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Abstract

Fractional calculus is a mathematical tool for augmenting conventional integrals and deriva-

tives. When introduced to control theory, it poses new opportunities and challenges for

engineers. In the literature, pioneers have revealed the benefits brought to some general

control theory by fractional order (FO) modeling and control techniques. Yet, there has not

been a systematic study of such techniques for specific industrial processes. Therefore, this

dissertation makes the efforts to fulfill the task. This research originates from the equipment

control in the semi-conductor manufacturing industry, and most problems under discussion

are very practical. Newly developed methodologies for solving these problems are exhibited:

for example, the relay feedback identification of FO models, auto-decoupling of FO multi-

input-multi-output (MIMO) processes, relative gain array of FO MIMO processes, feedback

linearization of nonlinear FO systems, and the FO sliding-mode based extreme seeking control

for impedance matching, etc. In addition, comprehensive literature surveys on relevant topics

are provided; and an extensive review and evaluation of existing numerical tools for fractional

calculus and FO controls are conducted. Novel concepts, such as the pseudo frequency

response, are promoted; and potential future research opportunities are identified. Through

these efforts, fractional order modeling and control are expected to receive wider adoption so

that this powerful tool can be used more broadly for the development of modern industry.

Fractional calculus is like a mutated gene fragment which generates varieties of research

spices when it is grafted to any research breed. Beside the research in the scope of pure

FO modeling and control, a cadenza chapter is provided in the end of this dissertation,

in which some interesting thinking, experimental results and hypothesis on miscellaneous

research topics are presented. These discussions involve topics related to either fractional

calculus or controls, such as Arduino based control demo gadgets for education, EtherCAT

timing jitter characterization, Lévy distribution based random search, fractal analysis of the

financial market, a Hurst exponent based technical indicator, etc.
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Chapter 1

Introduction

“Being happy doesn’t mean that everything is perfect. It means that you’ve

decided to look beyond the imperfections.”

— Gerard Way

Control is just such a technique that trades off among stability, transient and steady state

performance, time or fuel optimality, etc.

1.1 Background and motivation

Control is an old subject that has greatly advanced over time. It is like an ancient ancestor

flowing young blood, which has always received intensive attention in the research field.

Back to 2000 years ago, people in Greeks, Arabs and Ancient Rome had made cognition

of the principle of feedbacks, based on which fantastic projects were built. The float valve

level regulator for water clocks (figure 1.1(a)) and shower systems in the imperial palace,

and the automatic gates in the temples are some of the brilliant works, [4]. In 132 A.D.

(Han Dynasty), the Chinese polymath Zhang Heng invented the seismograph based on

the “suspended pendulum” principle, which is another famous application containing the

thoughts of control. The first formally adopted automatic control system in the modern

sense should count James Watt’s speed regulator for the steam engine in 1788 [5], as shown

in figure 1.1(b).

Enjoying a long history, control has a vast application across all aspects in daily human

life, from agriculture to industry, from healthcare to military, etc. The implementation of

controls can be as simple as an auto-flush toilet or as complicated as the launch of a rocket.

On the other hand, there are also limitations of this seemingly omnipotent methodology. It

cannot guarantee to achieve arbitrary improvement with a given mechanical settings. This is

one of the reasons why in the industry, companies sometimes tend to reconstruct the hardware

structures rather than to upgrade an equivalently cost control. Nevertheless, control is still an

indispensable modern technology. As expressed in the quote at the beginning of this chapter,

control is a similar manner of seeking a balance among numerous performance indices under

mutually constraining factor because “no pain no gain”.
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(a) The schematic of the water clock. (b) Watt’s centrifugal governor.

Figure 1.1: The ancient and modern automatic control systems.

The classification of controls can be diverse. As shown in table 1.1, it can be classified

as open-loop and closed-loop control by mode. By direction, it can be classified into feed-

forward, feedback and composite control. By the signal type, it can be classified as continuous

control, discrete control, or hybrid. By mathematic models, it can be classified as linear, non-

linear, time varying and time invariant controls, [5]. Finally, it can be classified into motion

controls and process controls by the control objects under investigation.

Table 1.1: The classification of controls

Criteria Classification

Mode Open-loop Closed-loop Hybrid

Direction Feed-forward Feedback Hybrid

Signal type Continuous (Analog) Discrete (Digital) Hybrid

Models Linear/Non-linear Time varying/invariant Hybrid

Objects Motion control Process control Hybrid

As the name implies, motion control deals with motions in most cases. The control objects

usually involve the position, velocity and acceleration of electrical, hydraulic or pneumatic

movable devices, such as motors, servos, solenoids, linea actuators, cylinders, pistons, and

even crystal oscillators. Their advantages and applicable scenarios can be found in control

related textbooks, e.g. [6, 7]. Motion control has changed people’s life style in a great extent.

The typical products such as automobile and industrial robots librate human beings from

cumbersome labor work.

In contrast with motion controls whose objectives pursue the transient performance of

reaction, process controls emphasize more on reliability and repeatability. Process control
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is an engineering discipline that deals with architectures, mechanisms and algorithms for

a specific process [8]. The control objects involved are often temperature, flame intensity,

pressure, fluid flow, liquid level, et. al. Distinguishable characteristics of process controls

usually include: 1) big nonlinearity, 2) big delay, 3) big lag, 4) big loop-interaction, and 5)

big number of control variables. For example, thousands of control valves, countless pipelines

and containers in a petroleum refining process are very normal. From this perspective, if

the control of the motor driven or hydraulic valves in process control is treated as motion

control, then, process control has a broader meaning [8].

Again, regarding reliability, process engineering has more diversified work to do than other

industries such as information technology (IT). In those industries, it is not desired, yet is

usually tolerable if the servers are down because reboot or alternate equipments can act as

backups. Even scheduling an off-line maintenance during idle time, e.g. 2 :00am ∼ 4:00am,

will not cause disaster. However, it is not the case for process engineering. Many factories

are designated to runs 24/7 continuously for years until an shut-down maintenance [5], such

as the blast furnace. Hence, system breaking down is intolerable. In these circumstances,

systematic and reliable process control theory reveals its importance.

As this old subject seemingly steps into its sunset age, new vitality is injected when the

fractional calculus is introduced into the control theory. Factional calculus was born 300

years ago, and the research on fractional calculus experienced its boom in the past decades,

especially in the field of controls. While the application of fractional order controls enjoyed

a wide popularity, it spawned two major branches: fractional order (FO) modeling and

fractional order control, which consequently formed three combinations in academic research

and practical implementation:

1. Integer order control of fractional order process plants/models;

2. Fractional order control of integer order process plants/models;

3. Fractional order control of fractional order process plants/models.

Regarding these topics, many existing methodologies and principles are waiting to be aug-

mented; meanwhile, dedicated new theory and methods need to be developed to deal with

the sprouting circumstances. Motivated by these practical demands, the research in this

dissertation is carried out, focusing on the following three aspects: 1.) characterizing specific

industrial processes in higher accuracy using fractional order models; 2.) extending the

existing integer order control techniques to fractional order cases; and 3.) developing novel

FO control techniques dedicated to FO processes in the industry.

A larger hope behind the motivation of this dissertation is to push the FO control to

broader implementation, so that one day, it is commonly utilized in off-the-shelf products

that benefit the industry, since there has not yet been massive commercial products running

FO control algorithms. For this purpose, the author chooses to organize the content with

the modeling and control of a thermal process in the semiconductor manufacturing industry

as a main thread, while many related topics are reviewed or explored during this procedure.
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Figure 1.2: The technology generation of the semiconductor fabrication industry. Figure
from [1].

Figure 1.3: The pitch interconnects in Intel’s 14 nm process. Figure from [1].

1.2 Applications

Process control is a crucial part in many conventional and emerging industries, such as steel-

ing, petrochemical, winery, material processing, surface treatment, micro-electro-mechanical

systems (MEMS) manufacturing, etc. In particular, this research originates from the prac-

tical problems posed in the recipe control of plasma etching processes, which is the most

important key step in the semiconductor fabrication industry. Figure 1.2 displays the timeline

of the technology generation of this industry. Some fantastic component samples produced

by this state-of-the-art technology are shown in figure 1.3, such as Intel’s 14nm tri-gate
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transistor fins.

As one can imagine, such micro level chemical processes require high precision control of

the process variables of the fabrication tool shown in figure 1.4. While the task is becoming

more challenging, the fusion of fractional calculus into process control makes process engineers

more equipped. Some results in this research have already revealed advantages and benefits,

and are expected to further fulfill the performance improvement of this industrial process.

Moreover, the developed methodologies are not narrowed to this industry, and the author

would be more than pleased to see their wider application in other modern industrial areas

wherever implementable.

(a) Oxford ICP 100 Dry Etcher. [9]. (b) ICP plasma. [10].

Figure 1.4: Photos of plasma etching tools.

1.3 Contributions

Besides a comprehensive literature review and the gathering of scattered relevant method-

ologies, the major contributions that distinguish this dissertation from other existing work

are briefly highlighted below:

1. An extensive collection of Matlab based numerical tools for FC and FO controls are

organized and documented; some basic evaluations are performed in order to provide

a guidance for selecting the use of these tools; a very informative table (table 2.3) of

these tools is created, in section 2.4;

2. The inverse response of FO transfer function models is explored for the first time based

on real world observation and practical data; the condition for a class of fractional

order LTI models to exhibit inverse response behavior is presented numerically; Time

domain characteristics of such FO models are documented. See section 2.3;

3. Novel frequency domain parameter identification methods are developed for fractional

order LTI models, including the relay feedback approach, and using relay with FO
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integrator to identify integer or fractional order models; a pseudo frequency response

(PFR) concept is proposed to unify the math operation of describing functions and

transfer functions, which is used to analyze systems consist of both linear and nonlinear

elements, in section 3.3;

4. The feedback linearizatin of autonomous nonlinear fractional order processes is pro-

posed in section 3.4.3.

5. Auto-decoupling of fractional order MIMO processes is investigated; the frequency

dependent relative gain array (RGA) for FO LTI models is derived, in section 4.2;

6. Simulation and/or implementation of the newly developed theory in real-world practice

is presented, such as auto-decoupling FO processes, FO model predictive control (MPC)

using RIOTS on a Peltier temperature control platform, FO extreme seeking control

(ESC) for impedance matching, in Chapter 5;

7. A “potential model” concept is proposed for the identification and control of both

fractional and integer order nonlinear processes, in section 5.5.

8. Multiple software “by-products” are developed along with the main thread of research,

to name a few, the xPC-target based industrial data acquisition and analysis software

suite, the Simulink block for Arduino I2C communication, a Matlab function for plot-

ting the root locus of FO transfer functions, in section 2.3, LevyPSO in section 6.1,

etc. Some of them are shared in the relevant community, such as Matlab Central and

Sparkfun Forums;

9. The use of FC in miscellaneous research fields are explored, such as random search,

EtherCAT timing jitter characterization and financial market analysis, some interesting

attempts and results are revealed, chapter 6.

10. New problems are identified as potential future research efforts, such as embedding the

RIOTS and the fractional Rayleigh’s differential equation, section 2.2.

A shortcoming of the current research on fractional order controls is that some methodolo-

gy appears prior to the real application. They are developed from pure theoretical extension,

but not originated from practical phenomenon. For example, the identification algorithms

of fractional order Hammerstein models are documented in the literature, yet, there is no

report of real-world implementation that utilize these algorithms up to now; a similar case

is the fractional order non-minimum phase behavior. Hence, in addition to the theoretical

development, a notable contribution of this dissertation resides in the supply of actual data

that is able to support, verify or inspire the existing and further research in this area.

This dissertation covers a variety of topics across multiple academic disciplines due to the

requirements of the sponsoring project. Hence, the contents in some chapters cross multiple

disciplines. By and large, the rest of the dissertation are organized as follows. Chapter

2 provides math preliminaries for the following chapters, where related topics are reviewed,

such as several selected typical fractional differential equations. The last two sections present

survey summaries and provide new results. Chapter 3 focuses on the modeling and identifica-

tion of fractional order processes, in which some novel theoretical developments and concepts

are stated, such as the relay feedback identification of FO processes and fractional feedback
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linearization. Chapter 4 addresses the control of fractional processes, including both SISO

and MIMO processes. Novel topics such as fractional order auto-decoupling can be found

in this chapter. All the simulation and experimental results are arranged to Chapter 5,

which makes it “data-heavy”. Many interesting problem descriptions, figures, outcomes and

conclusions are put in this chapter. Chapter 6 is a cadenza chapter that serves like a back

yard of related miscellaneous fruits behind the main field of research. The overall dissertation

is summarized in Chapter 7, with the outlook of future research opportunities.

1.4 Literature review

Fractional calculus has been found application in a number of engineering disciplines, such

as in electrical engineering [11, 12, 13], mechanical engineering [14, 15], environmental engi-

neering [16], and bioengineering [17, 18], etc. Some general review papers and books on FC

and FO controls can be found in [19], [20], [21], [22] and [23].

Up to now, introducing fractional calculus into the control theory is no long a brand

new topic considering the earliest prototype work by Bode and Tustin et al., [24], and the

follow-ups in the 80s, [25] and [26]. As its advantages draw more and more attention, the

publication volume on relevant research increases significantly, which witnessed its blossom

in recent years. Figure 1.5 shows the publication histogram on Web of Sciences searched

by the key words “fractional order control”. Among the massive academically accessible

publications, some notable and representative work are enumerated in this section for a

relatively comprehensive review, with the main focus on fractional order modeling and

control. More publications on specific and interesting topics are reviewed according to

necessity within the individual sections where they are involved.

