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ABSTRACT OF THE THESIS

Multitype Point Process Analysis of Signaling Proteins in the Signaling Complexes of T

cells

by

Juan Piao

Master of Science in Statistics

University of California, Los Angeles, 2021

Professor Frederic Paik Schoenberg, Chair

Studying the spatial organization of the molecules in T cell following activation of the T cell

antigen receptor can improve our understanding of the association of the spatial structure

of the molecules with T cell activation states. In particular, it has been found that the

formation of the signaling complex is tightly related to proper signal transduction and T

cell activation during the immune response. The purpose of this work is to discover the

relationship between the spatial structure of the molecules in the signaling complex and the

state of T cell by extracting biological knowledge from cellular imaging data using spatial

point process methods.

In this thesis, we present discoveries on spatial distributions and attributes of proteins in

microcluster and non-microcluster areas of three activated T cells and compare the di↵erences

between the spatial distributions in microcluster and non-microcluster. This thesis attempts

to propose some possible biological hypotheses based on strong statistical evidence discovered

from spatial point pattern analysis.
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CHAPTER 1

Introduction

T cells play important role in immune response system. When there are bacteria, viruses or

other infectious agents present in human body, T cells recognize foreign antigens expressed

and activates the T cell antigen receptor (TCR) in response. In the process, new signaling

complexes are formed in TCR and numerous proteins are recruited to the signaling complexes

[13]. The formation of signaling complexes is a crucial step in T cell activation as it is tightly

linked to the actin cytoskeleton, which plays an essential role in intracellular tra�cking,

protein-protein interactions, and regulating the process of forming the complexes [9] [8].

Although little is known about the e↵ect of spatial organization and the interactions of

the signaling proteins in T cell on the regulation T cell activation, there is a growing body

of evidence suggesting that there might be structure-function relationships in TCR [9] [20]

[2]. The advancements in fluorescence microscopy imaging technology made it possible to

the observation of the cellular structure at nanoscale [21]. In particular, single-molecule lo-

calization microscopy and direct Stochastic Optical Reconstruction Microscopy (dSTORM)

are used to obtain the locations of individual molecules of various proteins in T cells [25].

In this study, we use point pattern analysis method to study the spatial organizations of

the signaling proteins found in signaling complexes and compare this with the spatial or-

ganization of proteins outside the signaling complexes to discover if there are statistically

significant di↵erences between them.
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CHAPTER 2

Methodology

2.1 Method to obtain the imaging data

The dataset and the details of the data collecting method was provided by Dr.Valarie Barr

[10] [11]. T cells are activated by contact with a stimulatory antigen receptor activating

surface. Since the signaling complexes are only formed on the contact sites between a cell

and the surface, the locations of the molecules in signaling complexes are considered on a 2D

surface, and therefore only the x-y positions of the molecules are of interest. The molecular

positions or localizations of six proteins, phosphorylated T cell receptor zeta chain (TCRz),

phosphorylated Linker for Activated T cells (LAT), phosphorylated Zeta Chain Associated

Protein (ZAP-70) kinase, phosphorylated SH2-domain-containing leukocyte protein of 76

kDa (SLP-76), phosphorylated Phospholipase C gamma 1 (PLCg1) and CD45, were deter-

mined using the MadSTORM method [25] on Jurkat T cells stably expressing LAT-YFP.

Each protein was labeled with antibodies conjugated to the fluorescent dye Alexa 647. The

following antibodies from BD Pharmingen (San Jose CA) were used; mouse anti-human

phospho-LAT (pY226) (cat# 558363, RRID AB 647281), mouse anti-CD247 (pY142) (cat#

558402, RRID AB 647307) and mouse anti-human CD45 (cat# 555480, RRID AB 395872).

These antibodies from Cell Signaling Tech (Danvers, MA) were also used; rabbit anti-

phospho-SLP-76 (pY145) (cat# 14770, RRID AB 2798604), rabbit anti-phospho-ZAP-70

(pY319) (cat# 2717, RRID AB 2218658) and rabbit anti-phospho-PLCg1 (pY783) (cat#

14008, RRID AB 2728690). The most likely location of each protein was determined by

using the MadSTORM method. Imaging was performed as previously described with the

following modifications: before staining, a TIRF image was taken of LAT-YFP followed by
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a 10,000 frame series of the unstained cells and a full series of 10,000 images was taken after

every bleach step to confirm bleaching. Thunderstorm software was used to detect localiza-

tions and previously described MatLab codes were used for drift correction and alignment

[25]. The first series of unstained cells was used to determine the positions of fiducial markers

which were removed from the all data sets. ThunderSTORM software was then used to re-

move all localizations with a total number of photons less than 1000. The YFP TIRF image

was overlaid on the rendering of the data set of phospho-TCRz staining and microcluster and

non-microcluster areas were hand drawn on the YFP image. These Regions of Interest were

transferred to the rendered phospho-TCRz image, their locations were extracted and were

used to produce masks that divided the data sets into microcluster and non-microcluster

areas. We used the x-y locations of the proteins and the types of the proteins to create

marked point process data for microcluster and non-microcluster areas.

2.2 Statistical method

2.2.1 Exploratory Analysis

Point pattern analysis is a method used to study events that can be localized in space or in

space and time. The point pattern can have marks attached to the points in addition to the

location/time information. Marked point patterns can have categorical or numerical marks

to either characterize the type of the point or provide numerical measurement of some aspects

of the data [6]. Point process analysis use statistical method such as exploratory analysis

and parametric model-fitting to explore, analyze and model point patterns [7]. Exploratory

analysis of point process includes investigating the first order e↵ect and second order e↵ect

of the point process [3]. Point process parametric model-fitting aims to find a mathematical

system to describe the underlying behavior of the point pattern, and additional covariates

can be included in the model to help explain the underlying behavior [7]. Point processes now

have a wide range of applications in the fields such that ecology, epidemiology, astronomy

and crime research [4].
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Spatial point patterns can be influenced by first order e↵ects and second order e↵ects.

