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Beyond Markov: Accounting for Independence Violations in Causal Reasoning 

Bob Rehder (bob.rehder@nyu.edu) 
Department of Psychology, New York University  
6 Washington Place, New York, NY 10003 USA  

 
 

Abstract 

Although many theories of causal cognition are based on causal 
graphical models, a key property of such models—the inde-
pendence relations stipulated by the Markov condition—is 
routinely violated by human reasoners. Two accounts of why 
people violate independence are formalized and subjected to 
experimental test. Subjects’ inferences were more consistent 
with a dual prototype model in which people favor network 
states in which variables are all present or all absent than a 
leaky gate model in which information is transmitted through 
network nodes when it should normatively be blocked. The 
article concludes with a call for theories of causal cognition 
that rest on foundations that are faithful to the kinds of causal 
inferences people actually draw.   
 
The last 25 years has seen a dramatic increase in research 

asking how causal knowledge influences many acts of cog-
nition, including reasoning, categorization, decision making, 
and learning. Theory in this area has been advanced by use 
of the formalism known as causal graphical models that 
provides a good first order approximation of human abili-
ties. Nevertheless, there is now considerable evidence that a 
defining feature of these models—the Markov condition—is 
routinely violated by reasoners. This article describes these 
violations and then compares two new models that account 
for them, albeit in different ways. The diverging predictions 
of these models are then tested in a new experiment. 

Independence Violations in Causal Reasoning 
The causal networks in Figs. 1 and 2 provide two promi-

nent examples of how human reasoners violate the inde-
pendence relations associated with causal graphic models. 
Starting with the common cause network in Fig. 1 in which 
𝑋 is a common cause of 𝑌! and 𝑌!, whereas 𝑌! and 𝑌! are 
unconditionally dependent (e.g., one can reason from the 
presence of 𝑌! to the likely presence of 𝑋 and then to the 
likely presence of 𝑌!) the Markov condition stipulates that 
they are independent conditioned on  𝑋 (i.e., 𝑌! ⊥ 𝑌!|𝑋). In 
this case 𝑋 “screens off” the 𝑌s from one another (Pearl, 
2000; Spirtes, 2000). Because it will be useful to character-
ize the sign and magnitude of the dependence between two 
variables, I define a function 𝐷 (for “delta”) that character-
izes the difference in the probability of one variable given 
the presence or absence of another. Moreover, I define that 
difference in terms of probabilities transformed into log 
odds. For example, 𝐷(𝑌!,𝑌!) is defined as, 
𝐷(𝑌!,𝑌!)   =   𝑙𝑜𝑔𝑖𝑡  (𝑝(𝑦!!|𝑦!!))   −   𝑙𝑜𝑔𝑖𝑡  (𝑝(𝑦!!|𝑦!!))   (1) 

where 𝑦!! denotes 𝑌! = 𝑥 (e.g., 𝑦!! means 𝑌! is present). Be-
cause within-network causal relations will have the same 

properties (e.g., have the same causal strength) in this work, 
symmetry entails that 𝐷(𝑌!,𝑌!) = 𝐷(𝑌!,𝑌!), which will 
therefore be abbreviated 𝐷(𝑌).  

Analogously, 𝐷(𝑌!,𝑌!|𝑥!)—the difference in (the logit 
of) the probability of 𝑌! given the presence or absence of 𝑌!, 
conditioned on 𝑥!—is defined as, 