(a) The increase in publication. (b) The increase in citation.

Figure 1.5: The statistics of academic publication on FO controls [by Apr 2014].

Reviewed by Research Groups

The value of fractional order controls was discovered by more and more people after its

debut. Among the pioneers, the contribution of Podlubny’s group receives wide adoption.

The paper [27] revealed the benefits of modeling dynamic systems with arbitrary real orders

and proposed the concept of fractional order PIλDµ controllers. A survey on stability of FO
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systems with rational orders is presented in [28]. The analogue realizations of FO systems

and FO controllers are studied in [29, 30, 31]. Besides the traditional scheme, advanced

control technologies have also been explored for fractional order systems, e.g. [32] presented

the Posicast control of fractional order processes; and the book [33] provides comprehensive

investigation of fractional order nonlinear systems. They also conducted studies in modeling

of some physical phenomena, such as in [34].

Chen’s group is one of the leading contributors to the research field of fractional order

control. To name a few, the monograph [35] and the tutorial in [36] are good resources for

popularization of fractional order controls to the public who have not been familiar with

fractional calculus and controls. Numerical approximation and practical implementation

are also developed by Chen’s group. The impulse response invariant discretization (IRID)

invented by Li, Hu and Chen et al. is a superior method for approximating the fractional

differential operators than those based on finite impulse responses (FIR), [37, 38, 39, 40]. The

“flat phase” tuning rule for fractional order controllers based on the iso-damping property,

[41, 42, 43, 44, 45], is proposed and received high volume of citation. The fractional order

control are even applied on the flight control of unmanned arial vehicles (UAVs) [46], the

control of hard-disc drive servos [47, 48], and extremum-seeking based cognitive lighting

control [49, 50]. Other than these topics, their research also covers the distributed order

dynamic systems [51], the stability of fractional order systems and controllers, [52, 53, 54],

identification of nonlinear fractional order systems, [55], and so forth. Some unconventional

control strategies are also taken into consideration. Yin et al. polished the adaptive sliding

mode control of fractional order chaotic systems, [56]. Malek et al. explored maximum solar

power point tracking using fractional order control scheme [57].

An important work that worth a mention is the monograph on fractional order motion

controls [58], because it is one of the motivations of carrying out the present research work

on process controls. In this book, numerous integer order modeling and control techniques

are extended to fractional order cases, such as the the disturbance observer and “flat phase”

PID tuning rule. The associated problems such as the stable region and feasible region are

solved as well.

Another shining group is formed by Oustloop, Trigeassou, and Malti et al., who are

the members of the well-known CRONE team [59, 60]. CRONE is the French abbrevia-

tion for “Commande Robuste d’Ordre Non Entier” with the meaning of non-integer order

robust control. The CRONE Toolbox developed by the group is one of the earliest (1995)

Matlab/Simulink Toolbox dedicated to FO controls, based on which the CRONE control

was proposed for the pursuit of fractal robustness, [61, 62, 63]. They also presented system

identification approaches using fractional differentiation models [64, 65, 66, 67, 68, 69], the

identification procedure for tuning robust fractional controller, [70], and nonlinear system

identification using fractional Hammerstein models [71], and using fractional Volterra series,

[72]. The resonance conditions of elementary fractional transfer functions are deeply inves-

tigated in [73]. [74] proposes a frequency domain method for the stability of FO differential

equations based on Nyquist’s theorem. [75] investigates the stability of non-integer order

LTI systems, i.e. not limited to rational orders. [76] analyzes the stability of FO systems
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using LMI tools.

Similar to the above group, the contribution of Valerio and Costa’s group covers both

theoretical analysis and numerical computation. For instance, the time domain implemen-

tation of fractional order controllers [77], and the identification of fractional models from

frequency response data [22, 78]. The non-integer differentiator (ninteger) is one of the very

few tools in the early days compatible with Simulink [79]. Without listing more of their work,

a partial summary can be found in the book of the recent advances of fractional control [80].

Lorenzo, Hartley et al. are also authors making tremendous contribution. Some of their

representative work are on the optimal fractional order damping in a mass-spring-damper

setting [81, 82], and on finite-time controllability of FO systems [83]. They also looked into

the energy consideration for mechanical “fractional-order elements” [84] which is a point of

view that had seldom been touched by others. [85] is another contribution to FO system

identification. Their efforts in exploring the application of fractional calculus in electrical

engineering build the bridge between fractional calculus in math and engineering, [86, 87].

The implementation of fractional order operators on FPGAs (Field Programmable Gate

Array) pushes the theory of FO control closer to industrial reality, [88].

Tavalzoe and Tavakoli’s group addressed a lot of interesting and valuable aspects in this

area. For example, the concept of viewing PI controllers as a weighting of error makes the

fraction order PI controllers elegantly fit into the generalized PID forms, [89]; the energy

efficiency of fractional controllers versus traditional integer order controllers is discussed in

[90]; the minimal realizations for some classes of fractional order transfer functions is also

studied in their work, [91].

Different identification methods for FO systems are reported by Wang’s group. Specifi-

cally, [92, 93] presents the subspace identification for linear and nonlinear FO models, and

[94] presents the identification of FO systems with frequency responses. The identification

algorithm for MIMO FO systems in [95] provides a helpful resource for the research in this

dissertation. Other than these, various topics are also explored in their publication. To list a

few, in [96], a math operator called spatial product, where FO systems can be represented as

a standard state space (S-S) form of partial differential equations, is proposed; the tracking

differentiator based FO model reference adaptive control is discussed in [97]; in [98], sufficient

and necessary condition for an FO system to be positive real is derived in terms of linear

matrix inequalities (LMIs).

Lu et. al are another contributing group whose analysis on the robust and asymptotical

stability and stabilization are remarkable [99, 100, 101].

Reviewed by Topics

Besides the enumerated work from the aforementioned groups, many well-known authors and

notable works on related interesting topics are worth mentioning.

The stability analysis is always the most basic and important topic in signal, systems

and controls. It is still true for fractional order scenarios. [102, 103, 104] are some relatively

early research work on this topic by Matignon et. at. [105] discusses coprime factorizations

and stability of fractional differential systems. [106] gives necessary and sufficient stability

condition of FO interval linear systems. [54] investigates the Mittag-Leffler stability of

9



FO nonlinear dynamic systems. [107] proposed an algorithm for stabilizing FO time delay

systems using FO PIDs, on which further research was carried out in [58]. [108] analyzes

stability of discrete FO state-space models. Asymptotic stability analysis for SS models

are studied in [109] and [110]. A numerical algorithm for stability testing of fractional delay

systems is developed in [111]. [112] investigates the stability of linear FO systems with delays

of the retarded type. In [113], a generalization of the Routh-Hurwitz criterion for FO systems

is presented. Mikolaj et. al presents a frequency domain method for stability checking of

the system with commensurate or non-commensurate orders described by the state equation

with double fractional orders based on the Argument Principle, [114]. [115, 116] applied the

similar approach on discrete FO systems with delays. Besides the work from Trigeassou and

Lu et al. in the previous subsection, more results on robust stability for FO systems can be

found in [117, 118, 119, 120, 121], etc. Other general and specific analysis can be found in

[122]. For more related research results on FO system stabilities, refer to [123, 124, 125]

Talking about system stability, the root locus method cannot be skipped since it is a

straightforward graphical tool in classic control. While the aforementioned publications

study the stability of miscellaneous FO systems, root locus is devoted for LTI system

stability analysis and compensator design. Along with the tide of extending advanced control

techniques into fractional order, such a fundamental tool should not be forgotten, so as to

gain traditional engineers more confidence to adopt FO control. In, [126, 127, 126], Bayat

and Afshar et al. discussed about extending the classic root locus approach to FO models.

[128] gives a computational approach for obtaining the root locus of fractional systems. A

sample Matlab code is provided in the paper [129]. In [130], Machado et al. provides a set of

practical rules for sketching root locus of FO systems by hand. They also exhibited a gallery

of root locus of FO systems, [131]. [132] explored the root locus method for any fractional

order commensurate system. A recent research on a new and simple method to construct

root locus of general FO systems can be found in [133].

As a consisting part of system theory, modeling and identification is an essential step

before carrying out most kind of controls. While many approaches for integer order systems

have been extended to fractional order cases, new methodologies are under development.

[134, 2, 135] and [136] list some of the existing FO system identification methods. [137]

and [138] present the modeling techniques for FO systems. [139] illustrates the functional

fractional calculus for system identification.

An academic theory would become gaudy if there is no way to realize it in practice.

Hence, a lot of efforts have been made on the numerical computation of fractional operations,

physical realization of FO electrical elements and implementation of FO controls, etc. To

name a few in addition to the mentioned work in the previous subsection, analog realization of

FO circuits [140], the reduced order approximation of MIMO FO systems [141] and realization

of fractional order impedance by feedback control [142] are all the efforts on this direction.

Regarding the numerical computation of fractional operations, various types of discretization

and approximation methods have been proposed, such as the indirect methods for simulation

of fractional systems using the diffusive representation in [143, 144], and the IIR type filter

approximation in [145]. More dedicated review and detailed research are discussed in section
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2.4. Implementation is also a hot topic. Besides the FPGA implementation and analogy

realization mentioned above, the PLC implementation of a CRONE controller can be found

in [146], and the FO controller for autonomous parking systems is presented in [147].

Topics on fractional order sliding mode control (SMC), nonlinear FO systems and MIMO

FO systems are reviewed in later corresponding sections. Other than these, some control

concepts with relatively narrower and specific application are also extended to FO. For

instance, the variable fractional order dead-beat control of a robot arm [148]. The application

of computational intelligence techniques in fractional order systems and control is explored

in the book [149]

All in all, it is by no means possible to traverse all the published contribution on

fractional order controls. However, through the above review, state-of-the-art status and the

evolvement of research focus in this area are revealed. Holding this knowledge, comparing

with the conventional integer order controls, what left to be exploited become clear. To the

author’s best knowledge, there has been no leading comprehensive monograph on FO MIMO

process modeling and controls in the literature. Hence, this research is in hope of dedicating

efforts into the “missing land”, as is done for FO motion controls in [58].
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Chapter 2

Preliminaries

‘The future already exists. We do not exist in the majority of these times; in

some you exist, and not I; in others I, and not you.’

— Jorge. L. Borges, A Garden of Forking Path, 1941

The law of natural already exists, waiting for human to characterize.

2.1 Introduction to fractional calculus

The history of fractional calculus is almost as long as that of the ordinary calculus. It can date

back to the 17th century, short after Newton and Leibniz invented the ordinary integration

and differentiation [150]. In L’Hospital’s letter to Leibniz [151], he questioned what if the

order of the derivative were 0.5, which eventually led to the birth of the theory of derivatives

and integrals of arbitrary order.

Similar analogies are commonly seen in the development of math. It is known that the

history of mathematics is pushed forwards by paradoxes and crisis as civilization advances

[152, 153, 154]. Taking the development of numbers as an example, the integers on the

number axis are like isolated islands in the ocean where the majority of water is of fractional

and non-rational numbers. Moving a step further, the proposal of complex number made

people realize that the real numbers are like the planets in the vast universe which only

occupy a negligibly tiny portion of the space.

By the same token, the advances of operations also experienced the journey from basic

to complicated, namely, from plus/minus to powers/roots, and furthermore to integra-

tion/derivation and convolution. In the past 300 years, the development of fractional calculus

makes the theory of operation even more complete. For a recent history of fractional calculus,

refer to [155]. Fractional calculus is such a incredible tool that can explain many physics

phenomena which traditional math could not. It is especially good at depicting phenomena

with long memory, long range dependence, etc. For example, one of the most amazing use

is the math description of various random walks, which can unify the macro and micro level

of anomalous diffusion.
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The crisis Cause (paradox) About Impact  

I (370 A.D) Pythagoras Irrational number Number theory 

II (17th century) Zeno’s Infinitesimal Calculus 

III (1897) Russell's Sets  Set theory 

ℕ,  ℤ, ℝ, ℂ 
+    −    ×    ÷      �      𝟎𝟎𝑫𝑫𝒕𝒕

𝜶𝜶 

Figure 2.1: Crisis in the foundations of mathematics.

2.1.1 Definitions

Up to now, there are more than 10 types of definitions for fractional order integrals and

differentiations [20]. For readers’ convenience, several commonly used definitions are briefly

listed below. More details can be found in [17].