First order e↵ects studies the intensity of the point pattern and the variation of intensity on

large scale due to the change of the underlying area’s structure [3] [16]. On the other hand,

second order e↵ects describe the distribution of distances between the neighbouring points

that shows spatial dependency of the point pattern on small-scale locations [4].

The density of the point pattern measures the first order e↵ects of the underlying point

process. Non-parametric kernel density estimation is used to estimate the variation of in-

tensity throughout the study area. Density plots were made using kernel smoothing method

with isotropic Gaussian density and the same default bandwidth (one-eighth of the shortest

side length of the enclosing rectangle) applied to each type [4].

G function is one of the methods to identify second order e↵ects of the data by measuring

the cumulative frequency distribution of nearest neighbour distances of the points [18]. G

function calculates the ratio of the number of points with nearest-neighbour distances less

than a given radius r to the total number of points in the point process [18]. The theoretical

value of the G function of a homogeneous Poisson point process with intensity � is G(r) =

1�exp(��⇡r2). If the estimated G function value is greater than the theoretical value, then

the point pattern is clustered; if the estimated G function value is lower than the theoretical

value, then the point pattern is dispersed. The shape of the function o↵ers information about

the way the points are distributed in a certain area. If the curve of the function increases

sharply at a short range of distance, then it indicates the points are clustered in that area.

On the other hand, if the curve increases slowly up to the distance where most points are

spread and then increases sharply, then it means the points are evenly spread. In this way,

G-function can be helpful in investigating the interaction between the points.

Cross-type J-functions are used to inspect the dependency of points between di↵erent

types [17]. The J-function for the pair of points of type i and j , Jij(r), is calculated by

taking the ratio of 1�Gij(r) to 1� Fj(r), where Gij(r) measures the nearest distance from

a point of type i to type j points, and Fj(r) measures the nearest distance from an empty

location to type j points [24] [4]. The theoretical value of Jij(r) is 1 for all (i, j) pairs. When
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i = j, the theoretical value of Jii(r) is achieved when Gii(r) = Fi(r), meaning type i point

follows complete spatial randomness (CSR). When i 6= j, the benchmark of Jij(r) happens

when Gij(r) = Fj(r), meaning the presence of type i points are independent of the presence

of type j points. If the empirical curve of the J function is above the benchmark, then it

indicates dispersion of di↵erent types of points in the point process. If the empirical curve

of J function is blow the benchmark, then it indicates clustering between types. Envelopes

were created using Monte Calro simulations under the null hypothesis of CSR for each type

i and complete spatial randomness and independence (CSRI) for each pair of type (i, j) [4].

Ripley’s K-function is a widely used second-order statistics that calculates the expected

number of points in a distance r around an arbitrary point [19] [6]. L-function is a scaled

version of K-function that stabilizes the variance of K-function [12]. The empirical K-L

function values can be compared with their theoretical values under the assumption of CSR

to detect the characteristic of the point process such as clustering, random or dispersion

in relation to CSR. These concepts of K-L function can also be extended to multitype

point processes to measure the spatial relationships between two types i and j at each

distance r [4]. We used centered cross type L function to compare the empirical value with

the benchmark value of 0. When the observed L function value Lij(r) is higher than the

theoretical benchmark, the point process shows more type j points are around the type i

point at the given distance r, indicating clustering. When the empirical values are below the

theoretical line, the type j points are less than expected around type i points at distance

r, indicating dispersion. To test if the deviation from the theoretical values are statistically

significant, envelopes obtained through Monte Carlo simulations with permutation of labels

were used to indicate the confidence bounds. The null hypothesis tested is CSRI for between-

types and CSR for within-types. Each simulation was run 19 times to test the null hypothesis

at significance level 0.05.
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2.2.2 Modeling

After gaining understandings of the spatial relationships between the proteins through ex-

ploratory analysis, Poisson models and Gibbs models were applied to model the trend of the

intensity and the pairwise interaction patterns among the points.

For Poisson model, linear, quadratic and cubic trend were considered and each combined

with additive or interactive protein type term. It models the intensity function �(u,m) as

a log linear function of location u = (x, y) and the protein type m. The estimates of the

optimal parameters were obtained by maximizing the likelihood using the Berman-Turner

device applied to multitype patterns [5].

Gibbs models further incorporates pairwise interaction e↵ects to the Poisson process. We

considered multitype Strauss and Strauss-hard core for the interaction term to model the

mark-dependent pairwise-interactions among the six types of proteins [15] [7].

Following [7], we assume a multitype point process is represented by,

x = {(x1,m1), ..., (xn,mn)}, xi 2 W, mi 2 M, i = 1, 2, . . . , n(x),

where xi and mi are the location and mark of the ith point respectively, M is the set of

possible types and W is the observation window in R2.

Multitype Strauss models are based on the distances between the points of type i and

type j, and it assumes the pair of points will interact if it is within the interaction radius rij,

but will have no interaction if the points are further apart than the interaction radius. A

Multitype Strauss process uses a set of parameters such as intensity, interaction radius and

interaction parameters to characterize the point process. The intensity parameter �m(xi)

represents the first-order trend for the type m proteins at location xi, and the interaction

parameter �m,m0 represents the second-order interaction between points of type m and type

m0.
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The pairwise interaction terms for the model require symmetry and are defined as:

cm,m0(xi, xj) =

8
><

>:

1 if kxi � xjk > rm,m0

�m,m0 if kxi � xjk  rm,m0

, (2.1)

where rm,m0 is the interaction radius between the pair of type m and type m0 and �m,m0

is the interaction parameter. All the terms are symmetric, which satisfy rm,m0 = rm0,m

and �m,m0 = �m0,m. The interaction radius matrix was estimated by observations from the

G-function values of intertype and intratype points.

