

mi

nTe

τe
+

j2

σ‖
−0.71

j‖ ·∇Te

e
(2.21)

Having χe
‖ = κe

‖/n and assuming j‖ =−env‖e (neglecting parallel ion velocity),

dividing the equation by 3n/2, and simplifying Eqn. 2.21, we will obtain,

∂Te

∂ t
+vE ·∇Te +Te∇ ·v =

2
3

1.71
Te

n
∇‖ j‖

e
+χ

e
‖∇

2
‖Te−2

me

mi

Te

τe
+

2
3

j2

nσ‖
(2.22)

For better usage of derived equations, the equations are normalized to the typical

range of plasma parameters in the CSDX experiments. Considering n̄ as maximum

density, T̄e as maximum electron temperature, B0 as axial magnetic field, and a as

plasma column radius, we can define reference values as Ωci = e0B0/mi, cs =
√

e0T̄e/mi,

ρs = cs/Ωci. With can write as n̂ = n/n̄, φ̂ = eφ/T̄e, T̂e = Te/T̄e, t̂ = cst/a, r̂ = r/ρs,

∂̂r = ρs∂r, ẑ = z/a, ∇̂‖ = a∇‖, ∇̂⊥ = ρs∇⊥, µ̂⊥ = µ⊥/(ρ2
s cs/a), D̂n = Dn/(ρ

2
s cs/a),

χ̂e
⊥ = χe

⊥/(ρ
2
s cs/a), χ̂e

‖ = χe
‖/(acs), ĵ‖ = j‖/en̄cs, τ̂e = csτe/a, and Ω̂ = Ω/(n̄T̄e/eρ2

s ).

By definition n̄ = n(r = 0), and T̄e = Te(r = 0) are the reference values of on-axis density

and electron temperature respectively.

Therefore, normalized equations will take form of,

∂ n̂
∂ t̂
− a

ρs

(
∇φ̂ × ẑ

)
· ∇̂⊥n̂− a

ρs
n̂∇̂ ·

(
∇φ̂ × ẑ

)
= ∇̂‖ ĵ‖+ D̂n∇̂

2
⊥n̂, (2.23)
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∂ Ω̂

∂ t̂
− a

ρs

(
∇φ̂ × ẑ

)
· ∇̂⊥Ω̂ = ∇̂‖ ĵ‖+ µ̂⊥∇̂

2
⊥Ω̂− ν̂inΩ̂; Ω̂ = ∇̂⊥ ·

(
n̂∇̂⊥φ̂

)
, (2.24)

∂ T̂e

∂ t̂
− a

ρs

(
∇φ̂ × ẑ

)
·∇̂⊥T̂e−

a
ρs

T̂e∇̂·
(
∇φ̂ × ẑ

)
=

2
3

1.71
T̂e

n̂
∇̂‖ ĵ‖+ χ̂

e
‖∇̂

2
‖T̂e−

2
0.51

η̂ T̂e+
2
3

η̂ ĵ2
‖,

(2.25)

ĵ‖ =
1
η̂

(
1.71n̂∇̂‖T̂e + T̂e∇̂‖n̂− n̂∇̂‖φ̂

)
, (2.26)

where η̂ = mea/1.96micsτe is the normalized resistivity. For the rest of the thesis, ˆ(..)

notations will be dropped, and all equations are assumed in normalized units, unless

otherwise noted.

To solve the equations, two different approaches can be taken. One approach is to

solve the full equations with self-consistent profiles, with no experimental profile input,

and solve the equations by specifying realistic sources, sinks, and boundary conditions,

which are difficult (or impossible) to measure. At the time of writing this thesis, there is

no experimental measurement of helicon source power deposition into the plasma. An

alternative approach, is to implement a small fluctuations assumption[Pop01] to separate

all variables into time-independent equilibrium parts and time-dependent fluctuating

parts so that experimental time-independent profiles can be used as the driving force of

instabilities. Moreover, the small fluctuations assumption considers the amplitude of first

order fluctuations is much smaller than zeroth order equilibriums. The second approach

is equivalent to the so-called δ f approach used in gyrokinetic simulations of the core

plasma[CW03].

Decomposing the total evolving variables into zeroth order radial dependent

equilibrium and first order fluctuations, we can approximate total density as n = n0 + ñ,

total potential as φ = φ0 + φ̃ , and total electron electron temperature as Te = Te0 + T̃e0 .

In which, 0 subscript denotes zeroth order equilibrium, and tilde superscript denotes
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first-order fluctuation. Thus, the purturbation of Eqns. 2.23-2.26 can be rewritten as

∂ ñ
∂ t
− a

ρs

∂n0

∂ r
∂ φ̃

∂θ
+

a
ρs

∂φ0

∂ r
∂ ñ
∂θ

= ∇‖ j̃‖+Dn∇
2
⊥ñ+

a
ρs
{φ̃ , ñ}+Sn, (2.27)

∂ Ω̃

∂ t
− a

ρs

∂Ω0

∂ r
∂ φ̃

∂θ
+

a
ρs

∂φ0

∂ r
∂ Ω̃

∂θ
+

a
ρs

1
r

∂φ0

∂ r

(
∂n0

∂ r
∂ 2φ̃

∂ r∂θ
− ∂ 2φ0

∂ r2
∂ ñ
∂θ

)
= ∇‖ j̃‖+µ⊥∇

2
⊥Ω̃−νinΩ̃+

a
ρs
{φ̃ ,Ω̃}; Ω̃ = ∇⊥ ·

(
n0∇⊥φ̃

)
, (2.28)

∂ T̃e

∂ t
− a

ρs

∂Te0

∂ r
∂ φ̃

∂θ
+

a
ρs

∂φ0

∂ r
∂ T̃e

∂θ
=

2
3

1.71
Te0

n0
∇‖ j̃‖+χ

e
‖∇

2
‖T̃e +

a
ρs
{φ̃ , T̃e}+STe , (2.29)

j̃‖ =
1
η

(
1.71n0∇‖T̃e +Te0∇‖ñ−n0∇‖φ̃

)
(2.30)

where { f̃ , g̃}= 1
r (∂r f̃ ∂θ g̃−∂θ g̃∂r f̃ ) is the Poisson bracket term, containing second order

advective nonlinearity. For the vorticity bracket a Bouusinesq approximation has been

applied for simplicity of numerical implementation. Moreover, second order Ohmic

heating 2
3η j̃2

‖ is neglected, and the − 2
0.51η T̃e term is dropped since it is obtained to be an

order of magnitude smaller than the other terms for the CSDX parameters. Note that in

a small perturbation approach, to sustain the turbulence saturation, sources need to be

added to the equations (shown in the equations as Sn and STe), otherwise the steady zonal

density and electron temperature will suppress equilibriums, causing the relaxation in the

turbulence.

Because we do not know the exact deposition profiles of these sources, or other

processes such as ionization and recombination rates, we prescribed the equilibrium

density and temperature profiles in our simulation to match experimental equilibrium

measurements, and then damp out the zonal density and temperature components to

prevent quasilinear relaxation or flattening of the profiles. This is a typical approach in

both fluid plasma simulation[CW03, Hol16].
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Since the CSDX helicon source acts as a particle (via ionization) and heat source

to the plasma without any apparent momentum source, the particle source Sn =−νsñZ

and heat source STe =−νsT̃eZ are added to Eqn. 2.27 and Eqn. 2.30, respectively. Here

the Z subscript denotes the axially and azimuthally averaged zonal component of a

fluctuating field or quantity, e.g. f̃Z =
˜

f̃ dθdz/
˜

dθdz, and νs denotes the damping

rate of zonal component. In this setting, the mean profiles are then the sum of the

equilibrium and time averaged zonal profiles, e.g. fmean = f0 + 〈 f̃Z〉. Hence, in the fixed-

gradient approach, simulations use ad-hoc density and temperature sources (Sn =−νsñZ

and STe = −νsT̃eZ terms) in order to keep the equilibrium profiles from relaxing away

from their experimental shapes. These terms damp zonal average of density and electron

temperature at each time step. The verification and convergence check of the source

terms in the model is discussed in Chapter 2.4.4.

2.2 Boundary Conditions

The experimental studies of plasma turbulence in CSDX device has been done

with both insulating and conducting end plates. Experimentally in the CSDX, it has been

observed the choice of boundary condition affects the turbulence[CTXM+13]. Hence, it

is important to choose the right boundary conditions for the initial value solver.

The simulation is performed in cylindrical coordinates, using an annular domain

with infinitesimal inner radius (1% of outer radius) to avoid the numerical singularity at

the axis. Dirichlet boundary conditions ( f̃ = 0) have been used for evolving fluctuation

properties at the outer radial boundary, while Neumann boundary conditions (∂ f̃/∂ r = 0)

have been applied to evolve fluctuations at the inner radial boundary. Here for simplicity,

at outer radii it is assumed the fluctuations vanish at the edge of plasma column, and for

the inner radii even symmetry of cylindrical geometry is considered. The axial boundary
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condition for insulating or conducting endplate is non-trivial. For a perfect insulating

endplate, the fluctuations of potential, electron temperature and the parallel current at the

sheath vanish. However, in a conducting plate the current as electron heat flux is allowed

to escape the system through out the end plates. In this section, derivation of plasma

sheath entrance boundary conditions in the presence of the insulating and conducting end

plates are derived and discussed.

When the magnetic field is perpendicular to an absorbing wall, there is no mag-

netic presheath and the plasma-wall transition will consist of two regions between main

bulk plasma and the wall: first a Debye sheath which is in contact with the wall, and a

collisional presheath in between Debye sheath and unaffected plasma[Sta00]. The Debye

sheath is where the recombination with the wall occurs, and has a size proportional to

the Debye Length (λD) and both the quasi-neutrality and the ion-drift approximations

break down in this region. The collisional presheath size usually scales with λm f p and is

quasi-neutral, and in it the ions are magnetized and accelerated towards the wall, reaching

approximately the plasma sound speed cs at the sheath entrance.

Since our fluid model is quasi-neutral and uses the ion-drift approximation, the

boundary values at the sheath entrance must be found. In order to describe steady-state

dynamics of collisional presheath, the procedure used by [LRHJ12] is followed, to

derive a rigorous system of equations including ion continuity, ion and electron parallel

momentum, and electron temperature equations valid in the collisional presheath region.

2.2.1 Conducting Endplate Boundary Condition

We start by deriving the boundary condition for a conducting endplate, where the

electrical and heat conductivity of sheath is very large.
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The steady-state continuity equation for ions is

∇ · (nvi) = Spi, (2.31)

where Spi contains other ionization and recombination processes. We can rewrite

the dimensionless equation as

v‖i∂‖n+n∂‖v‖i +

(
−1

r
∂θ φ

)
∂rn+n

1
r

∂r

(
r
(
−1

r
∂θ φ

))
+n

1
r

∂θ ∂rφ +∂rφ
1
r

∂θ n = Spi. (2.32)

The fourth and fifth terms cancel out each other in above equation. Since equilib-

rium gradients at the radial boundaries are vanishing in our experiment (See. Fig. 1d), we

can omit the third and sixth terms in above equation up to first order expansion, therefore

we can further simplify the equation,

v‖i∂‖n+n∂‖v‖i = Spi. (2.33)

Now let us consider parallel component of ion momentum equation,

n
d
dt

v‖i− enE = Sm‖i
. (2.34)

Thus, in the electrostatic limit the equation reduces to

nv‖i∂‖v‖i +n∂‖φ = Sm‖i
. (2.35)
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Turning to the parallel component of electron momentum,

n
d
dt

v‖e + enE +∇‖Pe =
j‖
σ‖
−0.71n∇‖Te +Sm‖e ,

by assuming negligible electron inertia and high conductivity, the equation re-

duces to

−n∂‖φ +1.71n∂‖Te +Te∂‖n = Sm‖e . (2.36)

Inclusion of non-isothermal electrons requires use of the electron heat equation.

By assuming very large electron heat conductivity at sheath entrance, and neglecting

inertia and diffusion, and omitting the transverse terms, the electron heat equation reads

as,

2
3

1.71Ten∇‖v‖e−
2
3

0.71Ten∇‖v‖i−
2
3

0.71Te
(
v‖i− v‖e

)
∇‖n = STe .

Thus,

2
3

0.71Te
(
v‖i− v‖e

)
∂‖n+

2
3

0.71Ten∂‖v‖i−
2
3

1.71Ten
(
∂φ v‖e

)
∂‖φ

−2
3

1.71Ten
(
∂Tev‖e

)
∂‖Te = STe . (2.37)

We can rewrite the system of equations (Eqns. 2.33, 2.35, 2.36 and 2.37) in vector
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form MX = S,



v‖i n 0 0

0 nv‖i n 0

Te 0 −n 1.71n

2
30.71Te

(
v‖i− v‖e

) 2
30.71Ten −2

31.71Ten
(
∂φ v‖e

)
−2

31.71Ten
(
∂Tev‖e

)



×



∂‖n

∂‖v‖i

∂‖φ

∂‖Te


=



Spi

Sm‖i

Sm‖e

STe


. (2.38)

Note that all variables are total values (zeroth order plus fluctuations). Assuming

source/sink terms do not affect axial gradients in the presheath region (i.e. assuming

|Mi jX j| � |S j|), we can solve for det(M) = 0, obtaining the value of ion parallel velocity

at sheath entrance as

v‖i = cs

√√√√ 1+ 2
31.71(

v‖e
Te

∂Tev‖e−0.71)

1+ 2
31.71(

v‖e
Te

∂Tev‖e +1.71
v‖e
Te

∂φ v‖e)
. (2.39)

To obtain the parallel electron velocity at the sheath entrance, we use the Boltzmann

relation and ambipolarity of electron flux between sheath entrance and the wall, and

we assume λD� ρe such that electrons stay magnetized all the way to the wall. This

relation is not strictly true for the CSDX parameters, but for simplicity we will use this

assumption.

Assuming Maxwellian electrons in the sheath, we can write Boltzmann relation

for electrons between sheath entrance and wall,

ne = new exp
(

e(φw−φ)

Te

)
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Where ne and φ are the electron density and potential at the sheath entrance, and new and

φw are the electron density and potential at the wall respectively. By assuming grounded

wall (φw = 0) and also assuming electrons hit the wall with their thermal velocity, the

parallel electron velocity can be obtained through flux ambipolarity between sheath

entrance and wall as

v‖e =
newvthe

ne
= vthe exp

(−eφ

Te

)
= cs exp

(
Λ− eφ

Te

)
, (2.40)

in which Λ = log
√

me/2πmi is the sheath factor, and for Argon gas ΛAr = 5.1[Sta00].

Therefore, we can obtain closure terms needed in Eqn. 2.39 as,

∂Tev‖e =
Te

v‖e

(0.5+Λ); ∂φ v‖e =−
Te

v‖e

.

Using these closures for Argon gas, the ion parallel velocity (Eqn. 2.39) reduces

to,

v‖i ≈ 1.1cs.

The possibility v‖i > cs at the sheath entrance is discussed by [LRT11]. Hence,

the axial electron temperature gradient and potential gradient at the sheath edge are given

as

∂‖Te =
1+0.71

(
1− c2

s/v2
‖i

)
3
2 +1.71(0.5+Λ)

∂‖φ ≈ 0.11∂‖φ ≈ 0.

We can see that the ion parallel velocity is near the sound speed, and ∂‖Te is

about an order of magnitude is smaller than ∂‖φ . Therefore, we can neglect electron

temperature gradient with respect to other axial gradients at the sheath entrance. This

assumption simplifies the set of equations further and we can solve for 3× 3 set of
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equations instead, 
v‖i n 0

0 nv‖i n

Te 0 −n




∂‖n

∂‖v‖i

∂‖φ

= 0. (2.41)

As a result, one can find axial boundary values of conducting sheath matrix by

solving for the determinant and individual equations of Eqn. 2.66, and obtain

−n2v2
‖i
+nTe = 0→ v2

‖i
= Te→ v‖i =±

√
Te =±cs, (2.42)

v‖i∂‖n+n∂‖v‖i = 0→ ∂‖n =∓ n
cs

∂‖v‖i, (2.43)

v‖i∂‖v‖i +∂‖φ = 0→ ∂‖φ =∓cs∂‖v‖i, (2.44)

∂‖Te ≈ 0, (2.45)

Ω = ∇×
(
∇‖φ ×b

)
·b = 0, (2.46)

j‖ = ne
(
v‖i− v‖e

)
=±necs

[
1− exp

(
Λ− eφ

Te

)]
. (2.47)

To set these axial boundary values with our three-field small perturbation model,

we need to break down the total values into equilibrium and fluctuations. From Eqn. 2.47,

for the equilibrium part, j‖0 = 0 leads to a produce positive equilibrium plasma potentials

φ0 = ΛTe0 in the absence of external biasing or edge flows. Since in our formulation of

the model we assumes no axial variation of equilibrium profiles, we need to enforce the

equilibrium potential profile throughout domain, which can then drive KH and rotational

instability generated by the sheath-driven equilibrium E×B shear associated with the

a φ0 = ΛTe0 profile. Also, in our 3-field model we assumed negligible fluctuation of

ion parallel velocity everywhere (ṽ‖i = 0). Hence, the axial boundary conditions of
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fluctuations in normalized units reduce to Bohm-like condition,

∂‖ñ = ∂‖φ̃ = ∂‖T̃e = 0;Ω̃ = 0; j̃‖ =±
(
φ̃ −ΛT̃e

)
. (2.48)

We will use Eqn. 2.48 for axial boundary condition of conducting sheath in our simula-

tions.

2.2.2 Perfect Insulating Endplate Boundary Condition

In general, solving for the boundary condition with finite wall resistivity requires

the knowledge of the potential drop in the sheath region which implies the use of general

kinetic description of the plasma[Loi13]. However, in the case of perfect insulating

endplate, we can approximate some boundary values for drift-reduced fluid models,

without the need for solving plasma distribution in each time-step. The perfect heat

insulator assumption also may not be strictly true for CSDX experimental condition, but

for the simplicity will consider the perfect insulating endplate in anodized experiments

of CSDX. In a perfect electrical and heat insulator endplate, the time averaged parallel

current ( j̃‖) and parallel electron heat flux (q̃e) to the wall must vanish.

Unlike an unbiased grounded conducting endplate, an insulator can develop an

arbitrary wall potential,

necs

[
1− exp

(
Λ− e(φw−φ)

Te

)]
= 0.

The insulating wall potential (φw) self-consistently develops over time to set the equilib-

rium parallel current to zero. In addition, for zero parallel current fluctuations,

j̃‖ = φ̃ −ΛT̃e = 0. (2.49)
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On the other hand, a general parallel electron heat flux equation is described

by many such as [XRD93]. The heat flux fluctuations with no secondary emission,

normalized to our reference values, can be written as

q̃e = T̃e + φ̃ = 0. (2.50)

As a result, from Eqns. 2.49-2.50, one can approximate both fluctuations of φ̃ and

T̃e are negligible at the boundary. Therefore, we set the boundary condition for perfect

insulating simulation as follow,

∂‖ñ = 0; φ̃ = T̃e = Ω̃ = j̃‖ = 0. (2.51)

We should note that the above derivation of boundary conditions is for a perfect

conductor or perfect insulator, while neglecting equilibrium ion parallel velocity effects.

For an endplate with finite resistivity, obtaining boundary conditions is much more

complicated, and is not developed in this thesis.

2.3 Numerical Implementation

The model’s equations are solved in the BOUT++ Boundary Turbulence plasma

fluid framework, which is an object-oriented finite difference framework for fluid and

plasma simulations in curvilinear geometry written in C++[DUX+09]. The code has

been developed at LNLL and University of York, and is parallelized to utilize up to

thousands of coses. BOUT++ is an initial value solver, with boundary conditions applied

at each time step. For our model, the code evolves three fluctuations ñ, Ω̃, and T̃e, by

calculating the right hand side of the equations using prescribed equilibrium profiles

and transport coefficients, and then applies a time integration scheme to find the next
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time-step values of the evolving variables.

The derivatives, except for Poisson bracket terms, in the radial and axial directions

are performed with a standard fourth order central finite-difference scheme, and in the

azimuthal direction, a Fast Fourier Transform is used. In this setting, for instance first

and second order derivatives of radial direction are calculated as

∂ fi

∂x
=
− fi+2 +8 fi+1−8 ji−1 + fi−2

12∆x
+O(∆x4), (2.52)

∂ 2 fi

∂x2 =
− fi+2 +16 fi+1−30 fi +16 ji−1− fi−2

12∆x
+O(∆x4). (2.53)

For the parallel gradient operators, a quasi-staggered method has been used

to prevent grid-sized oscillations on top of the solution that are called grid modes.

These spurious modes are the cause of "red-black" numerical instability in neutral fluid

simulations[Bew08]. In such cases, at the Nyquist parallel wavenumber (k‖ = π/∆z

where ∆z is parallel grid spacing), the second parallel derivative may become zero which

is unphysical. To remedy such an numerical instability, use of staggered grid has been

suggested[PUCF10a]. However, since implementation of staggered grids with parallel

computation can become cumbersome, therefore to avoid such unphysical behavior, we

can calculate evolving variables ñ, φ̃ , Ω̃, T̃e at grid points, while calculating j̃‖ values at

grid points shifted by ∆z/2. The parallel current derivative and potential derivative are

discretized similar to the approach by [PUCF10a],

∂ j̃‖
∂ z

=
j̃‖,k− j̃‖,k−1

∆z
,

∂ φ̃

∂ z
=

φ̃k+1− φ̃k

∆z
. (2.54)

where k2
‖ does not become zero for any supported mode by the grid −π/∆z≤ k ≤ π/∆z.

Moreover, for nonlinear advection terms in the Poisson brackets, the Arakawa

discretization[AL81] is implemented. The Arakawa scheme has the advantage of con-

serving energy and vorticity, as expected from advection terms, and since the scheme
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is completely explicit, it is easy to implement and code. Thus, Poisson brackets can be

calculated as

{ f ,g}=− 1
12h2 [(gi, j−1 +gi+1, j−1−gi, j+1−gi+1, j+1)( fi+1, j− fi, j)

−(gi−1, j−1 +gi, j−1−gi−1, j+1−gi, j+1)( fi−1, j− fi, j)

+(gi+1, j +gi+1, j+1−gi−1, j−gi−1, j+1)( fi, j+1− fi, j)

−(gi+1, j +gi+1, j+1−gi−1, j−gi−1, j)( fi, j−1− fi, j)

+(gi+1, j−gi, j+1)( fi+1, j+1 + fi, j)

−(gi, j−1−gi−1, j)( fi−1, j−1 + fi, j)

+(gi, j+1−gi−1, j)( fi−1, j+1 + fi, j)

−(gi+1, j−gi, j−1)( fi+1, j−1 + fi, j)].

(2.55)

Note that the Arakawa scheme does not necessarily conserve positivity, which is

required from simple advection equation (∂tA+v ·∇A = 0). The deficiency of this finite

difference advection scheme can be explained in a simple setting. When A becomes very

small it produces a local minima where its zero gradient prevents a further decrease of

the variable. However, in the finite difference this gradient may not exactly represent the

the zero gradient at local minima. Nevertheless, in our case of nonlocal simulations, we

have conserved positivity using Arakawa scheme by using sufficient radial and azimuthal

resolution, as the fluctuations amplitudes fairly remain small compare to the mean profile

in CSDX experiments. The sensitivity analysis on the convergence of simulation results

with respect to grid resolution is performed as a part of the code verification studies

and is discussed in detail in Chapter 2.4.3. Other higher order schemes such as Third

order WENO (WENO3) or Fifth order Suresh-Huynh Limiters (SuHu) scheme maybe

needed for simulating high fluctuation amplitude experiments e.g. as found in tokamak
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SOL[PH13].

Last but not least, the PVODE (Parallel Variable Ordinary Differential Equation

solver) solver[BH99] is used for time integration, which combines a Backward Differ-

ence Formula with a preconditioned Generalized Minimal Residual (GMRES) method.

PVODE is a parallel solver that can solve stiff and non-stiff ODE initial value problems.

For stiff problems, where explicit schemes such as Rounge-Kutta can be inefficient to

use, PVODE implements implicit Backward Difference Formula (BDF). This approach

approximates u at time n as

un =
q

∑
i=1

αn−iun−i +hnβ0 fn. (2.56)

where fn ≡ f (un, tn), hn is the time step at time n, q is the order of BDF formula, and

αn−i and β0 are coefficients determined by the order of the BDF using a Taylor series

assumption. Since fn is unknown, PVODE uses a Newton formula to approximate it as

fn = fn−1 +
∂ f
∂u

(un−un−1). (2.57)

where ∂ f
∂u ≡ J is the Jacobian of f . Therefore, Eqn. can be written as

(1−hnβ0J)un =
q

∑
i=1

αn−iun−i +hnβ0 fn−1−hnβ0Jun−1. (2.58)

PVODE in addition implements adaptive time step adjustment to met its desig-

nated error tolerance. A detailed description of the procedure of PVODE solver can be

found in [BH99].
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2.4 Code Verification

Before studying the physics of a model implemented in the code, or compare any

simulations with the experiment, it is important to verify the code. Usually the question

"Does a code solve the model equations correctly?", which refers to the verification

process, comes before the question "Does a model have the right equations?" which refers

to the validation process. These concerns in any computational simulation of a physical

phenomena, give rise to the Verification and Validation (V&V) process[Hol16]. Many

of the differential operators used in BOUT++ framework have been verified[DMO+16]

through method of manufactured solutions (MMS). Additional linear and nonlinear

verification tests of the specific model implementation described above are detailed in

the rest of this Chapter, with model validation studies are explored in Chapter 4.