A. Riemann-Liouville definition of FO integration

The Riemann-Liouville (R-L) definition of fractional order integration is:

0D
−α
t f(t) =

1

Γ(α)

t∫
0

f(τ)

(t− τ)1−αdτ, (2.1)

where 0 < α < 1, and Γ(x) is the Gamma function Γ(x) =
∫∞

0 e−uux−1du. When the initial

integral limit changes from 0 to an arbitrary point a, this definition is generalized to the

Weyl definition of FO integral:

aD
−α
t f(t) =

1

Γ(α)

t∫
a

f(τ)

(t− τ)1−αdτ. (2.2)

B. Riemann-Liouville definition of FO differentiation

The R-L definition of fractional order differentiation is based on the fractional integral

and the ordinary derivatives:

0D
α
t f(t) =

d

dt
[0D

−(1−α)
t f(t)]. (2.3)

13



More specifically, there are left R-L and right R-L definitions for FO differentiation by

distinguishing the lower and upper limits of the integration,

aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a
(t− τ)n−α−1f(τ)dτ, (2.4)

tD
α
b f(t) =

1

Γ(n− α)

(
− d

dt

)n ∫ b

t
(t− τ)n−α−1f(τ)dτ. (2.5)

C. Caputo definition of FO differentiation

The Caputo definition of fractional order differentiation takes the integer order differen-

tiation of the function first and then take a fractional order integration:

C
0 D

α

t f(t) =
1

Γ(1− α)

t∫
0

f ′(τ)

(t− τ)α
dτ. (2.6)

Under this definition, D and 0D
−(1−α)
t do not commute because the initial value needs be

considered:

C
0 D

α

t f(t) = 0D
−(1−α)
t f(t)[Df(t)] +

f(0+)t−α

Γ(1− α)
. (2.7)

D. Grünwald-Letnikov definition

The Grünwald-Letnikov (G-L) definition defines the fractional integration and differenti-

ations in a unified way:

aD
α
t f(t) = lim

h→0

1

hα

[(t−a)/h]∑
j=0

(−1)j
(
α

j

)
f(t− jh). (2.8)

2.1.2 Important functions

Some important special functions which are frequently encountered in fractional calculus are

listed below. For more details, refer to [17].

Gamma function

Gamma function is important because it is the fundamental element in most of the

definitions of fractional integrals. It is usually treated as the factorial of non-integer numbers.

The integral representation can be written as:

Γ(x) =

∞∫
0

e−uux−1du, x 6= Z−0 . (2.9)

Some useful properties of the Gamma function are:

Γ(1) = 1; Γ(n+ 1) = n! (n = 0, 1, 2 . . .)

Γ(
1

2
) =
√
π; Γ(x+ 1) = xΓ(x).
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Similar to ordinary (integer order) calculus, the fractional order derivative of a variable’s

same fractional order power is a constant,

dα

dxα
xα =

Γ(α+ 1)

Γ(α− α+ 1)
xα−α = Γ(α+ 1).

Mittag-Leffler function

The Mittag-Leffler (M-L) function is a generalization of the exponential function which

plays an important role in the solution of fractional differential equations as the exponential

function does in ordinary differential equations. It has four forms [156, 157], and the most

frequently used forms are the 1-parameter and 2-parameter representation [158]:

Eα(x) =

∞∑
k=0

xk

Γ(αk + 1)
(α > 0); (2.10)

Eα,β(x) =

∞∑
k=0

xk

Γ(αk + β)
(α > 0, β > 0). (2.11)

Some of the beautiful properties of M-L function are as follows,

E1,1(x) = ex; (2.12)

E1,2(x) =
ex − 1

x
. (2.13)

Error function

The error function is a special function of the “S” shape, and is defined as:

erf(x) =
2√
π

x∫
0

e−u
2
du, −∞ < x <∞. (2.14)

The error function has the following properties,

erf(0) = 0

erf(∞) = 1

erf(x) + erfc(x) = 1,

where erfc(x) is the so-called complementary error function.

Confluent hypergeometric function

A confluent hypergeometric function is a solution of a confluent hypergeometric equation,

and is expressed in the following form,

1F1(a; c;x) =

∞∑
n=0

(a)n
(c)n

xn

n!
, −∞ < x <∞, (2.15)

where (a)n and (c)n are the Pochhammer symbols,

(a)n =
Γ(a+ n)

Γ(a)
, and (c)n =

Γ(c+ n)

Γ(c)
, n = 0, 1, 2, ...
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Some frequently used properties for the hypergeometric function are listed below,

1F1(1; 1;x) = ex,

1

Γ(α+ 1)
1F1(a;α+ 1; at) = E1,α+1(at).

In recent years, more functions are documented as handy instrument for FC and FO

controls, [139]. To name a few, Agarwal function is a generalization of the Mittag-

Leffler function; Robotnov-Hartley function is the “impulse response” of the fundamental

fractional differential equation and is used for control system analysis; Miller-Ross function

is introduced for the solution of fractional order initial value problems.

2.1.3 Laplace transform of fractional operators

To many people’s unawareness, the Laplace transform not only applies on functions of integer

powers of t, but also on functions of non-integer powers of t, as demonstrated in the following

example, [17]:

L[tx] =

∞∫
0

e−sttxdt. (2.16)

Let u = st, then,

∞∫
0

e−u
(u
s

)x du
s

=
1

sx+1

∞∫
0

e−uuxdu, x > −1

=
Γ(x+ 1)

sx+1
. (2.17)

A useful property of the Laplace transform for FO control is the integration property,

L[0D
−α
t f(t)] =

1

sα
F (s) (α > 0), (2.18)

which can also be interpreted as the Laplace transform of a time domain convolution,

L[0D
−α
t f(t)] = L

[
tα−1

Γ(α)
∗ f(t)

]
=

1

sα
F (s), (2.19)

where tα−1

Γ(α) is usually called the kernel of fractional integration. The differentiation property

is often encountered as well,

L[0D
α
t f(t)] = sαF (s) (α > 0), (2.20)

with zero initial conditions assumed, or,

L[C0 D
α

t f(t)] = sαF (s)−
m−1∑
k=0

sα−k−1

[
dkY (t)

dtk

]
, (2.21)

for non-zero initial condition using Caputo’s definition. Several useful Laplace transform

pairs in fractional calculus are listed below for readers’ reference.

16



Table 2.1: Useful Laplace transform pairs in fractional calculus.

F(s) 1
sα

1
(s+a)α

1√
s+1

1
sα+a

sα−β

sα+a

f(t) tα−1

Γ(α)
tα−1

Γ(α)e
−at 1√

πt
− eterfc[

√
t] tα−1Eα,α(−atα) tβ−1Eα,β(−atα)

Other than the regular definition of Laplace transform for fractional operators, there are

several variants, for example, Laplace transform via Mittag-Leffler function and the modified

Riemann-Liouville derivative [159], Laplace transforms of a k-Weyl fractional integral and

derivative [160], etc.

2.1.4 The fractional Fourier transform

The Laplace transform can be applied on FO integration/differentiation, so does the Fourier

transform. The fractional Fourier transform (FrFT) is a generalization of the integer order

Fourier transform. The signal produced by FrFT can be considered as a rotated time-

frequency representation of the original signal. The FrFT is defined as, [161]:

Xα(u) = Fα(x(t)) =

∫ ∞
−∞

x(t)Kα(t, u)dt, (2.22)

where Kα(t, u) represents the kernel function:

Kα(t, u) =



√
1−j cotα

2

×ej(u2/2) cotαej(t
2/2) cotα−jut cos(ecα) if α 6= 2π

δ(t− u) if α = 2nπ

δ(t+ ut) if α = (2n− 1)π,

(2.23)

when α = π/2, the FrFT degrades to standard Fourier transform, and when α is multiple of

π, FrFT degenerates to parity and identity operator. For interesting and useful properties of

the FrFT, refer to [40, 162, 163].

FrFT has a broad application in many fields, such as communication, signal processing

and pattern recognition, etc, among which a widely acclaimed application is filtering. A

fractional filter can be written as a generalization of the conventional filter:

xo(t) = F−aRαxi(t) ·Hα(u), (2.24)

where Hα(u) = F(h(t)), xi(t), xo(t) and h(t) refer to the input signal, output signal and the

filter’s impulse response, respectively. Briefly, the Wigner distribution of a signal f(t) and

that of its αth order FrFT staggers an angle of −α:

(Wfa)(t, u) = R−a(Wf)(t, u), (2.25)

where α = aπ/2, fa = Faf , and R−a represent a clockwise rotation of the variables (t, u)

over angle α. Hence, fractional filters give more freedom to the selection of domain in which
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Figure 2.2: The schematic illustration of fractional filters based on FrFT

signal and noise could be separated, which would be overlapped on either time or frequency

domain using integer order filters, as shown in figure 2.2.

Besides filtering, FrFT based estimation methods have been used to analyze the long

range dependence in time series. For example, Hurst exponent calculated by FrFT based

methods have been shown to be better than others, [164], like wavelet based methods. For

numerical computation of FrFT, a Matlab based tool is available in [165, 166].

2.2 Fractional order differential equations

Fractional order differential equations (FODEs) are the foundation for describing FO dynamic

systems. Any type of fractional order system analysis, time domain, s-domain and complex

frequency domain, are all built on the basis of FODEs. Hence, their importance needs no

more emphasis. This section reviews some properties of FODEs such as stability, solution

structures and so on. Several selected ordinary differential equations (ODEs) are presented

with their fractional order form for the reference in later chapters. The fractional order

Rayleigh differential equation is proposed and briefly studied.

2.2.1 Fractional version of typical differential equations

2.2.1.1 Linear FODEs

Linear FOEDs are commonly used in fractional order controls due to their simplicity and

regularity. The general expression takes the following form:

a1D
α1y(t) + a2D

α2y(t) + · · ·+ anD
αny(t)

= b1D
β1u(t) + b2D

β2u(t) + · · ·+ bmD
βmu(t), (2.26)

where the orders, αi, βj (i, j = 1, 2, ...), can be arbitrary real numbers, i.e. αi, βj ∈ R. If αi
and βj are integer multiples of a common factor, the equation is called having commensurate

order; and is of non-commensurate order if no common factor exists [167].
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The fractional Langevin equation The original Langevin equation describes the Brow-

nian motion of a particle in a fluid,

m
d2x

dt2
= −λdx

dt
+ η(t), (2.27)

where x is the particle’s position and m denotes the particle’s mass. The noise term η(t)

represents the effect of the collisions with the molecules of the fluid, and has a Gaussian

probability distribution with the following correlation function:

Corr(ηi(t), ηj(t
′)) = 2λkbTδi,jδ(t− t′),

where kb is Boltzmann’s constant, T is the temperature, and δ is the Dirac’s function.

However, the above equation of motion does not completely capture the hydrodynamics

because it ignores the effects of the added mass and the retarded viscous force due to

the acceleration of the particle. Thus, the fractional Langevin equation is promoted to

supplement the missing dynamics, [168],

m
dx

dt
= −m

σe
[1 +

√
T∗D

1/2
0 ]x(t) + η(t), (2.28)

where the description of the coefficients can be found in [168]. For the above fractional

Langevin equation, the random force η(t) cannot be represented uniquely by a white noise.

Instead, it can be represented by a superposition of the white noise with a “fractional” noise.

Consequently, the added mass and the fractional noise slow down the velocity correlation

function from exponential decay to algebraic or power law decay.

2.2.1.2 Nonlinear FODEs

In this subsection, several specific nonlinear fractional differential equations are visited. Some

of them are selected due to the necessity of the latter content; others are chosen according

to the author’s interest because they are not as accessible as the general discussions in the

literature.

The fractional Van der Pol equation The Van der Pol (VDP) equation was originally

proposed by Van der Pol in the 1920s to depict the self-sustaining oscillation in electrical

circuits employing vacuum tubes, [169]. It is one of the first discovered instances of deter-

ministic chaos, and can be expressed by the following nonlinear ODE:

ẍ+ µ(x2 − 1)ẋ+ x = 0. (2.29)

It can also describe a wide variety of phenomena, such as a mass-spring-damper system

with a nonlinear position-dependent damping coefficient, or an RLC electrical circuit with a

negative-nonlinear resistor.

Later, a number of variant VDP equations were proposed, for example, Mickens et al.

investigated the following two equations in [170, 171],

ẍ+ µ(x2 − 1)ẋ+ x1/3 = 0, (2.30)

ẍ+ µ(x2 − 1)(ẋ)
1/3

+ x = 0, (2.31)
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which was referred to as fractional VDP. However, these dynamics only contains the fractional

power of the state variables rather than fractional order derivatives, which are not fractional

order in the sense of calculus. In 2004, Pereira et al. considered the following fractional

derivative version VDP by substituting the capacitance with a “fractance” in a nonlinear

RLC circuit model, [172],

Dαx+ µ(x2 − 1)ẋ+ x = 0, 1 < α < 2. (2.32)

In [173], Barbosa et al. introduced the following fractional VDP with both derivatives being

fractional order,

D1+αx+ µ(x2 − 1)Dαx+ x = 0, 0 < α < 1. (2.33)

In [174], Diaz et al. investigated the dynamics and control of the variable order VDP equation

originated from the physical model of an oscillating mass on a non-uniform viscoelastic film,

ẍ+ µ(βDq(x)x) + x = 0, (2.34)

where β = ±1 and q(x) is the variable order in the range of (0.5, 1), e.g. q(x) = (1 + x2)/2.

The value of q(x) is determined while solving the identity equation,

(y2 − 1)ẏ = βDq(x)x. (2.35)

The graphical analysis of the limit cycles of fractional VDP equations can be found in [175]

and [176], where the forced fractional VDP is also investigated.