𝐷(𝑌!,𝑌!|𝑥!)   =   𝑙𝑜𝑔𝑖𝑡  (𝑝(𝑦!!|𝑦!!, 𝑥!))   −   𝑙𝑜𝑔𝑖𝑡  (𝑝(𝑦!!|𝑦!!, 𝑥!))   (2) 

and is abbreviated 𝐷(𝑌|𝑥!).  
The normative predictions for 𝐷(𝑌) and 𝐷(𝑌|𝑥!) are pre-

sented in the left chart of Fig. 1 assuming that the common 
cause graph is parameterized such that 𝑝(𝑥!)   =    .50, that 
the generative “causal power” associated with both 𝑋 → 𝑌! 
and 𝑋 → 𝑌! is .80, that there are weak alternative causes of 
𝑌! and 𝑌! such that 𝑝(𝑦!!|𝑥!) = 𝑝(𝑦!!|𝑥!) = .20, and that 
multiple causal influences integrate according to a standard 
noisy-or function (Cheng, 1997). The figure illustrates the 
independence relations that characterize a common cause 
network: Whereas 𝐷(𝑌)   > 0, 𝐷(𝑌|𝑥!)   = 0, that is, the 𝑌s 
are independent conditioned on 𝑥!. 

 
The right chart of Fig. 1 illustrates how that independence 

relation is typically violated. Rehder & Waldmann (2015) 
instructed subjects on causal relations that formed a com-
mon cause model in the domain of economics, meteorology 
or sociology. For example, for economics subjects were told 
that “low interest rates causes small trade deficits” (𝑋 → 𝑌!) 
and that “low interest rates causes high retirement savings” 
(𝑋 → 𝑌!). The variables senses involved in the causal links 
were varied (e.g., high rather than low interest rates some-
times played the role of 𝑋). Subjects were then presented 
with a series of inferences in which they were asked to rate 
(on a 0-100 scale) the probability of one variable condi-
tioned on others. We found that the empirical analog of 
𝐷(𝑌|𝑥!) (the difference between 𝑟𝑎𝑡𝑖𝑛𝑔(𝑦!!|𝑦!!, 𝑥!) and 
𝑟𝑎𝑡𝑖𝑛𝑔(𝑦!!|𝑦!!, 𝑥!)) was about 18 points (Fig. 1).  
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Figure 1. Normative predictions for the common cause model 
on the left and the corresponding empirical rating from Rehder & 
Waldmann (2015). Error bars are 95% confidence intervals. 
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Fig. 2 presents a common effect network in which 𝑋 is 

now a common effect of 𝑌! and 𝑌!. For this network the 
independence relations are the reverse of those for a com-
mon cause network: Whereas 𝑌! and 𝑌! are unconditionally 
independent (𝑌! ⊥ 𝑌!) they become dependent conditioned 
on 𝑋. And, assuming that 𝑌! → 𝑋 and 𝑌! → 𝑋 are generative 
and operate independently then 𝑌! and 𝑌! exhibit an explain-
ing away relationship when 𝑋 is present (the presence of 𝑌! 
makes 𝑌! less likely and vice versa). These predictions—
𝐷(𝑌) = 0 and 𝐷(𝑌|𝑥!) < 1—are presented in the left chart 
of Fig. 2 assuming the same parameterization as in Fig. 1 
(i.e., 𝑝(𝑦!!)   =    .50, causal powers of .80, and 𝑝(𝑥!|𝑦!!𝑦!!) = 
.20). And the right chart exhibits how those relations are 
typically violated: Rehder & Waldmann found that 
𝐷(𝑌) > 0. As an aside, note that, as predicted, 𝐷(𝑌|𝑥!) was 
significantly negative, although see Rottman & Hastie 
(2014) for evidence that explaining away is usually weaker 
than predicted by the normative model. The pattern of inde-
pendence violations in Figs. 1 and 2 was also observed by 
Rehder (2014a) using a forced-choice task.  

A number of rationalizations of these independence viola-
tions have been offered. For instance, Park & Sloman 
(2013) showed that those that arise with a common cause 
network are sometimes partly due to subjects’ beliefs that 
the two causal links could be disabled by a common factor 
(also see Ali, Chater, & Oaksford, 2011; Lagnado & Slo-
man, 2004; Fernbach & Rehder, 2013; Mayrhofer & Wald-
mann, 2015; Rehder, 2014b; Walsh & Sloman, 2008). How-
ever, this account fails to explain the violations that occur 
with the common effect network in Fig. 2 (although it may 
explain why those violations were numerically about half 
the size of those in Fig. 1). Relatedly, Rehder & Burnett 
(2005) explained the large variety of Markov violations they 
observed by assuming that all variables were related by an 
underlying common cause (an assumption justified on the 
basis of the fact that the variables were features of a catego-
ry; also see Rehder, 2014b). However, this account also fails 
to explain the results from Rehder & Waldmann (2015), 
which tested materials that were not category features.  