2.4.1 Linear Growth Rates Verification

The growth rates of the collisional drift-wave instability, and the sheath-imposed

electron temperature gradient instability, in the linear local limit can be obtained analyti-

cally by solving their dispersion relations. In the local limit, the equilibrium density and

temperature are taken to be radially constant and equal to their on-axis values, and the

equilibrium density and temperature gradients taken to be independent parameters which

are also radially uniform, and solving for Eqns. 2.27-2.30 in the linear limit. In the local

linear limit, the simplest collisonal drift-wave instability equations (including diffusion

and ion-neutral drag terms) can be written as

∂ ñ
∂ t
− a

ρs

(
∇φ̃ × ẑ

)
·∇⊥lnn0 =

1
η

∇
2
‖
(
ñ− φ̃

)
+Dn∇

2
⊥ñ, (2.59)

∂ Ω̃

∂ t
=

1
η

∇
2
‖
(
ñ− φ̃

)
+µ⊥∇

2
⊥Ω̃−νinΩ̃; Ω̃ = ∇

2
⊥φ̃ . (2.60)
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For constant coefficients acting on the perturbation terms, an analytical linear

dispersion relation assuming solution in form of n(r,θ ,z, t) = n(r)exp(ikθ θ + ik‖z− iωt)

can be driven easily for an azimuthally and axially periodic system, by solving the

eigenvalues equation of the matrix,

−iω + k2
‖/η +Dnk2

⊥ i(a/ρs)∂r lnn0/rkθ + k2
‖/η

−k2
‖/η −iωk2

⊥+ k2
‖/η +µ⊥k4

⊥−νink2
⊥


ñ

φ̃

= 0.

where in this special case k⊥s correspond to zeros of the Bessel functions for cylinder

geometry. Thus, the dispersion relation in this case can be written as,

ω
2 + iω

(
k‖

ηk2
⊥
+ k2
⊥(µ⊥−Dn)−νin

)
+Dnk2

⊥

(
k2
‖

η
+µ⊥k4

⊥−νink2
⊥

)
+

k2
‖

η

(
k2
‖

η
+ i
(

a
ρs

)
∂r lnn0kθ

)
= 0 (2.61)

After solving the second order dispersion relation, the imaginary part of ω

corresponds to linear growth rates, and real part of ω is the real frequency of the mode.

Now, we can cross check and verify the validity of our linear initial value code against

analytical growth rates and real frequency from the dispersion relation. The linear growth

rates (frequencies) of the eigenmodes in the code have been obtained by calculating

imaginary (real) part of ∂ ln φ̃m/∂ t after convergence in BOUT++ initial value solver,

where m denotes the azimuthal mode number.

In Fig. 2.1, they linear growth rates and frequencies of the local linear run from

BOUT++ is compared against the dispersion relation solution. We observe that the

numerical solution agrees with the analytical growth rates and linear frequencies of the

unstable modes. Note that the initial value solvers are not capable of capturing the stable

linear modes, as the numerical values of fluctuations hit the magnitude of truncation
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Figure 2.1: Linear (a) growth rate and (b) frequency of drift-wave instability for both
analytical dispersion relation (black line) and initial value solver (green dots).

errors in computers after multiple time steps.

The dispersion relation of sheath-imposed electron temperature gradient instabil-

ity in a field-line integrated setting can also be obtained analytically, and can be driven

by isolating effects of density gradient drift-waves,

∂∇2
⊥φ̃

∂ t
= ∇‖ j̃‖ (2.62)

∂ T̃e

∂ t
=

a
ρs

1
r

∂ lnTe0

∂ r
∂ φ̃

∂θ
+

2
3

1.71∇‖ j̃‖ (2.63)

Having LTe =(d lnT0/dr)−1, j̃‖(z=L)=+
(
φ̃ −ΛT̃e

)
and j̃‖(z= 0)=−

(
φ̃ −ΛT̃e

)
for the axial boundary of conducting end plate sheath entrance, and integrating the equa-
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tions along the magnetic field, one can obtain

∂∇2
⊥φ̃

∂ t
Lz

a
= j̃‖(z = L)− j̃‖(z = 0) = 2

(
φ̃ −ΛT̃e

)
, (2.64)

∂ T̃e

∂ t
Lz

a
=

a
ρsLTe

∂ φ̃

∂θ

Lz

a
+

2
3

1.71×2
(
φ̃ −ΛT̃e

)
. (2.65)

Hence, the dispersion relation reads as,

 iωk2
⊥− 2a

Lz
Λ

2a
Lz

− a
ρsLTe

ikθ − 2
31.712a

Lz
−iω + 2

31.71Λ
2a
Lz


 φ̃

T̃e

= 0 (2.66)

Thus, the dispersion relation in this case reads as,

ω
2 + i

ω

k2
⊥

(
1− 2

3
1.71Λ

(
2a
Lz

))
− i

kθ

k2
⊥

1
LTe

a
ρs

(
2a
Lz

)
= 0 (2.67)

Like the drift-wave dispersion relation, ω values can be compared against the

initial value solver results. In the initial value solver, 3D equations are being solved.

However, to find the growth rate, the φ̃ is axially integrated, before finding temporal

variations of its modes. The analytical dispersion relation solution and BOUT++ linear

growth rates and frequencies are compared in Fig. 2.2, and again a very good accuracy

for the unstable modes are obtained in the initial value solver.

2.4.2 Linear and Nonlinear Energy Balance Verification

The energy balance of the code in both the case of linear growing modes and

nonlinearly saturating mode can be investigated by formulating the energy balance of

model equations. The energy balance equation can be obtained by multiplying Eqn.

2.27-2.29 by Te0 ñ/n0, −φ̃ , and 3n0T̃e/2Te0 respectively, so that sum of energy equations
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Figure 2.2: Linear (a) growth rate and (b) frequency of sheath-imposed electron temper-
ature gradient instability for both analytical dispersion relation (black line) and initial
value solver (green dots).

conserve the adiabatic response. The total energy balance equation, reads as

∂ ln(Etot)

∂ t
= Sn +STe +SKH +Srot +S j‖+S⊥+Sdrag +Sχe

‖
+Ssource +Sadv. (2.68)

The equation is normalized to the instantaneous total energy of system Etot =

1
2(〈

Te0
n0

ñ2〉+ 〈n0(∇⊥φ̃)2〉+ 3
2〈

n0
Te0

T̃ 2
e 〉), where Sn = − a

ρs
〈Te0∂r ln(n0)ñṽr〉/Etot is the ex-

traction of energy from the equilibrium density gradient, STe =− a
ρs
〈3

2n0∂r ln(Te0)T̃eṽr〉/Etot

is the linear energy extraction from the equilibrium electron temperature gradient, SKH =

a
ρs
〈1

r ∂rφ0φ̃∂θ Ω̃〉/Etot is the KH energy extraction, and Srot =
a
ρs
〈1

r φ̃∂rφ0(∂rn0∂ 2
rθ

φ̃ −

∂ 2
rrφ0∂θ ñ)〉/Etot is the energy extraction through rotational (centrifugal) modes. S j‖ =

−〈η‖
n0

j̃2
‖〉+ 〈∇‖(

Te0
n0

ñ j̃‖+ 1.71T̃e j̃‖− φ̃ j̃‖)〉/Etot is the parallel current energy sink in

which the first term is parallel resistive dissipation and the second term is due to sheath
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losses, S⊥ =−µ⊥〈φ̃∇2
⊥Ω̃〉/Etot +Dn〈Te0

n0
ñ∇2
⊥ñ〉/Etot +DTe〈 3n0

2Te0
T̃e∇2

⊥T̃e〉/Etot is the per-

pendicular energy dissipation rate, Sdrag = 〈νinφ̃Ω̃〉/Etot is the ion-neutral drag energy

dissipation rate, Sχe
‖
= 〈 3n0

2Te0
χe
‖T̃e∇2

‖T̃e〉/Etot is the parallel conductivity energy dissipa-

tion rate, Ssource = νs(〈Te0
n0

ñ2
Z〉+ 〈 3n0

2Te0
T̃ 2

eZ
〉)/Etot is the ad-hoc source energy rate, and

Sadv = 〈
Te0
n0

ñṽ ·∇⊥ñ〉/Etot + 〈−φ̃ ṽ ·∇⊥Ω̃〉/Etot + 〈 3n0
2Te0

T̃eṽ ·∇⊥T̃e〉/Etot is the energy rate

of nonlinear advection terms. The averaging operator 〈 f 〉 =
´

dz
´

rdr ∑m f denotes a

volume average operator, where m is the azimuthal mode number.

The extra factors n0 and Te0 are added to the energy terms in order to show energy

conservation of adiabatic response in Eqn. 2.30. While the physical energy contains

extra factors of n0 and Te0 , the physical energy does not preserve the property of con-

servative nonlinearities in Eqns. 2.27-2.29, and therefore produces a more complicated

analysis[FCU+12]. Therefore, since we are using a nonlocal model and ∇⊥ ·
Te0
n0

is non-

zero, we have decided to show conservation of the adiabatic response in our formulation

for better understanding of parallel energy conservation. We should also note that terms

with 〈 f ∂θ f 〉 yield zero volume averaged energy due to azimuthal symmetry, hence they

are not shown in our calculations.

Here, to verify the energy conservation of the simulation, the energy balance of

linear runs with both insulating and conducting end plates, discussed in detail in Chapter

3, is shown in Fig. 2.3.

We observe the curves settle to steady values as the dominant modes establish

themselves. The energy conservation error, which can is obtained by subtracting the right

hand side of Eqn. 2.68 from the total energy rate of the system, is shown with the dashed

line. The energy errors of the linear runs are less than 1% of other energy rates in the

system, indicating a good conservation of energy in the system.

By turning on the nonlinear terms in the system (what we denote as the advection

terms), the fluctuations will grow in a linear phase regime began to interact and exchange
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Figure 2.3: Energy balance time traces of (a) the insulating end plate linear run, and (b)
the conducting end plate linear run. Dashed lines show time trace of energy balance
error.

energy across spatiotemporal scales, eventually saturate where the time averaged total

energy rate of the system becomes zero. The conservation of energy in the nonlinear

simulations are also been investigated and the results are shown Fig. 2.4. Again, a

good conservation of energy (about 1% of system energy rates) in the nonlinear runs are

obtained.

Other verification tests on the simulation requires sensitivity scan on the free

variables, such as domain resolution, or source damping rates, as discussed in the next

two sections.

2.4.3 Domain Sensitivity Analysis

For any finite difference scheme, domain analysis is an essential part of code

verification studies. Domain analysis consists of a series of simulation runs with different
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Figure 2.4: Energy balance time traces of (a) the insulating end plate nonlinear simula-
tion, and (b) the conducting end plate nonlinear simulation. Dashed lines show time
trace of energy balance error.

grid resolutions. When the results of a specific resolution is statistically similar to the

higher resolution, one can claim that the simulation domain has enough grid points to

resolve the simulations correctly.

Additional simulations were run to check the convergence of our results with

respect to grid resolution. Figs. 2.5 - 2.6 show convergence of mean energy rates (time-

averaged in the saturation regime), and diminishing energy error at higher grid resolution.

One can observe that the finite difference based nonlinear advection terms are the most

susceptible term to grid resolution, and the energy error becomes an order of magnitude

smaller than the rest of energy rates for the medium and high resolution simulations.

The nonlinear saturation results shown in this thesis are done with grid resolution of

100×128×36 points. In both set of simulations, the time-averaging window of saturated

turbulence (τavg ≈ 3ms) is chosen to be about two orders of magnitude larger than the
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auto-correlation timescale (τc ≈ 50µs).

Figure 2.5: Temporal average (shown as bars) and standard deviation (shown as
errorbars) of volume averaged energy rates in saturation regime with different grid
resolutions (nr×nθ ×nz) of the insulating end plate simulation.

Figure 2.6: Temporal average (shown as bars) and standard deviation (shown as
errorbars) of volume averaged energy rates in saturation regime with different grid
resolutions (nr×nθ ×nz) of the conducting end plate simulation.
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2.4.4 Ad-hoc Source Sensitivity Analysis

Since detailed measurements or models of the particle and heat source profiles

are not available, we apply the ad-hoc damping term to the zonal component of the

density and electron temperature fluctuations, so that the total profiles stay close to the

equilibrium profiles. Hence, the Sn = −νsñ and STe = −νsT̃e terms effectively act as

particle and heat sources to maintain equilibrium profiles and, as a result, the turbulent

transport. Fig. 2.7 compares total profiles (sum of equilibrium profile and time averaged

zonal component of fluctuations) of density and electron temperature against the input

equilibrium profiles. The total profiles of density and electron temperature stay close

to initial equilibrium profiles and vary no more than 1% of reference values in the

simulations.

Figure 2.7: Time averaged total profile of (blue) conducting and (red) insulating
simulation compared to (black) equilibrium profile for normalized (a) density and (b)
electron temperature (case νs = 2cs/a shown here)

Another way to represent the effect of the source, is to track the zonal density

and zonal electron temperature energies (EnZ and ETeZ ). Strong enough damping keep

the zonal density and electron temperature energies near zero throughout the saturation,

keeping mean density and temperature profiles close to zero. The time evolution of zonal

density energies with respect to νs is shown in Fig. 2.8, and we can observe that the

amount of energy for quasi-flatting of equilibrium gradient is diminishing with stronger
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νs value.

Figure 2.8: Time evolution of zonal density energies with respect to νs.

To show the convergence of turbulence properties with respect to this damping

parameter, a sensitivity analysis for the νs damping coefficient was performed; the results

of the scan are shown in Fig. 2.9. The scan shows that the transport properties are

influenced by the choice of νs below a certain value, and the statistical volume-averaged

density and kinetic energy, radial profile of total density, and turbulent particle flux profile

converge for about νs > O(101)cs/a. The simulation results shown in this thesis use

νs = 20cs/a.
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Figure 2.9: Time-averaged total density of (a) Insulating and (b) Conducting end plate
simulations versus zonal damping rate. Temporally volume averaged density and kinetic
energy of (c) insulating and (d) conducting end plate simulations versus zonal damping
rate. (e) Insulating and (f) conducting end plate simulations radial profile of flux versus
different zonal damping value.



Chapter 3

Impact of Endplate Boundary

Conditions on Turbulence

Edge and Scrape-Off Layer (SOL) turbulence has been a subject of interest in

magnetically confined fusion for many decades. It is well-understood that turbulent

transport is a major constraint in determining the performance of tokamaks[TFM09].

Many experimental measurements, turbulence modeling, and simulations have tried to un-

derstand instabilities and transport in the SOL[ZBG+07, LBC+07, KDM08, RMD+11].

Nevertheless, the complicated geometry of larger toroidal magnetically confined devices

makes detailed code-experiment validation studies challenging. Linear plasma devices

such as the Controlled Shear Decorrelation Experiment (CSDX) are useful in studying

some of the basic underlying physics due to their simple geometry. CSDX inherently

operates at low temperature with plasma densities such that collisions are important,

similar to the tokamak SOL.

This section aims to build upon the previous CSDX simulations[HTJ+07, DRM+12]

by adding new key elements. First, a 3D capability to describe the axial dynamics of

turbulence is added, including proper sheath boundary conditions. The choice of proper

53
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boundary conditions is known to be important in the edge simulations[NWG08]. For

instance, [RMD09] showed that sheath dissipation can be a sink for momentum transport

in the SOL and can thereby affect turbulence levels. Second, these simulations evolve

electron temperature fluctuations to enable synthetic diagnostics studies of probes and

camera. [MGR+05] report experimental measurements from a low temperature plasma,

in which the electron temperature fluctuations are small enough not to affect floating

potential measurements significantly. However, simulations by [NRR+12] showed that

in higher temperature plasmas, electron temperature fluctuations are more significant and

the synthetic floating potential is strongly distorted when compared to the actual plasma

potential. Before the work presented here, there has not been much focused simulation

study on the effect of Te fluctuations in low temperature plasmas. Third, unlike previous

simulations of CSDX, radially varying plasma profiles and parameters are retained, since

micro-turbulence gradient length-scales are comparable to the device length-scale. In

this Chapter, we will investigate the physics differences of insulating versus conducting

endplate on the operative linear instability and its nonlinear saturation.

3.1 Experimental Condition

Motivated by a desire for a better understanding of magnetized plasma turbu-

lence dynamics, this study of the CSDX linear plasma device aims to define a simple

self-regulating description of drift-wave turbulence/zonal flow dynamics[DIIH05]. Pre-

viously, CSDX experimental results[BTA+05] showed that the dominant instability in

CSDX is the density gradient-driven collisional drift-wave instability. Experimental

measurements[XTH+09, XTH+10, MXTT11] showed these modes saturated due to the

nonlinear re-distribution of turbulent energy in CSDX via wave-wave coupling and energy

transfer to large scale zonal flow without any apparent momentum source.
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[CTXM+13] experimentally investigated the effects of changing the endplates

from insulating boundary condition (IBC) to the conducting boundary condition (CBC)

on the turbulence induced zonal flow. The experiment was conducted by changing

the type of endplates while keeping other input parameters such as input gas pressure,

magnetic field and source power constant. Equilibrium density, equilibrium electron

temperature, and mean plasma potential profiles were measured through RF compensated

swept Langmuir probes. In both cases, similar equilibrium profiles of density and

electron temperature profiles are measured within error bars (see Fig. 3.3 a-b). Moreover,

the CBC case potential profile is dominated by electron temperature profile when the

endplate is grounded. However, in the IBC case, the potential of the endplate floats

to whatever value necessary to force the parallel current to vanish, resulting in much

smaller mean plasma potential gradients (see Fig. 3.3 c). Ion temperature measured

using Laser Induced Fluorescence (LIF) technique[CTML+12, TML+12] and neutral

gas temperature estimated through high resolution (10m) ELIAS spectrometry. The

typical values of plasma parameters in the core of CSDX for these experiment are shown

in Table 3.1.

Table 3.1: Typical values of CSDX core plasma at 1kG.

Parameter Value
Plasma density (n) 0.9−1×1013cm−3

Electron temperature (Te) 3.0−3.3eV
Ion temperature (Ti) 0.5−0.7eV
Neutrals temperature (Tg) 0.4−0.6eV
Ion sound speed (cs) 2.8×105cm/s
Ion sound Gyroradius (ρs = cs/Ωci) 1.1cm
Ion-ion viscosity (µ⊥) 4.6×103cm2s−1

Ion-neutral collision frequency (νin) 6×103s−1

Measurements on CSDX show that a change of endplate from CBC to IBC can
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Figure 3.1: Experimentally measured (a) equilibrium density profile (b) equilibrium
electron temperature profile, (c) mean plasma potential profile calculated with RF
compensated swept probe (red and blue) and potential profile calculated from sheath
theory (yellow). Data measured at B = 1kG, Pr f = 1500W , with argon gas pressure of
3.2mTorr. Data taken from [CTXM+13]. Black line is the fit to the profiles. (d) Radial
profiles of inverse gradient lengthscale for the electron density and temperature fits.

affect the turbulence structure, resulting in broadband turbulence in the IBC case and

coherent modes in the CBC case (Fig. 3.2). The parallel current induced through sheath

driven instability influences the perpendicular momentum balance of conducting case.

Fig. 3.3 shows the difference in density fluctuations, floating potential fluctuations and

azimuthal flow between IBC and CBC experiments.

Simulations of insulating versus conducting case in this Chapter have been done

with the same equilibrium fit (black lines in Fig. 3.3) to equilibrium profiles and plasma

parameters (taken from CSDX 1kG CBC experiment) in order to focus our studies of

change in the turbulence due to the changes of the boundary condition. In this Chapter,

we use drift-reduced nonlocal cold-ion model to explore the sheath loss effects between
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Figure 3.2: Experimental radial profiles of floating potential fluctuations power spectra
obtained for B = 1kG, Pr f = 1500W , argon gas pressure of 3.2mTorr for (a) the insu-
lating boundary condition and (b) the conducting boundary condition. Reprinted with
permission from [CTXM+13].

Figure 3.3: (a) Experimental density fluctuation amplitudes normalized to the core
density measured with Langmuir probe, (b) experimental floating potential fluctuations
normalized to the core electron temperature measured with Langmuir probe, (c) ex-
perimental E×B velocity calculated by subtracting ion diamagnetic velocity from LIF
measured azimuthal velocity. Data taken from [CTXM+13].

the two boundary conditions.

In the CSDX experiments, the perpendicular length scales are comparable to

the gyroradius. Therefore, it is important to retain the radial variation of profiles.

Equilibrium profiles were determined by fitting a general functional form n0 = (n̄−

nbase)exp(−(r/ln)nα/nα)+ nbase using the least square method to the measurements

taken from experimental conditions[CTXM+13]. The general function fits to the experi-

mental equilibrium profiles are shown in Figs. 3.4(a-b). Plasma parameters, such as the
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parallel electron heat conductivity and resistivity then vary radially in a self-consistent

manner according to equilibrium density and temperature profile fits, shown in Figs.

3.4a-b. However, the ion-ion viscosity is taken to be radially constant for simplicity of

numerical implementation (see red dashed line in Fig. 3.4c). Our calculations show

that the radial standard deviation of viscosity away from the mean is less than 20%. To

estimate ion-neutral drag in the experiment, by knowing the injected gas pressure at the

wall and assuming ideal gas behavior, we can approximate the neutral gas density from

neutral gas temperature. Although in general the ion-neutral drag can radially be varying,

in this Chapter, we have assumed a radially constant drag νin = 0.17cs/a (neutral gas

drag in the core), and the effects of a radially varying drag profile are deferred to future

studies.

Figure 3.4: Radial profile of (a) resistivity η‖ (b) radial profile of electron heat
conductivity χe

‖ (c) radial profile of ion-ion viscosity µ⊥ (radially averaged viscosity
shown with red dashed line). Here, a = 8cm, ρs = 1.13cm and cs = 2.8×105cm/s as
shown in Table 3.1.
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3.2 Linear Physics

In this section, we discuss the linear physics of conducting versus insulating

endplate simulations. Linearly, the IBC case allows only drift-waves to grow and

propagate within the plasma. The dominant instability in the IBC case is the density

gradient-driven drift-waves[Yan09]. Electron temperature gradient-driven drift-waves

(thermal drift-waves) are also present but is less prominent and usually suppressed via

parallel conduction. However, in the CBC case, since the equilibrium plasma potential is

locked to the equilibrium electron temperature by the endplate sheath physics, sheath-

driven linear transverse Kelvin Helmholtz (KH) instability due to the − a
ρs

1
r
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)
term, as well as the sheath-driven electron temperature gradient instability due to non-

zero parallel current j̃‖ =±(φ̃ −ΛT̃e) at the sheath boundary, appear in addition to the

drift-waves[RR10].

In Fig. 3.5, we show a comparison of the linear growth rate and real frequency

versus azimuthal mode number for the local pure drift-wave in the IBC case, the nonlocal

pure drift-wave in the IBC case, and nonlocal growth rates of the CBC case. For the

nonlocal linear runs, we have solved the Eqns. 2.27-2.30 without nonlinear advection

terms, and the equilibrium profiles are taken from Fig. 3.3. However, in the local limit,

the equilibrium density and temperature are taken to be radially constant and equal to

their on-axis values, and the equilibrium density and temperature gradients taken to be

independent parameters which are also radially uniform, and solving for Eqns. 2.27-2.30

in the linear limit. The linear growth rates (frequencies) of the eigenmodes have been

obtained by calculating imaginary (real) part of ∂ ln φ̃m/∂ t after convergence in our initial

value solver, where m denotes the azimuthal mode number. We observe that inclusion of

the global radial profile effects decreases the growth rate, and shifts the linear frequencies,
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showing that even in the linear limit retaining the radial profile of input parameters is

important. In the CBC case, the various types of instabilities (density gradient-driven

drift-waves, sheath-driven linear KH and centrifugal force, and sheath-driven electron

temperature gradient instability) compete with each other. Consequently, the linear

eigenmodes in the CBC have smaller growth rates as compared to the drift-wave growth

rates found in the IBC case.

Figure 3.5: (a) linear growth rate and (b) real frequencies of fastest growing azimuthal
modes for different physics cases.

To understand the physics of the instabilities, we performed a density profile scan

below and above experimental condition by changing the exponential exponent parameter

nα in our functional form for n0(r), causing a decrease or increase in the density gradient

(1/Ln =−d lnn0/dr). Afterward, the energy balance analysis introduced in Chapter 2, is

used to analysis the energy components of this density scan. The results of these scans

are shown in Fig. 3.6. We can observe that in the IBC case (Fig. 3.6 a), STe is small

because the maximum electron temperature gradient (1/LTe =−d lnTe0/dr) is located

in the region of low density, and also due to the presence of strong parallel damping of

electron temperature fluctuations. The drift-waves are primarily driven by the density

gradient as seen by the dominant Sn term. Therefore, we can deduce that the electron

temperature gradient drift-wave is not a main contributor instability to the CSDX IBC
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case, even with very small density gradients profiles.

Figure 3.6: (a) IBC linear run, and (b) CBC linear run mode-established energy rates
as a function of maximum density gradient. Square dots show linear energy rates of
experimental density gradient.

In the CBC case (Fig. 3.6 b), we can observe some notable changes compared to

the IBC case. First, the presence of conducting sheath allows additional linear instabilities

such as sheath-driven electron temperature gradient instability, plus linear transverse KH

and rotational (centrifugal) instability generated by the sheath-driven equilibrium E×B

shear. Changes in the density profile then leads to different dominant linear instabilities

regimes, due to variations in the electron diamagnetic frequency (ω∗e = kθ ρscs
1

Ln
) and

parallel electrical conductivity (σ‖ = 1/η‖). [Jas72] demonstrated different regimes of

drift-waves and KH instability, depending on electron diamagnetic frequency and parallel

electrical conductivity in k⊥� k‖ limit. In Fig. 3.7, we show contour plots of linear

growth rates and the density-potential cross-phase ζ (ñ, φ̃) = arg(ñ∗mφ̃m) for the CBC

linear density gradient scan study. Through this plot, we can designate which mode is
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unstable for a given set of parameters. We should note that due to the nonlocal nature of

our model, the radial structure of the cross-phase is not radially uniform and different

instabilities may be dominant locally at certain radii, however this simple analysis can

gives us insight about the most dominant general instability regime via radially averaged

cross-phase values.