The fractional Rayleigh differential equation A numerical Matlab toolbox, RIOTS,

will be described in section 4.3.1.1 which uses the Rayleigh’s problem as a demonstrative

example. Hence, a brief description is inserted here. The Rayleigh’s differential equation,

named after Lord Rayleigh (John William Strutt), [177], takes the following simplified form,

ẍ+ µ(ẋ2 − 1)ẋ+ x = 0. (2.36)

It is known that the ordinary Van der Pol equation can be derived from the Rayleigh

differential equation by differentiating x,

...
x + 2µẋẍẋ+ ẍµẋ2 − µẍ+ ẋ = 0, (2.37)

and substituting ẋ by y,

ÿ + µ(3y2 − 1)ẏ + y = 0. (2.38)

Let y(α) denotes the αth derivative of y with regard to t. If the above integer order

directives are replaced by fractional order ones in the similar manner for equation (2.33), the

fractional Rayleigh’s equation can be obtained as,

y(1+α) + µ[(y(α))2 − 1]y(α) + y = 0, 0 < α < 1; or (2.39)

y(2α) + µ[(y(α))2 − 1]y(α) + y = 0, 0.5 < α < 1; or (2.40)

y(β) + µ[(y(α))2 − 1]y(α) + y = 0, 0 < α < 1 < β < 2; or (2.41)

y(β) + µ[(y(α))2 − 1]y(λ) + y = 0, 0 < α, λ < 1 < β < 2. (2.42)
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However, since the chain rule applies on fractional derivatives only on specific conditions,

the fractional VDP cannot be derived from the equation. Instead, other forms of fractional

differential equation can be obtained. Let x1 = y and x2 = x
(α)
1 . The phase portrait

for equation (2.40) is plotted in figure 2.3, with µ = 1.2 and fractional orders and initial

conditions (IC) labeled in the legends of the sub-figures respectively. It can be seen from

sub-figure one that if α violates the limit which makes the highest order happen to be 1,

then, the origin becomes a stable focus whereas it is an unstable focus otherwise. Related

discussion on the fractional Rayleigh’s differential equation has not appeared in the literature,

which hence, could be potential future research opportunities.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
1

x 2

 

 
α=0.5, IC: [0.97, −0.34]

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x
1

x 2
 

 
α=0.75, IC: [0.33, −0.06]

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x
1

x 2

 

 
α=0.75, IC: [1.13, −0.15]

−2 −1 0 1 2
−2

−1

0

1

2

x
1

x 2

 

 
α=1, IC: [−1.37, 1.40]

Figure 2.3: The phase portraits of equation (2.40) with different α and IC.

Duffing equation with FO damping Duffing’s equation, introduced by Georg Duffing

in 1918, is used to depict certain damped and driven oscillators. It is a well known simple

model that yields chaos. The standard form of the Duffing’s equation is,

ẍ+ δẋ+ ax+ bx3 = γ cos(ωt). (2.43)

There are two different fractional order versions of the above equation derived. A simple form

is to replace the 1st order directive by a fractional order damping term, [178, 179, 180, 181],

d2

dt2
x(t) + δ 0D

α
t x(t) + ax(t) + bx3 = γ cos(ωt); (2.44)

the complicated version is to change both the 1st and 2nd derivatives to fractional order

derivatives of two coupled Duffing’s equations, [137], and is more clearly expressed by the
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the state equation:

0D
α1
t x(t) = y(t),

0D
α2
t y(t) = −ax(t)− bx3(t)− δy(t) + γ cos(ωt). (2.45)

A recent study of the response of a Duffing-Rayleigh system with a fractional derivative

under Gaussian white noise excitation can be found in [182].

The fractional Bernoulli’s equation The ordinary Bernoulli differential equation is of

the following form,

dy

dx
+ f(x)y = g(x)yn. (2.46)

When n = 0 or 1, it is a linear ODE; otherwise, it is nonlinear. In [183], Hristov promoted

the fractional-time Bernoulli equation for the problem arising in a transient conduction with

a non-linear boundary heat flux,

0D
0.5
t θs = A+Bθs + Cθ4

s , (2.47)

where θs = Ts/Ta denotes the ratio of the surface temperature to the ambient temperature in

the considered scenario. Following this format, a more general fractional Bernoulli equation

can be expressed as follows,

dαy

dxα
+ f(x)y = g(x)yn, (0 < α < 2). (2.48)

The fractional pendulum equation The classic pendulum differential equation describes

the swing motion of a mass attached to the end of a rigid pole with consideration of the air

friction:

mlθ̈(t) = −mg sin θ(t)− kθ̇(t), (2.49)

where θ(t) is the angle of the pendulum with respect to the direction of gravity, m is the

mass of the pendulum, k is the coefficient of friction at the pivot point, and l is the radius

of the rigid pole. The variants include the double pendulum which has two segments of the

poles connected by a joint, and cascaded multiple pendulum.

In [184], dynamics of multi-pendulum with fractional order creep elements is discussed.

The fractional Lagrangian function is studied for two electric pendulum in [185],

LF =
1

2
m[(aD

α
t q1)2 + (aD

α
t q2)2]− 1

2

mg

l
(q2

1 + q2
2)− e2

d+ q2 − q1
, (2.50)

where e is the electron charge, q1 and q2 represent the position of the two electric pendulum.

The fractional order analysis of ordinary double pendulum is presented in [186].
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2.2.1.3 Fractional order partial differential equations

The anomalous diffusion equation The famous diffusion equation is a succinct mathe-

matical description of the diffusion phenomenon. As the science develops, broadened physical

observation and sophisticated math methods led to the generalized diffusion equation, [187,

188],

tD
β
∗u(x, t) = xD

α
θ u(x, t), −∞<x<+∞, t ≥ 0, (2.51)

where xD
α
θ is the Riesz-Feller fractional derivative, 0 < α < 2, β = 1 refers to the strictly

space fractional diffusion, α=2, 0<β<1 refers to the strictly time fractional diffusion, and

0<α<2, 0<β<1 refers to the strictly space-time fractional diffusion.

It is known that the ordinary diffusion equation can be interpreted as the evolution of

Gaussian probability density function (pdf) in space with time, which depicts the random

walk of particles performing the Brownian motion. The generalized diffusion equation can

interpret more types of random walks with different pdfs, which are related to anomalous

diffusions. As noted in [189], the mean squared displacement (MSD) of the particles doing

random walk has the following relation with time,

〈x2(t)〉 ∼ Ktα. (2.52)

When α = 1, it characterizes the normal diffusion; 0 < α < 1 characterizes the sub-diffusion;

1 < α < 2 characterizes the super-diffusion and α = 2 characterizes the ballistic diffusion.

More dedicated research reviews on anomalous transport and diffusion processes can be found

in [190] and [191].

The fractional Navier-Stokes equation The Navier-Stokes (N-S) equation is also con-

sidered of its fractional order form in the literature. The expression and solution are

investigated by Kumar et al., [192, 193],

Dα
t u(r, t) = P + v(D2

ru+
1

r
Dru), 0 < α ≤ 1, (2.53)

where P = 1
ρ
∂p
∂z , and v denotes the kinematic viscosity.

More FO PDEs can be found in [104] and the references therein.

2.2.2 Pseudo state-space representation

Many modern control concepts and methodologies are still applicable to the dynamic systems

possessing “FO” behaviors. The state-space (S-S) representation is such a powerful tool. If

an FODE has commensurate order, it can be generally expressed as the following by defining

appropriate state variables,

0D
α
t x(t) = f(x, u, t)

y(t) = g(x). (2.54)

where x ∈ Rn is the state vector of dimension n, and 0 < α < 2 is the common factor of

the differentiation orders. For linear FODEs in equation (2.26), the above equation can be
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simplified as:

0D
α
t x(t) = Ax(t) +Bu(t)

y(t) = Cx(t), (2.55)

where A, B and C are system, input and output matrices, respectively.

For integer order state space models, the exponential matrix, Φ(t) = eAt is known as the

state transition matrix. It can be analogized accordingly that the generalized exponential

matrix using M-L function, Eα(Atα), plays the same role for fractional order S-S models. It

is called the fractional order state transition matrix and can be obtained by [35],

Φ(t) = L−1{(sαI −A)−1}. (2.56)

The following property for state transition from the origin is inherited from integer order,

x(t) = Φ(t)x(0) + Φ(t) ∗ [Bu(t)] = Φ(t)x(0) +

∫ t

0
Φ(t− τ)Bu(τ)dτ. (2.57)

However, the semigroup property of the state transition matrix is lost for fractional S-S

models due to the failure of the chain rule on fractional derivatives. That is why the attribute

“pseudo” is used in some literature to differentiate the S-S representation of fractional order

from integer orders, [194].

2.2.3 Stability of fractional differential equations

2.2.3.1 The stability of linear FODEs

System stability is always a big concern in control theory due to its importance. There

are numerous notions and criteria for different kinds of stabilities, such as bounded-input-

bounded-output (BIBO) stability, exponential stability, asymptotic stability, Lyapunov sta-

bility, robust stability, etc. For FO systems, these criteria need to be extended, and new

stability types are proposed, such as the Mittag-Leffler stability, [54]. As mentioned in the

literature review in chapter 1, some of these stability criteria have been defined and can

be referred to accordingly. Two usually used criteria for the BIBO stability of FO TFs are

stated in section 2.3.

2.2.3.2 The stability of nonlinear FODEs

The stability of nonlinear FODEs can be much more complicated than integer order case

and linear fractional order case. Yet, some stability criteria can be simply extended such as

the asymptotic stability. Consider the FO system:

Dαx = f(x), (2.58)

where 0 < α < 1 and x ∈ Rn. The equilibrium points x0, obtained by f(x) = 0, are

asymptotically stable if all the eigenvalues λj , (j = 1, 2, . . . , n) of the Jacobian matrix

J|x=x0 = ∂f/∂x satisfies the condition:

|∠(eig(J))| = |∠(λj)| > α
π

2
. (2.59)
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This is the same as the integer order case except the range on the plane where the eigenvalues

could be. [195] gives a Lyapunov approach for nonlinear FODEs. Mittag-Leffler stability are

extensively studied by Li et al. [54]. This type of stability will be used in the derivation

in section 3.4.4. Besides the mentioned works in the literature review (section 1.4), more

stability related discussion can be referred to the two survey articles, [196, 28], and the book

[137], chapter 1.

2.2.4 Solutions to fractional differential equations

Solution to FODEs is no more rigorous than its integer order counterpart, with regard to the

existence, uniqueness, and periodicity. For example, the periodicity is an actively debated

topic on which contradictory results have been reported in the literature [197, 198, 199, 200].

The Laplace transformation is a popular technique for obtaining analytical solutions, and

“short-memory principle” is popular for the approximate numerical evaluations.

Definition 1 (Short-memory principle [80]). When the R-L or G-L definition is used, if

|f(t)| < M,∀t > c, then the approximation error ε for cD
α
t f(t) ≈t−LDα

t f(t) (t > c+ L,α >

0), is bounded by:

|ε| < M

Lα|Γ(1− α)|
. (2.60)

This means the behavior of f(t) in only the “recent past” is considered.

Other than these two methods, Mellin transform, power series expansion using fractional

Green’s function, Babenko’s symbolic method, orthogonal polynomial method, Reisz frac-

tional potential method, method with Wright’s function, and finite-part integral method are

other mathematical tools for obtaining the solution of FODEs. For more dedicated results

on the solution to specific types of FODEs, refer to [201, 202].

2.2.5 Fractional variational problems

The fractional variation problem provides theoretical support to fractional order optimal con-

trol which will be encountered in section 4.3.1.1. It is a problem in which either the objective

functional or the constraint equation or both contain at least one fractional derivative term.

The math definition of two such problems, i.e. the simplest fractional variational problem

and the fractional variational problem of Lagrange, can be found in [203]. The formulation

and study of fractional Euler-Lagrange (E-L) equation can be found in [204, 205].
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2.3 Fractional order transfer functions

2.3.1 Obtaining fractional order transfer functions

Transfer function (TF) is an important tool to represent the input and output relationship

of linear time-invariant (LTI) systems. Employing the Laplace transform for fractional

differentiation introduced in section 2.1.3, the linear FODE in equation (2.26) can be mapped

into the s-domain:

G(s) =
L[y(t)]

L[u(t)]
=
b1s

β1 + b2s
β2 + · · ·+ bms

βm

a1sα1 + a2sα2 + · · ·+ ansαn
. (2.61)

Another way to obtain a fractional order transfer function is to convert from fractional or-

der pseudo state-space expressions, [35]. Consider the pseudo S-S representation in equation

(2.55), assuming zero initial conditions, and taking Laplace transformation gives,

sαX (s) = AX(s) +BU(s) (2.62)

Y (s) = CX(s). (2.63)

Then, the transfer function G(s) = Y (s)/U(s) can be derived through:

G(s) = C(sαI −A)−1B. (2.64)

If B is a multi-column matrix and/or C is a multi-row matrix, then the resulting G(s) is an

FO transfer function matrix rather than a single FO transfer function. A transfer function

matrix builds relation among multiple inputs and multiple outputs, which is the so-called

MIMO process. Dedicated discussion on MIMO is in sections 3.5 and 4.2.

Similar to that for the ODEs, the TF simplifies the analysis of linear FODEs in a great

extent by reducing the operations to algebraic, which, otherwise, contains much tedious

integrals and differentiation of transcendental functions.