To address these descriptive failures of the normative 
model, I present two new models of causal reasoning—the 
leaky gate model and the dual prototype model. For each I 
first show that it accounts for the independence violations 
shown in Figs. 1 and 2. Because the models make the same 
predictions for those simple networks, I describe two new 
causal networks for which their predictions diverge. An 
experimental test of those networks is then reported.  

The Leaky Gate Model 
The leaky gate model is based on the intuition that infor-

mation flows along the directed edges of a causal network—
in a manner that is reminiscent of “spreading activation” 
accounts of memory—even in situations where that flow is 
normatively blocked. It accomplishes this by introducing 
additional statistical structure associated with every triple of 
variables 𝐴, 𝐵, and 𝐶 in the network that are related such 
that 𝐴 − 𝐵 − 𝐶 (where the edges represents a directed edge 
in either direction).  
𝑌!, 𝑋, and 𝑌! are so related in the networks in Figs. 1 and 

2. The joint distribution specified by the leaky gate model 
for those networks is derived from the joint specified by the 
normative model under parameterization 𝜃, referred to as 
𝑝!(𝑋,𝑌!,𝑌!|𝜃). The leaky gate model’s joint distribution, 
𝑝!" , augments 𝑝! with an additional energy function, 𝜖𝑋𝑌1𝑌2 
(Koller & Friedman, 2009), 
𝑙𝑜𝑔(𝑝!"(𝑋,𝑌!,𝑌!|𝜃, 𝑎)  ) ∝    𝜖!!!!! + 𝑙𝑜𝑔(𝑝!(𝑋,𝑌!,𝑌!|𝜃)  ) (3) 

𝜖!!!!! =
𝑎, 𝑋 = 𝑌! = 𝑌!
0, otherwise  (4) 

where 𝑎 is a free parameter ≥ 0. 𝜖!!!!! represents an expec-
tation (whose magnitude is represented by 𝑎) that 𝑋, 𝑌!, and 
𝑌! will tend to have the same value, that is, to be all present 
or all absent. Eq. 3 yields a proper joint distribution after 
exponentiation and normalization.  

The introduction of 𝜖!!!!! is sufficient to reproduce the 
pattern of independence violations shown in Figs. 1 and 2. 
When 𝑎 = .75 and the common cause network is instantiated 
with same parameters as in Fig. 1, the leaky gate model pre-
dicts 𝐷(𝑌|𝑥!) = .75 rather than 0. For the common effect 
network in Fig. 2, it predicts 𝐷(𝑌) = 1.37 rather than 0. 

The leaky gate model generalizes to more complex net-
works. Consider the elaborated common cause network in 
Fig. 3 in which the two effects (𝑌! and 𝑌!) are themselves 
the causes of two other variables (𝑍! and 𝑍!). In this net-
work, there are three triples of connected variables: 
𝑌! − 𝑋 − 𝑌!, 𝑋 − 𝑌! − 𝑍!, and 𝑋 − 𝑌! − 𝑍!. Thus, the leaky 
gate model’s joint distribution for this network is, 
𝑙𝑜𝑔(𝑝!"(𝑋,𝑌!,𝑌!,𝑍!,𝑍!|𝜃, 𝑎))

∝    𝜖!!!!! + 𝜖!!!!! + 𝜖!!!!!
+ 𝑙𝑜𝑔(𝑝!(𝑋,𝑌!,𝑌!,𝑍!,𝑍!|𝜃)) 

(5) 

𝜖!!!!! =
𝑎, 𝑋 = 𝑌! = 𝑍!
0, otherwise  (6) 