Figure 3.7: (a) contour of CBC linear run growth rate γlin for different maximum
density gradients and azimuthal modes. (b) contour of CBC linear run density and
potential cross-phase ζ (ñ, φ̃) for density maximum density gradients and azimuthal
modes. The growth rates and cross-phase values have been averaged radially, axially
and temporally. Growth rate and cross-phase values of stable modes have been filtered
out in the plots, due to limitation of initial value solver in capturing noisy highly damped
modes. White lines show boundary between unstable and stable modes.

For the CBC case, at low density gradient, where max(1/LTe)> max(1/Ln), we

can observe in Figs. 3.6b-3.7 that sheath imposed linear KH (SKH) and sheath driven

electron temperature gradient modes (STe) act as main driving sources of instability, while

density-gradient drift-waves and centrifugal instabilities are present but less prominent.

The presence of STe at low density gradients is mainly because of sheath driven electron

temperature modes, and smaller parallel conduction of electron temperature fluctuations

(smaller χe
‖). Here, most of density-gradient driven drift-waves are strongly damped

through parallel current dissipation S j‖ . From Fig. 3.7 when 1/Ln is small, we can

observe 5 < m < 8 modes are unstable and have average density-potential cross-phase
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π/2 < ζ (ñ, φ̃)< π which is indicator of dominant linear KH instability[Jas72].

As 1/Ln is increased to approach the experimental value we observe that the Sn

becomes the most dominant instability, while SKH is still present and contributing to

the linear drive of system. The sheath-driven electron temperature gradient modes (STe)

become smaller and eventually become damped due the nonlinear dependence of the

parallel heat conductivity Xe
‖ on density. In Fig. 3.7, we can see formation of a new set of

modes (1 < m < 4) as 1/Ln increased which have ζ (ñ, φ̃)< π/4 density-potential cross-

phase, indicating the dominance of drift-waves. The CSDX CBC experimental condition

lies within a hybrid resistive drift-wave/KH regime, where the flow driven modes are

opposed to drift-wave, and may be expected to have different turbulence characteristics

compared to IBC case. At even higher density gradients, Sn becomes the main drive of

instabilities and SKH contribution becomes smaller, and the system becomes dominated

by drift-waves. The CBC density profile scan within different regimes of instabilities is

in qualitative agreement with the picture depicted by [Jas72].

3.3 Nonlinear Simulations

Building upon the linear analysis of Chapter 3.2, nonlinear simulations of the

IBC and CBC cases were performed. The simulations include a growing linear phase

followed by the development of a saturated turbulence regime. Fig. 3.8 shows the time

trace of the volume averaged total energy for both insulating and conducting simulation.

Both simulations were run with the same fit to equilibrium profiles shown in Fig. 3.3

(a-b). We observe that the average total energy of the system in the CBC simulation is

smaller than in the IBC case and saturates more slowly, consistent with expectations from

linear analysis which gave a smaller γlin in the CBC case, while the IBC exhibits a more

pronounced time-variation in the total energy Etot(t).
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Figure 3.8: Time trace of volume averaged total energy for the CBC and IBC case.
All nonlinear results in this Chapter are averaged over 100−300a/cs unless otherwise
noted.

Snapshots of the r−θ distribution of density fluctuations filtered for finite wave

numbers in the two cases are shown in Fig. 3.9. We can observe statistically m ≈ 2

modes dominate both simulations. In the IBC case, density blobs are mostly being

formed in the region of maximum density gradient, propagate in electron diamagnetic

direction, and they exhibit a radial extension that becomes tilted azimuthally as the

structure approaches the shear layer. Similar qualitative behavior has been reported

experimentally[CTXM+13], as well.

Figure 3.9: r−θ snapshot of density fluctuations filtered for finite wave numbers of
(a) IBC saturation (b) CBC saturation at z = Lz/4, t = 100(cs/a).
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Moreover, in Fig. 3.10, we have shown the snapshots of of the r− z distribution

of density fluctuations filtered for finite wave numbers for the IBC and CBC simulation.

We observe the dominant axial mode is n≈ 1 for both cases, indicating the dominance of

drift-waves instability. However, the shape of eigenfunctions is changing from IBC to

CBC case, due to effects of axial boundary change. We should note that axial equilibrium

gradients are not included in the current model and its effects may change the shape

of eigenfunctions. Currently, there is no axial measurements of fluctuations in the

experiment, and further study on this subject is needed.

Figure 3.10: r− z snapshot of density fluctuations filtered for finite wave numbers of
(a) IBC saturation (b) CBC saturation at θ = π/2, t = 100(cs/a).

Fig. 3.11 shows the mean averaged values of energy rates in the saturated

turbulent regime. We observe a smaller value of the density-gradient drive (Sn) in the

CBC case than the IBC case. Moreover, as shown in Sec. 3.2, SKH and SRIC are present

as other mechanisms of turbulence drive in the CBC simulation, however they are smaller

compared to Sn similar to the linear energy analysis consistent with the drift-turbulence

dominated system. One notable difference we observe between the linear energy rates

and the nonlinear saturation energy rates is the larger dissipation energy dissipation rates

in the nonlinear simulation, mainly due to the damping of turbulence-generated m = 0

plasma potential energy by ion-ion viscosity and ion-neutral drag.
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Figure 3.11: Saturated mean energy rates comparison of CBC and IBC simulation.

To further understand saturation mechanism and drift-wave/zonal flow paradigm

in the nonlinear simulations, we investigate spectral energy balance of the vorticity

equation. The spectral energy balance of the vorticity equation (Eqn. 2.28) for azimuthal

mode m reads as

∂
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ρs
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where the star superscript denotes the complex conjugate, and the averaging operator is

defined as 〈 f 〉=ℜ(
´

dz
´

rdr f )t , and time averaged variation of kinetic energy ∂t〈Ekinm〉

in the saturation regime goes to zero. In addition, the 〈φ̃∗m∇‖ j̃‖m
〉 term can be rewritten

as a sum of the injected energy into potential fluctuations from the adiabatic response

〈 j̃∗‖m
∇‖φ̃m〉; plus the potential sheath boundary loss term −〈∇‖(φ̃m j̃∗‖m

)〉. Thus, we can
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rewrite the generalized spectral kinetic energy balance as
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In Fig. 3.12, we plot the time the averaged spectral energy rates of the IBC and

CBC simulation in the saturated regime, normalized to the total kinetic energy. We

observe the IBC simulation has more active modes (2≤m≤ 8) contributing to the energy

transfer into the m = 0 zonal flow. Although in the CBC simulation the energy injection

from the adiabatic response is smaller than in the IBC case, the CBC simulation exhibits

additional KH and centrifugal energy injection into finite m fluctuations. In addition, the

potential sheath boundary loss term is an important energy sink in the CBC simulation,

resulting in significant damping of kinetic energy. Consequently, due to the larger sheath

boundary loss of vorticity energy balance in the CBC case, the nonlinear kinetic energy

advection term Tu = − a
ρs
〈φ̃∗m{φ̃ ,Ω̃}m〉 is weaker in transferring energy from finite m

modes to the m = 0 zonal potential, resulting in weaker inverse cascade dynamics for the

CBC case. Thus, we observe the zonal potential energy to be smaller in the conducting

case. As a result, the IBC simulation exhibits more prominent 2D turbulence dynamics,

in which the most linearly unstable modes have a negative Tu and thus losing kinetic

energy, while the higher order modes (m > 6) and the zonal mode (m = 0) have Tu > 0

and are receiving kinetic energy from the intermediate fluctuations. These observations

of the inverse energy transfer dynamics are also qualitatively consistent with previous

experimental measurement of frequency space kinetic energy transfer in various CSDX

experiments[XTH+10, MXF+12, CTXM+13].

The saturated amplitude profiles of the fluctuations are shown in Figs. 3.13 for the

both cases. We observe that the plasma potential and density fluctuations have the largest
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Figure 3.12: Spectral energy balance of vorticity equation in nonlinear (a) IBC simula-
tion, and (b) CBC simulation.

fluctuations amplitudes, and the electron temperature fluctuations is small compared to

ñ and φ̃ (see Fig. 3.13 a-c). The RMS density peaks near r ≈ 2.5cm, consistent with

experimental measurement of density (see Fig. 3.3 a). However, the plasma potential

RMS amplitudes peak more toward the edge (r ≈ 4cm for CBC simulation and r ≈ 6cm

for IBC simulation), while the experimental floating potential measurements peak at

r≈ 3cm (see Fig. 3.3 b). Additional simulations not shown here indicate that the location

of the peak RMS plasma potential fluctuation is sensitive to the details of the equilibrium

profile as well as to the radial profile of ion-neutral drag.

Fig. 3.13 (d) shows total mean plasma potential profile (the sum of equilibrium

potential φ0 and zonal potential φ̃Z). We observe that the IBC case exhibits a completely

different behavior compared to CBC case. The generated zonal electric field in IBC
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simulation is radially inward, causing an E×B drift in electron diamagnetic direction.

However in the CBC simulation, the mean potential profile is mostly dominated by

sheath-driven equilibrium electron temperature with an outward electric field, while the

CBC turbulent-driven component of the zonal potential gives a radially outward electric

field in the core and radially inward electric field near edge, qualitatively consistent with

the experimental observations (see Fig. 3.3 c).

Fig. 3.13 (e-f) shows smaller Reynolds stress and zonal flow in the CBC case,

indicating that the conducting endplate partially short-circuits the Reynolds stress. This

phenomena can be explained with the charge conservation equation, ∇ · j̃ = ∇⊥ · j̃⊥+

∇‖ j̃‖ = 0. Surface integrating current conservation over a flux tube in the plasma, we can

write for radial current at radius r as

‹
dθdz(r̂ · j̃r(r)) =

‹
rdrdθ(−ẑ · j̃‖(z = 0))+

‹
rdrdθ(ẑ · j̃‖(z = Lz))

= 2
‹

rdrdθ(ẑ · j̃‖(z = Lz)). (3.3)

Since in the CBC simulation, the parallel current is non-zero at the sheath bound-

ary, j̃‖(z = Lz) = φ̃ −ΛT̃e, there is finite radial current opposing the polarization drift.

However, in the IBC simulation, this radial current vanishes due to zero parallel cur-

rent at the sheath boundary. As a result, the turbulence inverse energy cascade is

weaker in the case of CBC simulation. This simple explanation is also consistent

with our spectral kinetic energy balance analysis shown in Fig. 3.12. Experimental

measurements[CTXM+13] also observe similar qualitative reduction in Reynolds stress

and zonal flow for conducting endplate case.

Unlike [DRM+12] simulation which had a dipolar azimuthal velocity with zero

net azimuthal momentum, our IBC simulation (Fig. 3.13 f) shows non-symmetric lobes

of vE×B due to the presence of ion-neutral drag and nonlocality of vorticity fluctuations
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in the cylindrical geometry. The CBC simulation shows two weaker lobes of vE×B which

is also non-symmetric. [YXD+10] discusses the experimental evidence of net plasma

rotation in the absence of momentum input due to the ion-neutral damping in the outer

region of plasma. Here, in the simulations, even a radially uniform ion-neutral drag

profile creates a residual stress acting on the net plasma rotation. However, the radial

location of shear is different from the experimental measurements. The generation of the

zonal flow is a highly nonlinear process, and many factors and input profile uncertainties

can affect its amplitude and radial structure.

Figure 3.13: Fluctuation amplitudes in the CBC and IBC case. Finite azimuthal (m> 0)
fluctuations RMS of (a) density, (b) plasma potential, (c) electron temperature, (d) sum
of mean and zonal plasma potential profile (e) Reynolds stress, and (f) turbulence driven
zonal flow. Shaded bars are temporal standard deviations of simulation values.

Fig. 3.14 shows the potential fluctuations autopower spectra in frequency and

azimuthal wavenumber space. The IBC case shows more broadband turbulence, where

the energy is mostly accumulated in low frequencies consistent with the spectral transfer
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results, while the CBC case exhibits a more quasi-coherent narrow band spectra. In both

cases, the power spectra peak not far from the Doppler shifted linear frequencies (shown

as the white curve in Fig. 3.14 c-d) calculated from nonlocal linear frequencies (Fig. 3.5

b), which shows that the linear instabilities continue to play an important role for setting

the turbulence dispersion relation. We can clearly observe coherent features in the m− f

contour of the CBC simulation. One of the main differences observed in qualitative

comparison with experiment is that the potential fluctuation amplitude is peaked more

radially outward near the edge of the simulations. Simulation plasma potential power

spectral density contours (Fig. 3.14 a-b) qualitatively look like the experimental floating

potential autopower contours (Fig. 3.2). A direct quantitative simulation-experiment

comparison requires a detailed validation study and use of synthetic diagnostics, and will

be reported in a separate publication.

3.4 Summary

In this Chapter, we have illuminated how changing the parallel boundary condi-

tions have effect on the development of electrostatic drift turbulence and sheared E×B

flows in a linear plasma column. Linearly, our analysis showed that with insulating

endplates, the dominant instability is the density gradient-driven collisional drift-wave.

With conducting endplates, the plasma lies in a hybrid drift-wave/KH regime, where

the density gradient-driven drift-wave is still the dominant instability, but KH instability

generated by the sheath-driven equilibrium E×B shear is also an important player and

integral to the model. Both sheath-driven electron temperature gradient and rotational

(centrifugal) force are feeble and compete against density gradient drift-waves. Pre-

sumably, in CBC case, by decreasing the density gradient, the system would go to KH

dominated regime.
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Figure 3.14: Radial frequency distribution of potential fluctuations autopower in (a)
IBC simulation, and (b) CBC simulation. Local spectrum of azimuthal mode number
versus frequency in (c) IBC simulation at r = 6cm, and (d) CBC simulation at r = 4cm.
White lines are Doppler shifted real frequencies calculated from ω = ωlin +m∂rφ̃Z/r
where φ̃Z is the turbulence driven zonal potential. Values of ωlin are taken from Fig. 3.5
(b).

Moreover, we can conclude that endplates can have significant effect on vorticity

equation balance. Conducting endplate allows the current and the heat flux to escape the

device. These sheath losses dissipate energy from the system and weakens the Reynolds

stress. In general, the endplate change affects the momentum equation, polarization

current, vorticity flux, and shear layer generation. These results are qualitatively con-

sistent with experimental report of [CTXM+13] and previous 2D slab simulations of

[DRM+12]. In addition, we have shown that in the CSDX insulating case the electron

temperature does not significantly alter the nature of instabilities, while in the CSDX con-

ducting case electron temperature can be an essential part of the physics by imposing an
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equilibrium potential profile on the plasma that can counteract the turbulent driven zonal

flow. However, in both cases electron temperature fluctuations may become important in

validation studies, and should be neglected only with considerable deliberation.

These simulations provide a basis for validation studies of turbulence and transport

in CSDX linear device. Experimental studies on CSDX have used saturation current and

floating potential measured by Langmuir probes, and light intensity fluctuations measured

by fast imaging camera, to interpret the turbulent transport. Many of these measurement

techniques are also being used in larger magnetically confined devices, where these

measurements might differ from real density and the plasma potential values because

of the effects of electron temperature fluctuations. These effects have been neglected

in CSDX experimental studies, due to diagnostic limitations. The model derived in this

thesis allows one to translate back the real physical quantities into synthetically measured

quantities and compare them to experimental measurements. Next Chapter will provide

a detailed validation study on the IBC simulation case, and will discuss the effects of

profile uncertainty on the degree of agreement between simulation and experiment.
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Chapter 4

Validation Study of a CSDX

Experiment

Validation studies, which systematically explore the relationship between a com-

putational model and the real world, have been carried out in many physics areas[OTH04].

The systematic verification and validation (V&V) of turbulence models in magnetically

confined plasma is beginning to play an integral role in the understanding of plasma tur-

bulence and transport. Through such studies, we can gain a better understanding of how a

given model approximates an experimental condition, and what additional physics needs

to be added to the model in order to capture the essential elements of real-world behavior.

[TGL+08] were among the first to describe how to apply V&V concepts such as valida-

tion metrics to plasma studies. Other examples include [RTF+09, RHJ+12, RRT+15],

who studied the influence of synthetic diagnostics on Langmuir probe observations, and

[RMD+11], who studied synthetic gas puff imaging diagnostics in the srape-off-layer

turbulence setting. More recently, [Hol16] discussed the importance of uncertainty quan-

tification and its inclusion within validation metrics, and the need for utilizing synthetic

diagnostics for code-experiment comparisons.

74
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Systematic validation studies can lead to a better understanding of the fidelity

and limitations of experimental measurement techniques, as many experimental mea-

surements are directly being used to interpret the transport physics. The uncertainty

in gradient-driven instabilities as well as difficult diagnostics access to the plasma in

toroidal devices makes the quantification of turbulence and the code-experiment val-

idations challenging in those conditions. In contrast, linear plasma devices such as

the Controlled Shear Decorrelation Experiment (CSDX) due to their simple geom-

etry provide a platform to study basic underlying instability physics in more detail

than possible in hot confinement devices. CSDX operates at low electron tempera-

tures and is highly collisional similar to the scrape-off layer (SOL) of confinement

devices, while excluding some of the toroidal-specific complexities such as tearing

or ballooning instabilities. Moreover, various experimental techniques such as multi-

tip Langmuir probe and fast imaging camera which are also being used in larger

fusion devices, can be used to measure plasma profiles and parameters in CSDX

[BTA+05, YHT+07, XTH+09, YTH+10, CTML+12, TML+12, LTB+13]; thus mak-

ing CSDX a useful testbed for detailed validation studies.

In this Chapter, we will pursue a synthetic validation study of a nonlinear colli-

sional drift-wave model against the experimental results of CSDX linear device. This

work follows up on an earlier verification and physics study of CSDX simulations under

different boundary conditions of insulating and conducting end plates at a fixed magnetic

field in the previous chapter. The simulations in this Chapter used experimental profiles

and parameters of CSDX experimental with insulating endplates from [CTXM+13] as

the inputs to the model. The first key point that is addressed in this Chapter is the

classification and linear sensitivity analysis of input parameter uncertainties to reduce

the number of uncertainties needed for simulation runs (also known as uncertainty di-

mensionality reduction). Second, the role of synthetic Langmuir diagnostics has been
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explored, and the synthetic simulated fluctuations quantities have been compared against

the experimental measurements. Finally, independent experimental measurements of

azimuthally symmetric low-frequency E×B flow are compared with the predicted E×B

flow obtained from the simulations.

The rest of the Chapter is organized as follow. In Sec. 4.1, we will introduce

experimental uncertainties in the measurements, and their translation into input parameter

uncertainty. In Sec. 4.2, we will discuss the response of the linearized growth rates

to these input uncertainties. In Sec. 4.3, we will introduce the synthetic diagnostics

techniques for creating a set of qouantity of interest (QoI). In Sec. 4.4, we will use these

QoIs to test the performance of the model in predicting the experimental measurements.

In Sec. 4.5, we will conclude the results of this validation case study.

4.1 Experimental Uncertainties

The V&V process begins by constructing a model based on the assumptions

taken from a specific experimental condition. The experimental profiles in this Chapter

are taken from [CTXM+13] for CSDX experimental condition at 1kG with insulating

boundary endplates where the plasma terminates. In this experiment, the Argon plasma

is created by an m = 0 helicon source operating at 1.5kW .

Based on the experimental timescales and length scale ratios, we can make

assumptions to reduce the generalized Braginskii fluid equations into a simpler model

following the approach of Hasegawa and Wakatani[HW83]. Simplicity of the model is

needed to make the computational requirements tractable, however an overly simplified

model may not capture the essential elements of the experiment. We have introduced a

nonlocal cold ions fluid set of equations to describe the physics of drift-wave turbulence

in CSDX in Chapter 2. The model evolves fluctuations of density ñ, vorticity Ω̃ = ∇⊥ ·
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(n0∇⊥φ̃) and electron temperature T̃e, in the presence of an axially uniform background

density profile, n0(r), and electron temperature profile, Te0(r), where the tilde superscript

denotes the fluctuation part and 0 subscript denotes the equilibrium part of the quantities.

Due to the strong nonlinear dependence of plasma turbulence on drive and

dissipation mechanisms, uncertainties in experimental inputs may have surprisingly large

effect on the turbulence. Thus, it is important to understand the types of uncertainties in

the system and the measurement errors, and the effective response of the model to these

uncertainties. Different types of uncertainties such as statistical uncertainties, systematic

uncertainties, reduced model uncertainties, etc. may affect the validation studies of a

computational model. In this Chapter, we will perform a detailed study of statistical

and systematic uncertainties for the CSDX experimental condition. These uncertainties

could propagate into instability driving forces such as equilibrium gradients, as well as

damping mechanisms such as the ion viscosity and dragt from ion-neutral collisions.

Since we have no measurement of the source heat deposition and resulting

ionization source in CSDX, in the model we have used ad-hoc particle and heat sources

to damp the zonal (i.e. azimuthally and axially uniform) density and electron temperature

profile variations that arise from turbulent transport, and thereby maintain the total

equilibrium profiles as the turbulence saturation develops. These profiles were measured

through RF compensated swept Langmuir probes[CTXM+13], and their uncertainties

can influence the drift-wave instability drive, as well as the vorticity, resistivity, and

heat conductivity profiles. Thus, the uncertainties of the equilibrium profiles must be

considered, where they inherently arise from experimental measurement uncertainties.

We should note that in CSDX experimental measurements, we have measurements

of mean density at two different axial locations of z = Lz/4 and z = Lz/2 downstream

from the source, where z = 0 denotes the location of helicon source, and Lz = 300(cm)

is the axial extent of the plasma column. In Fig. 4.1 we have shown the measurements of
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mean density profile at two different axial locations. We observe a slight difference in

the equilibrium density measured at two different axial ports, and in particular note that

∇rn is larger at Lz/4. However, our current collisional drift-wave model do not account

for such axial variation of equilibriums. Hence, we need to include this systematic

uncertainty in the simulation scans. In this validation study, we have performed a detailed

statistical uncertainty scans using the experimental density equilibrium and other plasma

parameters of z = Lz/2 downstream from the source, and also included an additional

scan using experimental density of z = Lz/4 downstream from the source to include the

systematic uncertainty of different experimentally measured profiles.

Figure 4.1: Comparison of experimentally measured mean density profiles at two
different axial locations z = Lz/2 and z = Lz/4 from the source. Experimental data is
taken from [CTXM+13] with permission.

Fitting a smooth temperature and density profiles to the discrete measurements

requires us to define a mathematical functional form. We have used a generalized double

Gaussian functional form

n0(r) = (n̄1−nbase)exp(−(r/ln1)
nα1/nα1)

+(n̄2−nbase)exp(−(r/ln2)
nα2/nα2)+nbase (4.1)
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for the density equilibrium profiles, and a generalized single Gaussian functional form

Te0(r) = (T̄e−Tebase)exp(−(r/lTe)
Teα /Teα

)+Tebase (4.2)

for the electron temperature equilibrium profiles. In the simulations, we have normalized

the equilibrium density and electron temperature profiles to the on-axis density and

electron temperature of z = Lz/2, respectively. To estimate statistical uncertainty of

the equilibrium fits, a procedure like that of [WPR+10] has been implemented, where

experimental equilibriums are varied within the experimental uncertainty in a Monte

Carlo approach to produce a set of 100 realizations for each profile. Each realization is

obtained through a regression fit to the functional form via a least square method. Fig.

4.2 shows the resulting fits to the experimental measurements of density and electron

temperature equilibrium profile measurements of z = Lz/2.

We should note that there is no reliable experimental measurement for electron

temperature equilibrium at r > 6cm, therefore an artificial value of temperature with

larger estimated error is chosen at the edge (r = 8cm) to obtain a plausible fit over

the entire simulation domain. Then, three different fits with low, median and high

values of radially integrated equilibrium density gradient (1/Ln = −d lnn0/dr), and

equilibrium electron temperature gradient (1/LTe =−d lnTe0/dr) are chosen as input fit

uncertainty into the code. The goodness of fits have been tested through chi-squared

parameter[Tay97] χ2 = 1
N ∑( f f it − fexp)

2/σ2, where the sum is over all experimental

measurement points ( fexp). f f it is the fit value, σ quantifies the uncertainty of the

experimental measurement, and N is the number of experimental data points minus the

number of free parameters in the functional form. In table 4.1, we show χ2 < 1 for all the

equilibrium fits, indicating reasonable goodness of the fits. We should note that we also

tested single Gaussian profile for density profiles, however the resulting χ2 value was
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Figure 4.2: Fit realization in a Monte Carlo analysis for experimentally measured (a)
density equilibrium and (c) electron temperature equilibrium at z = Lz/2. (b) Density
gradient lenghtscale (1/Ln) of fits compared with experimentally calculated gradient. (d)
electron temperature gradient (1/LTe) of fits compared with experimentally calculated
gradient. Gray lines show the 100 realization generated in the Monte Carlo approach.

large and the functional form regression could not fully capture the underlaying trend of

the experimental data, especially in the maximum density gradient region. As a result,

double Gaussian functional form is chosen for the density fits.

The same procedure is repeated for fitting the functional form to the equilibrium

density measurements of z = Lz/4, and results are shown in Fig. 4.3. We note that
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Table 4.1: Characteristics of equilibrium fits.