A Strauss-hard core process combines a hard core process with a Strauss process. A hard

core process assumes no points are allowed within a radius of a hard core distance around

each point. This concept can be extended to multitype process, and an additional set of

hard core distances parameter is introduced to model the hard core process between each

pair of types.

The pairwise interaction terms for the Strauss-hard core process are defined as :

cm,m0(xi, xj) =

8
>>>>><

>>>>>:

1 if kxi � xjk > rm,m0

�m,m0 if hm,m0  kxi � xjk  rm,m0 ,

0 if kxi � xjk < hm,m0

(2.2)

where hm,m0 is the hard core distance and satisfies hm,m0 = hm0,m.

The conditional intensity for a multitype Strauss process or a multitype Strauss hard-core

process at location u for type m is defined as:

�((u,m)|x) = �m(u)

0

@
n(x)Y

i=1

cm,mi(u, xi)

1

A ,

where n(x) is the number of points in the point process.

Given the conditional intensity, the log pseudolikelihood of the model is defined as:

logPL =
n(x)X

i=1

log �((ui,mi)|x)�
X

m2M

Z

W

�((u,m)|x)du .
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Then the parameters for a multitype Gibbs model can be obtained by maximizing the

pseudolikelihood using Berman-Turner device [5].

To reduce the number of parameters to estimate, we used the minimum interpoint dis-

tances as the estimated hard core distances. Strauss interaction parameter, �m,m0 , quantifies

between-type interactions and within-type interactions. �m,m0 = 1 indicates homogeneous

Poisson process and �m,m0 = 0 indicates hard core process. �m,m0 > 1 implies positive asso-

ciations between type m and type m0 and �m,m0 < 1 indicates inhibition between the type

m and type m0.

Models were compared via their corresponding Akaike Information Criterion(AIC) scores

[1]. AIC is defined as:

AIC = �2 logPL+ 2p,

where p is the number of parameters in the model and PL is the model’s maximum pseu-

dolikelihood. The model with higher maximum pseudolikelihood and fewer parameters will

result in a lower overall AIC score, and therefore the model with a lower AIC score is con-

sidered as more optimal.

Throughout this analysis, R software (version 4.0.4) was used, and ‘spatstat’ package was

used for the exploratory analysis and modeling of point pattern data [6].
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CHAPTER 3

Results

3.1 Exploratory Analysis

The experiment was done on three T cells which we will call Cell1, Cell2 and Cell3 respec-

tively. In each cell, a segment from microcluster and a segment from non-microcluster were

observed and analyzed. 59407 and 4921 proteins were observed from Cell1’s microcluster

and non-microcluster respectively. 21325 and 4244 proteins were observed from Cell2’s mi-

crocluster and non-microcluster respectively. 21466 and 7279 proteins were observed from

Cell3’s microcluster and non-microcluster respectively.

Table 3.1 provides the estimated intensity of each protein type by assuming constant

intensity in the process. In microclusters of Cell1, Cell2 and Cell3, the intensities of pZeta,

pSLP and pZAP were significantly higher than the other types. While in non-microclusters,

the intensities of all six types of proteins were roughly on the same scale. In all three

cells, the intensities of all the proteins were higher in microcluster than in non-microcluster

except for CD45 which had approximately the same intensities in both microcluster and

non-microcluster. This might indicate that the number of CD45 remained approximately

the same as before after the activation of T cell while other types of proteins were recruited

to the signaling complexes after the activation of T cells.

Figure 3.1 shows the spatial distribution of the point process for each segment in Cell1,

Cell2 and Cell3. All the point processes had irregular observation windows, and each window

consisted of several numbers of polygons. Visually, the overall number of points in microclus-

ter areas were higher than the overall densities in non-microcluster areas as shown in Figure

3.1, indicating the proteins were more clustered in microclusters than in non-microclusters.
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Figure 3.1: Cell1, Cell2 and Cell3’s microcluster and non-microcluster point process plot
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Figure 3.2: Microcluster and non-microcluster densities of Cell1, Cell2 and Cell3
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(a) Cell1 : Microcluster.

  CD45

2e
−0
4

6e
−0
4

  pPLC

2e
−0
4

6e
−0
4

  pLAT

2e
−0
4

6e
−0
4

  pZeta

2e
−0
4

6e
−0
4

  pSLP

2e
−0
4

6e
−0
4

  pZAP

2e
−0
4

6e
−0
4

(b) Cell1 : Non-microcluster.
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(c) Cell2 : Microcluster.
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(d) Cell2 : Non-microcluster.
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(e) Cell3 : Microcluster.
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(f) Cell3 : Non-microcluster.

Figure 3.3: Cell1, Cell2 and Cell3’s microcluster and non-microcluster densities split by

protein type
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Protein Cell 1 Cell 2 Cell 3

type Microcluster Non-micro Microcluster Non-micro Microcluster Non-micro

CD45 7.966432e-05 5.048166e-05 5.369623e-05 4.236690e-05 6.022332e-05 4.597895e-05

pPLC 1.580863e-04 6.155858e-05 7.598807e-05 3.377583e-05 1.076602e-04 5.760756e-05

pLAT 1.551358e-04 4.787889e-05 7.817207e-05 4.442640e-05 8.042791e-05 5.427964e-05

pZeta 5.809129e-04 4.206805e-05 2.503690e-04 4.401450e-05 3.551907e-04 3.779301e-05

pSLP 5.569049e-04 4.140223e-05 1.613523e-04 2.030080e-05 2.044860e-04 2.402228e-05

pZAP 3.143713e-04 5.447662e-05 1.834182e-04 6.484489e-05 2.396244e-04 5.875513e-05

Table 3.1: Intensity of each type of protein in each cell’s microcluster and non-microcluster

segment.