𝜖!!!!! =
𝑎, 𝑋 = 𝑌! = 𝑍!
0, otherwise  (7) 

and 𝜖𝑋𝑌1𝑌2 is given by Eq. 4.   
 The predictions for the elaborated common cause net-

work are shown in Fig. 3 for both the normative and leaky 
gate model and a number inference types (it also includes 
the predictions of the dual prototype model presented in the 
next section). The top row of charts presents predictions 
regarding the independence of the 𝑌s—𝐷(𝑌) and 𝐷(𝑌|𝑥!) 
—but also those regarding the independence of the 𝑍s— 
𝐷(𝑍) and 𝐷(𝑍|𝑥!). The bottom charts compare 𝐷(𝑍|𝑥!) 
with  a new kind of inference, namely, 𝐷(𝑍|𝑥!𝑦!!𝑦!!) in 
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Figure 2. Normative predictions for a common effect model 
and the corresponding empirical ratings from Rehder & 
Waldmann (2015). Error bars are 95% confidence intervals. 
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which 𝑍! and 𝑍! are screened off from one another by three 
variables (𝑋,𝑌!, and 𝑌!) rather than one. 

Using the same parameters as in Fig. 1, the normative 
model predicts that 𝐷(𝑌) > 𝐷(𝑍). Because the causal rela-
tions are probabilistic, the 𝑌s provide more information 
about each other than the 𝑍s. Nevertheless, 𝐷(𝑌|𝑥!) = 
𝐷(𝑍|𝑥!) = 0, because knowledge of 𝑋 renders the 𝑍s inde-
pendent along with the 𝑌s. In contrast, the leaky gate model 
(𝑎 = .75) predicts that the 𝑌s and 𝑍s are no longer independ-
ent. Nevertheless, the magnitude of the dependence between 
the 𝑌s—𝐷(𝑌|𝑥!)—is greater than that between the  𝑍s—
𝐷(𝑍|𝑥!) —which in turn is close to 0. This is so because the 
probabilistic links between the 𝑌s and 𝑍s further attenuates 
the flow of information.  

Whereas the normative model predicts 𝐷(𝑍|𝑥!) = 
𝐷(𝑍|𝑥!𝑦!!𝑦!!) = 0, the leaky gate model predicts 𝐷(𝑍|𝑥!) > 
𝐷(𝑍|𝑥!𝑦!!𝑦!!) ≈ 0. When the flow of information is blocked 
by three variables, virtually no information gets transmitted 
between the 𝑍s even when the gates are leaky.  

Eqs. 5-7 can also be applied to the elaborated common ef-
fect model in Fig. 4 in which the causes 𝑌! and 𝑌! are the 
effects of 𝑍! and 𝑍!. That figure also shows that whereas the 
normative model predicts that 𝐷(𝑌) = 𝐷(𝑍) = 0 (i.e., the 
causes are unconditionally independent), the leaky gate 
model predicts instead that 𝐷(𝑌) > 𝐷(𝑍) > 0. It also pre-
dicts that explaining away will be weaker (i.e., 𝐷(𝑌|𝑥!) and 
𝐷(𝑍|𝑥!) will be less negative) than in the normative model.  

In summary, the key predictions of the leaky gate model 
are that  𝐷(𝑌|𝑥!) > 𝐷(𝑍|𝑥!) ≥ 0 for the elaborated common 
cause model, 𝐷(𝑌) > 𝐷(𝑍) > 0 for the elaborated common 
effect model, and 𝐷(𝑍|𝑥!𝑦!!𝑦!!) ≈  0 for both.  