2.3.2 Root locus of fractional order transfer functions

The root locus method, developed by Walter R. Evans in the 1940s [206], is a graphical tool

for examining the movement of a system’s roots on the complex plane with variation of a

certain system parameter, commonly the gain within a feedback system, e.g. the K change

in the standard closed-loop system under unit feedback proportional control as shown in the

block diagram in figure 2.4. It has been well studied for the classic integer order LTI systems.

A survey in the early years is available in [207]. However, additional difficulties are posed

when used onto FO TFs. For example, how to determine the number of zeros and poles,

how to solve them, which poles and zeros are to be plotted on a certain plane, what is the

uniform way of dealing with different TF structures, which poles affect the stability, etc.

Remark: the FO TFs discussed in this section narrowly refer to those of pure fractional

orders, and irrational orders are not considered. Since any fraction is the quotation of two

integers, in this sense, non-commensurate order TFs does not exist for FO systems. Similar

conclusion can be found in [28]. Actually, the usual numerical approach for pole computation

(used for instance in CRONE Toolbox) is to truncate the fractional orders to a given number

of digits, according to [75]. Afshar and Bayat et. al also states that since numbers stored
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𝐾 𝐺 𝑠 =
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𝑟 + 

- 

𝑦 

Figure 2.4: The block diagram of a standard unit feedback system.

in the computer memory/registers physically have finite precision, it is always possible to

treat them as fractions, [127, 208]. The only inconvenience is that the denominator or the

common denominator could be too large for computation. The following context provides

the essential procedure for plotting basic root locus for FO TFs.

2.3.2.1 Determining the poles and zeros.

To proceed, the following notation and definitions are provided.

Definition 2 (FO polynomials). The function Q(s) = a1s
α1 + a2s

α2 + · · ·+ ans
αn is an FO

polynomial if and only αi ∈ Q+
0 , ai ∈ R for i = 1, . . . , n.

Thus, an FO TF is composed of a numerator FO polynomial and a denominator FO

polynomial: G(s) = N(s)
D(s) . Poles and zeros are the roots of the equation D(s) = 0 and

N(s) = 0, respectively.

Definition 3 (Fundamental order and Fractional degree). Rewrite the above FO polynomial:

Q(s) = a1s
λ1
λ + a2s

λ2
λ + · · ·+ ans

λn
λ , (2.65)

where λ ∈ N is the least common denominator of α1, . . . , αn, and λi ∈ N. 1
λ is called the fun-

damental order. The fractional degree of Q(s) is defined as fdeg{Q(s)} = max{λ1, . . . , λn}.

With this definition, the fundamental order is confined inside the interval of (0, 1] (where

it degrades to an integer order polynomial when λ = 1). Thus, a consistent mapping from

the integer order s-plane to a proper fractional w-plane (w = s
1
λ ) can be drawn.

Theorem 1 (Number of roots). Let Q(s) be an FO polynomial with fdeg{Q(s)} = n. Then,

the characteristic equation Q(s) = 0 has exactly n roots on n Riemann sheets.

The proof can be found in [127]. Description of the Riemann surface can be found in

[209]. In this context, the first Riemann sheet is denoted by P := {reiθ|r > 0,−π < θ ≤ π}.
In fact, since w = sα is a multi-valued function, FO polynomials have infinite roots. This

definition simplifies the analysis by concerning only about practically meaningful number of

roots.

There are other definitions for the fundamental order, e.g. in [210, 118], where the

greatest common divisor (not limited to integers) is selected to be the fundamental order.

This consequently affects the number of roots.
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Let jω substitute the Laplace variable s, it can be seen that the mapping from jω to

(jω)
1
λ in definition 3 always expands the s-plane to λ sheets of Riemann surface, while other

definitions either compress or expand the s-plane depending on the selected fundamental

order.

Example 2.3.1: Consider the FO TF below:

G(s) =
1

s2.6 + s1.3 + 1
. (2.66)

According to the definition mentioned in [118], let the fundamental order be α = 1.3. Then,

the mapping compresses s → w1 where w1 = s1.3, as shown in figure 2.5(a). In contrast,

according to definition 3, its fundamental order is 1
λ = 1

10 . This mapping expands the s-

plane on the w2-plane, where w2 = s
1
10 . Hence, it has 26 roots. The TF in equation (2.66)

is expressed in the following two forms, respectively:

G1(w1) =
1

w2
1 + w1 + 1

, (1) G2(w2) =
1

w26
2 + w13

2 + 1
, (2). (2.67)
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Figure 2.5: The roots of eqn (2.66) and (2.67) on different planes.

From figure 2.5(b), it can be seen that the expansion of s-plane pushes the left sector

to the upper sheets of Riemann surface, as if it squeezes and folds that sector when the

two edges of the imaginary axis of w2 are stretched flat and perpendicular to the real axis.

Along with the expanded sector, multiple roots located on the left sector are pushed to other

sheets as well. From the 2-D top view, the roots appear to be overlapped, which are actually

located on the different sheets of the Riemann surface, as shown in figure 2.6. (The graph

is generated with the help in [211].) It is important to notice that among the 26 poles, only

one pair of complex conjugate poles locate on the first Riemann sheet, P, i.e. (−π, π] on the

s-plane, or equivalently, the sector between (− π
10 ,

π
10 ] on the w2-plane. This can be seen from

table 2.2, which lists the 26 roots on the w2-plane and the expanded s-plane, along with their

corresponding angles. (Note that the signs of some roots are flipped after rotation.)
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(a) 2-D plane.
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Figure 2.6: The graphical view of expanding a 2-D plane containing 10 sectors to the Riemann
surface with 10 sheets.

In the generalized root locus analysis, only the plot on P is concerned because the time

domain behavior and stability properties of the closed-loop system are determined only by

that [103]. For example, the behavior of the system G(s) = 1
s+1 and Ĝ(s) = 1

s1.01+1
are almost

identical. However, G(s) has one pole while Ĝ(s) has 100 poles according to definition 3,

distributed on 100 Riemann sheets.

Table 2.2: The poles of TF in equation (2.67-2) on different planes.

w2 arg (rad) s arg (rad) mod(arg, π)

−0.9968± 0.0805i ±3.0610 0.6927∓ 0.7212i ±30.6104 ∓0.8055

−0.9200± 0.3920i ±2.7388 −0.6324± 0.7746i ±27.3882 ±2.2555

−0.8452± 0.5345i ±2.5777 0.7994± 0.6007i ±25.7772 ±0.6444

−0.6324± 0.7746i ±2.2555 −0.8452∓ 0.5345i ±22.5550 ∓2.5777

−0.5000± 0.8660i ±2.0944 −0.5000± 0.8660i ±20.9440 ±2.0944

−0.2000± 0.9798i ±1.7722 0.4287∓ 0.9035i ±17.7218 ∓1.1278

−0.0403± 0.9992i ±1.6111 −0.9200∓ 0.3920i ±16.1107 ∓2.7388

0.2782± 0.9605i ±1.2889 0.9485± 0.3167i ±12.8886 ±0.3222

0.4287± 0.9035i ±1.1278 0.2782∓ 0.9605i ±11.2775 ∓1.2889

0.6927± 0.7212i ±0.8055 −0.2000± 0.9798i ±8.0554 ±1.7722

0.9871± 0.1604i ±0.1611 −0.0403± 0.9992i ±1.6111 ±1.6111

0.9485± 0.3167i ±0.3222 −0.9968∓ 0.0805i ±3.2221 ∓3.0610

0.7994± 0.6007i ±0.6444 0.9871± 0.1604i ±6.4443 ±0.1611

Definition 4 (Properness). The transfer function

G(s) =
N(s)

D(s)
=
bms

βm
λ + bm−1s

βm−1
λ + · · ·+ b1s

β1
λ + 1

ans
αn
λ + an−1s

αn−1
λ + · · ·+ a1s

α1
λ + 1

(2.68)

where βi and αj ∈ N are the power of s
1
λ in the descending order, is strictly proper for

αn > βm; bi-proper for αn = βm; and improper for αn < βm.
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To generate the correct root locus, the selection of the fundamental order for numerator

and denominator polynomials needs to be unified. Otherwise, tedious re-mapping is needed.

For example, consider the TF below,

G(s) =
s1.2 + s0.8 + s0.4 + 1

s1.6 + s0.8 + 1
. (2.69)

If 0.4 is chosen as the fundamental order for the numerator polynomial while 0.8 is chosen

for the denominator, then the TF has three zeros and two poles. It is improper in the

conventional intuition. Nevertheless, following definition 3, 1
λ = 1

5 , then it has 8 poles and 6

zeros, and it is strictly proper.

2.3.2.2 Asymptotes and branches.

Theorem 2 (Asymptotes). Asymptotes of the root locus plot are straight lines which intersect

the real axis at
(
bm−an
αn−βm

)λ
and their directions are given by:

ϕh =
(2h+ 1)λ

αn − βm
180◦, where

h = [
βm − αn − λ

2λ
] + 1, . . . , [

βm − αn − λ
2λ

] + αn − βm.

Asymptotes give direction of the trace of RL. Hence, it is convenient for field engineers

when there is no computer aid available. Before the enumeration of more examples, the

following facts are worth mentioning.

1. For the root locus plot of G(w) on w-plane, there is possibility that some branches on

P do not start from open-loop poles and terminate at open-loop zeros. They might

initiate from and enter into other Riemann sheets. This is demonstrated in example

2.3.3.

2. If λ > αn − βm then there is no asymptote on P.

3. If λ > αn, i.e. the highest order is between (0, 1), then there is no pole on P. Take the

half order system G(s) = 1
s0.5+1

for instance, the pole in the main value range, e2πj ,

is located on the second Riemann sheet according to the definition of Riemann sheet’s

branch cut. Remark: Actually, the expression G(s) = 1
s0.5+1

lacks of mathematic rigor

because s0.5 +1 = 0 has no roots. The commonly treated root e2πj is one of the roots of

s0.5 +e2nπj = 0, ( n 6= 0). Although e2nπj and e2·0·πj have the same modulus, they have

different geometric meaning. That is why
√
e2·0·πj =

√
1 = 1, but

√
e2nπj = enπj = −1.

2.3.2.3 Case studies

A Matlab based script, forlocus(), is created to perform the root locus plot of FO TFs,

and is available at [212]. A better technique is used to plot the lines instead of the unevenly

spaced dots used in [213] and [129]. As a refinement, the overview of the RL on the whole

s-plane is also plotted in order to provide a straightforward feeling about where the RL on

P locates globally. It prompts users in case there is no zeros or poles on P rather than

rendering a blank figure. A baseline verification of the correctness is made in example 2.3.2.

Several representative TF structures are selected for demonstration.
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Figure 2.7: The RL plot of equation (2.70) on different planes.
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Figure 2.8: The RL plot of equation (2.71) on different planes.

Example 2.3.2: The following TF is used as a demo in [213]. It is used here to test the

created Matlab function, and is plotted in figure 2.7.

G(s) =
s1.2 + 1

0.8s2.2 + 0.5s0.9 + 1
. (2.70)

Example 2.3.3: The root locus of the following TF is plotted in figure 2.8.

G(s) =
1.2s1.3 + 1

0.8s2.6 + 0.6s1.3 + 1
. (2.71)

A closer view of the 2nd quadrant in figure 2.8(b) tells that the RL in this example has two

branches on P. One starts from the pole marked in green, and the other from the next

Riemann sheet. Along with the variation of the K gain, they aggregate at (−1.25 + 1.1i)

and then bifurcate. One approaches to the open loop zero marked in red and the other goes

to infinity.
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Figure 2.9: The RL plot of equation (2.72) on different planes.

Example 2.3.4: The RL for the following TF is plotted in figure 2.9.

G(s) =
1.2s1.3 + 1

0.8s4.6 + 0.6s2.3 + 1
. (2.72)

It can be seen that this TF has four poles and six zeros on P, (including the infinite zeros).

An interesting phenomenon can be observed that there are two branches coming from the

2nd Riemann sheet as if they were not originated from any poles. Moreover, this TF has two

open-loop poles on the right half plane on P; thus, it is unstable. The stability of FO TFs

are discussed in the next section.

Example 2.3.5: The root locus for the TF in equation (2.69) are plotted in figure 2.10. In

comparison to figure 2.9, the RL of this TF contains two branches start from the open loop

poles on P and spread into the next Riemann sheet.

Alternatively, if definition 3 is not followed but definition 10 is chosen for the fundamental

order, more poles are generated, as shown in figure 2.11(a), but the RL on P is the same,

see figure 2.11(b).

2.3.3 The stability of fractional order transfer functions

As a complement to the stability discussions in section 2.2.3, this section discusses the BIBO

stability and lists two criteria dedicated for FO TFs, namely the extended RL method and

a simplified Nyquist criterion.

Definition 5 (BIBO stability - time domain). A causal LTI system is BIBO stable if and

only if its impulse response, h(t), satisfies [103]:∫ ∞
0
||h(τ)||dτ <∞. (2.73)

This is the same with that for integer order systems. It has an equivalent proposition in

frequency domain which is different from that for integer order TFs.
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Figure 2.10: The RL plot of equation (2.69) on different planes using λ = 5.
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Figure 2.11: The RL plot of eq (2.69) on different planes using λ = 10.

Proposition 1 (BIBO stability - s-domain). An FO TF is BIBO stable if and only if (iff)

its transfer function has no pole in the closed right half complex plane, ([105]).