Figure 3.2 depicts the corresponding overall density distribution for each segment. In

three microclusters, the maximum intensity was approximately 2.6⇥10�3 and the minimum

intensity was 6 ⇥ 10�4, whereas, in three non-microclusters, the maximum and minimum

intensities were 5 ⇥ 10�4 and 1 ⇥ 10�4 respectively. This showed the range of intensities

in microclusters was generally wider than the range of intensities in non-microclusters. In

addition, in each subplot, the intensities varied across di↵erent polygons since some polygons

had high intensities indicated by the color yellow and some polygons had low intensities

indicated by dark blue color. This showed the intensity was inhomogeneous within each

segment.

Figure 3.3 illustrates the density distributions of the point process split by protein type in

each segment of Cell1, Cell2 and Cell3. Generally, the density distributions varied by type,

but some types of proteins shared similar density distributions. For example, in Cell1’s mi-

crocluster, pZeta, pSLP and pZAP had similar density distributions, indicating there might

be spatial associations between these proteins since a high density of one of these proteins

indicated a high density of other types. The range of the intensity was approximately on

the same scale in both microclusters and non-microclusters for CD45, but for other proteins,

the range of intensities was wider in microclusters compared to the range of intensities in

non-microclusters. The increased intensity of the proteins in microclusters might be the re-
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sult of the recruited signaling proteins into the signaling complexes following the activation

of the T cells.

Figure 3.4 shows the result of cross-type J-function with Monte Carlo simulation en-

velopes based on CSR(within-type) or CSRI(between-type). In microclusters, the proteins

in some columns showed clustered patterns around points of its same type or around other

types of points. But with the empirical curves inside the randomization envelopes, the clus-

tering patterns were not statistically significant. In the last three columns of Figure 3.4a,

Figure 3.4c and Figure 3.4e, pZeta, pSLP and pZAP have shown clustering patterns around

points of its same type or around other types of proteins. The only exception is that when

pZeta, pSLP and pZAP were around points of CD45 type, the observed J function followed

the theoretical curve closely. In the first column of each microcluster’s cross-type J func-

tion plot, we observed protein type CD45 showed no significant clustering or regular pattern

either around points of its same type or around other types of proteins.

In non-microclusters, the empirical distribution followed the theoretical Poisson distri-

bution closely and there was no evidence of departure from the null hypothesis of CSR or

CSRI.

Figure 3.5 illustrates the cross-type L-function with envelopes obtained from the Monte

Carlo random labeling test of the null hypothesis. There were some similar patterns shown

among the microclusters, as well as some similar patterns shown among the non-microclusters

of the three cells.

In each cell’s microcluster segment, each individual panel showed similar patterns with

other individual panels within the same column. The columns of pZeta, pSLP and pZAP

from Cell1, Cell2 and Cell3 showed that there was significant clustering at most scales in

each panel with the exception that, CD45 and pZAP pair in Cell1 (Figure 3.5a), which

was first clustered up to 1000nm, then the observed L-function entered the grey envelope

and left it again showing dispersion. The columns of CD45, pPLC and pLAT from the

three microclusters showed more complicated behavior. In the microcluster of Cell1, the

columns of pLAT and pPLC showed significant clustering at almost all distances, except
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(b) Cell1 : Non-microcluster.
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(c) Cell2 : Microcluster.
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(d) Cell2 : Non-microcluster.
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(e) Cell3 : Microcluster.
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(f) Cell3 : Non-microcluster.

Figure 3.4: Cross-type J-function and global envelopes of 19 simulations of CSR or CSRI,

for each combination of types for the microcluster and non-microcluster in Cell1, Cell2 and

Cell3.
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(a) Cell1 : Microcluster. (b) Cell1 : Non-microcluster.

(c) Cell2 : Microcluster. (d) Cell2 : Non-microcluster.

(e) Cell3 : Microcluster. (f) Cell3 : Non-microcluster.

Figure 3.5: Centred L-function and global envelopes of 19 simulations of CSR, for each pair

of types assuming constant intensity of each type for point patterns in the microcluster and

the non-microcluster in Cell1, Cell2 and Cell3. Solid lines show empirical estimate. Grey

shading represents the envelope of the summary functions based on simulations of a uniform

Poisson process with the same estimated intensity.
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for the pLAT and CD45 pair. But in the microcluster of Cell2, most pairs in CD45, pPLC

and pLAT column showed clustering up to some distances but in some ranges were within

the grey envelopes. In Cell3’s microcluster segment, most pairs showed the patterns that

the empirical centred L function increased at first and then gradually dropped below the

theoretical line, but most pairs’ L-function values were within the boundary of the envelope.

In each cell’s non-microcluster segment, most pairs did not show significant clustering or

dispersion. In Cell1, the pZAP and pPLC pair, the pZAP and pZeta pair, and the pPLC and

pZAP pair were clustered at some further distances. The Centred L-function for type pLAT,

pZeta and pSLP showed there was some dispersion or clustering for a very short distance.

In Cell2, pZAP paired with any of pZeta, pSLP and pZAP showed significant clustering

at most distances. For other pairs, no significant clustering or dispersion was shown at

most distances. In Cell3, the diagonal panels showed that the within protein types were all

clustered at first and then gradually dropped. For other pairs, no significant clustering or

dispersion at most distances except for the pSLP and CD45 pair, the pSLP and pPLC pair,

and the pSLP and pZeta pair where it all showed significant clustering at longer distances.

3.2 Model fitting

To reduce the computational load, one polygon was each selected from Cell1’s microcluster

and non-microcluster for model-fitting. The subset selected from Cell1’s microcluster is

shown in Figure 3.6a and the subset selected from Cell1’s non-microcluster is shown in

Figure 3.6b. The corresponding density plots split by the type of protein are shown in

Figure 3.7a and Figure 3.7b respectively.