The Dual Prototype Model 
The dual prototype model is based on the intuition that 

causal inferences reflect a bias to expect that the variables in 

a network are either all present or all absent. Like the leaky 
gate model, the joint distribution it defines, 𝑝!", modifies 
the one specified by the normative model, 𝑝!. For the sim-
ple common cause and common effect networks in Figs. 1 
and 2, 𝑝!" is the same 𝑝!"  and so reproduces the independ-
ence violations in Figs. 1 and 2 in the same manner. Differ-
ences between 𝑝!" and 𝑝!"  arise for the networks in Figs. 3 
and 4, however. In particular, Eq. 10 is analogous to Eq. 7 
but elaborated with an alternative energy function, 
𝑙𝑜𝑔(𝑝!"(𝑋,𝑌!,𝑌!,𝑍!,𝑍!|𝜃, 𝑎))

∝    𝜖!!!!!!!!!
+ 𝑙𝑜𝑔(𝑝!(𝑋,𝑌!,𝑌!,𝑍!,𝑍!|𝜃)) 

(10) 

𝜖!!!!!!!!! =
𝑎, 𝑋 = 𝑌! = 𝑌! = 𝑍! = 𝑍!
0, otherwise  (11) 

𝜖!!!!!!!!! represents the expectation that all five variables 
will tend to be all present or all absent.  

Unlike the leaky gate model, the predictions of the dual 
prototype model are less sensitive to the distance between 
two variables in a network. For the extended common cause 
network (Fig. 3) it predicts a smaller difference between 
𝐷(𝑌) and 𝐷(𝑍), that 𝐷(𝑌|𝑥!) ≈ 𝐷(𝑍|𝑥!), and that 
𝐷(𝑍|𝑥!𝑦!!𝑦!!) will be greater than 0 (and about equal to 
𝐷(𝑍|𝑥!)). For the extended common effect network (Fig. 4) 
it predicts that  𝐷(𝑌) = 𝐷(𝑍) > 0 and 𝐷(𝑍|𝑥!𝑦!!𝑦!!) > 0. The 
prediction that 𝐷(𝑍|𝑥!𝑦!!𝑦!!) > 0 in both networks is espe-
cially notable because they imply the presence of independ-
ence violations between the 𝑍s even when they are separat-
ed by multiple “blockers.”  

Overview of Experiment 
These predictions are tested in an experiment in which 

subjects learned either the common cause network in Fig. 3 
or the common effect network in Fig. 4 and then drew a 
number of causal inferences, including those necessary to 
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compute the key quantities 𝐷(𝑌),  𝐷(𝑍), 𝐷(𝑌|𝑥!), 𝐷(𝑍|𝑥!), 
and 𝐷(𝑍|𝑥!𝑦!!𝑦!!). On the basis of previous research I ex-
pected that the independence relations stipulated by the 
normative model would be violated. The key question is 
whether those violations match the pattern predicted by the 
leaky gate model or the dual prototype model. 

Method 
Materials. Three domains were tested: economics, mete-

orology, and sociology. The five variables in each domain 
are shown in Table 1. In the database of materials each vari-
able had the two values shown in Table 1 (“high” or “low” 
for interest rates) plus a third “normal” value. However, the 
variables were described as binary to subjects (e.g., interest 
rates were either high or normal) and the causal relations 
were described as obtaining between the non-normal values 
(e.g., low interest rates → small trade deficits). To control 
for any domain knowledge that subjects might have brought 
to the experiment, a between-subject factor controlled which 
variable states were described as causally related and took 
on the values ++++, ----, -+-+-, and +-+-+, where each +/- 
picks out the value in Table 1 for variables 𝐴, 𝐵, 𝐶, 𝐷, and 
𝐸, respectively.  

As a further safeguard against subjects’ potential domain 
knowledge, a second between-subject factor controlled the 
assignment of these variables to the causal roles in Figs. 3 
and 4. In the common cause condition, the roles of, 𝑋, 𝑌!, 
𝑌!, 𝑍!, 𝑍! were played by 𝐴, 𝐵, 𝐶, 𝐷, and 𝐸 for half the sub-
jects and by 𝐴, 𝐷, 𝐸, 𝐵, and 𝐶 for the other half. In the 
common effect condition, they were played by 𝐷, 𝐵, 𝐶, 𝐴, 
and 𝐸 for half the subjects and by 𝐷, 𝐴, 𝐸, 𝐵, and 𝐶 for the 
other half. This scheme balances the assignment of the vari-
ables to the roles of 𝑌 and Z so that any differences between 
inferences involving 𝑌s and those involving 𝑍s cannot be 
attributed to the particular variables involved. 