Fit parameter low median high
n0

´
dr(1/Ln)/a 0.45 0.46 0.48

n0 χ2 0.25 0.16 0.17
Te0

´
dr(1/LTe)/a 0.09 0.11 0.34

Te0 χ2 0.28 0.23 0.38

maximum 1/Ln at z = Lz/4 is almost twice the value found at z = Lz/2. In general, we

observe that the experimental measurements of equilibrium density from both probe port

measurements are well characterized, with a very small statistical uncertainty, while the

systematic uncertainty is fairly large. Propagation of these uncertainties in the linearized

model is discussed in more details in Sec. 4.2.

Figure 4.3: (a) Fit realization in a Monte Carlo analysis for experimentally measured
density equilibrium of z = Lz/4. (b) Density gradient lengthscale (1/Ln) of fits.

Within the damping mechanisms, uncertainties in the quantities such as ion

and neutral temperature measurements can affect momentum balance and zonal flow

generation through their effects on the ion-ion viscosity and ion-neutral drag. The

ion-ion viscosity has a nonlinear dependence on the ion temperature and density. To

simplify the code implementation, we have assumed a radially uniform ion-ion viscosity

profile, where the core ion temperature determines the viscosity value. The ion temper-

ature is measured between 0.5 < Ti0 < 0.7eV using Laser Induced Fluorescence (LIF)
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technique[CTML+12]. Moreover, the neutral gas temperature can influence ion-neutral

collision frequency, but there are no previous radial profiles of neutral gas temperature in

any of CSDX experiments. The neutral gas temperature measurement was performed

over a central chord via high resolution (10m) emission spectroscopy, resulting in on-axis

neutral gas temperature of 0.4 < Tg0 < 0.6eV . Therefore, we need to treat the neutrals

temperature at the edge and neutrals temperature steepness as known unknowns. We have

assumed the neutral gas temperature to have functional form

Tg(r) = (T̄g−Tgbase)exp(−(r/lTg)
Tgα /Tgα

)+Tgbase , (4.3)

in which the neutrals at the edge (r = 8cm) have temperature uncertainty between room

temperature 0.03eV to 0.1eV . Also, the steepness of neutral temperature is taken to be

same as ion temperature steepness with ±20% variation (lTg = 2.1cm;Tgα
= 2.3±0.5).

Ion-neutral drag then can be calculated assuming ideal gas behavior with constant gas

pressure of 3.2mTorr. We have also assumed fixed profile of ion-neutral drag with respect

to evolving plasma fluctuations in these simulations. Further experimental measurements

are needed to confirm these assumptions.

4.2 Linear Sensitivity Analysis

In the previous section, we discussed the input uncertainties that could influence

the turbulence. In this section, we will investigate the response of the linearized model to

such uncertainties. This sensitivity scan of experimental parameters provides us with the

information about the sensitivity of the linearized model, as well as insight into the input

experimental parameters that need to be explored in the nonlinear simulations.

A rigorous approach in magnetically confined fusion validation study is the im-

plementation of local sensitivity plots for presenting validation[Hol16]. In this approach,
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one identifies a single input parameter (often the driving gradient of the dominant micro-

instability, or a damping mechanism), and performs a discrete set of simulations in which

this parameter is systematically varied about the experimental base value, holding all

other inputs in the model fixed. Here, the base case is chosen as the statistical median in

the range of uncertainties. The base n0(r) and Te0(r) profiles are chosen from the median

case shown in Fig. 4.2 and Table 4.1, and the density and electron temperature scans

are done with the low and high labeled fits. In addition, we have included the median

realization to the equilibrium density measurements at z = Lz/4, shown in Fig. 4.3,

as an additional input in the linear sensitivity of the model, to explore the systematic

uncertainty of the measurements. The base Tg0 is taken to be 0.5eV , and the scan is

done with low and high values of 0.4eV and 0.6eV respectively. The base edge neutral

temperature estimated as Tgb = 0.065eV , with the range from 0.03eV to 0.1eV . We also

have chosen three values Ti0 = 0.5,0.6,0.7eV as ion temperature input uncertainty with

base value of Ti0 = 0.6eV .

We then calculated the most unstable linear growth rate of the collisional drift-

wave for each uncertainty linear scan, and compared them to the growth rate of the

base case. The linear growth rates can be obtained by calculating imaginary part of

∂ ln φ̃m/∂ t after convergence in the linearized initial value solver. The results of such

scans are shown in Fig. 4.4, where we can observe the linear response of the system

for the expected range of input parameter variations associated with the experimental

uncertainties. A widen horizontal extent denotes larger measurement uncertainty, while

steeper slope indicates a stiffer model response.

Examining these results, we can observe that while the electron temperature

gradient input is very uncertain, it doesn’t contribute much to the linear growth rates. The

statistical uncertainty in density gradient is relatively small and equilibrium density mea-

surements are very well characterized, hence the response range is small. However, the
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Figure 4.4: Maximum linear growth rate sensitivity analysis of uncertainty scans.
I indicates the input parameter uncertainty normalized to the base case value (Ibase).
Solid colors lines show statistical uncertainties sensitivity as follow: radially integrated
density equilibrium scan (red), radially integrated electron temperature equilibrium scan
(orange), core ion temperature scan (yellow), core neutral temperature scan (purple),
base neutral temperature scan (green), and neutral temperature profile steepness scan
(light blue). Dashed red line shows the linear growth rate response due to the systematic
uncertainty in equilibrium density measurements.

systematic uncertainty of equilibrium density fits of different axial location measurements

is large, and linear growth of such uncertainty is very different from the base case growth

rate. The other sensitive responses from input parameter uncertainty are associated with

ion temperature and neutral gas temperature uncertainty at the edge which influence ion

viscosity and neutral drag in the model. Motivated by these results, we ran the nonlinear

simulations for the base case, plus five other simulations including statistical variations

of ion temperature and edge neutrals temperature, as well as systematic uncertainty of

equilibrium density fit due to equilibrium density measurements at z = Lz/4 and z = Lz/2.

The results of these simulations are compared to the experimental measurements in Sec.

4.4.
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4.3 Quantities of Interest

To quantify the fidelity of the turbulent model in describing the experimental

measurements accurately, we need indentify the appropriate quantities to compare. In

this section, we consider a number of physical quantities that are suitable for experiment-

simulation comparison. Typically, the experimental diagnostics do not measure the

identical quantities that the code computes, and thus the development of synthetic

diagnostics is crucial[BN06]. Synthetic diagnostics are computational algorithms used to

transform the simulation results into predicted experimentally observable quantities and

enable meaningful quantitative comparisons[Hol16].

Three main types of diagnostics that have been used in the CSDX linear device:

multi-tip Langmuir probes, visible light fast imaging camera[TBL+14], and laser induced

fluorescence[CTML+12]. In this Chapter, we will discuss the construction of synthetic

Langmuir probe diagnostics, which will be used in Sec. 4.4 for experiment-simulation

comparisons. The benchmarking of synthetic camera imaging will be studied in a separate

publication.

A synthetic Langmuir probe translates the electron density, temperature, and

plasma potential fluctuations predicted by a simulation into the measured ion saturation

current and floating potential fluctuations[RTF+09]. The fluctuations of ion saturation

current and floating potential can be obtained by linearizing the approximated sheath

relations[Hut02],
Ĩsat

Īsat
=

ñ
n̄
+0.5

T̃e

T̄e
, (4.4)

eφ̃ f

T̄e
=

eφ̃

T̄e
−Λ

T̃e

T̄e
, (4.5)

where Ĩsat is the ion saturation current fluctuation, Īsat = 0.61en̄csAprobe is the on-axis

reference value of the ion saturation current (we assumed Ti � T̄e), ñ is the density
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fluctuation, n̄ = n0(r = 0) is the on-axis reference value of the density, φ̃ is the plasma

potential, fluctuation φ̃ f is the floating potential fluctuation, T̄e = Te0(r = 0) is the on-

axis reference value of the electron temperature, and Λ is the sheath factor, where

theoretically in the absence of secondary electron emissions can be obtained as Λt =

− log
√

me/(2πmi).

We should note that in the cold plasma experiments due to the diagnostic limita-

tion in measuring small electron temperature fluctuations, this quantity is often neglected

so that Ĩsat and ñ, and φ̃ f and φ̃ are often used interchangeably in analysis of experiments.

In reality, this assumption may not be accurate. Here in the simulations, we are evolving

electron temperature fluctuations, and through synthetic diagnostics, we can translate

back real physical quantities into experimentally measured quantities. More complicated

quantities such as time-averaged particle flux, Reynolds stress, time-delay-estimation

(TDE), and nonlinear kinetic energy transfer of fluctuations can then be calculated in the

simulation the same way they are being calculated from the experimental measurements.

r, ✓, z r + 1, ✓, zr � 1, ✓, z

r, ✓ � 1, z

r, ✓ + 1, z

Figure 4.5: Simulation grid points in perpendicular plane.

For instance, by calculating the ion saturation current and floating potential

fluctuations in the simulation grid (see Fig. 4.5), we can mimic experimentally measured

quantities by calculating synthetic radial E×B velocity fluctuations (ṽ f
r = −∂θ φ̃ f /B)
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and azimuthal E×B velocity fluctuations (ṽ f
θ
= ∂rφ̃ f /B) using numerical gradients of

floating potential fluctuations, and obtain the normalized local synthetic particle flux

(Γsyn) and the normalized synthetic Reynolds stress (Rsyn
t ) at the grid point (r,θ ,z) as

Γ
syn
(r,θ ,z) =

n̄Ĩsat(r,θ ,z)

Īsat

(φ̃ f(r,θ−1,z)− φ̃ f(r,θ+1,z))

2Br2∆θ
, (4.6)

Rsyn
t(r,θ ,z) =

(φ̃ f(r+1,θ ,z)− φ̃ f(r−1,θ ,z))(φ̃ f(r,θ−1,z)− φ̃ f(r,θ+1,z))

4B2r2∆θ∆r
. (4.7)

In addition, the TDE technique can be applied to relate the peak time lag τp(φ̃1, φ̃2)

of the fluctuations cross-power to estimate the local azimuthal phase velocity[HTMF04,

YHT+07]. Experimentally, two azimuthally separated Langmuir probe tips measuring

floating potential at a specific radius, and axial location are used to estimated the phase

velocity, while in the simulations, we can average the velocity over multiple azimuthally

separated points at a certain radius, and axial location to obtain the azimuthal phase

velocity,

Vph(r,θ ,z) =
r∆θ

τp(φ̃ f(r,θ+1,z), φ̃ f(r,θ ,z))
. (4.8)

In addition, the nonlinear kinetic energy transfer is measured experimentally

through a 3×3 array of Langmuir probes measuring floating potential[XTH+09, XTH+10,

MXTT11]. Experimentally, vorticity fluctuations simply been calculated by taking Lapla-

cian of floating potential fluctuations, hence we can compute the normalized synthetic

nonlinear kinetic energy transfer at a fixed spatial location (r,θ ,z) for frequency f as

T syn
u ( f ) =− a

ρs
ℜ

(
eφ̃∗f ( f )

T̄e
Psyn

Ω
( f )

)
, (4.9)

in which the star superscript denotes the conjugate complex, and Psyn
Ω

=
{

eφ̃ f
T̄e
, n0

n̄ ρ2
s ∇2
⊥(

eφ̃ f
T̄e
)
}

is the synthetic vorticity Poisson bracket.
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4.4 Comparison of Simulation-Experiment

For comparison of simulations against the experimental results, we have con-

ducted six simulation scans where the input parameters were varied over the expected

range of uncertainties. By running the nonlinear simulations for this range of input

parameters, we can compute the resulting time series of synthetic turbulence observables.

In Fig. 4.6, we show the total fluctuation energy Etot = 0.5(〈ñ2〉+ 〈n0(∇⊥φ̃)2〉+ 〈T̃ 2
e 〉)

time trace of the base case simulation. We have calculated the mean quantities for

each simulation by dividing the saturation regime into five (ten for spectra comparisons)

sub-averaging windows, as shown by the red lines in Fig. 4.6. The mean of all of the

sub-averaging windows is then taken as the mean turbulence quantity of that specific

simulation, and the standard deviation as the uncertainty. The sub-averaging window

length τsub = 150a/cs is chosen to be about two orders of magnitude larger than the auto-

correlation timescale (τcorr ≈ 2a/cs) that are, in turn, about one order of magnitude larger

than the simulation integration timestep (∆t = 0.2a/cs). In this section, we compare the

computed QoIs from the simulations against the experimental measurements.

Figure 4.6: Time trace of the normalized total energy in base case simulation. Red
lines indicate mean values of sequential 150a/cs sub-averaging windows.
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4.4.1 Ion saturation current Ĩsat

Basic fluctuations statistics such as Isat and φ f are the most fundamental quantities

to examine in simulation-experiment comparisons. Fig. 4.7a illustrates the radial ñ

root mean squared (RMS) fluctuation amplitudes normalized to the reference density,

n̄ = n0(r = 0), computed from the simulations, at an axial location z = Lz/2 downstream

from the source. Fig. 4.7b shows the radial Ĩsat RMS fluctuation amplitudes of the

simulations, compared with the experimental measurements at the same axial location,

both normalized to Īsat . The experimental measurements are calculated by taking the

standard deviation of ion saturation fluctuations after subtracting the mean Isat , and

normalizing to Īsat = Isat(r = 0). The experimental measurements in this case are made

with a plunging Langmuir probe for higher radial resolution. In the simulations, the

RMS amplitude of ion saturation current fluctuations for finite perpendicular and parallel

wavenumbers are calculated. In Fig. 4.7, the blue line shows the base case simulation

results, while other colors dashed lines represent the simulation results carried out for

input parameters that range over the experimental uncertainties as discussed earlier. The

shaded band shows the sub-window averaging standard deviation of base case simulation.

We observe the simulations have good agreement with experimental Ĩsat measure-

ments for r < 4cm, while overestimating the fluctuations at 4cm < r < 6cm. Moreover,

we observe that the Ĩsat and ñ are not very different, and ion saturation current can fairly

be used to describe the density.

A comparison of the power spectral density (PSD) of ion saturation current and

the density fluctuations for finite wavenumbers at z = Lz/2 is shown in Figs. 4.8a-b,

which shows the r− f contour plots of power spectral density for the base case simulation.

We observe that the simulation ion saturation current and density fluctuations have very

similar spectra properties. The experimental autopower spectra of ion saturation current,

obtained via fixed Langmuir probe measurements at z = Lz/2 location for high temporal
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Figure 4.7: (a) Density fluctuations at z = Lz/2 of the simulations. (b) Comparison
of the experimental and synthetic ion saturation current fluctuation measurements at
z = Lz/2. The dashed lines correspond to nonlinear simulation of the cases shown in
Fig. 4.4, and the shaded band indicates the standard deviation of sub-window averaging
of the base case simulation.

resolution, is shown in Fig. 4.8c. Moreover, a comparison of the synthetic ion saturation

current autopower spectra with the experimental measurements of Isat spectra for r = 3cm

is shown Fig. 4.8d.

Comparing the experimental measurements and synthetic ion saturation current

spectra, first we observe that the simulation spectra peaks at frequencies fairly similar to

the experiment. Second, the simulations shows finite Ĩsat power at r > 5cm, while the

experimental Ĩsat power is low at that radii. We can relate the extra autopower difference

observed in the simulation spectra in 4cm < r < 6cm to the RMS fluctuation amplitudes

difference between simulations and experiment observed in Fig. 4.7b. Nevertheless, at

2cm < r < 3cm, the simulations produce the rate of power change with frequency similar

to the experimental measurement, and the experimental spectral amplitudes is seen to be

in agreement with the scatter expected from the uncertainty scan. Third, the simulation

scan with the equilibrium density fit of experimental measurements of z = Lz/4 (red

line in Fig. 4.8) contains larger autopower, and peaks at different frequencies compared

to the experimental measurements and other simulation performed with equilibrium
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Figure 4.8: Autopower spectra of (a) density, and (b) ion saturation current fluctuations
for the base case simulation. (c) Experimental measurement of ion saturation current
autopower spectra. (d) Comparison of Ĩsat autopower spectra of simulation scans against
the experimental measurements at r = 3cm,z = Lz/2. The shaded band indicates the
uncertainty due to the number of sub-windows of the base case simulation.

density fit to the measurements of z = Lz/2. One can deduce that local density profile

of z = Lz/2 axial location is necessary for reproducing the experimental ion saturation

current fluctuations autopower measurements at z = Lz/2.

4.4.2 Floating potential φ̃ f

Another essential quantity in our validation study is the plasma potential fluctua-

tions generated in the process of drift-wave/zonal-flow turbulence dynamics. In Fig. 4.9a,

we show the radial profile of plasma potential φ̃ RMS fluctuation amplitudes from the

simulation, at the axial location z = Lz/2. Fig. 4.9b shows the radial synthetic floating
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potential φ̃ f RMS fluctuation amplitudes of the simulations, compared with the exper-

imental measurements. In the simulations, the φ̃ f amplitudes agree with experimental

measurements in the core (r < 3cm) for the input parameter uncertainty scans, while they

overestimate the amplitudes in the outer region.

Figure 4.9: (a) Plasma potential fluctuation RMS amplitude of the simulations at
z= Lz/2. (b) Comparison of the experimental and synthetic floating potential fluctuation
measurements at z = Lz/2. The dashed lines correspond to nonlinear simulation of
the cases shown in Fig. 4.4, and the shaded band indicates the standard deviation of
sub-window averaging of the base case simulation.

Unlike the negligible difference between Ĩsat and ñ fluctuations, there is a notice-

able difference between computed synthetic floating potential and the plasma potential

fluctuation amplitudes. This difference is more obvious in the systematic uncertainty

scan of the density profile. The simulations show the electron temperature fluctuation

RMS amplitude is small compared to plasma potential fluctuations (see Fig. 4.10a for

the normalized electron temperature fluctuations). However, the relatively large sheath

factor Λ = 5.1 of Argon increases the weight of electron temperature fluctuations in

setting the floating potential. We should note that magnitude of electron temperature

fluctuations is larger in the systematic uncertainty scan of density profile, mainly due

to increase of drift-wave instability with a more steepened profile and larger energy

transfer from density fluctuations to electron temperature fluctuations through the adia-
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batic response[VHTT17]. Furthermore, we find that the plasma potential and electron

temperature fluctuations have non-zero phase shift. Fig. 4.10b show power-weighted

plasma potential-electron temperature cross-phase ζ (φ̃ , T̃e). As a result, floating potential

phase is different from the plasma potential phase. This different phase characteristics

of floating potential can affect fluxes inferred from Langmuir probe floating potential.

This cross-phase distortion also founded in studies of density-potential cross-phase by

[MGR+05], where they observed the floating potential RMS amplitudes can be distorted

from the plasma potential.

Figure 4.10: (a) Electron temperature fluctuations of the simulations, and (b) power-
weighted plasma potential-electron temperature fluctuations cross-phase ζ (φ̃ , T̃e) at
z = Lz/2. The dashed lines correspond to nonlinear simulation of the cases shown in
Fig. 4.4, and the shaded band indicates the standard deviation of sub-window averaging
of the base case simulation.

Similar to earlier Ĩsat autopower spectra, we see similar simulation spectra from

plasma potential and floating potential fluctuations, shown in Fig. 4.11a-b. In the

comparison presented in Figs. 4.11a-b, we can observe that the difference between

plasma potential and the floating potential is also visible in frequency domain, where

the floating potential contains more power than the plasma potential, indicating the

importance of the electron temperature fluctuations on the synthetic Langmuir probe

diagnostics.
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Figure 4.11: Autopower spectral density of (a) plasma potential and (b) synthetic float-
ing potential fluctuations for the base case simulation. (c) Experimental measurement of
floating potential autopower spectra. (d) Comparison of φ̃ f autopower spectral density
of simulation scans against the experimental measurements at r = 3cm,z = Lz/2. The
shaded band indicates the uncertainty due to the number of sub-windows of the base
case simulation.

Moreover, in Fig. 4.11c, the experimental measurement of floating potential

autopower via fixed Langmuir probe at z = Lz/2 is plotted. For a more quantitative com-

parison, we have plotted the synthetic floating potential power spectra of the simulations

and the experimental floating potential spectra at r = 3cm, and the results are shown in

Fig. 4.11d. Similar to the earlier ion saturation current spectra, the simulation floating

potential autopower peaks at same frequencies as the experiment. The expectations to this

results is the density equilibrium profile scan, which contains more autopower and peaks

at different frequencies when the z = Lz/4 density profile is used. From floating potential

comparisons, we can again deduce that the axially local density equilibrium profile of
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z = Lz/2 gives better agreement with turbulence quantities measured at z = Lz/2.

4.4.3 Particle Flux Γ

The estimation of cross-field transport in plasma turbulence models has been

a subject of interest in many magnetically fusion turbulence models. However, cal-

culation of the quantities such as particle flux includes the uncertainties of the phase

between fluctuations of density or heat fluctuations and velocity fluctuations[RTF+09].

In Fig. 4.12a, we show the radial particle flux from the simulations, at axial location

z = Lz/2. Fig. 4.12b compares the radial synthetic flux of simulations against the

experimental measurements of particle flux. Experimentally, the flux has been calcu-

lated at z = Lz/2 and filtered from 5 to 30kHz to isolate the finite drift-wave-driving

modes[CTXM+13]. This frequency range corresponds to the dominant linearly unstable

drift-wave modes[CTXM+13]. From the simulation, we have also filtered the flux within

the same frequency range. A similar trend between synthetic flux in the simulations and

experimental measurements is obtained, where the simulations capture the highs and

dips of experimental measurements within the uncertainties. Moreover, the peaks of

synthetic particle flux and real particle flux qualitatively show relatively similar maximum

transport. However, the simulation scan with the systematic uncertainty of equilibrium

density shows larger particle flux, and significantly larger synthetic flux compared to

other simulation scans. This again shows better agreement of simulation scans with the

z = Lz/2 density profile to predict the experimental measurements of flux at z = Lz/2.

An interesting observation in the particle flux measurements is the difference

between the synthetic and the physical flux. The electron temperature fluctuations

influence the ion saturation current and floating potential cross-phase ζ (Ĩsat , φ̃ f ), setting

it apart from the radial cross-phase profile of density-plasma potential cross-phase

ζ (ñ, φ̃). In Fig. 4.13, we have compared the difference in the power-weighted ζ (Ĩsat , φ̃ f )
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Figure 4.12: (a) Radial particle flux of the simulations at z = Lz/2. (b) Comparison of
the experimental particle flux measurements and the synthetic particle flux at z = Lz/2.
The dashed lines correspond to nonlinear simulation of the cases shown in Fig. 4.4, and
the shaded band indicates the standard deviation of sub-window averaging of the base
case simulation.

and ζ (ñ, φ̃) in the base case simulation. Both cross-phases show less than π/4 phase

difference indicating dominant drift-wave dynamics, and are similar to the sign of

synthetic and physical fluxes shown in Fig. 4.12, indicating that the density-potential

cross-phase is important in determining the the direction of flux. The power weighted

cross-phase of ion saturation current and floating potential is measured in the CSDX

linear device at different experimental condition[BTA+05], where the experimental and

synthetic ζ (Ĩsat , φ̃ f ) profile qualitatively similar to our simulation conditions.

In drift-wave turbulence, the transport depends on the sign of density-potential

cross-phase and kθ [Hor99], and one would expect monotonically decreasing density to

yield outward transport. Thus, the sign reversal of the experimental flux may be due

to these phase distortion due to finite T̃e effects on the measurements. Nevertheless, in

the experiments, the cross-field flux reversal is also observed in the other experimental

condition of CSDX[CTD+15], which has been found by direct time-resolved imaging

of the inward motion of light intensity fluctuations. Further study and synthetic camera

imaging diagnostics is needed to fully understand these experimental observations.
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Figure 4.13: Comparison of power-weighted density-plasma potential cross-phase
ζ (ñ, φ̃) and ion saturation current-floating potential cross-phase ζ (Ĩsat , φ̃ f ) in the base
case simulation. The shaded bands indicate the standard deviation of sub-window
averaging of the base case simulation.

It is important to note that the presence of secondary electron emissions in the

Langmuir probe measurement at even very low temperatures can reduce the value of

sheath factor[NXK+16]. To further investigate the sensitivity of secondary electron

emissions in the sheath factor on our simulation interpretation, we have performed an

initial sensitivity analysis on the synthetic diagnostics setup using the modified sheath

factor using half the theoretical value Λm = 2.5 (In reality, the sheath factor can have

radial dependence, but the radial dependency is not explored in this thesis). In Fig.

4.14, we have plotted the synthetic floating potential and synthetic particle flux of the

base case simulation, with both theoretical Λt = 5.1 and modified Λm = 2.5 values,

and compared them against the experimental measurements. We can see for either

finite sheath factor, the floating potential is affected and the ζ (Ĩsat , φ̃ f ) cross-phase gets

distorted from ζ (ñ, φ̃). As observed, the magnitude of sheath factor intensifies the effects

of cross-phase distortion in the interpretation of floating potential fluctuation amplitudes

and the calculation of synthetic particle flux. Similar cross-phase distortion due to

electron temperature fluctuations in synthetic Langmuir probe measurement also reported

by [NRR+12]. Nonetheless, for a more conclusive validation study, a rigorous study of
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sheath factor radial profile is needed.

Figure 4.14: Comparison of experimental and synthetic (a) floating potential fluctuation
RMS amplitudes and (b) particle flux measurements with different values of sheath
factors Λt = 5 and Λm = 2.5 at z = Lz/2. Shaded error bars indicate standard deviation
of sub-averaging window for the base case simulation. The shaded bands indicate the
standard deviation of sub-window averaging of the base case simulation.