Figure 3.8 shows the cross-type J-function of the subsets. In both microcluster and non-

microcluster subset, the empirical lines did not significantly deviate from the theoretical lines,

indicating no significant pairwise interactions presented in the subsets. While the cross-type

J-function of the subset of the non-microcluster exhibited similar pattern with the whole

dataset (Cell1’s non-microcluster) as shown in Figure 3.4, the cross-type J-function of the
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Figure 3.6: The point process plots for the subset of Cell1’s microcluster and the subset of

Cell1’s non-microcluster.

subset of the microcluster was very di↵erent compared to the cross-type J-function of the

whole dataset (Cell1’s microcluster). Unlike in the whole dataset, the observed crosstype J-

function values in the microcluster subset was not below the theoretical values. The di↵erence

between the subset and the whole dataset could indicate that the spatial distributions of the

point process were not homogeneous across di↵erent polygons within the cell.

Figure 3.9 illustrated the cross-type L-function of the subsets. In microcluster, most pairs

showed significant clustering at most distances, except for pZeta and pPLC pair. In non-

microcluster, all the within-type proteins showed significant clustering, and a few between-

type pairs showed significant clustering or inhibition at some distances. Comparing the

cross-type L-function of the subsets and that of the corresponding whole dataset, we observed

more pairs showed significant clustering in both the microcluster and the non-microcluster

subsets.

G functions were used to exam the distribution of the nearest neighbor distances and
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(a) The Subset of Cell1 : Microcluster.
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(b) The Subset of Cell1 : Non-microcluster.

Figure 3.7: Density plot split by protein type for the subset of Cell1’s microcluster and the

subset of Cell1’s non-microcluster
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(a) The Subset of Cell1 : Microcluster.
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(b) The Subset of Cell1 : Non-microcluster.

Figure 3.8: Cross-type J-function and global envelopes of 19 simulations of CSR or CSRI,

for each combination of types for the subset of microcluster and non-microcluster in Cell1
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(a) The Subset of Cell1 : Microcluster.
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(b) The Subset of Cell1 : Non-microcluster.

Figure 3.9: Centred L-function and global envelopes of 19 simulations of CSR, for each

pair of types assuming constant intensity of each type for point patterns in the subset of

microcluster and the non-microcluster in Cell1. Solid lines show empirical estimate. Grey

shading represents the envelope of the summary functions based on simulations of a uniform

Poisson process with the same estimated intensity

the interaction radius of the points. Figure 3.10 and Figure 3.11 showed the cumulative

distribution of the nearest neighbor distance from each point of type i to type j points for

the subset of microcluster and non-microcluster data respectively. The plots in the diagonal

panels of 3.10 and Figure 3.11 show the empirical curves for the nearest neighbor distances

were all above the curves of the Poisson process, indicating clustering within the same type of

proteins. In addition, all the estimated curves increased rapidly at some shorter distances.

These showed proteins of the same types were more clustered within short scales. From

the cross-type G functions between di↵erent types of proteins, we observed the estimated

G functions were either slightly below or closely follow the theoretical Poisson curve for

most regions in both plots. This indicated the proteins of di↵erent types might be either

independent or slightly dispersed from each other.

We fitted various inhomogeneous Poisson models and Multitype Strauss/ hard-core mod-

els. From the AIC scores of Poisson models and Strauss models applied to these multitype

point processes (see Table 3.2), Strauss models generally had better fits than Poisson models.
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Among the di↵erent Poisson models, the models with cubic trend and interaction with mark

types had the best fit in both microcluster and non-microcluster. Among the di↵erent Strauss

models, Strauss-hard-core model fit better than Strauss model. In particular, Strauss-hard-

core with cubic trend term had the lowest AIC. Considering the Strauss-hard-core with

quadratic trend term had only slightly higher AIC but fewer parameters, we selected the

Strauss-hard-core with quadratic trend model for both microcluster and non-microcluster to

proceed with the analysis.

Model Formula AIC

type Microcluster Non-micro

Additional linear ppm(X⇠polynom(x,y,1)+marks) 54988.16 13690.07

Linear with interaction ppm(X⇠polynom(x,y,1)*marks) 54844.93 13655.07

Additional quadratic ppm(X⇠polynom(x,y,2)+marks) 54601.50 13662.44

Quadratic with interaction ppm(X⇠polynom(x,y,2)*marks) 54325.86 13575.07

Additional cubic ppm(X⇠polynom(x,y,3)+marks) 54534.88 13611.21

Cubic with interaction ppm(X⇠polynom(x,y,3)*marks) 54050.94 13443.02

Strauss with quadratic trend ppm(X⇠polynom(x,y,2), MultiStrauss()) 25725.44 4216.64

Strauss-hard-core with quadratic trend ppm(X⇠polynom(x,y,2), MultiStraussHard()) 25006.05 4181.15

Strauss-hard-core with cubic trend ppm(X⇠polynom(x,y,3), MultiStraussHard()) 24988.47 4172.84

Table 3.2: AIC for di↵erent models

CD45 pPLC pLAT pZeta pSLP pZAP

CD45 0.2768 -0.0383 ± 0.0074 -0.0011 ± 0.0071 -0.0152 ± 0.0082 0.0222 ± 0.0059 -0.0250 ± 0.0084

pPLC 0.1795 ± 0.0123 -0.0206 ± 0.0079 0.0026 ± 0.0037 0.0212 ± 0.0013 -0.0071± 0.0056

pLAT 0.5392 -0.0031 ± 0.0036 0.0271 ± 0.0040 -0.0411 ± 0.0047

pZeta 0.2114 0.0379 ± 0.0011 0.0361 ± 0.0015

pSLP 0.2890 0.0383 ± 0.0015

pZAP 0.4344

Table 3.3: The estimated interaction parameters and the corresponding standard errors of

Strauss-hard-core model fitted for microcluster data, listed in the form of mean ± standard

error. 11 out of 21 parameters were statistically significant, which were marked in bold

typeface. 5 of the coe�cients did not have a standard error due to singularity.
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CD45 pPLC pLAT pZeta pSLP pZAP

CD45 0.3048 ± 0.0304 0.0114 ± 0.0447 -0.0189 ± 0.0334 -0.0214 ± 0.0273 -0.0620 ± 0.0509 0.0496 ± 0.0351

pPLC 0.1170 ± 0.1047 0.0357 ± 0.0789 -0.0823 ± 0.0519 0.0755 ± 0.0813 0.0032± 0.0827

pLAT 0.2700 ± 0.2136 0.0941 ± 0.1096 -0.0669 ± 0.1068 -0.0978 ± 0.0962

pZeta 0.3786 ± 0.1058 0.0623 ± 0.0921 0.0162 ± 0.0586

pSLP 0.4903 ± 0.3788 0.0052 ± 0.0767

pZAP 0.1912± 0.0531

Table 3.4: The estimated interaction parameters and the corresponding standard errors

of Strauss-hard-core model fitted for non-microcluster data, listed in the form of mean ±

standard error. 3 out of 21 parameters were statistically significant, which were marked in

bold typeface.