To be more precise, it should be stated that an FO TF is BIBO stable iff no pole stays

on the right half side of P, which is the projection of s-plane on w-plane; or equivalently, no

pole stays between [−π
2

1
λ ,

π
2

1
λ ] on the s-plane. The sub-figures in figures 2.5 ∼ 2.10 illustrate

the s-plane and w-plane, respectively. The stable region plot for FO TFs can be well found

in the literature, e.g. [28].

The extended FO root locus method illustrated in the previous section is not only a good

graphical tool for evaluating the BIBO stability and the stabilization of unstable FO TFs, but

also a visible way of improving system performance to some extent. However, it is for unit

feedback with P control only. For systems that can not be stabilized using only P control,

such as the one shown in figure 2.9, other compensation methods need to be employed, for

example, the fractional order phase-lead/lag compensators, C(s) = K(aτs+1
τs+1 )µ, [214, 35].
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The next proposition gives a simplified Nyquist criterion for FO TFs, proposed by

Trigeassou et. al :

Proposition 2 (The Nyquist criterion). Let s = jω. If the Nyquist diagram of the open loop

transfer function H(jw) is situated at the “right side” of the critical point on the complex

frequency domain (−1, j0), then the system H(s) is stable; otherwise, it is unstable.

For the graphing procedure of the contour and illustrative examples, refer to [215].

As stated in the beginning, all the TFs under discussion in this section are restricted

to pure fractional order. The problems for non-commensurate order, or more generally

irrational order TFs could be much more complicated because they have infinite poles (and

zeros) which cannot be simplified using a fundamental order. In [75], Sabatier et. al suggests

the use of the recursive factorization given below to determine their stability. G(s) is treated

as a closed-loop TF formed by the open-loop TF:

Gn(s) =
Gn(s)

Gn(s) + 1
, (2.74)

where

Gn(s) =
1

ansαn + an−1sαn−1 + · · ·+ 1
, (2.75)

The term of the lowest order can be factorized:

Gn(s) =
1

a1sα1

1
an
a1
sαn−α1 + an−1

a1
sαn−1−α1 + · · ·+ 1

(2.76)

=
1

a1sα1
Gn−1(s).

In the same manner, now, Gn−1(s) is treated as a closed-loop system:

Gn−1(s) =
Gn−1(s)

Gn−1(s) + 1
, (2.77)

where

Gn−1(s) =
1

a2
a1
sα2−α1

1
an
a2
sαn−α2 + an−1

a2
sαn−1−α2 + · · ·+ 1

(2.78)

=
1

a2
a1
sα2−α1

Gn−2(s). (2.79)

Repeat this procedure n times until G1(s) is obtained. Then the overall stability can be

examined by applying the Nyquist criterion on each open-loop sub-system. There are other

approaches, e.g. [75, 114, 124], but are not explored in more detail considering the practical

usefulness. In this thesis, the truncation method will be used to handle the irrational order

case.

34



2.3.4 Inverse response of fractional order transfer functions

Along with the vast spreading research on fractional calculus related subjects, the fractional

calculus is being taken off its mysterious mask for more and more people. While it has been

found application in many subjects, the lack of data support and physics foundation in some

theoretical assumptions puts doubt on its practical value. For example, the topic of the

geometric meaning of fractional derivatives has been discussed in the second international

symposium on fractional calculus [216]; the characteristic ratio assignment (CRA) based

control of non-minimum phase FO systems is presented in [217], yet, is based on pure

assumption. This section addresses the inverse response behavior of FO systems with

practical data support. The description of real-world phenomenon that generates such

behavior is provided to support the argument of its existence, [218]. Along with this study,

time domain characteristics of a class of linear FO TFs is documented.

In control theory, the inverse response refers to the phenomenon where the initial response

of a linear system to a unit step signal has opposite sign with the steady state value [219].

For integer order systems, the transfer function of such a system contains at least one zero on

the right half plane (RHP) in Laplace domain. Take the second order system as an example,

the TF that gives inverse response has the following general form can be decomposed into

two TFs with different time constants and gains:

G(s) =
−bs+ 1

a2s2 + a1s+ 1
=

K1

τ1s+ 1
− K2

τ2s+ 1
. (2.80)

The effect of a RHP zero on the Bode phase plot is a 90◦ phase drop. Hence, this type

of systems are also called non-minimum phase systems. For fractional order systems, the

inverse response become more complicated due to the non-integer orders.

In this research, two scenarios are observed to generate this behavior. One occurs in

the temperature control during a semiconductor fabrication process introduced in section

1.2, which is resulted by the thermal contact issues between heaters and the reactor. The

other one is observed in the temperature control of Peltier elements under insufficient heat

dissipation power.

In the first scenario, the heaters are mounted on a ring shape metal texture (figure

5.26) surrounding a cylindrical reactor which has a different heat expansion rate with the

ring. When heaters are turned up, the annuli expands faster than the cylindrical reactor.

Thus, a small gap is formed in between, which consequently causes an temporary drop in

the temperature. When the expansion of the reactor follows up the annuli, the contact is

re-established and the temperature begins to rise. A mechanical sketch is shown in figure

2.12(a), and sample data is plotted in figure 2.12(b).

In the second scenario, an experimental platform is built for the purpose of emulating the

above industrial temperature control, as described in a later section, 5.1. At the time when

the emulator was built, this inverse response behavior was not expected to be reproduced

because the hardware configuration of the platform is completely different from the actual

industrial equipment. However, surprisingly similar response was observed by coincidence

due to different causes. The emulator uses the Peltier elements to pump heat from one side

to the other. When it is turned on, the cold side temperature initially drops. However, if the
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(a) Sketch of different heat expan-
sion rate.
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(b) Data showing the inverse response.

Figure 2.12: The data and sketch demonstrating the inverse response in the first scenario
due to different heat expansion rates of cylinder and annuli.

cooling capability on the hot side is insufficient, the heat on the hot side will not be removed

in time and will cumulate. Thus, the Peltier becomes powerless to continue the heat pumping

and both sides warm up, which explains the inverse response in the temperature output. A

sample data plot for this case is shown in figure 2.13. Note: it should be distinguished that

in the actual process, the increase of the temperature is desired while for the emulator, the

increase of the temperature is unwanted.
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Figure 2.13: The raw data showing the inverse response

On the other hand, when the emulator is powered off, the Peltier element immediately

stops the heat pumping. So, the temperature firstly increases due to the internal thermal
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Release 

When the 

power is 

released, 

the heat 

cycles back

Figure 2.14: The sketch of a communicating vessel for illustrating the thermal cycling inside
the Peltier element after power off.

cyclic, and then drops down to the ambient temperature due to natural dissipation. This

can be observed from the 230∼300sec data segment in figure 2.13.

Since the Peltier effect is invertible whose inverse is the Seebeck effect [220], a back

electromotive force (EMF) will be formed along with this inverse thermal cycling. This is

like the phenomenon that a motor become a generator when the rotor is spinning due to

inertia after the voltage is removed from the stator. As another analogy, the thermal cyclic

is similar to the communicating vessel shown in the sketch 2.14, where when the pump stops,

the liquid level in the right tube drops back, pushing the level in the left tube overshoots a

bit because of the momentum. Finally, it pulls back again due to gravity.

Since the temperature process essentially contains fractional order dynamics [34, 221],

the inverse response behavior can be better fitted by a fractional order non-minimum phase

model compared with an integer order model,

Second order : G(s) =
K(−bs+)1

a2s2 + a1s+ 1
, (2.81)

Fractional order : G(s) =
K(−bsα + 1)

a2s2α + a1sα + 1
, 0 < α < 1. (2.82)

The fitted parameters are a2 = 175.81, a1 = 54.1, b = −39.7, K = 2.9 for the second

order model and a2 = 87.27, a1 = 25.33, b = −21.41, K = 3.45, α = 0.823 for the FO

model. The fitting result is plotted in figure 2.15, where the criteria is evaluated by the

integral absolute error (IAE). By introducing the extra parameter α, the fitting error of the

FO model is 15.4512, an improvement of 6.3% compared with the error of the second order

model, 16.4217. Even better results can be achieved if a non-commensurate order model is

used,

G(s) =
K(−bsβ + 1)

a2s2α + a1sα + 1
, 0 < β < 2α. (2.83)

A difference between this model and the integer order model in equation (2.80) is that the

number of polynomial terms on the numerator can be greater than the denominator,

G(s) =
K(bns

βn + bn−1s
βn−1 + · · ·+ b1s

β1 + 1)

a2s2α + a1sα + 1
. (2.84)
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Figure 2.15: Fitting the FO inverse response data with different models.

which is able to provide more fitting freedom. However, the properness is still governed by

the constraint βn < 2α. Dedicated definition and discussion about FO model properness is

presented in the next section.
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Figure 2.16: The map of overshoot and undershoot vs fractional orders.

In [73], Malti et al. explored the resonance conditions of elementary fractional transfer

functions. In [222], Tavazoei et al. performed a survey on the time domain response of FO

systems. In [83], Hartley et al. investigated the effect of the fractional-order damping term

on the integral errors. To better understand the effect of the fractional orders on the inverse
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response, a similar efforts is carried out on a normalized non-minimum phase model,

G(s) =
−sβ + 1

s2α + sα + 1
. (2.85)

Figure 2.17: The 3D overview of the step response transition.

As shown in figures 2.16 and 2.17, an “order scanning” (will be described in section 3.3.1)

is performed to reveal the relationship between the amplitude of the overshoot/undershoot

and the orders. To guarantee the strict properness, the highest order on the numerator is

limited to one step size lower than that of the denominator.

The envelop of the overshoot percentage versus the fractional orders is plotted in figure

2.18. The boundary of the model response with regard to a unit step input is shown in

the green band in figure 2.19. These figures serve as a guidance of understanding the basic

behavior of the system in equation (2.85) and furthermore in equation (2.83).
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Figure 2.18: The percentage of the undershoot versus the fractional orders.

0 5 10 15
−1

−0.5

0

0.5

1

1.5

Time [sec]

S
te

p 
re

sp
on

se

Figure 2.19: The bound of the overshoot and undershoot for different fractional orders on
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2.4 Numerical tools for fractional calculus and controls

In recent years, as fractional calculus becomes more and more broadly used across different

academic disciplines, there are increasing demands for the numerical tools for the computa-

tion of fractional integration/differentiation, or the simulation of fractional order systems.

Time to time, being asked about which tool is suitable for a specific application, the author

decide to carry out this survey to present recapitulative information of the available tools in

the literature, in hope of benefiting researchers with different academic backgrounds.

The fractional calculus got birth 300 years ago, and the research on fractional calculus

experienced its boom in the past decades [155, 20, 19]. Besides the fundamental mathematical

study, more and more researchers from different academic disciplines begin to utilize it in

varieties of subject-associated research, such as in biology and biomedical [17, 223], sociology

[224, 225], economics [226, 227], and control engineering [35, 50, 228], etc. Along with the

rapid development of theoretical study, the numerical methods and practical implementation

also made considerable progress as reviewed in section 1.4.

Sharp tools are prerequisite to a successful job. In this section, an extensive collection of

Matlab based tools is presented for the numerical computation of fractional order integra-

tion/differentiation, as well as some toolboxes for engineering applications, with an emphasis

on fractional order controls. A comprehensive table, table 2.3, is created to list the recapit-

ulative information of these scattered tools in a dashboard view. Brief description and basic

evaluation of these numerical algorithms are presented, in terms of usage, accuracy, unique

features, advantages and drawbacks. Through such efforts, it is hoped that an informative

guidance is provided to readers when facing to the problem of selecting a numerical tool for

a specific application. While a text descriptive survey on some of the tools under discussion

can be found in book [161], and 28 alternatives for the time-domain implementation of FO

derivatives are documented in [229], this section addresses more quantitative comparison and

practical usage. Thanks to the authors of these tools. It is these pioneers who bring great

convenience for the practical use of FC and FO control.

2.4.1 Collection and description

@fotf

@fotf (fractional order transfer function) is a control toolbox for fractional order systems

developed by Xue et al. Most of the functions inside are extended from the Matlab built-in

functions. In [36], the code and usage of the @fotf toolbox are described in very detail. It uses

the overload programming technique to enable the related methods of the Matlab built-in

functions to deal with FO models. The transfer function objects generated from it can be

interactive with those generated from the Matlab transfer function class. Yet, the overloading

of associated functions such as impulse(), step(), etc, lost the plotting functionality. As a

work around, users can simply define a time vector as the second input to these functions.

fotf toolbox supports time delay in the TF, e.g. fotf(a,na,b,nb,delay). It does not

directly support transfer function matrix, hence, MIMO systems cannot be simulated directly.

However, since it provides Simulink block encapsulation of the involved function fotf(),

multiple input/output relationship can be established by manually adding loop interactions
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in Simulink block diagrams. Therefore, the remark “could” is put in the “MIMO” column

in table 2.3.