4.4.4 Reynolds Stress Rt

Another important turbulence quantity is the Reynolds stress or vorticity flux (Rt).

Predicting this parameter is essential in studies of zonal flow generation. Experimentally,

this value is calculated by multiplying turbulent radial velocity and azimuthal velocity

calculated from spatial gradients in Langmuir probe floating potentials. Hence, similar

to particle flux, a synthetic Reynolds stress measurement may differ from the actual

Reynolds stress. In Fig. 4.15a, we have shown the Reynolds stress obtained from the

simulation scans at z = Lz/2. In Fig. 4.15b, we have compared the synthetic Reynolds

stress Rsyn
t against the experimental measurements at z = Lz/2. We observe the Reynolds

stress magnitude is significantly larger in simulation scan with z = Lz/4 density profile.

This effect is even more pronounced in the synthetic Reynolds stress observations. The

Reynolds stress shown in Fig. 4.15 has been filtered from 5 to 30kHz in both the synthetic

and the experimental measurements.
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Figure 4.15: (a) Reynolds stress computed from the simulations at z = Lz/2. (b) Com-
parison of the experimental Reynolds stress measurements and the synthetic Reynolds
stress at z = Lz/2. The dashed lines correspond to nonlinear simulation of the cases
shown in Fig. 4.4, and the shaded band indicates the standard deviation of sub-window
averaging of the base case simulation.

We can observe that the synthetic Rsyn
t is about one order of magnitude larger than

physical Rt . In the experimental measurements, Reynolds stress is vanishingly small at

5cm < r < 7cm in the experimental measurements, while the simulations are producing

positive stress. This result is consistent with overprediction of fluctuation amplitudes at

larger radii.

4.4.5 Azimuthal Velocities Ṽph,ṼE×B

Zonal flows[DIIH05] are an important drift-wave regulation mechanism, and their

formation dynamics have been subject of many studies. Experimentally, the measurement

of zonal flows is a difficult task, since one has to average the velocity over both azimuthal

and axial potential fluctuations. Usually a radial profile of the low-frequency portion

of Er(r) is measured or inferred, the results of which is then taken to be the zonal

flow. For example, in our work the low-frequency (≤ kHz) azimuthal velocity has been

measured through different techniques such as time-delay-estimation (TDE)[YHT+07],

laser-induced fluorescence (LIF)[CTML+12], and swept Langmuir probe[CTXM+13]
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techniques. In this section we will compare the azimuthal velocities with the results of

these independent set of measurements.

In the experiments, the study of zonal flow generation and nonlinear energy trans-

fer have been previously reported at Lz/4 downstream from the source[CTML+12], at a

different axial location from the measurements shown in the previous sections. Hence in

this section, we compare the simulation prediction at z = Lz/4 against the experimental

observation. In Figs. 4.16, we have compared the experimental TDE phase velocity

of floating potential time series obtained from multi-tip probes against the TDE phase

velocity of synthetically computed floating potential time series at two azimuthally sepa-

rated grid points of the simulation domain at z = Lz/4. Both experimental measurements

and simulation potentials are filtered for wavenumber 0.1cm−1 < kθ < 12cm−1, and low

and high bandpass filters on frequency is used to filter for only frequencies of interest

(3kHz < f < 20kHz) where the finite drift-wave modes are experimentally known to

be active. The systematic uncertainty of TDE velocity in experiments is estimated by

choosing different two-tips configuration of from 9-tip array, while in the simulation, the

uncertainty is calculated by taking standard deviation of each two adjacent grid points

in the azimuthal direction. We observe that the TDE velocity computed from synthetic

floating potential is in reasonable agreement with experimental measurements in the

inner core r < 4cm, while it largely overestimates the edge phase velocity and shearing

rate.

To understand the phase velocity of the simulation results, we investigated the

difference of the two-point spectrum S(m, f ) for synthetic floating potentials, computed

at two different radii r = 3.6cm and r = 5cm for the base case simulation (see Fig. 4.17).

Moreover, we have also over-plotted the linear plasma frequency ωlin calculated from the

linear dispersion relation, the E×B frequency ωE×B = kθ vE×B, the electron diamagnetic

frequency ω∗e = kθ ρscs/Ln, and the TDE phase velocity Vph calculated from the floating
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Figure 4.16: Comparison of experimental time-delay-estimation (TDE) phase velocity
of floating potential measurements versus TDE velocity of synthetic floating potential
of simulation scans at z = Lz/4. The dashed lines correspond to nonlinear simulation
of the cases shown in Fig. 4.4, and the shaded band indicates the standard deviation of
sub-window averaging of the base case simulation.

potential in the simulation. We observe that linear frequency is very dispersive with

ωlin > ω∗e for lower mode numbers due to nonlocality of the model. As discussed below,

the self-generated E×B velocity in the simulation is fairly small and thus Doppler shift

effects are minimal. However, we observe the nonlinearly saturated phase velocity is

different than both diamagnetic frequency and E×B velocities.

Figure 4.17: Comparison of frequencies and two-point spectrum at (a) r = 3.6cm and
(b) r = 5cm of the base case simulation.
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We also have compared the self-generated zonal ṽE×B velocity against the vE×B

velocity calculated from LIF measurements. In the experiments, the E ×B velocity

can be obtained by subtracting the ion diamagnetic velocity (v∗i), computed from the

ion temperature and density profiles, from the bulk fluid velocity measured from the

LIF diagnostics (vLIF ). A detailed discussion of this subject and comparison with other

independent experimental diagnostics of E×B (e.g. swept Langmuir probe measurements

of plasma potential) can be found in a previous publication[CTML+12].

In Fig. 4.18, we compare the self-generated E ×B velocity in the simulation

against the experimentally inferred E ×B profile from LIF measurements. We can

observe that the simulations scans with equilibrium density profiles at z = Lz/2 largely

underestimate the experimental E ×B velocity measurements at z = Lz/4. However,

the simulation scan with equilibrium density of z = Lz/4 fairly captures the shape and

magnitude of experimentally measured E×B flow. These results show the importance of

local steepening, and a detailed uncertainty scan for quantitive validation of self-generated

zonal E×B flow.

Figure 4.18: Comparison of vE×B = vLIF − v∗i , and vE×B = ∂rφ̃pl obtained from
experimental measurements, against the simulations self-generated 〈ṽE×B〉.
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4.4.6 Nonlinear kinetic energy transfer Tu

The most complicated turbulence observables in model-experiment compar-

isons are the nonlinear kinetic energy transfer Tu, and the internal energy transfer

Tn. Experimentally, kinetic energy transfer in CSDX has been measured through

floating potentials using a 3× 3 Langmuir probe array installed at z = Lz/4 down

the plasma source, calculating T exp
u ( f ) = −∑ f1 ℜ〈(ẑ×∇⊥φ∗f ( f ))[(ẑ×∇⊥φ f ( f − f1) ·

∇)(ẑ×∇⊥φ f ( f1))]〉[XTH+10]. In our simulations, the normalized physical nonlinear

kinetic energy transfer can be computed as Tu( f ) = − a
ρs

ℜ〈(eφ̃∗( f )/T̄e)PΩ( f )〉 where

PΩ = {eφ̃/T̄e,eρ2
s Ω̃/n̄T̄e} is the normalized vorticity Poisson bracket used in the model.

We can also construct the synthetic kinetic energy transfer rate for the simulation results

using floating potential instead of floating potential as T syn
u ( f ) as introduced in Sec.

4.3. We should note that radial variation of equilibrium density is not included in the

experimental vorticity measurements, therefore has not been taken into account in our

synthetic diagnostics setup as well.

The contour plots of Tu( f ) and T syn
u ( f ) in the region of maximum equilibrium

gradients for the base case simulation are shown in Figs. 4.19a-b, respectively. We

can observe transfer of energy in Tu( f ), where the energy in finite frequency f ≈ 8kHz

transfers to low frequencies f < 2kHz. The same qualitative trend can also be observed

in the synthetic diagnostic measurements. However, the effect of electron temperature

fluctuations significantly amplifies the measured nonlinear energy transfer (about two

orders of magnitude), and may influence the sign of the measured energy transfer (e.g.

see the energy transfer of f ≈ 1kHz at r ≈ 3cm in the Fig.4.19b). In Fig. 4.19c we

compare the kinetic nonlinear energy transfer Tu of the simulation scans. One notable

observation is the difference between the simulation scans with the density equilibrium

of z = Lz/2 versus the simulation scan of z = Lz/4 density equilibrium. We observe the

simulation with the steeper equilibrium density of z = Lz/4, shows much larger nonlinear
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Figure 4.19: (a) Physical nonlinear kinetic energy transfer, and (b) synthetic nonlinear
energy transfer for the base case simulation. (c) Comparison of Tu spectra of simulation
scans at r = 3.6cm and z = Lz/4. (d) Comparison of T syn

u spectra of simulation scans
against the experimental measurements at r = 3.6cm and z = Lz/4. Shaded bands
indicate the sub-window resolution error. Experimental data is taken from [XTH+10]
with permission.

energy transfer to the lower frequencies, consistent with the larger generation of E×B

flow, shown in Fig. 4.18.

In Fig. 4.19c, we have shown the comparison of normalized kinetic energy

transfer between experimental measurements and synthetic diagnostics measurements

of the simulation results at maximum density gradient region (r = 3.6cm). Although

T syn
u Qoi shows fairly good qualitative agreement with experiment, the magnitude of

T syn
u is about one order of magnitude larger than Tu, mainly due to the effects of finite

fluctuations of electron temperature. Moreover, we observe nearly all the simulation scans
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reproduce experimental measurements of nonlinear kinetic energy transfer within the

uncertainties, and the major difference of physical nonlinear kinetic energy transfer due

to the systematic uncertainty of density equilibrium is not seen in the synthetic diagnostic

measurements. These results indicate that local kinetic energy transfer measured in both

experiment and through synthetic diagnostics is a good qualitative representation of

nonlinear advection of kinetic energy, however they do not quantitatively correspond to

energy transfer needed for experimentally generated zonal flow. Further generalization

of vorticity, including the density fluctuations in the perpendicular divergence is needed

for capturing the quantitive physical nonlinear kinetic energy transfer.

4.5 Discussion

In this Chapter, we have performed validation of a collisional drift-wave/zonal-

flow turbulence model against the experimental measurement of CSDX linear device

with insulating end plates. We recognized the experimental measurement uncertainties,

and performed linear scans and nonlinear simulations with various input profiles within

the experimental uncertainties. The input profile uncertainties can lead to large variation

in the linear growth rates. A statistical uncertainty study showed that the largest linear

sensitivities in the system arise from the ion temperature and the edge gas temperature

uncertainties. Moreover, variation in the density equilibrium profile at different axial

locations, gives rise to a systematic uncertainty of equilibrium density input to the model.

Since our current model does not account for the axial variation of equilibrium profiles,

we ran additional simulations with different fits to equilibrium density measurements

from different probe port. We ran a simulation with the median base case with the

equilibrium density of the middle of device, plus additional set of five simulation scans

over the sensitive input parameters Ti0 , Tgb , and equilibrium density fit of measurements
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at the other probe port to account for the input parameter uncertainties.

For the simulation comparison against the experimental measurements, we trans-

lated the typical simulation outputs (ñ, φ̃ , and T̃e) into synthetically measured quantities

such as Ĩsat and φ̃ f , and compared the radial profile and frequency domain of QoIs against

the experimental observations. We observed a fairly good agreement between simulation

and the CSDX experimental measurements in the core region (r / 4cm). However, the

simulations overestimate the fluctuations in the edge region (r > 4cm). We suspect since

the density fluctuations become comparable to the density equilibrium (i.e. ñ/n̄ ≈ 1)

at the edge of plasma column (r > 5cm) the small flucutations assumption (ñ/n0� 1)

breaks down. A source driven model that evolves full profiles of turbulence quantities

(instead of evolving just fluctuations on a fixed background profile) might be needed for

better quantitive validation of the experimental observations near the edge. In addition,

the effects of parallel ion dynamics might be important in convecting the fluctuations in

axial direction, which is neglected in the current model and needs to be studied as well.

Moreover, the effects of electron temperature fluctuations in the synthetic Lang-

muir probe interpretation for a cold plasma setting was investigated as well. We observed

that the measurement of ion saturation current fluctuations through Langmuir probe is a

good representation of density fluctuations in CSDX experimental condition. However,

the floating potential fluctuations may be different from plasma potential fluctuations due

to the finite electron temperature fluctuations. This distortion can have an effect on the in-

terpretation of fluxes where the velocity fluctuations are obtained from spatially separated

floating potential fluctuations instead of plasma potential fluctuations. The results moti-

vate the electron temperature fluctuations measurement in the experiments. Moreover,

the results shows the importance of synthetic diagnostics in the simulation-experiment

comparisons.

Perhaps, the most important observation in our simulation scans, was the differ-
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ence in turbulence characteristics due the systematic uncertainty of density equilibrium

inputs. We observed that equilibrium density steepening influences the main source

of instability drive, and stiffly affects the turbulence saturation levels. By comparing

the simulation predictions against the experimental measurements, we realized that lo-

cal equilibrium density input at a specific axial location is important in validating the

experimental measurements of that specific axial location. Moreover, our simulation

scans show that the generation of E×B is very sensitive to the steepening of density

equilibrium.

The current experimental measurements and simulation benchmarks indicate

a modest axial density equilibrium gradient is necessary for quantitive quantitative

agreement with E×B zonal flow experimental measurements at different axial location.

A source-driven model which evolves full parameters, and accounts for axial variations,

with source being on one side and insulating sheath on the other side may be needed for

further improvement of simulation results against the experimental measurements.
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Chapter 5

Improved Uncertainty Quantification

in a Plasma Turbulence Validation

Study

One of the primary challenges for computational validation studies of magnetic

fusion energy experiments such as International Thermonuclear Experiment Reactor

(ITER) are the many uncertainties in experimentally derived input parameters[FBC+16].

Addressing this issue requires forward propagation of input uncertainties through a

computational model, and performing statistical model-experiment comparison assess-

ments on the resulting model responses[GEMC+06, Mah00]. A rigorous uncertainty

quantification process moves beyond qualitative sensitivity analysis to enable quantitive

validation studies[Hol16]. Classical sensitivity analysis, as often used by the plasma

micro-turbulence community[RHS+11, Hol16], can give insight into the goodness or

deficiency of a specific model. However, it does not quantify the input uncertainties

with a rigorous confidence interval. [OTH04] identified a process by which qualitative

comparisons, i.e. what where termed viewgraph norms, can be transformed into rigorous

108
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quantitative metrics via inclusion of these uncertainties. Many past and current plasma

turbulence validation studies using nonlinear simulations were limited to qualitative

comparison. More recently, the plasma community has recognized the importance of

uncertainty quantification (UQ) in validation and prediction of magnetically-confined

plasma turbulence[Hol16]. Within the computational power of current clusters, the

plasma community has explored the inclusion of UQ in analysis of reduced models,

such as TGLF [SKW07], but UQ analysis in core-hour limited nonlinear simulations,

e.g. gyrokinetic simulations, remains a challenging task[Hol16]. Some previous litera-

ture of UQ inclusion in reduced model assessments, and in the fitting of experimental

measurements, includes but not limited to Refs. [PLD+98, WPR+10, CGM+15].

To quantify the aggregate fractional error (the relative error between simulation

and experimental measurement) of a non-deterministic validation study, we need to have

knowledge of the quantity of interest (QoI) probability distributions. In this Chapter,

we investigate the Probabilistic Collocation Method (PCM)[WTM96, TPPM97] for

improved, fast and accurate uncertainty quantification. This method has been introduced

and widely used for quantification of uncertainties in other fields e.g. fluid turbulence

simulations. Here, we present the implementation and implications of using this UQ

method in validation studies of magnetically confined plasma turbulence simulations.

The rest of this Chapter is organized as follows: In Section 5.1, we discuss the

theory and logic behind the Probabilistic Collocation Method. In Section 5.2, we compare

the forward propagation of uncertainties through the PCM against the analytical transfor-

mation of probability distributions. In Section 5.3, we study the forward propagation of

uncertainties above and near the critical gradients, in a simple set of collisional drift-wave

simulations. In Section 5.4, we apply the PCM uncertainty quantification method to a

validation study of the CSDX linear plasma device, using the model from Sec. 5.3. In

Section 5.5, we summarize the findings and discuss the future directions.
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5.1 Uncertainty quantification via Probabilistic Colloca-

tion Method

Different sources of uncertainty all contribute to validation studies of an exper-

imental case. Experimental uncertainties may originate from plasma reproducibility,

diagnostic properties, or experimental fitting evaluations[RRT+15]. Simulation uncer-

tainties may arise from the use of a reduced models form[OM11] (e.g. errors originating

from use of a reduced model rather than a full kinetic description of the plasma), due

to numerics[ODR+02] (e.g. due to the numerical integration scheme used or finite grid

resolution), or uncertainties in input parameter measurements. In this Chapter, we will

focus on quantifying the uncertainties from input parameter uncertainties arising due

to experimental measurements, and defer the detailed analysis of other error sources to

a future study. A probability distribution function (PDF) of uncertainties in the input

parameters becomes a PDF of simulation outputs. The goal here is to quantify the uncer-

tainty of the simulation response for quantities of interest (QoIs) via these PDFs, so that

the direct statistical comparison of predicted quantities with experimental measurements

can be made.

Assuming an initial value problem in space x, and time t, the aim is to quantify

the uncertainty in the response

r = f (x, t,I),

which depends on the uncertain parameters I. The typical setting is that we know the

joint probability distribution of input parameters pI from experimental measurements e.g.

temperature gradient, but nothing is known about probability distribution (pr) of model

response r e.g. turbulent flux. A goal of uncertainty quantification is to determine pr for

QoIs.

To quantify the uncertainties in QoIs, several methods exist. A straightforward
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method is Monte Carlo simulation, where many random samples taken from the input

parameter PDF are used to construct the pr distribution[RK11]. However, Monte Carlo

simulation for nonlinear turbulence models is often computationally very expensive due

to the large numbers of degrees of freedom in the equations[LWB07]. Another approach

as shown in Fig. 5.1 is to approximate r(I) in high probability region of pI to estimate

response probability distribution pr[WTM96], assuming that the transformation from

the input parameters to the response is smooth. As a result, as also shown in Fig. 5.1,

with the knowledge of inputs probability distribution, pI, an actual or approximated

response-input relation, r(I), one can find the response probability distribution pr using

the concept of the probability transformation,
´

prdr =
´

pIdI, so that if r(I) relation is

smooth and one-to-one, we shall have pr = pI|dr/dI|.

Figure 5.1: The schematic of constructing pr by approximating r(I). Samples (blue
dashed lines) are used to estimate the r(I) function.
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The common methods that utilize such approximation includes the intrusive

Galerkin polynomial chaos, non-intrusive pseudo-spectral method, and the non-intrusive

probabilistic collocation method [LWB07]. Among these, the Galerkin method requires

rewriting the model equations to account for the uncertainties when solving the equations.

Non-intrusive methods have the advantage of needing only input parameters and simula-

tion response values, while treating the model and simulation as a black box function.

Thus, they make excellent choices for uncertainty quantification using established codes,

since they can benefit from previous nonlinear simulation runs. In this Chapter, we have

pursued the uncertainty quantification via probabilistic collocation method (PCM), due

to its relative simplicity and easier implementation.

The PCM approach combines the idea of a chaos transformation like polynomial

chaos[Bec73] and the collocation approach for Lagrange interpolation[FL15], to find the

probability distribution of response quantities using a reduced number of simulations with

a decoupled system of equations. Previous UQ studies in other fields have used the PCM

approach[WTM96, TPPM97, LWB07, HL04]. Multiple numerical packages are publicly

available for use in implementing these methods, such as DAKOTA Project[GEMC+06],

and open-source framework chaospy[FL15]. In this study, we have used chaospy for

our uncertainty quantification analysis. In the rest of this section, we will explain the

step-by-step implementation of PCM.

5.1.1 Specifying Input Uncertainty Distribution

The first step in obtaining the probability distribution of the response pr via

PCM is to determine the input parameters probability distributions pI. This first step is

necessary for both generating the polynomial chaos expansion and for efficient sampling

of the input uncertainty distributions when performing simulation runs.

Knowledge of the input PDF usually comes from either direct observation or
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modeling of the experimental measurements. For instance, the input PDF of a stochas-

tic quantity can be determined from sufficiently long temporal measurements in the

experiment. Another approach is to perform a specific experiment multiple times and

obtain the experimental probability distribution of input parameters. These uncertainties

can correspond to plasma reproducibility, diagnostic properties, or experimental fitting

evaluations. Thus, joint probability distribution of different experimental uncertainties

should be considered as input parameter probability distribution into the simulation.

In general, the PDFs of multiple input parameters must be specified, and these

inputs can be correlated. Understanding the joint distributions and their correlation can

directly affect input sampling, as will be shown in following sections.

5.1.2 Generating Chaos Polynomials expansion

The polynomial chaos expansion[FL15] is a subset of polynomial expansions

specifically designed for uncertainty quantification, where a sum of orthogonal polyno-

mials is used to approximate the response parameter r, and can be written as

r = f (x, t,I)≈ f̂ (x, t,I) =
N

∑
n=0

cnPn(I), (5.1)

where the Pns denote the set of orthogonal polynomials, the cns denote the coefficients of

the polynomial expansion, and n is the order of polynomials to be used. Unlike Lagrange

polynomials, chaos polynomials are orthogonally generated according to the input proba-

bility distribution to avoid numerical oscillations. Assuming the transformation from pI

to pr is smooth, we can draw samples and find an approximate f̂ using chaos polynomials

instead of the general function f , to enable the transformation of probabilities. The set of

polynomials must satisfy the orthogonality property for an arbitrary vector in the input
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probability distribution space I,

〈Pn,Pm〉=
ˆ

Pn(I)Pm(I)pI(I)dI = 0 n 6= m. (5.2)

For constructing the orthogonal polynomials, the numerically stable three-term

discretized Stieltjes recursion can be used[Gau82],

Pn+1 = (I−An)Pn−BnPn−1; P−1 = 0;P0 = 1, (5.3)

with An and Bn are the recurrence coefficients defined as

An =
〈IPn,Pn〉
‖Pn‖2 ; Bn =


‖Pn‖2

‖Pn−1‖2 n > 0

‖Pn‖2 n = 0
(5.4)

where ‖Pn‖=
√

∑
n
i=1 |Pi|2 denotes l2 norm. One can fit different orders of chaos poly-

nomials to the samples, and perform sensitivity analysis on the order of polynomials

to obtain the optimal fit. Furthermore, the PCM approach can be extended to multiple

dimensions, to accommodate multivariate input probability distributions, as discussed by

[FL15].

5.1.3 Input sampling and generation of collocation points

Choosing a minimum set of input parameter samples within the range of un-

certainties is another crucial step. Depending upon the details of the joint PDF of the

uncertain input parameters, different sampling techniques such as Latin Hypercube, Ham-

mersley sequence, Sobol sequence sampling, etc. can be utilized to draw a number of

collocation points from input probability distribution[FL15]. Moreover, taking samples

from multivariate input distributions is not an easy task. Nevertheless, effective sampling
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from multivariate input probability distribution can be facilitated with the aid of Rosen-

blatt transformations[Ros52]. Rosenblatt transformation can transform any arbitrary

distribution can be transformed to/from the uniform distribution[Bro07]. Then, relevant

sampling method can be applied to the transformed distribution to draw samples. In the

end, the samples can be transformed back to the original multivariate input distribution,

using inverse Rosenblatt transformation.

5.1.4 Solving for Chaos Polynomial approximation and analyzing

the uncertainties

After performing the simulations for a set of sample input parameters (Ik), we

obtain solutions for the model response r ≈ f̂ values, which yields in an over-determined

set of linear equations (k > N) for the polynomials coefficients (cn),


P0(I0) · · · PN(I0)

... . . . ...

P0(Ik−1) · · · PN(Ik−1)




c0

...

cN

=


f̂ (I0)

...

f̂ (Ik−1)

 . (5.5)

One then directly can obtain the polynomial coefficients cn, using conventional

regression techniques such as the least squares method. With the polynomial coefficients

cn thus determined, the approximate response function f̂ can now be used to calculate an

approximate PDF of the response, using the concept of probability transformation. This

approximated pr can be used to calculate statistical quantities suitable for comparisons

against the experiment. For instance, the mean model response,

µ f̂ =

〈
N

∑
n=0

cnPn

〉
=

N

∑
n=0

cn〈Pn,P0〉= c0, (5.6)
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and variance,

σ f̂ =
N

∑
n=0,m=0

cncm (〈Pn,Pm〉−〈Pn〉〈Pm〉) =
N

∑
n=0,m=0

cncm〈Pn,Pm〉− c2
0

=
N

∑
n=1

c2
n‖Pn‖2, (5.7)

are straightforward to calculate, using the orthogonal property of the chaos polynomals

expansion.