Table 3.3 showed the output of the log quadratic model with a multitype Strauss hard-

core process of six types of proteins in the microcluster subset with AIC of 25006.05, and 3.4

showed the corresponding output for the non-microcluster subset with AIC of 4181.15. The

tables showed the logarithms of the estimated interaction parameters � and the corresponding

standard errors in the fitted models. In the model fitted for microcluster, the standard errors

for 11 interaction parameters were relatively small, indicating statistical significance. In the

model fitted for non-microcluster, 3 out of 21 interaction parameters were significant. This

showed more pairwise interactions in microcluster than in non-microcluster were detected

when modeled with Strauss hard-core.

One of the requirements for fitting Strauss model is to supply the estimation of the inter-

action radii. There is no analytical way to calculate the optimum values of the interaction

radii [4], and a common method is to observe G function values to determine the pairwise

interaction radii. The following matrix was obtained from observation of cross-type G func-

tion and was used as the interaction radii to fit the Multitype Strauss/hard-core model for

the microcluster subset.
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rij =

2

6666666666664

60 150 140 120 120 140

150 60 120 120 120 100

140 120 30 140 120 120

120 120 140 15 100 100

120 120 120 100 20 80

140 100 120 100 80 25

3

7777777777775

The following matrix was used as the interaction radii to fit the Multitype Strauss hard-

core model for the non-microcluster subset.

rij =

2

6666666666664

120 200 250 300 250 150

200 140 200 250 200 150

250 200 100 200 200 150

300 250 200 40 150 150

250 200 200 150 50 150

150 150 150 150 150 120

3

7777777777775

The hard-core distance matrix is required for fitting Strauss hard-core model. The hard-

core distance matrix was estimated by using the minimum nearest-neighbor distance between

the corresponding types of points.

The hard-core distance matrix used to fit the Multitype Strauss hard-core model for the

microcluster subset is shown below.

hij =

2

6666666666664

0.00 1.22 2.55 0.86 1.99 0.45

1.22 0.00 1.56 0.76 0.32 2.52

2.55 1.56 0.00 0.70 1.51 3.53

0.86 0.76 0.70 0.00 0.15 1.72

1.99 0.32 1.51 0.15 0.00 0.74

0.45 2.52 3.53 1.72 0.74 0.00

3

7777777777775

The hard-core distance matrix used to fit the Multitype Strauss hard-core model for the
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non-microcluster subset is shown below.

hij =

2

6666666666664

0.00 6.79 4.21 24.53 6.55 13.85

6.79 0.00 6.05 7.06 3.30 8.94

4.21 6.05 0.00 9.57 6.21 1.64

24.53 7.06 9.57 0.00 1.10 1.50

6.55 3.30 6.21 1.10 0.00 11.43

13.85 8.94 1.64 1.50 11.43 0.00

3

7777777777775

The values of the hard-core radii indicated that for the microcluster subset, all the points

had their nearest-neighbor within 4nm; and for the non-microcluster subset, all the points

had their nearest-neighbor within 25nm. In both matrices, the nearest neighbor of the same

type of points was 0. These may suggest that the points were more clustered in microcluster

than in non-microcluster and points of the same types were more clustered compared to the

di↵erent types of points.

The plots of the fitted interactions were shown in Figure 3.12. Each panel showed the

value of the pairwise interaction parameter between the given types. The estimates of within-

type interaction parameters on the diagonal panels of both plots were all above 1, suggesting

positive associations within the same type of proteins. The o↵-diagonal panels in both plots

showed the interactions between di↵erent types of proteins were not very strong. More

specifically, in both plots, the between-type dependencies among pZeta, pSLP and pZAP

were all slightly above 1, indicating weak positive associations between these types. In

microcluster, with the exception of the pairs of pSLP with other types of proteins, all the

rest of the pairs have parameters that were slightly below 1. However, since all the o↵-

diagonal between-type parameters in both plots were very close to unity, the attraction or

inhibition between di↵erent types of proteins was not very strong.

The fitted trend of each type of protein in microcluster and non-microcluster subset are

shown in Figure 3.13 and Figure 3.15 respectively, demonstrating the predicted trend of the

intensity for each type superimposed by the observed points. The fitted trend in microclus-

ter captured the clustering on the top of the polygon but did not capture the clustering on
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the bottom of the polygon (see Figure 3.7a). The fitted trend in non-microcluster predicted

higher intensities in the middle part and gradually lowers outwards, but the observed inten-

sity (see Figure 3.7b) for some types such as pPLC or pZAP were more clustered near the

outer edge.