A small drawback with @fotf is that the sampling time has relatively big impact on the

accuracy, which has been remarked in the validation comments in [36]. Encouragingly, an

update is upcoming according to the author.

ninteger

Ninteger, non-integer control toolbox for Matlab, is a toolbox intended to help with de-

veloping fractional order controllers and assessing their performance, [79]. It uses integer

order transfer functions to approximate the fractional order integrator/differentiator, C(s) =

ksν , ν ∈ R. It offers three frequency domain approximation methods,

1. The CRONE method that uses a recursive discretization,

C(s) = k′
N∏
n=1

1 + s/ωz,n
1 + s/ωp,n

;

2. The Carlson’s method that solves Cα(s) using Newton’s iterative method,

Cn(s) = Cn−1(s)
(α− 1)Cαn−1(s) + (α+ 1)g(s)

(α+ 1)Cαn−1(s) + (α− 1)g(s)
;

3. The Matsuda’s methods, that approximates C with a gain known at several frequencies.

C(s) = [d0(ω0); (s− ωk−1)/dk(ωk)]
+∞
k−1,

d0(ω) = |C(jω)|, dk+1(ω) =
ω − ωk

dk(ω)− dk(ωk)
.

It also provides Simulink block encapsulation of the involved functions, such as ‘nid’ and

‘nipid’ blocks. Moreover, it offers a user-friendly GUI for fractional order PID controller

design.

There is a problem with ninteger toolbox in Matlab version 2013a or later. Without

additional editing, it has conflicts with some built-in functions due to the overload editing

of the Matlab built-in function “isinteger()”. For example, calling the mean() function will

prompt an error.

ooCroneToolbox

The CRONE Toolbox, developed since the nineties by the CRONE team, is a Matlab and

Simulink toolbox dedicated to applications of non integer derivatives in engineering and

science [60]. It evolved from the original script version to the current object-oriented version.

A good feature of the CRONE toolbox is that some of the methods are implemented for MI-

MO fractional transfer functions. For example, executing sysMIMO=[sys,sys;sys2,sys2]

generates a two-input-two-output TF matrix. Many simulation results in the literature are

obtained using the CRONE toolbox such as the design of centralized CRONE controller with

the combination of the MIMO-QFT approach in [230]. Several other toolboxes are inspired
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by CRONE, e.g. ninteger and FOMCON. A drawback of the CRONE toolbox is that time

delay cannot be incorporated into the generated FO TF. Manually multiplying the delay to

the frac tf object does not work either because the exp() operation is not overloaded by

frac tf class. CRONE is a toolbox much more powerful than merely simulating fractional

order systems. In spite of this basic functionality, it is also capable of fractional order system

identification and robust control analysis and design.

FOMCON

The FOMCON (Fractional-Order Modeling and Control) toolbox is developed by Tepljakov

et. al, [231]. Its kernel utilizes the algorithms in fotf, ninteger and Crone. It encapsulates

some of the major functionalities of those three toolboxes, and builds a GUI shell on top,

aiming at extending classical control schemes for FO controller designs. The relation of

FOMCON with the three toolboxes is shown in figure 2.20. Some notable changes/patches

to the original fotf are:

• newfotf() uses the string parser to enable users to input TF as a string;

• tf2ss() is overloaded and foss() is added, which makes the conversion between an

FO TF object and an FO state space object possible. The CRONE toolbox is also able

to do the task, yet the script is encrypted in Matlab P code format.

FOMCON 

Crone ninteger 

fotf 

Figure 2.20: FOMCON’s relation to other numerical tools, [2].

M-L functions

M-L functions, as the name implies, are Matlab functions developed for numerically com-

puting the Mittag-Leffler function in equation (2.10). There are several versions of code by

different authors available in the literature. Five of them are listed in table 2.3, where

1. mlf(α, β, x, p) is for the calculation of the 2-parameter M-L function in the form of

Eα,β(x) with the precision of p for each element in x, and is a new version for ml func();

2. ml func([α, β, γ, q], z, n, ε0) is capable of computing the M-L function with either 1,

2, 3, or 4 parameters, and the script is available in the books [210] or [35]; It uses the

fast truncation algorithm to improve the efficiency, and embeds the mlf() in the file

such that when the fast truncation algorithm is not convergent, solution is guaranteed

by trading off some efficiency;
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3. ml fun(α, β, x, n, ε0) (α > 0, β > 0) is also for 2-parameter M-L function with error

tolerance of ε0, which is implemented using C-MEX .dll and can be used in Simulink

through s-functions;

4. gml fun(α, β, γ, x, ε0) calculates the generalized M-L function with 3 parameters in

the form of Eγα,β(x), [232];

5. ml(x, α, β, γ) can calculate the M-L function with either 1, 2, ro 3 parameters.

Alternatively, the generalized hypergeometric function [pfq]=genHyper (a,b,z, lnpfq,

ix, nsigfig) in [233], or [y,tt,nterms]=pfq (a,b,z,d) in [234] can also achieve the

numerical computation of the generalized M-L functions under certain conditions. For more

details, refer to [157].

NILT

The inversion of Laplace transform is fundamentally important in the applications of Laplace

transform method. It can be carried out with one of the following three approaches: 1).

analytical solution using definition and basic properties; 2). Laplace transform tables;

and 3). numerical computation. While analytical solutions are usually too hard to be

obtained, and tables do not cover arbitrary cases, the numerical computation becomes an

inevitable way. Among the numerous algorithms for numerical inversion of Laplace transform

(NILT), NILT in [235, 236] and the “improved NILT” in [237, 238, 239] have relatively bigger

literature exposure. Lubomir’s NILT method applies the fast Fourier Transformation (FFT)

and the ε-algorithm to speed up the convergence of infinite complex Fourier series. A very

detailed description and performance evaluation of these methods is available in [240]. Hence,

repetitive comparison among different NILTs are not presented here. Focus is mainly put on

the comparison between NILT and other numerical methods.

A good feature of the two NILT code is that both support the direct input of time

delay in the form of exp(-Ls). Yet, INVLAP() gives some glitch at the end of the delay, for

example, [x,y]=INVLAP(’1/(s* (s^0.5+1))*exp(-s)’,0.01,10,1000). There is a tricky

part need to be noted in evaluating the computational error of NILT. If the same initial,

terminating and sampling time (t0, tf and Ts) for other tools are used in the script, the

NILT actually computes one point less than the other tools which use regularly spaced

time vector. That is because: let M =
tf−t0
Ts

represent the amount of points computed by

NILT, then, the time interval is actually T ′s =
tf−t0
M−1 due to the script t=linspace(0,tm,M).

Whereas the conventional assignment of time vector (t=t0:Ts:tf) generates M+1 points. In

order to compute the same amount of points aligned to the time stamps used for baseline

analytical solution, the time vector for analytical computation needs to be adjusted so as

to adapt to that used by NILT. This means to let analytical computation use the time

vector generated by NILT, which can be achieved by either 1). t=0:M*Ts/(M-1):M*Ts, or

2). t=linspace(0,tm,M). This cannot be done the other way around, i.e. replaced by t =

0:Ts:M*Ts-Ts nor t=linspace(0,tm-Ts,M). Otherwise, cumulated computation error will

cause inaccuracy of the final simulation result. Alternatively, if tf is not a concern, user

can assign one point less to M in the NILT script while keeping Ts unchanged. Thus, NILT

generates the same time stamps except a tf shortened by one sampling period. The difference
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in dealing with time vectors can be easily visualized if longer sampling time is assigned. An

example of the resulting computation error is demonstrated in figure 2.21. Similar time

stamp assignment issue exists in INVLAP(). In addition, the initial time stamp is not allowed

to be 0 due to the constraint in the INVLAP() script.
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Figure 2.21: Computation error of NILT caused by mis-assignment of Ts.

dfod

DFOD (Digital Fractional Order Differentiator/Integrator) is a set of Maltab functions

writhen by Petráš et al., for the approximation of fractional order differentiators and in-

tegrators. There are three versions of dfod:

1. dfod1() is the IIR type based on continued fraction expansion (CEF), shown in

equation (2.86), of weighted operator with the mixed scheme of the trapezoidal (Tustin)

rule and the backward difference (Euler) rule, [241];

Z{Dαx(t)} = CFE{(1− z−1

T
)α}X(z) ≈ (

1

T
)α
Pp(z

−1)

Qq(z−1)
X(z). (2.86)

2. dfod2() is the FIR type based on power series expansion (PSE), shown in equation

(2.87), of the backward difference (Euler) rule, [242];

D∓α(z) =
1

(1− z−1)±α
=

T∓α

∞∑
j=0

(−1)j
(
±α
j

)
z−j

≈ T∓α

Qq(z−1)
(2.87)

3. dfod3() is a new IIR type based on power series expansion of the trapezoidal (Tustin)

rule, [243].

Euler : sα ≈
[

1− z−1

T

]α
, Tustin : sα ≈

[
2

T

1− z−1

1 + z−1

]α
. (2.88)
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There are other FO algorithms based on IIR, such as newfod() by Chen [244].

Regarding discretization, besides the aforementioned methods used in the various tool-

s, other methods exist such as the Prony’s technique, direct discretization, the binomial

expansion of the backward difference, etc., [137].

IRID

The impulse response invariant discretization (IRID) is a family of functions designed by

Chen, Li, Sheng et al. [38, 245], for different approximation purposes based on the algorithm

as its name implies. It includes the following members:

1. irid fod() is designed to compute a discrete-time finite dimensional (z) transfer

function to approximate a continuous irrational transfer function sα where ‘s’ is the

Laplace transform variable and −1 < α < 1. It has been tested that the algorithm still

works for α > 1 and α < −1, by removing the input checking statement.

2. irid doi() is for the approximation of distributed order integrator
∫ b
a

1
sαdα, where ‘a’

and ‘b’ are arbitrary real numbers in the range of (0.5 ,1), and a < b.

3. irid dolp() is for the approximation of a continuous-time fractional order low-pass

filter in the form of 1/(τs+ 1)α

4. irid fsof() is for the approximation of fractional second order filter in the form of

1/(s2 + as+ b)α where 0 < α < 1.

5. BICO irid() is for the approximation of BICO (Bode’s Ideal Cut-Off) transfer function

in the form of 1/(s/w0 +
√

(s/w0)2 + 1)α, where α > 0.

ora foc

ora foc() is for the approximation of fractional order differentiators, 1
sα , [246], using the

Oustaloup-Recursive-Approximation method described in [247].

fderiv

fderiv() calculates the fractional derivative of order α for the given function r(t) using the

G-L definition, [248]. The input of the given function is represented by a vector of signal

values. There is an improved implementation of this function, fgl deriv(), by Jonathan,

which uses vectorization for faster computation with Matlab, [249].

glfdiff

glfdiff(y,t,α) (G-L finite diff) is a Matlab function written by Xue et al. [250] for

calculating the αth derivative of a given function, whose inputs y, t are the signal and time

vectors. It is based on the forward finite difference approximation of the G-L definition,

aD
α
t f(t) ≈ 1

hα

(t−1)/h∑
j=0

ω
(α)
j f(t− jh), (2.89)

where the binomial coefficients are recursively calculated, [250]:

ω
(α)
0 = 1, ω

(α)
j =

(
1− α+ 1

j

)
ω

(α)
(j−1), j = 1, 2, . . . (2.90)
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Fractional differentiation and integration

Many of the above functions approximate the fractional order integral or derivative operator.

This Matlab function calculates the αth order derivative or integral of a function, defined in a

given range through Fourier series expansion. The necessary integrations are performed with

the Gauss-Legendre quadrature rule, [251]. Three examples are provided in this package,

namely FO differ/integral of identity, cubic polynomial and tabular functions, respectively.

The main call function is fourier diffint().

FIT

FIT is the Fractional Integration Toolbox developed by Santamaria Laboratory at the U-

niversity of Texas at San Antonio, [252]. It is for the numerical computation of fractional

integration and differentiation of the R-L type, and is designed for large data size, which

allows parallel computing of multiple fractional integration/differentiation on GPUs (graph-

ical processing units). The extrapolation and interpolation algorithms used by this toolbox

are implemented in C++ and are integrated with Matlab via MEX mechanism. Detailed

explanation can be found in [253].

DFOC

DFOC, written by Petráš et al., is a digital version of the Fractional-Order PID Controller

of the form:

C(s) = K + Ti
1

sm
+ Tds

d. (2.91)

It provides a transfer function of the FO PID controller for given parameters, [254].

FOPID

The fractional order PID (FOPID) controller toolbox, presented by Lachhab et al., is for

the design of robust fractional order PIαDβ controllers, [255]. The tuning rules for the

parameters follow those promoted in [41] and [58]. Thus, the fractional order PID tuning

is converted to a 5-parameter optimization problem. This toolbox utilize the “non-smooth”

H∞ synthesis in [256] to perform the minimization. For now, there is not a publicly available

source for download.

Sysquake FO PID

In [257], Visioli and Pisoni et al. presented an interactive tool for fractional order PID

controllers developed on the Sysquake software environment, which is a similar effort with

that for integer order PIDs done by Åström et al. in [258]. Sysquake is a numerical computing

environment based on a programming language mostly-compatible with Matlab. However,

the interactive tool for FO PID runs in the Sysquake environment instead of Matlab. Hence,

it is not reviewed in detail here.
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š
[2

4
1
]

N
/
A

N
/
A

8
ir

id
fo

d
..

.
Im

p
u

ls
e

R
es

p
In

va
ri

an
t

d
f
=
i
r
i
d
f
o
d
(
-
.
5
,
.
1
,
5
)

Y
Q

C
h

en
[2

4
5
]

N
/
A

N
/
A

9
or

a
fo

c
O

u
st

al
o
u

p
-R

ec
-A

p
p

ro
x

o
r
a
f
o
c
(
0
.
5
,
2
,
0
.
1
,
1
0
0
)

Y
Q

C
h

en
[2

6
4
]

N
/
A

N
/
A

10
fd

er
iv

F
O

d
iff

of
r(

t)
y
=
f
d
e
r
i
v
(
0
.
5
,
r
,
T
s
)

F
.