5.2 Discussion on probability transformation

As discussed above, one can obtain an approximation to the response probability

distribution for quantities of interest (QoIs) using the PCM uncertainty quantification

scheme. To illustrate the utility of PCM in doing so, we first compare its output for

a simple problem, to simple UQ approach (where it assumes the QoI distributions are

normal, and mean and standard deviation of the QoI from samples correspond to the mean

and standard deviation of the normal distribution) widely used in the microturbulence

community[Hol16]. Consider case of a simple offset-linear flux-gradient relationship

Q(z)=Q0z+Q1. Here, the flux Q is the QoI or the response of model, and the normalized

driving gradient length scale z =−R∇T/T is the input. Thus, according to the previous

definitions, in this case pI = pz and pr = pQ. Therefore, by knowing that z and Q(z)

functions are continuous, and one-to-one in the region of our interest, we can obtain the

analytical QoI distribution pQ = pz/|dQ/dz|. For a specified normal input probability

distribution pz (Fig. 5.2a), and analytical relation between Q and z (Fig. 5.2b), and

the analytical QoI probability distribution pQ is shown in Fig. 5.2c as the dashed black

line. Now, we draw five samples from the high probability region of z (the mean of the

distribution, as well as ±0.5σ and ±1σ confidence intervals, where σ is the varience



117

of pz), and calculate the Q(z) for those sample points. A simple UQ approach used in

the plasma microturbulence community would be to assume the QoI distribution, pQ,

is normal, and that the mean and standard deviation of the samples are the same as

that of the QoI normal distribution. The resulting QoI distribution of this simple UQ

method is shown in Fig. 5.2c as the red line. As we observe, the pQ given by the simple

method does not match analytic pQ. The main reason behind this discrepancy is the

lack of information due to too few number of samples drawn from the input probability

distribution. By rearranging the samples points at different probabilities, e.g. the mean

of distribution, plus ±1σ and ±2σ confidence intervals, using the simple approach, we

still obtain a different normal distribution with approximately 40% larger than analytical

standard deviation, which indicates that with simple UQ the type of sampling affects the

QoI probability distribution with smaller number of samples.

One can overcome this limitation by increasing the number of samples to converge

to analytical solution. However, the convergence of the simple method is relatively slow,

and expensive computation of nonlinear turbulence simulations make UQ analysis with

a large number of samples impractical. On the other hand, using chaos polynomials,

one can approximate Q(z) in the high probability region of z, and obtain the PCM QoI

distribution also plotted in Fig. 5.2c. As shown, we can observe PCM is much closer to

the analytical solution, and has much better accuracy with a small number of samples. We

also observed that the PCM approach is less sensitive to the sampling details, compared

to simple approach.

In a second example, we take the analytical relation between temperature gradient

to be nonlinearly stiff Q(z) = Q0 exp
(
Q1 exp(z+β )α

)
as plotted in Fig. 5.3b. Here, we

have assumed Q0 = 5× 10−9, Q1 = 1.3, β = 0.6, and α = 1.8. If there is a relatively

small uncertainty in z near the critical gradient, as shown in Fig. 5.3a, we obtain the QoI

distribution shown in Fig. 5.3c. As shown, we again observe relatively close agreement
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Figure 5.2: (a) input probability distribution (black dashed line), and samplings (red
dots). (b) Chaos polynomial approximation (blue solid line) compared with analytical re-
lation between QoI and input (black dashed line). (c) Analytical probability distribution
of QoI (dashed black line) is compared with PCM approximation of QoI distribution
(solid blue line), and simple averaging UQ assuming normal distribution (solid red line).
(d) Table of mean (∑Q/n) and standard deviation (

√
∑(Q− Q̄)2/n) of QoI probability

distribution with different methods.

between the analytical solution and the approximated distribution via PCM using only a

few number of samples. More importantly, the PCM approach recovers the skewness of

pQ, while the simple approach does not, and will not regardless of sampling. Note that

the agreement between the chaos polynomials approximation to Q(z) and the analytical

relation falls off for z < 0.95. However, in this region of small pz, the effects of poor

fidelity in the chaos polynomials approximation on pQ approximation are minimal.

In above examples, we have included up to third order chaos polynomials to the

sample points. For different problems, one needs to perform a sensitivity analysis on the

best order of polynomials to use, assumed using statistical measures such as the p-value

and R2 of the fits.
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Figure 5.3: (a) input probability distribution (black dashed line), and samplings (red
dots). (b) Chaos polynomial approximation (blue solid line) compared with analytical re-
lation between QoI and input (black dashed line). (c) Analytical probability distribution
of QoI (dashed black line) is compared with PCM approximation of QoI distribution
(solid blue line), and simple averaging UQ assuming normal distribution (solid red line).
(d) Table of mean and standard deviations of QoI probability distribution with different
methods.

5.3 Inclusion of probabilistic UQ above and near criti-

cal gradients

The topic of critical gradients in plasma turbulence has been intensively pursued

in magnetically-confined fusion, as many times, confined fusion plasmas operate near this

condition[MST+09, HDP+13]. In this section, we discuss the implications of correctly

transforming probabilities above and near critical gradients. To illustrate the issue, we use

the results from a simple collisional drift-wave model. The model has been introduced

in Chapter 2, which evolves fluctuations of density ñ, vorticity Ω̃ = ∇⊥ · (n0∇⊥φ̃), and

electron temperature T̃e, in the presence of a background density profile, n0(r), and
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electron temperature profile, Te0(r) in a cylindrical geometry. The model equations are

shown below,

∂ ñ
∂ t
− a

ρs

1
r

∂n0

∂ r
∂ φ̃

∂θ
= ∇‖ j̃‖+Dn∇

2
⊥ñ−νs〈ñ〉θ ,z +

a
ρs
{φ̃ , ñ}, (5.8)

∂ Ω̃

∂ t
= ∇‖ j̃‖+µ⊥∇

2
⊥Ω̃−∇⊥ ·

(
νinn0∇⊥φ̃

)
+

a
ρs
{φ̃ ,Ω̃}, (5.9)

∂ T̃e

∂ t
− a

ρs

1
r

∂Te0

∂ r
∂ φ̃

∂θ
= χ

e
‖∇

2
‖T̃e +

2
3

1.71
Te0

n0
∇‖ j̃‖+DTe∇

2
⊥T̃e−νs〈T̃e〉θ ,z +

a
ρs
{φ̃ , T̃e},(5.10)

j̃‖ =
1

η‖

(
1.71n0∇‖T̃e +Te0∇‖ñ−n0∇‖φ̃

)
. (5.11)

For further the details and explanation of terms in the model, refer to Chapter 2.

In this discussion, we assume all input plasma parameters and profiles are known,

except for the density profile, which is obtained by fitting a function of the form

n0(r) = (n̄−nbase)exp(−(r/ln)nα/nα)+nbase, (5.12)

to a coarse set of hypothetical experimental measurement (shown with black error bars in

Fig. 5.4a).

In Fig. 5.4a, we show multiple possible fits by changing the exponent factor

nα in the functional form, and holding all other parameters fixed, to study the effects

of profile steepening only. In Fig. 5.4b, we show the corresponding variation of the

most unstable linear growth rate (m = 2) as a function of maximum density gradient

lengthscale (1/Ln = −d lnn0/dr), obtained via the nα parameter variation. As seen

from the figure, for max(1/Ln) ≤ 1.05, the drift-wave modes are stable. In Fig. 5.4c,
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we show the density fluctuation RMS amplitudes 〈ñ2〉0.5 at r = 3cm as a function of

maximum density gradient, predicted by a series of nonlinear simulations carried out

for the profiles shown in Fig. 5.4a. We observe no fluctuations for stable cases, and for

unstable cases a sudden increase in the nonlinearly saturated amplitude of fluctuations

above the critical density gradient corresponding to max(1/Ln) = 1.05. Moreover, in

Figs. 5.4(d-f), we have shown the changes of particle flux at r = 3cm, maximum E×B

velocity, and nonlinear kinetic energy transfer into zonal flow at a position corresponding

to the radial location of vE×Bmax as a function of the density gradient lengthscale. We

observe as density equilibrium steepens above a critical value, saturated fluctuations

amplitude grows rapidly. However, as the fluctuations become larger with a steepened

density gradient, the nonlinear energy transfer becomes significant and as a result the

zonal E×B velocity grows, while the turbulence amplitude increase begins to flatten out

and saturate, and even reduction of fluctuations and turbulent flux can occur with large

enough density steepening.

Although the uncertainty quantification can be applied to each of the turbulence

quantities discussed and shown above, here we consider density fluctuations RMS as

the QoI to perform UQ analysis as an example. Using this model, we illustrate the

results of using the PCM approach for uncertainty quantification. As shown in Figs.

5.5(a-c), we consider three different input distributions for max(1/Ln), ranging from a

distribution that peaks well above the critical density gradient (Fig. 5.5a), to a case where

the max(1/Ln) distribution is smaller but still above the critical gradient (Fig. 5.5b), to a

case where the max(1/Ln) PDF peaks just above the critical gradient (Fig. 5.5c). In each

range, we assume a normal distribution for the max(1/Ln) input parameter.

For each case, we fit second-order chaos polynomials to the 〈ñ2〉0.5−max(1/Ln)

relation needed for the probability transformation, as shown in Fig. 5.5(d-f). In this case,

〈ñ2〉0.5 is the QoI, and max(1/Ln) is the input parameter. One notable observation in
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Figure 5.4: (a) Equilibrium density fits (blue lines) to experimental data points (black
errorbars). (b) Scan of linear growth rate (m = 2) as a function of maximum density
gradient lengthscale. (c) Scan of density fluctuation RMS amplitudes as a function
of maximum density gradient lengthscale. (d) Scan of turbulence particle flux as a
function of maximum density gradient lengthscale. (e) Scan of maximum E×B velocity
as a function of maximum density gradient lengthscale. (f) Scan of nonlinear kinetic
energy transfer to the maximum zonal E×B as a function of maximum density gradient
lengthscale.

this simple practice is the concavity change of the chaos polynomial fits in the different

cases. We can then directly obtain the density fluctuation RMS amplitude PDF, using

the concept of the probability transformation. In Fig. 5.5(g-i), we plot the resulting QoI

distributions. We can observe in the case with density gradient well above the critical

gradient, where QoI-input relation is relatively linear, the QoI distribution remains fairly

Gaussian (Fig. 5.5g). However, as we get closer to the critical gradient where the the QoI-

input relation is nonlinear and has downward concavity, the QoI probability distribution

has negative skewness (Fig. 5.5h). Furthermore, near the critical gradient where the

QoI-input relation has upward concavity, resulting in QoI distribution with a positive

skewness (Fig. 5.5i). From this simple practice, it can be easily deduced that near critical

gradients (which is often the case in experiments) a careful statistical comparison of

simulation and experiment is necessary for a truly rigorous validation study, instead of
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Figure 5.5: Probability density function of input (maximum density gradient length-
scale) in three case of (a) high, (b) medium, and (c) low density steepening. QoI (density
fluctuation RMS amplitudes) and input (maximum density gradient lengthscale) relation
fitted with Chaos Polynomials in three case of (d) high, (e) medium, and (f) low density
steepening. Forward propagated QoI (density fluctuation RMS amplitudes) probability
density function in three case of (g) high, (h) medium, and (i) low density steepening.
Solid lines indicate the probability within the range of samples, while dashed lines show
the probability outside the range of samples.

merely comparing the mean and standard deviation of the QoIs obtained from simple

sampling or parametric variations.

We should note that the choice of samplings can result in significant improvement

as measured by faster convergence of the QoI distribution function, as we will discuss in

the next Section.
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5.4 Application of PCM uncertainty quantification in val-

idation study of drift-turbulence in linear plasma de-

vice

In this section, we discuss the results of using the PCM approach uncertainty

quantification in a validation study of drift-turbulence in the CSDX linear plasma de-

vice experiment. The experimental condition is taken from [CTXM+13] for CSDX

experimental condition at 1kG with insulating boundary endplate. In this experiment,

the Argon plasma is created by an m = 0 helicon source operating at 1.5kW . The

model[VHTT17] that was previously introduced and used in the previous section, is used

for this study. The CSDX experimental uncertainties that can affect input parameters

and profiles in the computational model have been identified and discussed in detail

in Chapter 4. The findings can be summarized in forms of a vector of nominal input

parameter uncertainties affecting both driving forces and damping mechanisms of in the

model, I = {
´

dr(1/Ln),
´

dr(1/LTe),Ti0,Tg0,Tgb,Tgα
}, where

´
dr(1/Ln) is the radially

integrated equilibrium density gradient lengthscale,
´

dr(1/LTe) is the radially integrated

equilibrium electron temperature gradient lengthscale, Ti0 is the on-axis ion temperature,

Tg0 is the on-axis neutral gas temperature, Tgb is neutral gas temperature at the edge, and

Tgα
is the steepness of neutral gas temperature profile.

We should note that like other UQ methods, the PCM algorithm suffers from

the curse of dimensionality. Although more advanced versions of PCM utilize sparse

grids to improve the computational feasibility for much higher numbers of uncertain

parameters[FWK08], it is still recommended to reduce the uncertainty dimensionality as

much as possible when using nonlinear simulations. Toward this end, we performed a

linear growth sensitivity analysis on the uncertain parameters, varying only one input
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parameter at a time while holding all other inputs fixed. The results of this linear

sensitivity analysis are shown in Fig. 5.6.

Figure 5.6: Maximum linear growth rate sensitivity analysis of uncertainty scans. I
indicates the input parameter uncertainty normalized to the mean of uncertainty (Ibase).

We see that the growth rate is most sensitive to Ti0 , and Tgb , and therefore we

expect these parameters to have the most influence on the turbulence simulations. To

use the PCM approach, we first need to define the probability distributions of these

input parameters. For ion temperature, we use the experimental measurements obtained

via Laser-Induced Fluorescence (LIF)[CTML+12] to determine the pTi0
. However, for

neutral gas temperature, there is no experimental measurement, and we have assumed a

relatively large range of feasible values for gas temperature at the edge, with a uniform

distribution. Specifically, the probability distribution of ion temperature is taken to be

normal with mean value of 0.6eV and standard deviation of 0.1eV , while the neutral

gas edge temperature is assumed to have uniform distribution between 0.03eV to 0.1eV

(shown in Fig. 5.7).

Assuming no correlation between Ti0 and Tgb , their joint PDF can be directly

specified (Fig. 5.8). Once specified, we can obtain the chaos polynomial expansion on



126

Figure 5.7: Probability distribution of input parameters: (a) ion temperature (Ti0), (b)
neutral gas temperature at the edge (Tgb).

this bivariate input probability distribution.

Figure 5.8: Choices of input parameters collocation points in Ti0−Tgb input distribution
space. Red dot indicate the samplings using (a) simple sampling, (b) Space-filling
Hammersley sequence sampling in a normal-uniform input probability distribution.
Color contour in the shows probability distribution of input parameters, where lighter
colors denote higher probability.

In Fig. 5.8, we also show two different ways of drawing samples from the

input distribution. In the simple approach often taken by the plasma micro-turbulence

community, a mean base case is chosen, and simulation scans are performed by changing

individual parameters within these uncertainties[Hol16]. In Fig. 5.8a, we have shown

the simple samplings taken from input distribution. As one can observe, the samples
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are not filling the distribution space evenly, and samplings from the low probability

region may have very small contribution to the mean of the QoI uncertainty. Better space

filling sampling can be applied by minimizing the integrated mean squared error over the

probability distribution.

Many different sampling techniques have been developed and adopted in UQ

studies, such as Latin hypercube sampling, or low-discrepancy sampling methods such

as Hammersley sequence sampling[FL15]. Here, we have used the Hammersley se-

quence sampling method due to its accurate sampling spread in multivariate probability

distributions[SLC01]. To briefly mention, Hammersley sequence sampling is a low

discrepancy sequence method that can be used to describe a uniform space by minimize

the integrated error in the uniform space given the number of samples. We refer the

reader to Refs. [FL15, SLC01] for further reading in this matter. Moreover, [HWB07]

showed that the solution using Hammersley samples resulted in more stable results than

using conventional pseudo-random samples. In Fig. 5.8b, we have shown the sample

indentified using Hammersley sampling method.

We performed five nonlinear simulations using input parameters corresponding to

the points identified by the Hammersley sequence samplings, and compare the simulation

results with experimental observations. In Fig. 5.9, we have compared experimental

measurements with the individual simulation results, and the expected value and 1σ

confidence interval uncertainty of forward propagated input probability distribution

via PCM (using first order polynomials). As shown in Fig. 5.9(a-b), now we can

claim confidently that the model captures the experimental fluctuations within the 1σ

confidence interval at r ≈ 2−3cm, while it overestimates the experimental fluctuations

at r ≈ 5cm. Moreover, we can observe in Fig. 5.9(c-d) that within the 1σ confidence

interval the synthetic particle flux get distorted from the physical particle flux.

We should note that using PCM approximation, we found the expected value and
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Figure 5.9: Comparison of experimental measurement (black), with individual sim-
ulations (red dashed lines), and the uncertainty obtained from the model within 1σ

confidence interval (blue shaded band), for (a) radial profile ion saturation current
fluctuation RMS amplitudes, (b) radial profile of floating potential fluctuation RMS
amplitudes, (c) fluctuations particle flux, and (d) synthetic particle flux.

confidence interval of quantified uncertainty remain approximately the same with the

choice of sampling mainly influencing faster convergence of uncertainties only. However,

with simple averaging, the choice of sampling can have noticeable effect on determining

confidence interval bounds.

A QoI comparison of experimental measurement histogram against the normal-

ized probability distribution obtained via PCM and through simple averaging approaches

at r = 3cm is shown in Fig. 5.10. The experimental measurements are done with a

fixed multi-tip Langmuir probe, and the histogram of experimental QoI is obtained via

sub-window averaging. We observe good agreement between experimental-simulation

distributions, however the experimental measurements show larger standard deviations

compared to the simulation’s quantified uncertainties. Moreover, we observe relatively
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similar quantified uncertainty with both PCM and simple averaging approaches in this

validation study. This is mainly because this experimental condition of CSDX is well

above the critical density gradient, where the QoIs-inputs relation is relatively linear

(similar to the case discussed in Fig. 5.2). We should note that here we have not included

uncertainties of temporal variation (turbulence burstiness) of simulation QoIs, nor quanti-

fied the systematic errors from using a reduced model. Such uncertainties can in principle

be included in the QoIs PDF using Bayesian methods.
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Figure 5.10: Comparison of the QoI PDFs of experimental measurement (black), and
quantified uncertainty from the model using PCM (blue), and through simple averaging
(red) at r = 3cm. All probabilities have been normalized.

5.5 Conclusion

In this Chapter, we have investigated the use of the PCM approach to UQ for

a fluid-based plasma turbulence simulation. We believe the results show that the PCM

approach can increase the quality of the validation studies, by enabling statistically

improved comparisons between simulation and experiment, such as comparison of higher

statistical moments of QoIs, and measuring the statistical distance between simulation

and experiment.
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The advantages of PCM were illustrated by applying to a simple critical gradient

model. We found that with simple mean and standard deviation of only few samples can

not adequately describe the response probability distribution accurately. However, PCM

uncertainty quantification approach was shown to be an efficient method for quantification

of parametric uncertainties with arbitrary distributions in the input quantity. In particular,

the PCM approach is well-suited to cases with non-normal model input and output PDFs.

Nevertheless, the non-intrusiveness of the PCM enables the use of a computation-

ally expensive model in the process of uncertainty quantification. As an example, we

have applied the PCM uncertainty quantification to obtain the stochastic properties of

turbulence quantities in validation studies of CSDX linear plasma device. The method

rigorously quantified the model response within the known input uncertainties.

Future work includes applying this uncertainty quantification method in a real

world validation study of the critical gradient behavior in gyrokinetic simulations, along

with inclusion of temporal variations (turbulence burstiness) of QoI statistics.
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Chapter 6

Conclusion and Possible Future

Directions

In this thesis, a series numerical simulation studies of the plasma turbulence in the

CSDX linear plasma device were performed. The high level goal of this work was to see

how well a minimal collisional drift-wave model can describe the observed turbulence in

CSDX. The study included both qualitative physics studies, more quantitative validation

studies, and to assess the utility of novel UQ approaches to validation studies of plasma

turbulence models.

6.1 Summary of this thesis

There have been a few theoretical and experimental studies on the effects of end

plate boundary conditions on the turbulence in the scrape-off layer turbulence found in

tokamaks. These effects have also been studied in simpler linear plasma devices with

different end plate configurations. In Chapter 2, a fluid-based model with the rigorous

boundary conditions was derived to describe the different end plate experiments. In
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Chapter 3, a set of linear runs and nonlinear simulations were performed with both

insulating and conducting end plate boundary conditions at a fixed magnetic field, to

understand the differences between two different conditions. The effects of additional

sheath-imposed instabilities due to the presence of conducting end plate was studied and

shown to be important for parameters close to those of CSDX. These effect can also be

present in the tokamak SOLs, and the current work provides a better understanding of

transport and energy transfer analysis in these experimental conditions.

In Chapter 4, a quantitative validation study of simulation results for insulating

end plate boundary conditions was is performed. The goal was to quantify how well

the reduced drift-wave model can reproduce the experimental results. The procedure

included extensive linear sensitivity analysis of experimental input uncertainties into the

code, followed by a nonlinear scan and implementation of synthetic Langmuir probe

diagnostics to translate the simulation results into synthetically measured quantities for

direct comparison of simulation results and experimental measurements. A fairly good

quantitative agreement for most plasma saturation characteristics between insulating

simulation and experimental results, in the plasma core, are obtained. However at

this level, the minimal model can only produce qualitative results for conducting end

plate simulation case. The comparison of conducting end plate simulations against the

experimental measurements are shown in Appendix A, as a reference for future work.

In Chapter 5, a technique to provide more through validation studies using for-

ward propagation input parameter uncertainties in the computational model is introduced

and discussed. The novel Probabilistic Collocation Method, and more advanced sampling

techniques are performed for the first time in the validation studies of plasma turbulence.

The importance of uncertainty quantification in the simulations near critical gradient

was then studied using both a simple analytic model, and also using the minimal turbu-

lence model of CSDX experiments. The methods introduced here provide more utility
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and quality for validation metrics by moving from non-deterministic comparisons to

measuring the statistical mismatch between simulation and experiment. The uncertainty

quantification proposed in this Chapter, can be applied to more complex gyrokinetic

simulations of confinement devices with currently available computational clusters.

6.2 Recommended future work

The current work provides a guide for the numerical study of more exciting

physics questions, and extending the validation techniques for simulation-experiment

comparisons. There are several topics that seem particularly suited for further study and

extension of the work contained in this thesis. Some these interesting areas are briefly

mentioned in this section.

6.2.1 Moving toward source-driven simulations

Validation studies in Chapter 4, indicate that a source-driven simulation is neces-

sary for both better qualitative and quantitative studies of drift-turbulence. By looking

at the measurements of mean density and floating potential measurements at different

axial locations (z = Lz/2 and z = Lz/4), we observe that the profiles are steeper near the

source (shown in Fig. 4.1). Our minimal model collisional drift-wave model does not

include the axial profile variations and assumed dominant 2D turbulence. Experimentally,

these weak axial gradients can be reduced by decreasing the gas pressure, and increasing

the helicon source input power. Moreover, in the validation studies, we observed that

the simulation performs well in reproducing the experimental fluctuations in the core,

while overestimating the experimental fluctuation amplitude in the edge. We suspected

the main reason behind subpar performance of simulations at the edge is that the density

fluctuations amplitude and equilibrium density are within the same order of magnitude,
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resulting in the break-down of small flucutations assumption of our current model. Thus,

for more realistic simulations of turbulence in CSDX linear device, we suggest that the

model should be modified to avoid the small flucutations assumption, with particle and

heat sources included. The profiles would then evolve until they became self-consistent

with the sources and turbulent-driven fluxes. Such a flux-driven simulation would be

well-suited for numerical studies of the transition to turbulence, formation of steepened

density profiles and reduced turbulent transport, and zonal flow formation and transport

regulation. experimental measurements of source characteristics, or turbulence charac-

teristics of plasma near the source may be necessary for an accurate source input to the

model. On this subject, a recent source-driven simulation attempt of LAPD linear plasma

device done by [FRR+15] can be insightful as an starting point for a source-driven

simulation of drift-turbulence in CSDX.

6.2.2 Adding mild 3D equilibrium effects

The current validation studies provided in this thesis showed that the saturated

turbulence level and turbulent-driven sheared E × B zonal flow is very sensitive to

the equilibrium density gradient. In particular, the slight variation in density gradient

observed from ports at z = Lz/4 and z = Lz/2 gave a very significant increase in the

estimated zonal flow amplitude. It would therefore seem useful to extend the minimal drift

turbulence model to include the possibility of weak axial equilibrium plasma gradients as

observed in the experiment. A systematic exploration of how these weak axial gradient

affect and influence the development of drift turbulence and zonal flows could then be

carried out. Such work would have relevance not only for small linear devices, but

also for turbulence in edge/SOL plasmas of confinement devices, where similar axial

equilibrium gradients can also exist.
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6.2.3 Adding parallel ion momentum physics

The current model neglects the parallel ion momentum physics. In the derivation

of boundary conditions (especially conducting sheath boundary condition), we have

neglected parallel ion physics. Our validation studies using this model showed that the

simulation with insulating boundary condition could not recover experimental fluctuations

in the edge. Recent experimental studies in CSDX suggest that sheared parallel flows may

develop in the edge plasma region, which has been neglected in these set of simulations.

Moreover, in the derivation of conducting boundary conditions, the parallel ion velocity

has an explicit contribution for defining the boundary conditions at the sheath entrance. It

is suspected that the overestimation of fluctuations and fluxes observed in the validation

studies (discussed in Appendix A), might be due to the absence of parallel ion dynamics

and axial variation of equilibrium profiles. Recent simulations done by [PUCF10b]

included the effects of ion parallel momentum in simulation of cylindrical plasma, and

showed results that support the supposition that parallel flow dynamics may be important.