The fitted conditional intensity of each type of protein in microcluster and non-microcluster

subset are shown in Figure 3.14 and Figure 3.16 respectively. In microcluster, the model

predicted low intensity for most protein types except for pZeta, where it predicted higher

conditional intensities near the top of the polygon. In non-microcluster, the model predicts

higher conditionalintensities in some areas of CD45, pPLC, pLAT and pZAP.
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Ĝ
C
D
45

, p
Z
A
P

bo
rd

(r
)

Ĝ
C
D
45

, p
Z
A
P

ha
n

(r
)

G
C
D
45

, p
Z
A
P

po
is

(r
)

0
50

10
0

15
0

0.00.20.40.60.81.0

G

r (
nm

)

GpPLC, CD45(r)

Ĝ
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Ĝ
pL

A
T,

 p
Z
et
a

ha
n

(r
)

G
pL

A
T,

 p
Z
et
a

po
is

(r
)

0
20

40
60

80
10
0

0.00.20.40.60.81.0

G

r (
nm

)

GpLAT, pSLP(r)

Ĝ
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Ĝ
pL

A
T,

 p
S
LP

bo
rd

(r
)

Ĝ
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Ĝ
pZ

et
a,

 C
D
45

ha
n

(r
)

G
pZ

et
a,

 C
D
45

po
is

(r
)

0
50

10
0

15
0

0.00.20.40.60.81.0

G

r (
nm

)

GpZeta, pPLC(r)

Ĝ
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Ĝ
pZ

et
a,

 p
LA

T

ha
n

(r
)

G
pZ

et
a,

 p
LA

T
po

is
(r

)

0
2

4
6

8
10

12
14

0.00.20.40.60.8

G

r (
nm

)

GpZeta, pZeta(r)

Ĝ
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Ĝ
pS

LP
, C

D
45

km
(r

)

Ĝ
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Ĝ
pL

A
T,

 p
P
LC

km
(r

)

Ĝ
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Ĝ
pZ

et
a,

 C
D
45

km
(r

)

Ĝ
pZ

et
a,

 C
D
45

bo
rd

(r
)

Ĝ
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Ĝ
pZ

A
P,

 p
S
LP

km
(r

)

Ĝ
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(a) The Subset of Cell1’s Microcluster.
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(b) The Subset of Cell1’s Non-microcluster.

Figure 3.12: Fitted interaction parameter plot for the subset of microcluster and non-

microcluster in Cell1. The black line indicates the fitted interaction parameter and the

red line indicates value 1.
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Figure 3.13: Fitted trend for each type of protein for the subset of Cell1’s microcluster.

In each subplot, the region in the rectangle box shows the area where the model predicted

higher intensity for the trend.
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Figure 3.14: Fitted conditional intensity for each type of protein for the subset of Cell1’s

microcluster. (d) The highlighted part shows where the model predicted higher conditional

intensity.
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Figure 3.15: Fitted trend for each type of protein for the subset of Cell1’s non-microcluster.
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Figure 3.16: Fitted conditional intensity for each type of protein for the subset of Cell1’s

non-microcluster. The highlighted boxes show where the model predicted higher conditional

intensity.
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CHAPTER 4

Discussions

The analysis of multitype point patterns of the proteins can help the understanding of the

first-order e↵ect of the point process as well as the interactions patterns within or between

the di↵erent types of proteins.

In the exploratory analysis, we used cross-type L, J function to characterize the point

processes of Cell1, Cell2 and Cell3’s microcluster and non-microcluster and compare the

similarities and the di↵erences between microclusters and non-microclusters. First of all,

the three cells’ L, J functions of the microcluster data were very distinguishable from that

of the non-microcluster data. In all three cells’ microclusters, more pairs had their observed

values deviated from the theoretical benchmark in J-function. But in all three cells’ non-

microclusters, the observed values followed the theoretical J-function values closely. For all

three cells’ L-function in microcluster, the panels in the pZeta, pSLP and pZAP exhibited

significant clustering around points of its same type or around other types of points. But

in all the three cells’ L-function in non-microcluster, most panels were within the envelope

showing no significant clustering or dispersion. Hence, comparing three cells’ microcluster

to the non-microcluster, we observed more clustering of proteins in microclusters.

Although the three cells’ cross-type L, J functions share some similarities, there are also

some di↵erences between the three cells. For example, in microclusters, the L-function of

CD45, pPLC and pLAT exhibited di↵erent patterns around points of its same type or around

other types of points in each cell. As in Cell3, most pairs are within the envelope at most

distances while in Cell1, only a few panels are in the envelope at most distances. The

di↵erences could be due to the number or shape of the polygons in each cell. The number
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or shape of the polygons could a↵ect the observed values of the L or J function due to the

edge e↵ects.

CD45 often showed di↵erent characteristics compared to the other types of proteins.

In each cell, the intensity of CD45 was roughly on the same scale across microcluster and

non-microcluster, while other types of proteins had significant increases of their intensity in

microcluster compared to that of non-microcluster. In addition, the J-function values for the

pair of points involving CD45 followed the theoretical values closely in microclusters while

other pairs showed some interactions. These findings may suggest that the distribution of

CD45 exhibited no significant di↵erence in microclusters compared to the distribution in

non-microclusters and therefore the activation of T cell did not have a notable e↵ect on

CD45. This agrees with the earlier research finding that CD45 is a protein that should be

excluded from the signaling complexes [14].

We have used Poisson process to model the trend of the point process and Gibbs process

to model the within-type and between-type dependencies. AIC test of the various models

showed that Gibbs model with Strauss-hard core interaction term outperforms the Poisson

model without interaction terms, indicating the strong presence of interactions within the

point pattern. In addition, not only the presence of pairwise interactions were detected, but

also the quantification of the strength of the interactions was achieved. But compared to non-

microcluster, microcluster subset had more statistically significant interaction parameters,

indicating more pairwise interactions in microcluster were presented.

In the modeling process, we have only used the data from one polygon from each of

the microcluster and non-microcluster datasets to reduce the computational load. But the

selection of the polygon might lead to a possibly biased results. Figure 3.3 illustrated the

varying distribution patterns for each type of protein across di↵erent polygons. Furthermore,

comparing the cross-type J-function or the cross-type L-function between the subsets and

the whole dataset, we observed the subset did not share all the characteristics of the whole

dataset. This means there were inhomogeneity across di↵erent polygons and a subset of

the data in a polygon may not be representative of the whole dataset. To have a further
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understanding of the point pattern’s behavior within each polygon, we can analyze and fit

models separately for the data in each polygon and compare the results.