The description of each causal relation consisted of two 
sentences, one that stated that one variable caused another 
and a second that described the mechanism responsible for 
that relationship. Table 2 presents an example of one of the 
sets of causal relations that formed a common cause net-
work in the domain of economics. Subjects also viewed a 
diagram of the causal relations and a third between-subject 
variable controlled which of four versions of that diagram 
was presented. The four versions of the common cause dia-
gram are presented in Fig. 5 (names of the actual variables 
replaced 𝑋, 𝑌!, etc.). These layouts were chosen to ensure 
that the spatial distance between the two 𝑌s on the screen 
was the same as between the 𝑍s and that the 𝑌s and 𝑍s ap-
peared an equal number of times in each quadrant of the 
screen. The four common effect diagrams were the same as 
those in Fig. 5 with the arrows reversed.  

Table 1 
Variable Economics Meteorology Sociology 
A Interest rates Ozone levels Urbanization 
 (low+/high–) (high+/low–) (high+/low–) 
B Trade deficits Air pressure Interest in religion 
 (small+/large–) (low+/high–) (low+/high–) 
C Retirement 

savings 
Humidity 
(high+/low–) 

Socio-economic 
mobility 

 (high+/low–)  (high+/low–) 
D Job mobility Wind direction Interest in sports 
 (high+/low–) (up+/ down–)  
E Income taxes 

(low+/high–) 
Air temperature 
(low+/high–) 

Commitment to 
the rule of law 

   (strong+/weak–) 
 

Procedure. Subjects first studied several screens of in-
formation about the domain and then performed the infer-
ence test. The initial three screens presented a cover story 
and a description of the domain’s five variables and their 
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Figure 4. Predictions of the normative model, the leaky gate model, and the dual prototype 
model for the elaborated common effect network. The “•” in, say, D(•) represents either Y or Z. 
Empirical results are shown in the last column. Error bars are 95% confidence intervals. 
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two values. A fourth screen presented the four causal links 
and a fifth the presented the diagram of those links. When 
ready, participants took a multiple-choice test of this 
knowledge. While taking the test, participants could return 
to the information screens they had studied; however, doing 
so obligated them to retake the test.  

Table 2 
Causal 
relation 

 
Description 

𝑋 → 𝑌! Low interest rates cause small trade deficits. The low cost of 
borrowing money leads businesses to invest in the latest manu-
facturing technologies, and the resulting low-cost products are 
exported around the world. 

𝑋 → 𝑌! Low interest rates cause high retirement savings. Low interest 
rates stimulate economic growth, leading to greater prosperity 
overall, and allowing more money to be saved for retirement in 
particular. 

𝑌! → 𝑍! Small trade deficits cause high job mobility. The intense de-
mand for exports means that entrepreneurs are forming many 
new companies, and those new companies must hire workers 
away from existing companies. 

𝑌! → 𝑍! High retirement savings causes low income taxes. When retire-
ment savings are high, states are likely to lower income taxes to 
encourage spending and so stimulate the economy. 

 
Subjects were then presented with a test that included 

those inferences needed to compute 𝐷(𝑌),  𝐷(𝑍), 𝐷(𝑌|𝑥!), 
𝐷(𝑍|𝑥!), and 𝐷(𝑍|𝑥!𝑦!!𝑦!!). Each question presented a 
particular economy (or society or weather system) whose 
variables were shown in a layout like one of those in Fig. 5. 
The values of variables whose state was known appeared in 
its corresponding box, boxes for variables whose values 
were unknown were blank, and the unknown variable whose 
value was being requested was filled with “?????.” Subjects 
were asked “What’s the probability that [this economy] has 
X?” where X was the to-be-inferred variable (e.g., high in-
terest rates). Subjects entered their response by moving a 
tick on a rating scale whose ends were labeled “0%” and 
“100%”. Each inference type was asked in both directions, 
e.g., subjects were asked both 𝑝(𝑦!!|𝑦!!) and 𝑝(𝑦!!|𝑦!!). The 
order of the 36 questions was randomized for each subject. 
Subjects could refer to a printed sheet of the causal diagram 
during the entire inference test. 