6.2.4 Experimental measurements of electron temperature fluctua-

tions

The initial validation studies of CSDX experimental condition using synthetic

Langmuir probe diagnostics, suggest that ion saturation current fluctuations is a good rep-

resentation of density fluctuations. However, the synthetic floating potential fluctuations

is not quite equivalent to the plasma potential fluctuations. The reasoning behind such

difference is found to be because of relatively large sheath factor of Argon plasma, and

small but finite fluctuations of electron temperatures. We observed that plasma potential

and electron temperature fluctuations cross-phase is negative in a range of radii, distort-

ing the synthetic floating potential fluctuations phase from the plasma potential phase.
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Experimentally, due to diagnostic limitations electron temperature fluctuations have not

been measured. Previous experimental measurements of ion saturation current-floating

potential fluctuations cross-phase by [BTA+05], indicated a negative cross-phase across

a range of radii, different from analytical expectations of drift-wave theory. However,

in order to correctly infer the turbulent particle flux from Langmuir probes, one must

be aware of the finite density-plasma potential cross-phase in the experimental measure-

ments. Thus, accurate measurements of electron temperature fluctuations are necessary

to quantify this phase.

6.2.5 Experimental measurements of profiles in both radial and ax-

ial directions

Experimental measurements of turbulence characteristics in CSDX at different

axial ports indicated that the equilibrium plasma profiles have variations along axial

direction (see Fig. 4.1), that can impact the validation studies. Although our simu-

lations underestimate the self-generated E ×B profile with the axially uniform input

experimental profiles, our benchmarking shows that E×B shearing rate is very sensitive

to the steepness of density equilibrium profiles. Thus, for a better validation studies,

as well as better understanding of physics from the experimental measurements, it is

high recommended to perform experimental measurements of mean profiles as well as

fluctuations at multiple axial locations. This set of measurements can also be useful in

understanding of plasma detachment studies which has been observed at certain magnetic

fields in CSDX experiments.

Moreover, spatial variation of some plasma parameters are not considered in the

current model for the sake of simplicity. Among such, ion-ion viscosity profile is the

most spatially varying one. Our calculations of generalized ion-ion viscosity based on

radial variations of density and ion temperature profile, shows a decrease of viscosity at
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larger radii. Accounting for such spatial variation introduces the challenges of solving

for the viscosity tensor, which is numerically non-trivial.

6.2.6 Synthetic camera imaging diagnostic studies

Last but not least, in the validation studies of CSDX experiment diagnostics, we

have only looked at the Langmuir probe measurements. However, a fast imaging camera

is also used to measure the light intensity of plasma with a fairly high 2D resolution. The

light intensity is related to both density and electron temperature, with some exponent

factors I = AnαnT αTe
e . One-to-one comparison of simulation data against the experimental

light intensity fluctuations can be obtained via synthetic light intensity construction from

the simulation data. [Czi11] showed that for Helium and Deuterium plasma the changes

of αn and αTe as a function mean density and electron temperature. However, no such

calibration data for Argon gas exists at the moment. As future work, it is suggested to

repeat the experimental measurements with lighter gases where the calibration data exists,

and/or perform calibration studies to obtain the Argon plasma intensity coefficients. In

this way, a synthetic visible light fluctuation diagnostic could be constructed, and then

used with simulation results to compare against imaging data from experiment.



Appendix A

Validation Study of Conducting

Boundary Condition Simulation

Similar to the validation study of insulating boundary condition (IBC) simulation

of CSDX, the validation study of conducting boundary condition (CBC) can be performed,

and the initial results of such code-experiment comparison is shown in this Appendix.

Note that the results obtained for validation study of CBC case at this stage still yields

qualitative agreement. However, the procedure and the results of such comparison is

shown here for future endeavors.

Similar to the procedure explained in Chapter 4, we have classified the types of

uncertainties in the experimental measurements, obtained linear sensitivity of these input

uncertainties in the linear response of the model, ran nonlinear simulations for stiff input

cases, and compared the simulation results with the experimental measurements using

synthetic diagnostics.

The experimental data is taken from [CTXM+13] for the conducting case, that is

also studied in Chapter 3. For the equilibrium density and electron temperature profiles

are fitted via functional forms of Eqns. 4.1-4.2. Experimental profiles varied within
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the uncertainties of experimental measurements in a Monte Carlo analysis and 100

realizations of each profile is produced. The lowest, median and highest
´

dr(1/Ln) and
´

dr(1/LTe) profiles are chosen to perform the simulations with. The fits and experimental

data are shown in Figs. A.1 and Table A.1.

Figure A.1: Fit realization in a Monte Carlo analysis for experimentally measured
CBC (a) density equilibrium and (c) electron temperature equilibrium at z = Lz/2. (b)
Density gradient lenghtscale (1/Ln) of fits compared with experimentally calculated
gradient. (d) electron temperature gradient (1/LTe) of fits compared with experimentally
calculated gradient. Gray lines show the 100 realization generated in the Monte Carlo
approach.

The ion temperature, and neutral gas temperature is chosen to be similar to the

IBC case inputs discussed in Chapter 4. A linear sensitivity analysis is then performed
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Table A.1: Characteristics of CBC equilibrium fits.

Profile Parameter low median high
n0

´
dr(1/Ln)/a 0.5 0.55 0.6

n0 χ2 0.18 0.21 0.26
Te0

´
dr(1/LTe)/a 0.19 0.24 0.28

Te0 χ2 0.30 0.34 0.33

using profiles and parameters uncertainties, and the maximum linear growth rate of

these scan are shown in Fig. A.2. The coefficient of variation of response versus

input uncertainty is then obtained and shown in Table A.2. We can observe that the

conducting case is very sensitive to both equilibrium profile uncertainties and damping

mechanisms. This is typical case of multiple instability linear growth response which is

similar to near critical gradient behavior in tokamaks. The smallest uncertainty in each

of the input parameters can translate to large difference in the outputs. Hence, a median

case simulation along with a set of 10 uncertainty simulation scans are performed over

parameters I = {
´

dr(1/Ln)/a,
´

dr(1/LTe)/a,Ti0,Tg0 ,Tgb}, where the CoV > 0.15.

Figure A.2: (a) Maximum linear growth rate sensitivity analysis of uncertainty scans.
Q indicates the input parameter uncertainty normalized to the base case value (Qbase).
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Table A.2: Sensitivity analysis of CBC linear growth rate response.

Profile CoVinput CoVresponse´
dr(1/Ln)/a 0.12 0.15´
dr(1/LTe)/a 0.14 0.83

Ti0 0.15 0.60
Tg0 0.20 0.21
Tgb 0.59 0.25
Tgα

0.20 0.09

Quantities of interest similar to the procedure for the IBC validation study shown

in Chapter 4 are considered for simulation-experiment comparison. The comparisons of

ion saturation current, floating potential, synthetic particle flux, and Reynolds stress are

shown in Figs. A.3-A.6.

Figure A.3: (a) Density fluctuations at z = Lz/2 of the simulations. (b) Comparison of
the experimental ion saturation current fluctuation measurements and the synthetic Ĩsat

at z = Lz/2. Colors correspond to nonlinear simulation of the cases shown in Fig. A.2.
Shaded error bars indicate standard deviation of sub-averaging window for the base
case simulation.

We observe that the simulation estimates the fluctuations about two times larger

than the experimental measurements. One possible reason behind this discrepancy could

be the absence of axial equilibrium gradients. Since the model neglects these axial

gradients, we are adding the sheath-imposed E×B shear throughout the whole domain

to keep consistency of the model that does not include axial equilibrium gradients, while
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Figure A.4: (a) Plasma potential fluctuations at z = Lz/2 of the simulations. (b)
Comparison of the experimental floating potential measurements and the synthetic φ̃ f

at z = Lz/2. Colors correspond to nonlinear simulation of the cases shown in Fig. A.2.
Shaded error bars indicate standard deviation of sub-averaging window for the base
case simulation.

these effect should only locally be added at the sheath entrance. Moreover, we have

neglected the parallel ion velocity and its fluctuations in our studies, and the presence of

axial parallel ion velocity can be non-negligible in the derivation of boundary conditions.

Nevertheless, the conducting endplate physics and validation are immensely important

with direct application in limiter and SOL physics. Further studies on validation of

conducting endplate simulation with a more advanced model is needed.
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Figure A.5: (a) Physical particle flux at z = Lz/2 of the simulations. (b) Comparison
of the experimental flux measurements and the synthetic flux at z = Lz/2. Colors
correspond to nonlinear simulation of the cases shown in Fig. A.2. Shaded error bars
indicate standard deviation of sub-averaging window for the base case simulation.

Figure A.6: (a) Physical Reynolds stress at z = Lz/2 of the simulations. (b) Comparison
of the experimental Reynolds stress measurements and the synthetic Reynolds stress
at z = Lz/2. Colors correspond to nonlinear simulation of the cases shown in Fig. A.2.
Shaded error bars indicate standard deviation of sub-averaging window for the base
case simulation.



Appendix B

Preliminary Magnetic Field Scan

Studies

It is known that the low frequency (ω/Ωci � 1) and large magnitude fluctua-

tions (ñ/n̄≈ 0.1−1) near the edge of large-scale magnetically confined plasma devices

are associated with the high cross-field transport[End99]. Thus, in order to predict the

confinement, understanding of the mechanisms behind these low frequency fluctuations

are essential. It has been experimentally observed that the transport rate of these low

frequency fluctuations can be mitigated through the formation of large scale electrostatic

structures such as turbulent driven E×B zonal flows[BDT90, Ter00, DIIH05]. In addi-

tion, at a threshold power, a bifurcation into an enhanced confinement can occur due to

nonlinear interaction between turbulence and zonal flow[MXW+12], and reduces both

fluctuations and cross-field transport. Furthermore, destabilization of zonal flow can break

up the coherent structure of zonal flows via Kelvin-Helmholtz instabilities[NBD07].

These low frequency fluctuations are usually triggered by the presence of pres-

sure gradient driven drift-wave (DW) instability at the edge of magnetically confined

devices. There has been numerous studies on the drift-turbulence in both labora-
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tory plasma devices[KLP+97, BTA+05, YTH+10] and large-scale tokamaks[Sco97,

LHM+05, TFM09]. Various theoretical[BK85] and experimental studies[BTA+05,

YTH+10, ZHB+12, TBL+14] have tried to understand the development of the drift-

turbulence regime from coherent drift-waves. Different experimental approaches that

have explored this transition include but are not limited to electric grid biasing[ZHB+12],

variable neutral gas pressure[YTH+10], and magnetic field strength scans[BTA+05,

TBL+14]. However, while simulations of fully developed drift-turbulence have been

published, to our knowledge nonlinear simulation studies of the transition to the drift-

turbulence have not been pursued in great detail. Numerical simulation of transition to

the drift-turbulence can provide us a deeper understanding of the full spatial and temporal

behavior of evolving fluctuations, which experimental diagnostic limitations may not

allow. Furthermore, a validated numerical simulation of the turbulence dynamics, might

then provide predictive capabilities of the turbulence and transport in magnetically fusion

devices.

The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device

has been one of the experimental laboratory devices that is used to study this transition to

the drift-turbulence regime[BTA+05, TBL+14]. Previous experiments on CSDX showed

that by increasing the magnetic fields (and hence reducing ρs/Ln and ion viscosity)

DW fluctuations evolve from narrow-band coherent wavelike perturbations to a state of

broadband spectra turbulence[BTA+05]. On the route to the fully developed turbulence

it has also been reported that, at a certain magnetic field, the plasma goes through global

transition resulting in steepening of pressure gradient, reduction of turbulence, onset of

strong transverse E×B shear, and reduced cross-field transport[CAT+16]. By increasing

the magnetic field even further after the global transition, particle transport becomes very

intermittent[TBL+14].

In this Chapter, we use the collisional drift-wave model introduce in Chapter
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2 and respective experimental measurements of CSDX at different magnetic fields to

investigate the turbulence characteristics. Although in our fixed gradient model, we can

not observe this transition behavior in a self-consistent manner, the changes of turbulence

characteristics at different magnetic fields can provide useful insight of the transition

mechanism, which will be useful for a future flux-driven simulation. In this chapter, first

we discuss the experimental setup in Sec. B.1, second we study the linear physics of the

magnetic field scan in Sec. B.2, finally we investigate the turbulence characteristics of

such scan in Sec. B.3, followed by a brief discussion in Sec. B.4.

B.1 Experimental Setup

The experimental magnetic field scan was performed in the CSDX cylindrical

magnetized helicon plasma device. The length of the device is about 3m with radius about

10cm. The plasma operates at 0.43Pa gas pressure, and magnetic field can be varied from

0.4kG to 2.4kG when using insulating endplates[TBL+14]. Unlike the m = 0 helicon

experiments that have been discussed in the previous chapters, in the published reference,

the plasma is generated and heated via upgraded m = 1 helicon source at antenna radius

of 8cm. In these settings, the equilibrium density and electron temperature is measured

by an RF compensated single tip swept Langmuir probe[CTML+12]. The changes in the

equilibrium density (n0) profile, and density gradient lengthscale (1/Ln =−d lnn0/dr)

is plotted in Fig. B.1. We can observe that as the magnetic field increases, first the

density profile steepens gradually, at around ∼ 1.4kG, a sudden transition to localized

steepened gradients happens. At higher magnetic field, the density gradients relaxes and
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the maximum density gradient shifts toward the core of plasma. A functional form,

n0(r) = (n̄1−nbase)exp(−(r/ln1)
nα1/nα1)+(n̄2−nbase)exp(−(r/ln2)

nα2/nα2) (B.1)

+(n̄3−nbase)exp(−(r/ln3)
nα3/nα3)+nbase

fitted to the profiles. Then based on the minimum goodness of fit (χ2) of random

generated profiles within the experimental uncertainty, the best fit is chosen as the

simulation input. Note that, this study only focused on the trends changes across magnetic

field scan, and uncertainty quantification of such studies is deferred to another publication.

Thus, the results presented here in this chapter represent only a preliminary investigation

that pave the way for future, more in depth investigation.

Figure B.1: Radial equilibrium density profile versus magnetic field taken from
[TBL+14] with permission. Black line shows the best fit to the experimental data.

The electron temperature equilibrium is observed to remain constant within

experimental uncertainties throughout the magnetic field scan. The electron temperature

peak observed in the experimental measurements at the edge of plasma (r > 5cm) is

neglected due to the probe measurement limitations in less dense plasma (e.g. RF-induced

distortion of the probe data can be stronger). Hence, the same fit is chosen as the fit to all
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Figure B.2: Equilibrium density gradient length-scale (1/Ln = −d lnn0/dr) of fits
versus magnetic field.

the magnetic field simulations,

Te0(r) = 3.2exp(−(r/15.2)2.7/2.7)eV.

Another significant change that the plasma goes through is the effect of decreasing

gyroradius with the increase of the magnetic field. The ion sound radius (ρs) versus

magnetic field is plotted in Fig. B.3a. In addition, the ion temperature is measured

using Laser Induced Fluorescence (LIF) technique[CTML+12]. As shown in Fig. B.3b,

below 1.4kG an increasing trend in the on-axis ion temperature is observed, while after

1.4kG the ox-axis ion temperature decreases. Although, our model assumes negligible

fluctuations of ion temperature, the ion temperature can significantly affect the ion-ion

viscosity. The neutral gas temperature Tg(r) is assumed to be 75% of ion temperature at

the axis, and is equal to room temperature at the plasma edge, profile of the form,

Tg(r) = (T̄g−0.03)exp(−(r/2.11)2.27/2.27)+0.03(eV ).

is used to describe its variations, by analogy to the Ti profile. The magnetization

factors Ωciτi for ions and Ωceτe for electrons versus magnetic field are shown in Figs.
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Figure B.3: (a) Changes in gyroradius versus magnetic field. (b) Changes in on-axis ion
temperature value versus magnetic field. Data is taken from [TBL+14] with permission.

B.4-B.5. We observe that Ωceτe is much larger across the domain, indicating the electrons

are well-magnetized. However, the magnetization factor for the Argon ions Ωciτi is about

four orders of magnitude smaller, indicating a weakly magnetized ions in the core, and

fairly well-magnetized ions in the less dense edge region. By increasing the magnetic

field, the ions become more magnetized but still have Ωciτi < 1 at r < 3cm.

Figure B.4: Radial profiles of Ωciτi for different magnetic fields.
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Figure B.5: Radial profiles of Ωceτe for different magnetic fields.

From above argument, we treat the core of plasma ions to be weakly magnetized

(Ωciτi < 1), while electrons to be very well magnetized (Ωceτe� 1). This results in using

generalized Braginskii formula for ion-ion viscosity[Bra65]

µ⊥ =
av2

thi
τi

ρ2
s cs

2.23+1.2X2

2.33+4.03X2 +X4 ,

and electron-electron collisions in the fully magnetized limit for the density and electron

temperature collisional diffusion

Dn = DTe ≈ 0.51ρ
2
e /τe.

In Fig. B.6, we have shown the experimental radial profiles ion-ion viscosity, cal-

culated from the generalized Braginskii formula. We can observe qualitative decreasing

trend of radially averaged viscosity, with the increase of magnetic field. For numerical
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simplicity of the code, we have chosen the radially average viscosity value at each mag-

netic field as the inputs to the model. Our preliminary studies shown that simulations with

µ(r)∇2Ω̃ and ∇ ·
(
µ(r)∇Ω̃

)
do not differ in term of turbulence amplitudes. However, we

defer the full inclusion of a radially varying viscosity effects of the viscosity stress tensor

to another study.

Figure B.6: Radial profiles of ion-ion viscosity for different magnetic fields. The
dashed lines indicate the radially averaged values of viscosity.

In Fig. B.7, we have shown the radial average of the generalized ion-ion viscosity

as a function of magnetic field. Two set of calculations for ion-ion viscosity were

performed; one with a respective density equilibrium profile of each magnetic field

(blue triangles), and the other time with a fixed density equilibrium profile taken from

1.2kG case and varying the gyroradius and ion temperature values (purple squares). We

observe that the trend of the viscosity changes is fairly independent from the changes in

equilibrium density profile as a function of magnetic field. Moreover, we observe that

the decrease in the generalized viscosity does not scale with 1/B2, since the ions in the
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central region are not fully magnetized.

Figure B.7: Viscosity scan versus magnetic field.

In the experiment[TBL+14], as the magnetic field is varied from 0.6kG to 1.4kG,

the fluctuations amplitude increases. However, around 1.4kG the fluctuation levels and

cross-field particle transport reduce significantly. By increasing the magnetic field further,

the fluctuations in the turbulence then recover. The experimental trend of ion saturation

current fluctuation RMS amplitudes, and experimental measurement of particle flux

(filtered for 3−25kHz) plotted in Figs. B.8 - B.9, respectively.

Figure B.8: Radial experimental measurement of ion saturation current fluctuation
RMS amplitudes versus magnetic field. Data is taken from [TBL+14] with permission.



153

Figure B.9: Radial experimental measurement of particle flux versus magnetic field
filtered for 3−25kHz. Data is taken from [TBL+14] with permission.

B.2 Linear Analysis

In this Section, we will take two different approaches in our magnetic field scan

studies. In the first approach, we use density, ion temperature, and neutral gas temperature

of each magnetic field to best represent the experimental condition at each magnetic field.

In the second approach, we have used a fixed density profile corresponding to the 1.2kG

case for all the magnetic fields and only varied ρs to isolate and explore this effects. In

these two approaches, we analyze the results of the linearized version of our model to

obtain linear growth rate and frequencies in a magnetic field scan. The linear runs are

preformed with both the experimental profiles setting, and with the ρs scan with fixed

equilibrium profiles taken from the 1.2kG experimental case.

The linear growth rates (frequencies) of the eigenmodes have been obtained by

calculating imaginary (real) part of ∂ ln φ̃m/∂ t after the modes establish themselves in

our initial value solver, where m denotes the azimuthal mode number. In the experimental

conditions, the results of linear growth rate and frequencies at different magnetic fields

are shown in Fig. B.10.

We can observe that at B = 0.8kG only two modes (m = 0 and m = 1) are linearly
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Figure B.10: Contour plots of linear (a) growth rates and (b) frequency of each
azimuthal mode m in experimental condition for various magnetic fields. Growth
rate and linear frequencies of stable modes have been filtered out in the plots, due to
limitation of initial value solver in capturing noisy highly damped modes. White lines
show boundary between unstable and stable modes.

unstable. As we increase the magnetic field, more modes (m = 1 to m = 8) become

unstable, and growth rates and real frequencies increase. When reaching B = 1.4kG, the

growth rates and linear frequencies go through a sudden change, and many higher modes

also become linearly unstable. This phenomena happens simultaneously with the local

steepening of the density gradient (See Fig. B.2) at B = 1.4kG, indicating the sudden

increase in the linear drift-wave driving force. By further increasing the magnetic field,

the linear growth rates and frequencies start to decrease, where the localized density

steepening becomes less prominent.

In the second set of linear scan, the effects of gyroradius tightening with a fixed

equilibrium profile is explored. The linear growth rate and frequencies of this linear scan

is shown in Fig. B.11.

We can observe unlike the experimental scan there is a smooth linear increase in

both linear growths rate and frequencies in gyroradius scan. For B < 1.2kG the maximum

growth rate is for m = 1, and for higher magnetic fields, the maximum mode number

shifts to m = 2 as more modes become unstable due to gyroradius tightening. However,

no sudden change between linear properties of 1.2kG and 1.4kG occurs when we only
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Figure B.11: Contour plots of linear (a) growth rates and (b) frequency of each
azimuthal mode m for ρs scan with experimental profiles of 1.2kG case. Growth
rate and linear frequencies of stable modes have been filtered out in the plots, due to
limitation of initial value solver in capturing noisy highly damped modes. White lines
show boundary between unstable and stable modes.

change ρs value, which indicates that the equilibrium profile steepening is the main linear

contributor to the transition between 1.2kG < B < 1.4kG. Thus, a complete numerical

simulation of this transition would need to include self-consistent profile evolution.

B.3 Turbulence Saturation Studies

As discussed in the previous section, we have identified the equilibrium den-

sity steepening as a main contributor to the linear changes across magnetic field scan.

Although the causality of equilibrium steepening can not be simulated with the fixed

gradient model that is developed in this thesis, by looking at the trend of turbulence

saturation properties at different magnetic field, we can obtain insights into the density

steepening process. To investigate this issue, we have ran the nonlinear simulations

of the linear cases with the experimental profiles shown in the previous section. The

simulations are run after initial saturation for about 100 times of typical autocorrelation

timescales. The r−θ snapshots of density fluctuations at t = 80a/cs for magnetic field

scan simulations are shown in Fig. B.12.
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Figure B.12: r−θ snapshots of density fluctuations in a magnetic field scan simula-
tions.

We observe that at lower magnetic fields the m = 1 azimuthal mode is dominant.

As we increase the magnetic field from 0.8kG to 1.2kG, the size of blobs reduces.

However, at B = 1.4kG, the m = 5−6 modes are more dominant, as we expected from

the linear growth rate analysis from Fig. B.10. Moreover, the density fluctuation blobs at

1.4kG are much more tilted than other magnetic fields, indicating larger shearing rate of

zonal flows at the transition magnetic field. Furthermore, at higher magnetic fields, the

lower modes seems to be dominant again.

Furthermore, we have computed the two point spectra of density fluctuations as a

function of magnetic, and results are shown in Fig. B.13.

To better discuss the statistical properties of the turbulence, the results of magnetic

field simulations of density, plasma potential, and electron temperature fluctuation RMS

amplitudes, along with particle flux, and E×B profile are shown in Figs. B.14-B.18.

We observe that the computed density fluctuation RMS amplitudes increase with

the increase of magnetic field from 0.8kG to 1.2kG (see Fig. B.14). This is expected
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Figure B.13: Two point spectra of density autopower as a function of magnetic field at
r = 3.6cm, and z = Lz/2.

Figure B.14: Radial profile of density fluctuation RMS amplitudes versus magnetic
field from the simulations.

due to gyroradius tightening with the increase of magnetic field. However, in the more

steepened equilibrium density case of 1.4kG, the fluctuations are significantly reduced. A

similar trend is also observed in the scan of plasma potential fluctuation RMS amplitudes,

shown in Fig. B.15. However, the electron temperature fluctuation RMS amplitudes do
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Figure B.15: Radial profile of potential fluctuation RMS amplitudes versus magnetic
field from the simulations.

Figure B.16: Radial profile of electron temperature fluctuation RMS amplitudes versus
magnetic field from the simulations.

not change much with the increase of magnetic field, shown in Fig. B.16. Note that the

electron temperature fluctuations are relatively small compare to the other fluctuations;

in the case of the 1.4kG simulation where there is sharp reduction in both density and

plasma potential fluctuations, the electron temperature fluctuations becomes comparable

to the other fluctuations in the system.

The computed particle flux behavior (see Fig. B.17) is also consistent with

reported experimental changes in turbulent particle flux at magnetic fields below 1.4kG.

Moreover, the computed particle flux reduction in the 1.4kG case is also similar to
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Figure B.17: Radial profile particle flux versus magnetic field from the simulations.

Figure B.18: Radial E×B velocity profile versus magnetic field from the simulations.

the experimental observations. However, the simulations show particle flux recovery

for B > 1.4kG, while the experimentally measured particle flux remain small. A more

rigorous validation study using synthetic diagnostic is required to study the difference

between simulation and experiment, but has to be deferred to future work. We also

observe an increase in the azimuthally averaged E×B profile (i.e. zonal flow) at the

critical magnetic field 1.4kG, where the shear layer peaks at the region of maximum

equilibrium density gradient lengthscale (see Fig. B.18).