For future improvements, the goodness-of-fit of the model can be evaluated by comparing

the first-order or second-order statistics between the observed data and the simulated data

from the model. For example, we can repeatedly simulate realizations under the fitted model

and calculate the L, J-functions to obtain the simulated envelope and evaluate the fitness

of the observed data with respect to the simulated envelope. This approach provides a

flexible way to evaluate the model fit but requires high computational loads. Other possible

improvements may include incorporating possible covariates into the model to help explain

the characteristic of the point process.

All in all, Biological imaging of T-cells combined with methods of Point pattern analysis

is helpful in gaining various insights into the underlying processes that caused an observed

point pattern. The presented methodological workflow is helpful where only the locations

of the proteins are observed without other available information. Another potential applica-

tion of point process in Biology is that to apply spatial point processes in extending existing

computational methods for single-cell RNA-sequencing data to single-cell spatial transcrip-

tome data [22] [23]. Therefore, point process analysis could be a useful tool to analyze the

biological imaging data and develop biological insights.

35



Bibliography

[1] Hirotugu Akaike. A new look at the statistical model identification. IEEE Transactions

on Automatic Control, 19(6):716–723, 1974.

[2] James Allison and L Lanier. Structure, function, and serology of the t-cell antigen
receptor complex. Annual review of immunology, 5:503–40, 02 1987.

[3] A Baddeley. Analysing Spatial Point Patterns in R. 01 2008.

[4] Adrian Baddeley, Ege Rubak, and Rolf Turner. Spatial Point Patterns: Methodology

and Applications with R. Chapman and Hall/CRC Press, London, 2015.

[5] Adrian Baddeley and Rolf Turner. Practical maximum pseudolikelihood for spatial
point patterns. Australian —& New Zealand Journal of Statistics - AUST N Z J STAT,
42:283–322, 09 2000.

[6] Adrian Baddeley and Rolf Turner. spatstat: An R package for analyzing spatial point
patterns. Journal of Statistical Software, 12(6):1–42, 2005.

[7] Adrian Baddeley and Rolf Turner. Modelling spatial point patterns in r. In Case Studies

in Spatial Point Pattern Modelling. Lecture Notes in Statistics 185, 23–74. Springer,
2006.

[8] Lakshmi Balagopalan, Robert Kortum, Nathan Coussens, Valarie Barr, and Lawrence
Samelson. The linker for activation of t cells (lat) signaling hub: From signaling com-
plexes to microclusters. The Journal of biological chemistry, 290, 09 2015.

[9] Mira Barda-Saad, Alex Braiman, Rachel Titerence, Stephen Bunnell, Valarie Barr, and
Lawrence Samelson. Dynamic molecular interactions linking the t cell antigen receptor
to the actin cytoskeleton. Nature immunology, 6:80–9, 02 2005.

[10] Valarie Barr. email, September 2020.

[11] Valarie Barr. email, June 2021.

[12] Julian Besag. Contribution to the discussion on dr. ripley’s paper. Journals of the Royal
Statistical Society, B(39):193–195, 1977.

[13] Stephen Bunnell, David Hong, Julia Kardon, Tetsuo Yamazaki, Jane Mcglade, Valarie
Barr, and Lawrence Samelson. T cell receptor ligation induces the formation of dy-
namically regulated signaling assemblies. The Journal of cell biology, 158:1263–75, 10
2002.

[14] Stephen Bunnell, David Hong, Julia Kardon, Tetsuo Yamazaki, Jane Mcglade, Valarie
Barr, and Lawrence Samelson. T cell receptor ligation induces the formation of dy-
namically regulated signaling assemblies. The Journal of cell biology, 158:1263–75, 10
2002.

36



[15] Illian J, Penttinen A, Stoyan H, and Stoyan D. Statistical Analysis and Modelling of

Spatial Point Patterns. John Wiley and Sons, Chichester, 2008.

[16] Daniel Knitter and Oliver Nakoinz. Point Pattern Analysis as Tool for Digital Geoar-

chaeology: A Case Study of Megalithic Graves in Schleswig-Holstein, Germany, pages
45–64. 09 2018.

[17] M.N.M. Lieshout and Adrian Baddeley. A nonparametric measure of spatial interaction
in point patterns. Statistica Neerlandica, 50:344–361, 11 1996.

[18] David O’Sullivan and David Unwin. Geographic Information Analysis and Spatial Data,
pages 1 – 31. 03 2010.

[19] B. Ripley. The second-order analysis of stationary point processes. Journal of Applied
Probability, 13:255–266, 06 1976.

[20] Jérémie Rossy, DavidWilliamson, Carola Benzing, and Katharina Gaus. The integration
of signaling and the spatial organization of the t cell synapse. Frontiers in immunology,
3:352, 11 2012.

[21] Eilon Sherman, Valarie Barr, Suliana Manley, George Patterson, Lakshmi Balagopalan,
Itoro Akpan, Carole Regan, Robert Merrill, Connie Sommers, Jennifer Lippincott-
Schwartz, and Lawrence Samelson. Functional nanoscale organization of signaling
molecules downstream of the t cell antigen receptor. Immunity, 35:705–20, 11 2011.

[22] Dongyuan Song and Jingyi Li. Pseudotimede: inference of di↵erential gene expression
along cell pseudotime with well-calibrated p-values from single-cell rna sequencing data.
Genome Biology, 22, 04 2021.

[23] Tianyi Sun, Dongyuan Song, Wei Vivian Li, and Jingyi Li. scdesign2: a transparent
simulator that generates high-fidelity single-cell gene expression count data with gene
correlations captured. Genome Biology, 22, 05 2021.

[24] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[25] Jason Yi, Asit Manna, Valarie Barr, Jennifer Hong, Keir Neuman, and Lawrence Samel-
son. madstorm: a super-resolution technique for large-scale multiplexing at single
molecule accuracy. Molecular biology of the cell, 27, 10 2016.

37