Design and participants. The experiment consisted of a 
2 (network type: common cause or common effect) × 3 
(domain: economics, meteorology, or sociology)  × 2 (as-
signment of variables to roles) between-subject design. 96 
New York University undergraduates received course credit 
for participating and were randomly assigned to these 12 
cells subject to the constraint that an equal number appeared 
in each cell. The four level factors that controlled which 
variable states were described as causally related and which 
version of the diagram was presented were both randomly 
assigned for each subject. 

Results  
Initial analyses revealed no effects of the between-subject 

counterbalancing variables and so the results are presented 
in Figs. 3 and 4 collapsed over those factors. The common 
cause and common effect conditions are reported separately. 

Common cause results. Consistent with previous research, 
the 𝑌s were treated as dependent even when the state of 
their common cause 𝑋 was known: Conditioned on 𝑥!, one 
𝑌 was rated about 15 points more probable when the other 𝑌 
was present versus absent. One new finding is that the 𝑍s 
were also treated as dependent and that the magnitude of 
those effects, 𝐷(𝑌|𝑥!) and 𝐷(𝑍|𝑥!), were about equal. An-
other is that the magnitude of the dependence between the 
𝑍s was the same regardless of whether they were separated 
by one or three blockers, 𝐷(𝑍|𝑥!) ≈ 𝐷(𝑍|𝑥!𝑦!!𝑦!!). These 
three differences scores were each significantly greater than 
zero, ps < .0001, and not significantly different from one 
another, ts (47) < 1. This pattern of results was predicted by 
the dual prototype model but not the leaky gate model (Fig. 
3). One unexpected result is that whereas all three models 
predicted that 𝐷(𝑌) > 𝐷(𝑍), the corresponding empirical 
judgments (29 and 26, respectively) did not differ from one 
another significantly, t < 1. Notably, it was the dual proto-
type model that predicted the smallest difference between 
𝐷(𝑌) and 𝐷(𝑍). 

Common effect results. Also consistent with previous 
findings, the causes of a common effect network were treat-
ed as unconditionally dependent: One 𝑌 was rated about 10 
points more probable when the other 𝑌 was present versus 
absent, p < .001. Although the degree of dependence be-
tween the 𝑍s—𝐷(𝑍)—was a bit smaller (7 points), it was 
significantly different than 0, p < .01, and not significantly 
different than 𝐷(𝑌), t(47) = 1.27, p = .29. In addition, 
𝐷(𝑍|𝑥!𝑦!!𝑦!!) was significantly greater than 0, p < .001. 
These results—𝐷(𝑌) ≈ 𝐷(𝑍) and 𝐷(𝑍|𝑥!𝑦!!𝑦!!) > 0—were 
predicted by the dual prototype model but not the leaky gate 
model (Fig. 4). One unexpected finding is that 𝐷(𝑌|𝑥!) ≈ 
𝐷(𝑍|𝑥!), t < 1, whereas the dual prototype model predicted 
𝐷(𝑍|𝑥!) > 𝐷(𝑌|𝑥!). Notably, although these measures of 
explaining away were negative, neither differed significant-
ly from zero, ps > .14.  

A model fitting exercise in which the three models were 
fit to the subjects’ inferences corroborated the apparent su-
periority of the dual prototype model. Although space pro-
hibits a full reporting of these results, I found that the com-
mon cause inferences were fit best by the dual prototype 
model (𝐴𝐼𝐶 = 75.4), followed by the normative (90.0), and 
leaky gate models (92.0). Common effect inferences were 
also fit best by the dual prototype model (𝐴𝐼𝐶 = 63.4), fol-
lowed by the leaky gate (70.8) and normative models (77.1). 
The predictions of the fitted dual prototype model deviated 
from the empirical ratings by an average of 4.1 and 3.1 
points (on a 0-100 scale) in the common cause and common 
effect conditions, respectively, and the correlations with 
those ratings were .96 and .98. 