To understand the changes in density equilibrium, have also looked at the evolu-

tion of equilibrium density. If we neglect the parallel diffusion and parallel flux (which
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can essentially be an important contributors, but we have neglected them in our fairly

simple model), we can write as

∂n0

∂ t
+∇⊥ · (ñṽr) = Dn∇

2
⊥n0 +Sn, (B.2)

where Sn is the particle source term that maintains the balance of turbulence saturation

level and equilibrium profiles. Note that, although in our model we do not evolve

the equilibrium profiles, we still can calculate the divergence of turbulent flux of the

fluctuations obtained from the simulations, and calculate the classical diffusion of fixed

density equilibrium. Furthermore, because the equilibrium profiles are in steady state at

each magnetic field, we can approximate the radial profile of particle source term. The

results of the analysis of each term in Eqn. B.2 terms is shown in Fig. B.19.

Figure B.19: The comparison of turbulent diffusion and classical diffusion of density
as a function magnetic field.
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We can observe that the classical diffusion of electrons are relatively small

compared to the turbulent flux, and decreases with ∝ B−2 scaling as function of magnetic

field. However, from low magnetic fields, the turbulent flux increases with increase

of magnetic field. This increase is mainly due to the increase of drift-wave linear

growth rates as a result of gyro-orbit tightening. Through Eqn. B.2, we can deduce that

for B < 1.4kG, the source term must increase to explain the density profile evolution.

However, at B = 1.4kG there is sudden decrease in turbulent particle flux, and the inferred

particle source term must also decrease. We suspect at B = 1.4kG that either the source

power deposition to the plasma changes as function of magnetic field, or parallel turbulent

transport - which has been neglected in our model - must become significant. However,

our current computational model can not test these theories, and further expansion of

model is necessary investing them.

B.4 Discussion

In this Chapter, we have performed an initial set of simulations to study the

turbulence changes in magnetic field scan of CSDX linear plasma device. Although the

simulations shown here were performed with the fixed gradient approach developed in

this thesis, we were still able to obtain some qualitative trend similar to the experiments.

We observed two major parameters control the transition to the fully developed

turbulence. First, is the effects of gyroradius tightening with the increase of magnetic

fields. The gyro-orbit tightening reduces the particle collisions, allowing for more

broadband turbulence development. Second, the changes in the density steepening of

equilibrium profiles is another important factor in setting the turbulence level. CSDX

simulations suggest that the gyroradius tightening can drive more fluctuations, while the

changes in the density equilibrium gradient can drastically influence the turbulence.
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Nevertheless, our current simulations use the equilibrium profiles as an input to

the computational model, hence do not simulate the steepening of density equilibriums.

These results motivates a source driven simulations of CSDX which evolve total density

and temperature fields, instead of only fluctuations about fixed, specified equilibrium.



Appendix C

Code Details

The turbulence model code discussed in this thesis was written in the open-source

BOundary Turbulence (BOUT++) framework[DUX+09]. The framework was written

in C++ programming language, and is highly modular with parallel capability. The

uncertainty quantification analysis in Chapter 5 was performed via python based ChaosPy

framework[FL15]. In this Appendix, details of the frameworks installation and code

setup is discussed, to enable reproducibility of simulations.

The latest developer edition of BOUT++ framework can be downloaded from

GitHub repository, git@github.com:boutproject/BOUT-dev.git. The current ver-

sion of BOUT++ framework used for the turbulence study in this thesis is version 3.0.

The user manual inside the repository explains the details of installation and usage of

the framework. To successfully install the framework, couple of libraries must be pre-

installed. If installing on a local computer parallel enabling libraries such as mpich, or

open-mpi must be installed. If installing the framework on a supercomputer cluster,

these packages are usually pre-installed. To read/write simulation data, either NetCDF

or PDB packages must be installed. The framework also uses fftw framework for Fast-

Fourier transform calculations. By default, the framework uses PVODE solver as the

163
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time integration scheme. Furthermore, as an optional package, one can also pre-install

PETSC solver to enable more advanced bundled solvers such as CVODE, IMEX, etc. The

current developer version of BOUT++ is not compatible with newer version of NetCDF

and PETSC at the time of writing this thesis. The library versions tested to work is

mpich-3.2, netcdf-4.1.3, fftw-3.3.4, petsc-3.4.5 which needs to be manually

installed in locally accessible folder.

The manually configuration and installation instruction of the packages is pro-

vided below. If installing the framework on a supercomputer cluster, check available

modules, if not available, the libraries should be installed manually.

1. Installing MPICH:

$ ./configure --disable-fortran
$ make
$ make install

2. Installing FFTW:

$ ./configure --prefix=~/local
$ make
$ make install

3. Installing NetCDF:

$ ./configure --prefix=~/local --disable-fortran --disable-netcdf-4
$ make
$ make install

4. Installing PETSC (optional):

$ ./configure --with-fortran=0 --with-c++-support=1 --with-mpi=1
--download-superlu_dist --download-metis --download-parmetis
PETSC_DIR=~/local/petsc-3.4.5 PETSC_ARCH=linux-gnu-c-debug
$ make PETSC_DIR=~/local/petsc-3.4.5 PETSC_ARCH=linux-gnu-c-debug
all

5. Adding these paths in the bash profile and restarting the shell:



165

export PYTHONPATH=~/BOUT-dev/tools/pylib/:$PYTHONPATH
export IDL_PATH=~/BOUT-dev/tools/idllib/:$IDL_PATH
export PETSC_DIR=~/local/petsc-3.4.5
export PETSC_ARCH=linux-gnu-c-debug

5. Finally, configuring and installing BOUT-dev:

$ ./configure --with-fftw=~/local --with-netcdf=~/local
--prefix=~/local --with-petsc=~/local/petsc-3.4.5
PETSC_DIR=~/local/petsc-3.4.5
$ make
$ make install

The code is written as a .cxx file, calling necessary libraries for simulations and

reads the data/BOUT.inp file for simulation inputs. In directory BOUT-dev/examples

plenty of sample cases are available to explore and setup. In this Appendix, the details of

a sample CSDX simulation .cxx file and BOUT.inp file is explained.

In the header of C++ file, the necessary libraries must be loaded:

#include <bout/physicsmodel.hxx>
#include <derivs.hxx>
#include <interpolation.hxx>
#include <initialprofiles.hxx>
#include <invert_laplace.hxx>

Then the variables need to be defined. The variables be in form of integer int,

real double precision BoutReal, 2-D radially and axially variables Field2D, or evolving

3-D variables Field3D.

Field2D n0, Ti0, Te0, Tg0, nuin, Rxy, Zxy, dn0dr, dTe0dr, dnuindr;
Field3D n, vor, Te, phi, jpar, Vx, Vy;

BoutReal a, Bz, Lz;
BoutReal nbar, nbase, nalpha, Ln, Lambda;
BoutReal Tebar, Tebase, Tealpha, LTe;
BoutReal Tibar, Tibase, Tialpha, LTi;
BoutReal Tgbar, Tgbase, Tgalpha, LTg;
BoutReal nuin_hat, Dn_hat, nu_source, AA;
bool nonlinear, local;
int axial_sheath;
BoutReal low_pass_z;
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int MXG, MYG;

BoutReal dx, dy, m_i, omega_ci, c_s, rho_s, rho_i, rho_e, mu_ii,
mui_hat, mui_par_hat;
Field2D loglam_ei, tau_e, eta, chi_e_par;
BoutReal loglam_ii, tau_i;
BoutReal Gamma_minus_1;
double PI, m_e, m_p, e0;

The BOUT++ framework uses two different protected functions to setup or restart

the physics of simulation in function physics_init(bool restarting) and run the

simulations in function physics_run(BoutReal t). The physics setup, parameters

options needs to be read from the input file BOUT.inp. The get section refers to the

parameters defined below bracket in the input file. If they are not defined in the input file,

the function OPTION uses the default value, defined in the third argument.

Options *options = Options::getRoot()->getSection("CSDX");
OPTION(options, AA, 40.); /* m_i/m_p, atomic mass */
OPTION(options, Lambda, 5.1); /* sheath factor */
OPTION(options, a, 8.); /* cm */
OPTION(options, Bz, 1.); /* kG */
OPTION(options, Lz, 200.0); /* cm */
OPTION(options, nbar, 5.0e12); /* cm^-3 */
OPTION(options, nbase, 0.0e12); /* cm^-3 */
OPTION(options, nalpha, 2.); /* n0 profile exponent */
OPTION(options, Ln, 2.); /* cm */
OPTION(options, Tebar, 3.); /* eV */
OPTION(options, Tebase, 0.); /* eV */
OPTION(options, Tealpha, 2.); /* Te0 profile exponent */
OPTION(options, LTe, 2.); /* cm */
OPTION(options, Tibar, 0.5); /* eV */
OPTION(options, Tibase, 0.5); /* eV, defaults Ti0 flat */
OPTION(options, LTi, 2.); /* cm */
OPTION(options, Tialpha, 2.); /* Ti0 profile exponent */
OPTION(options, Tgbar, 3711.5); /* K, core neutral gas temp */
OPTION(options, Tgbase, 300); /* K, wall neutral gas temp */
OPTION(options, LTg, 2.5); /* cm */
OPTION(options, Tgalpha, 2.); /* Tg0 profile exponent */
OPTION(options, nuin_hat, 0.0); /* c_s/a */
OPTION(options, Dn_hat, 0.0); /* rho_s^2 c_s/a */
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OPTION(options, nu_source, 0.); /* c_s/Ln */
OPTION(options, axial_sheath, 0); /* options: 0=periodic;
1=conducting; 2=insulating */
OPTION(options, nonlinear, false); /* nonlinear terms */
OPTION(options, local, false); /* local approximation */
OPTION(options, low_pass_z, -1); /* de-aliasing filtering */

Later, constant values and reference values are defined,

Gamma_minus_1 = 2./3;
PI = 2*asin(1.);
m_e = 9.10938261697e-31; //electron mass
m_p = 1.66053892173e-27; //proton mass
e0 = 1.602176487e-19; //eV -> J
m_i = AA*m_p; //ion mass
omega_ci = e0*(Bz/10)/m_i; //1/s, Bz from kG -> T
c_s = sqrt(e0*Tebar/m_i)*100; //m/s -> cm/s
rho_s = c_s/omega_ci; //cm
rho_i = sqrt(Tibar/Tebar)*rho_s;
rho_e = sqrt(m_e/m_i)*rho_s;

BOUT++ has the option to load any arbitrary form of grids using variety of mesh

generators. However, in this study a simple cylinderical grid is generated within the

physics setup. The framework default coordinates in the cartesian coordinate. However,

one can translate the coordinates using metric tensors. The cylindrical geometry of CSDX

is defined as,

/* rescale mesh dx, dy with MXG, MYG guard cells, x starts at dx */
dx = (a/rho_s)/(mesh->getNXPE()*(mesh->ngx - 2*MXG) + 2*MXG - 1);
mesh->dx = dx;
dy = (Lz/a)/(mesh->getNYPE()*(mesh->ngy - 2*MYG));
mesh->dy = dy;
Rxy = 0.;
Zxy = 0.;
/* g11 = g22 = g_11 = g_22 = 1. by default */
for(i=0;i<mesh->ngx;i++)

for(j=0;j<mesh->ngy;j++)
{

Rxy[i][j] = mesh->XGLOBAL(i+1)*dx;
Zxy[i][j] = mesh->YGLOBAL(j)*dy;

}
mesh->g_33 = Rxy*Rxy; //metric tensor for cylinderical geometry
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mesh->g33 = 1./mesh->g_33;
mesh->jacobian();
mesh->geometry();

Thus, equilibrium profiles and plasma parameters are defined in the physics setup

section using manually defined function and according to the plasma formulary.

n0 = 1.;
Ti0 = 1.;
Te0 = 1.;
dn0dr = 0.;
dTe0dr = 0.;
n0 = nbase
+ (nbar-nbase)*exp(-(((rho_s/Ln)*Rxy)^nalpha)/nalpha);
Te0 = Tebase
+ (Tebar-Tebase)*exp(-(((rho_s/LTe)*Rxy)^Tealpha)/Tealpha);
Ti0 = Tibase
+ (Tibar-Tibase)*exp(-(((rho_s/LTi)*Rxy)^Tialpha)/Tialpha);
Tg0 = Tgbase
+ (Tgbar-Tgbase)*exp(-(((rho_s/LTg)*Rxy)^Tgalpha)/Tgalpha);
n0 /= nbar;
Te0 /= Tebar;
Ti0 /= Tibar;
dn0dr = DDX(n0);
dTe0dr = DDX(Te0);
if (local)
{

dn0dr /= n0;
dTe0dr /= Te0;
n0 = 1.;
Te0 = 1.;
Ti0 = 1.;

}
dn0dr.applyBoundary("dirichlet");
mesh->communicate(dn0dr);
dTe0dr.applyBoundary("dirichlet");
mesh->communicate(dTe0dr);

/* from NRL formulary */
/* NRL, Te < 10 eV, = loglam_ee */
loglam_ei = 23. - 0.5*log(nbar*n0) + 1.5*log(Tebar*Te0);
tau_e = 3.44e5*((Tebar*Te0)^1.5)/(nbar*n0*loglam_ei);
/* norm. "eta" = 0.51*a/(c_s*tau_e) */
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eta = (m_e/m_i)*(a/c_s)*(0.51/tau_e);
/* chi_e_par = (2./3)*3.16*v_te^2*tau_e
= (2*3.16/3)*(v_te/c_s)^2*(c_s/a*tau_e) in norm units */
chi_e_par = (2.*3.16/3)*(m_i/m_e)*(c_s/a)*tau_e;
/* 0D for now; can updated to 2D later */
/* NRL, "mixed" ion-ion */
loglam_ii = 23. - 0.5*log(2*nbar) + 1.5*log(Tibar);
tau_i = 2.09e7*pow(Tibar,1.5)*sqrt(AA)/(nbar*loglam_ii);
/* mu_ii = V_ti^2*tau_i*((2.33 + 1.2*X^2)/(2.33 + 4.03X^2 + X^4))
X= omega_ci*tau_ii goes to 0.3*rho_i^2/tau_i as X = 2*omega_ci*tau_i
-> inf formula from Braginskii review article */
mu_ii=(Tibar/Tebar)*c_s*c_s*tau_i*(2.23+1.2*pow(2*omega_ci*tau_i,2))
/(2.33 + 4.03*pow(2*omega_ci*tau_i,2)
+ pow(2*omega_ci*tau_i,4));
mui_hat = mu_ii / (rho_s*rho_s*c_s/a);
/* nuin = n_g * 6e-19 * sqrt(T_i*e0/mi) (1/s) formula from
n_g = P_g / (k_B * Tg0) assuming ideal nuetral gas */
nuin = 5.8975e-16*(0.39996711/1.3806e-23/Tg0);
nuin /= c_s/a;
dnuindr = DDX(nuin);

At the end of physics setup, the evolving variables must be added to the solver

class, and we need to define the parameters we need to save once or at each iteration.

SAVE_ONCE saves the variable only time before the beginning of the simulation, while

SAVE_REPEAT and solver->add functions save the variables at each time-step, adding

additional temporal dimension to the variable.

// Specify evolving variables
solver->add(vor, "vor"); // Vorticity
solver->add(n, "n"); // Electron density
solver->add(Te, "Te"); // Electron Temperature

SAVE_REPEAT(phi);
SAVE_REPEAT(jpar);
SAVE_REPEAT(Vx);
SAVE_REPEAT(Vy);

SAVE_ONCE2(Rxy, Zxy);
SAVE_ONCE4(n0, Ti0, Te0, Tg0);
SAVE_ONCE2(dn0dr, dTe0dr);
SAVE_ONCE5(a, Bz, Ln, LTe, Lz);
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SAVE_ONCE6(nbar, Tebar, c_s,rho_s,rho_i,rho_e);
SAVE_ONCE6(mu_ii, mui_hat, nuin, Dn_hat, eta, chi_e_par);
SAVE_ONCE(nu_source);

In the physics_run(BoutReal t) section, we set the time derivative of evolving

variables based on the right-hand-side of the evolving equations in the model. The 2-D

invert Laplace operator is used to obtain plasma potential. Moreover, custom axial

boundary conditions are applied at each timestep. The code in the current form is can

only be parallelized in azimuthal direction and not in axial direction, Details of the

functions used here can be found in BOUT++ user manual.

// Solve for potential
if (local) {

phi = invert_laplace(vor, 1+2, NULL, NULL);
} else {

phi = invert_laplace(vor/n0, 1+2, NULL, &n0);
}
mesh->communicate(phi, vor, n, Te);

// Calculate jpar
jpar = -Grad_par_LtoC(n0*phi - Te0*n - 1.71*n0*Te)/eta;
mesh->communicate(jpar);

// conducting boundary condition
// requires setting ixsep1=0 in input file
// currently doesnt work with multi processors in axial direction
if(axial_sheath == 1) {

//Upper axial BC
for (int ir=0; ir<mesh->ngx; ir++)
for (int y=mesh->ngy-3; y<mesh->ngy; y++)

for (int z=0; z<mesh->ngz; z++) {
n[ir][y][z] = n[ir][y-1][z];
Te[ir][y][z] = Te[ir][y-1][z];
phi[ir][y][z] = phi[ir][y-1][z];
jpar[ir][y][z]=phi[ir][y-1][z]-Lambda*Te[ir][y-1][z];
vor[ir][y][z] = 0.;

}
//Lower Axial BC
for (int ir=0; ir<mesh->ngx; ir++)
for (int y=2; y>=0; y--)

for (int z=0; z<mesh->ngz; z++) {



171

n[ir][y][z] = n[ir][y+1][z];
Te[ir][y][z] = Te[ir][y+1][z];
phi[ir][y][z] = phi[ir][y+1][z];
jpar[ir][y][z]=-(phi[ir][y+1][z]-Lambda*Te[ir][y+1][z]);
vor[ir][y][z] = 0.;

}
} else if(axial_sheath == 2) { //insulating boundary condition

//Upper axial BC
for (int ir=0; ir<mesh->ngx; ir++)
for (int y=mesh->ngy-3; y<mesh->ngy; y++)

for (int z=0; z<mesh->ngz; z++) {
n[ir][y][z] = n[ir][y-1][z];
Te[ir][y][z] = 0.;
phi[ir][y][z] = 0.;
jpar[ir][y][z] = 0.;
vor[ir][y][z] = 0.;

}
//Lower Axial BC
for (int ir=0; ir<mesh->ngx; ir++)
for (int y=2; y>=0; y--)

for (int z=0; z<mesh->ngz; z++) {
n[ir][y][z] = n[ir][y+1][z];
Te[ir][y][z] = 0.;
phi[ir][y][z] = 0.;
jpar[ir][y][z] = 0.;
vor[ir][y][z] = 0.;

}
}

/* evolving density */
ddt(n) = 0.;
ddt(n) += (a/rho_s)*(dn0dr/Rxy)*DDZ(phi);
ddt(n) += Grad_par_CtoL(jpar);
ddt(n) += Dn_hat*Delp2(n);
ddt(n) -= nu_source*averageY(n.DC());
if (nonlinear)

ddt(n) += (a/rho_s)*bracket(phi, n, BRACKET_ARAKAWA)/Rxy;

/* evolving vorticity */
ddt(vor) = 0.;
ddt(vor) += Grad_par_CtoL(jpar);
ddt(vor) -= nuin_hat*vor;
ddt(vor) += mui_hat*Delp2(vor);
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if (nonlinear)
ddt(vor) += (a/rho_s)*bracket(phi, vor, BRACKET_ARAKAWA)/Rxy;

/* evolving Te */
ddt(Te) = 0.;
ddt(Te) += (a/rho_s)*(dTe0dr/Rxy)*DDZ(phi);
ddt(Te) += Gamma_minus_1*Te0*Grad_par_CtoL(1.71*jpar/n0);
ddt(Te) += Dn_hat*Delp2(Te);
ddt(Te) += chi_e_par*D2DY2(Te);
ddt(Te) -= nu_source*averageY(Te.DC());
if (nonlinear)

ddt(Te) += (a/rho_s)*bracket(phi, Te, BRACKET_ARAKAWA)/Rxy;

Vx = -DDZ(phi)/Rxy;
Vx.applyBoundary("Dirichlet");
Vy = DDX(phi);
Vy.applyBoundary("Dirichlet");
mesh->communicate(Vx, Vy);

if(low_pass_z > 0) {
// Low-pass filter, keeping n up to low_pass_z
// -1 mean keep zonal harmonic
ddt(n) = lowPass(ddt(n), low_pass_z, -1);
ddt(vor) = lowPass(ddt(vor), low_pass_z, -1);
ddt(Te) = lowPass(ddt(Te), low_pass_z, -1);

}

In the BOUT.inp file, the parameters for each simulation, initial perturbation form,

and boundary conditions can be set. A sample input file for nominal CSDX simulation is

shown below,

timestep = 0.2 # normalized time step
nout = 2000 # number of time steps
MZ = 129 # azimuthal grid points
ZPERIOD=1
MXG = 2 # number of ghost cells in radial direction
NXPE = 24 # number of processors in radial direction
NYPE = 1 # only one processor in the axial direction

[mesh]
nx = 100 # number of radial grid points
ny = 36 # number of axial grid points
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dx = 1.
dy = 1.
ixseps1 = 0 # means ALL points in SOL (needed for boundary
conditions in axial direction, comment this for periodic runs)

[ddx] #setting radial derivative types
first = C4 # C4 = 4th order central, C2 = 2nd order central
second = C4
upwind = W3 # U1 = 1st order upwind, W3 = 3rd order WENO

[ddy] # setting axial derivative types
first = C4
second = C4

[ddz] # setting azimuthal derivative types
first = FFT
second = FFT
upwind = W3

[laplace] # 2D invert Laplace operator
flags = 0 # flags for Laplacian inversion
all_terms = true
nonuniform = true # needed for cylindrical geometry

[CSDX] # CSDX parameters
a = 8. # cm
Bz = 1.0 # kG
Lz = 300. # cm
nbar = 9.87295e+12 # cm^-3
nbase = 1.81096e+11 # cm^3
nalpha = 2.9395 # n0 profile exponent
Ln = 2.2696 # cm
Tebar = 3.0597 # eV
Tebase = 0.41243 # eV
Tealpha = 6.3166 # Te0 profile exponent
LTe = 3.875 # cm
Tibar = 0.4 # eV
Tibase = 0.4 # eV
Tialpha = 2.0 # Ti0 profile exponent
LTi = 2. # cm
Dn_hat = 0.0198 # rho_s^2 c_s/a
nu_source = 20.0 # c_s/a
axial_sheath = 2 # 0=periodic; 1=conducting; 2=insulating
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nonlinear = true
local = false
low_pass_z = 41 # <= MZ/3

[solver] # setting time integration scheme
type = PVODE
timestep = 0.1
mxstep = 100000

[All] # initializing options
scale =0.07 # default size of initial perturbations
# form of initial profile
xs_opt = 1 # setting Gaussian initial fluctuation profile
ys_opt = 2 # setting sinusoidal initial fluctuation profile
zs_opt = 3 # setting mix of modes initial fluctuation profile
xs_mode = 1 # initial radial mode number
ys_mode = 1 # initial parallel mode number
zs_mode = 1 # initial azimuthal mode number
bndry_all = dirichlet # setting boundary conditions
bndry_yin = none # manually overriding axial boundary condition
bndry_yout = none # manually overriding axial boundary condition

[n]
bndry_core = neumann # overriding BC in the inner core

[Te]
bndry_core = neumann # overriding BC in the inner core

A sample .cxx file and BOUT.inp of the CSDX simulation setup is available on

GitHub repository,

github.com/pvaezi/BOUT-dev/tree/master/examples/csdx-3f.

For uncertainty quantification analysis, open-source ChaosPy python based frame-

work is used. It a very easy to use framework, with most of the probability distributions

and quantification scheme written and ready-to-use. To install chaospy, a source of the

code can be downloaded from the GitHub repository and installed,

git clone git@github.com:jonathf/chaospy.git
cd chaospy
pip install -r requirements.txt
python setupy.py install
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The details of all the functions used in the framework is explained in the manual

enclosed in the framework. For a sample probability collocation method uncertainty

quantification in the IBC case, a simple script can be written in python syntax. The

fluctuation properties are then imported into the script in array format. The following

libraries are loaded into python for uncertainty quantification analysis.

import chaospy as cp
import numpy as np

Then the UQ analysis can be done in couple of easy steps. First, the types of

input probability distributions and their normalized distributions (
´

∞

−∞
pqdq = 1) should

be defined,

#actual distribution space
rv = cp.J(
cp.Normal(mu=0.6, sigma=0.1816), #Ti0
cp.Uniform(0., 1160.-300.) #Tgb (K - 300) Rosenblatt transformation
gives wrong answer in uniform distribution with offset. Subtracting
the lower bound offset.
)
#mapping to normalized multivariate distribution space
#normalized distributions require int(df*dist,x=min..max) = 1
rv_proxy = cp.J(
cp.Normal(0, 1),
cp.Uniform(0, 1)
)

Then, the number of collocation nodes drawn from the multivariate probability

distribution of input parameters. The second argument in sample function, determines

the type of sampling. For instance, "M" designates the Hammersley sequence sampling

method. The nodes are then mapped into normalized distribution space.

nosamples = 5
samples = rv.sample(nosamples, "M")
nodes = rv_proxy.inv(rv.fwd(samples))

The set of chaos polynomials orthogonal to each other in the normalized proxy

distribution space are furthermore generated.
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order = 1 #order of the polynomials
P = cp.orth_ttr(order, rv_proxy, normed=False)

Finally, after solving for the simulations, the coefficients of polynomials are fitted

via regression according to the response quantities obtained from the simulations. Then,

mean and standard deviation of probability distribution can be obtained from the chaos

polynomials expansion.

u_hat = cp.fit_regression(P, nodes, flux)
pcmmean = cp.E(u_hat, rv_proxy) # mean of response probability
pcmstd = cp.Std(u_hat, rv_proxy) # std.dev. of response probability
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