Discussion 
Empirically, this article has both replicated and extended 
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previous findings. Once again, the two effects of a common 
cause network were not treated as independent conditioned 
on their cause. The new finding is that the same is true of 
the effects of those effects: The 𝑍s were treated as depend-
ent just like the 𝑌s. The two causes of a common effect 
network (the 𝑌s) were again not treated as unconditionally 
independent and, in a new result, so too were the causes of 
those causes (the 𝑍s). Remarkably, in both networks the 𝑍s 
were treated as dependent even when separated by multiple 
“blockers” (𝐷(𝑍|𝑥!𝑦!!𝑦!!) > 0). 

Theoretically, this article has advanced our understanding 
of such effects via the testing of two formal models. One 
might have expected that independence violations arise be-
cause information flows along a network in cases where it 
shouldn’t. Yet this intuition—formalized as the leaky gate 
model—predicts that the magnitude of independence viola-
tions should decrease as the number of blockers between 
two variables increases. The fact that the common cause 
subjects treated the 𝑍s as dependent to the same degree re-
gardless of whether they were separated by three blockers or 
one provides striking evidence against “spreading activa-
tion” sorts of accounts.  

Instead, reasoners behaved as if they overestimated the 
likelihood of two prototypical networks states, one in which 
all variables were present and another in which they were all 
absent, a view which explains the absence of an effect of 
either distance (𝑌s vs. 𝑍s) or the number of blockers on the 
magnitude of independence violations. Because this tenden-
cy works in the opposite direction of explaining away in a 
common effect network, the dual prototype model also ac-
counts for the lack of significant explaining away in this and 
past work (Rehder & Waldmann, 2015; Rehder, 2014a; 
Rottman & Hastie, 2013).  

It is important to note that the dual prototype model does 
not imply that reasoners ignore the direction of causality in 
their causal inferences, because that model’s joint distribu-
tion modifies rather than replaces the joint derived from the 
normative model. Common cause and common effect net-
works are theoretically important because they are identical 
ignoring the direction of causality. Yet in every experi-
mental test of which I am aware (including this one) differ-
ences between those networks obtain (compare Figs. 3 and 
4). The conclusion to be drawn from this work is not that 
people aren’t sophisticated causal reasoners but rather that 
their understanding of the statistics implied by causal net-
works differs from that of network theorists.  

One might be tempted to interpret the dual prototype 
model’s success as reflecting subjects’ beliefs that the caus-
al links operated deterministically (and that the effect varia-
bles had no alternative causes), a situation that would nor-
matively predict that variables were either all present or all 
absent (at least for the common cause network). Yet when 
these subjects were asked to infer 𝑋 given 0, 1, or 2 𝑌s (i.e., 
𝑝(𝑥!|𝑦!!, 𝑦!!), 𝑝(𝑥!|𝑦!!, 𝑦!!), or 𝑝(𝑥!|𝑦!!, 𝑦!!)) their ratings 
(27, 57, and 82 in the common cause condition; 29, 64, and 
97 in the common effect condition) reflected a belief that 
the causal links were probabilistic rather than deterministic 
(and the fitted causal power parameter was < .86 in both 
conditions). Nevertheless, an experimental test of the dual 

prototype model in which causal links are described as 
probabilistic is called for. 

Cognitive theories based on causal graphical models have 
enjoyed great success accounting for causal-based judg-
ments. Yet, the fact that people fail to honor the independ-
ence relations that such graphs express means that the theo-
ries rest on shaky foundations. It is time to move them onto 
on a firmer foundation, one that embodies fundamental em-
pirical facts regarding how people draw causal inferences. 
Let the formalisms described herein represent modest pro-
posals in that direction.  
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