M
.

b
ay

a
t

[2
4
8
]

N
/
A

N
/
A

11
gl

fd
iff

F
in

it
e

D
iff

of
G

-L
y
1
=
g
l
f
d
i
f
f
(
y
,
t
,
r
)

D
in

gy
ü
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FOCP

In [268], Tricaud and Chen et al. formulated the Fractional Optimal Control Problems

(FOCP) into the integer order format by using a rational approximation of the fractional

derivative obtained from the singular value decomposition (SVD) of the Hankel matrix of

the impulse response. Then, RIOTS 95, described in section 4.3.1.2, is called to perform the

optimization. The scheme is potentially able to solve any type of FOCPs and is implemented

in Matlab for public accessibility, [265]. It supports MIMO FO optimal control, but does not

handle time delay due to the limitation of RIOTS.

FSST

FSST is a simulation toolkit in Matlab/Simulink for the fractional order discrete state-space

system education. The toolkit consists of a set of C-MEX s-functions which are encapsulated

in Simulink blocks. Several typical fractional order system simulation examples are provided

as shown in figure 2.22, such as the fractional order state-space model and the fractional

Kalman filter (FKF), [269]. The version 1.7 is available for free download at [266]. Two

of the superior strengths of FSST are: 1.) it can directly simulate MIMO systems since it

is a Simulink block kit handling state space representations; 2.) it is able to incorporate

the initial conditions into the dynamic equations to be simulated, which is a unique feature

among all the aforementioned tools. The drawback of FSST is that the step size has large

impact on the simulation results, even larger than the impact by “cilcular” buffer size. A

sample illustration is plotted in figure 2.23.

Figure 2.22: The Simulink block set provided in FSST.

Fractional variable orders

All the above tools/toolboxes (except irid doi()) deal with constant fractional orders.

Yet, there exists a type of differentiations that have fractional variable orders (FVO). The

definitions in the G-L format are given as follows, [270]:

Definition 6 (The 1st type FVO).

0D
α(t)
t f(t) = lim

h→0

1

hα(t)

n∑
r=0

(−1)r

(
α(t)

r

)
f(t− rh). (2.92)

The 2nd and 3rd types can be found in the same reference.
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Figure 2.23: The impact of simulation step size on the FSST toolbox.

Regarding the fractional variable order differentiation, there are dedicated tools. Podlub-

ny et al. offers a matrix approach that unifies the numerical differentiation of integer order

and the n-fold integration, using the so-called triangular strip matrices, [267]. It is available

for download at [271] and can be applied on the solution to FODEs and FPDEs.

Sierociuk et al. provides a C-MEX s-function based Simulink toolkit, “fvoderiv”, for this

purpose, [272]. It supports Matlab real-time-workshop (RTW).

The toolbox “vod” created by Valério et al. calculates variable fractional or complex order

derivatives. R-L, Caputo and G-L definitions are provided; the three types of definitions in

[270] are all considered. Fuzzy supervised implementations in Simulink are also provided,

[273].

FO RL

Three Matlab based scripts for plotting root locus of fractional order TFs are available. Two

early works are frlocus() in [213], and the code attached in the paper [129] by Machado

et al.. The other is forlocus() developed by the author and used to generate the figures in

section 2.3, which is listed in the last row in table 2.3. Besides, the newest version of @fotf

toolbox also features the root locus plot of FO systems.

Other tools

Text description of a few tools listed above can also be found in [274]. There are other

fractional calculus related tools or Matlab scripts available for specific applications, such as

the fractional Fourier transform (FrFT) [162, 163], closed-form solutions to linear fractional

order differential equations, fode sol() [35], the M-L random number generator mlrnd()

[275], digital fractional order Savitzky-Golay differentiator [276], and the functions for simu-

lating fractional-order chaotic systems [33], etc. Considering the scope of research, they are

not enumerated here and only fundamental FC and FO control related tools are reviewed.
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2.4.2 Evaluation and comparison

2.4.2.1 Comparison I

To evaluate the collected tools, several groups of benchmark problems and inputs are de-

signed. For the FO control toolboxes, the following problems are used,

1. Baseline model: first order transfer function,

gb(s) =
1

s+ 1
,

whose time domain analytical solution of its step response is: y(t) = 1− e−t;
2. Impulse response of half order integrator:

ghint(s) =
1√
s
,

whose time domain analytical solution is: 1√
πt

;

3. TF with a half order pole:

ghp(s) =
1√
s+ 1

,

whose time domain analytical solution is:

1√
t
E 1

2
, 1
2
(−
√
t), or equivalently,

1√
πt
− eterfc[

√
t];

4. The commensurate order TF:

gcom(s) =
6s1.2 + s0.8 + 2s0.4 + 3

5s1.6 + s0.8 + 2
;

5. Step response of the irrational order TF:

gir(s) =
2s
√

3 + 1

s
√

5 + 3s
√

2 + 1
.

The accuracy is quantified by the conventional integral absolute error (IAE) criteria,

S =
∫ T

0 |e(t)|dt. All comparison have been kept as fair as possible. The numerical values

of the time domain analytical solution using Matlab built-in functions are assumed to be

accurate and is adopted as the baseline. The computational errors when Ts = 0.05 are

summarized in table 2.4, where the row indices represent the methods numbered in table

2.3, and the column indices represent the test problems respectively. Besides, ‘M’ denotes

the Matlab built-in TF and ‘-’ means the underlying method is not applicable for the test

problem. Two sample plots of the step responses of problems 1 and 5 are shown in figures

2.24 and 2.25. For problems 4 and 5, since analytical solution is hard to obtain, all methods

are compared to the values computed by fotf.

51



0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

Time (sec.)

A
m

pl
itu

de

 

 

Time domain anlytical
Matlab built−in tf()
fotf()
ninteger
Crone
mlf
ml_fun
NILT
INVLAP
irid

2 2.2 2.4 2.6 2.8 3 3.2

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

 

 

Figure 2.24: Comparison of the step responses of problems 1.
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Figure 2.25: Comparison of the step responses of problem 5.

For the impulse response of the half-order integrator, the first point is ignored for error

calculating because it is infinity. Two graphic views of the comparison are shown in figures

2.26(a) and 2.26(b), with Ts=0.01 and Ts=0.1 respectively.

As stated in [245], irid fod() uses finite dimensional (z) TF as the approximation

method. Hence, the order of the (z) TF has impact on the approximation accuracy. The

error listed in table 2.4 is based on the 10th order approximation. An illustrative plot is

shown in figure 2.27. The sampling time also has impact on its accuracy. The anti-intuitive

fact is that relatively greater Ts gives higher accuracy. A heat map of the error on the field
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Table 2.4: Evaluation results on the test problems 1∼5.

HH
HHHHMethod

Error
1 2 3 4 5

M 0 - - - -

1 1.4955 8.4176 6.6813 “0” “0”

2 3.18×10−13 2.5287 0.3831 9.8434 2.5519

3 0.4956 2.9627 1.4254 10.454 3.1857

5a 0 - 4.69×10−4 - -

5c 8.62×10−12 - 1.08×10−10 - -

6a 0.0016 0.0236 0.0206 6.1528 2.4477

6b 0.0059 0.0012 2.49×10−5 3.4722 1.5042

8 0.5327 0.0071 0.2189 - -

of Ts=0.01:0.001:0.1 and order=3:30 is plotted in figure 2.28. At some particular high

orders, “rank deficient” would occur during the call of prony() inside irid fod(). Users

can choose appropriate orders according to their specific accuracy requirement.

The analytical expression of M-L function is a summation of infinite terms. Hence, it is

not surprising to see the numerical computation induced error in the results.

2.4.2.2 Comparison II

Table 2.5: Quantitative comparison of function int/diff tools.

PPPPPPPPCriteria

Methods
Analytical fderiv() glfdiff() fourier diffint() FIT

Error 1 - 140.5000 1.8232 792.4660 0.0000

Elapsed T1 0.0001 1.4028 0.0029 0.0874 0.0209

Error 2 - 339.7973 2.1208 250.5433 0.0743

Elapsed T2 0.0001 1.4105 0.0029 0.0893 0.0201

fderiv(), glfdiff(), fourier diffint() and FIT are integration /differentiation tools

for functions. For this group of tools, the following two problems are designed to compare

the performance.

1. Half order derivative of the function y(t) = 3t on the interval of [0, 5], whose analytical

solution is,

0D
0.5
t y =

3Γ(2)

Γ(1.5)

√
t. (2.93)

2. 0.75 order integration of the function y(t) =
√
t, whose analytical solution is,

0D
−0.75
t y =

Γ(1.5)

Γ(2.25)
t1.25. (2.94)
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Figure 2.26: Comparison of the impulse responses of the half order integrator.

The time steps are all set to 0.01 sec. It can be seen that fourier diffint() performs

not as well as other methods although a big number of Fourier and Gaussian coefficients have

been assigned (default values are 260 and 520 for identity polynomial). Its performance on a

3rd order polynomial is better. The results are plotted in figures 2.29 and 2.30. Quantitative

comparison including computational error and averaged elapsed time (for 20 runs each) are

listed in table 2.5, for the above two problems respectively.
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Figure 2.27: The Ts and order impact on irid fod().
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Figure 2.28: The heat map of approximation error of irid fod() versus the order and
sampling time.

2.4.2.3 Comparison III

Although the simulation of fractional order pseudo state space models can be achieved

indirectly, some toolboxes do provide the direct simulation capability, such as the CRONE

toolbox and FSST. Since the function frac ss in CRONE toolbox only adopts the input of

commensurate order systems, for comparison purposes, the following commensurate order

pseudo state space model is selected,[
x1

x2

](0.7)

=

[
0 1

−0.1 −0.2

][
x1

x2

]
+

[
0

1

]
u

y =
[

0.1 0.3
] [ x1

x2

] (2.95)

To involve more tools into comparison, the FO integrator blocks in the FOTF and Ninteger

toolboxes are used to represent the above fractional differential equations in Simulink, as
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Figure 2.29: Comparison of half derivative of function y(t) = 3t, using fderiv(), glfdiff(),
fourier diffint() and FIT respectively.

0 1 2 3 4 5
0

1

2

3

4

5

6

7

t [sec]

0
.7
5
o
rd

e
r
in
te
g
ra

l
o
f
y
=

√

t

 

 

y

I0.75y Analytical

I0.75y fderiv

I0.75y glfdiff

I0.75y fourier_diffint

I0.75y FIT

Figure 2.30: Comparison of 0.75th order integration of function y(t) =
√
t, using analytical

solution, fderiv(), glfdiff(), fourier diffint() and FIT respectively.

shown in figure 2.31. The comparison of the unit step responses computed by the four

toolboxes are plotted in figure 2.32, from which it can be seen that the result obtained using

FSST (1 sec for step size) has bigger difference from the others. However, since analytical

solution is not easy to obtain, it is insufficient to claim which method gives highest accuracy.

Hence, quantitative comparison is not provided. As an alternative, users can transform the

56



above FO S-S model to an FO transfer function model, assuming zero initial conditions,

G(s) = C(sαI −A)−1B =
3s0.7 + 1

10s1.4 + 2s0.7 + 1
. (2.96)

Thus, the NILT scripts can be used to compute the numerical solution, which has relatively

higher reliability according to the authors observation.

Figure 2.31: The Simulink block diagrams for the FO pseudo S-S model in equation (2.95).
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Figure 2.32: Comparison of the simulation results of the FO pseudo S-S model obtained with
different toolboxes.
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2.4.2.4 Summary

A tricky part for the simulation of fractional order systems is that even if the system is

broken down to the bottom layer, i.e. the analytical solution, it usually still involves the

computation of M-L functions, which still needs to rely on the numerical tools or scripts.

From the comparison, it can be seen that in the category of integrating/differentiating a

function, glfdiff and FIT outperform other tools in terms of accuracy; in the category of

control system simulation, NILT always provides higher accuracy. However, other toolboxes

has advantages, for example, ninteger and CRONE toolbox provide integrator blocks in

Simulink, which makes the simulation of nonlinear systems possible.
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Chapter 3

Fractional Order Process Modeling and

Identification

You make your own chances.

— O. Henry, Mammon and the Archer

If we don’t have a model, make one.

3.1 Fractional order processes

Fractional order models can be commonly found in biology, chemistry and physics. To name

a few, the membrane charging model in [17], the fractional impedance in botanic elements

[277], the ion channel gating model in [278], and the heat transfer process in [65]. In spite

of the slow dynamics, FO models can be found presence in electrical engineering and motion

controls as well. For example, the analog FO control element which is called “fractor” in

[11], the FO velocity model in [58], and the FO circuits in [33]. More real-world instances

can be referred to the literature review in section 1.4.

As FO models being adopted to depict more and more phenomena, industrial processes

begin to use them as well. The most brilliant way of modeling a process is to build through

physics or chemistry principles and math deduction. Such kind of models contain the most

compound and profound practical insights. However, due to the complexity and hybridity

of realistic engineering problems, this is usually infeasible. In general, the commonly used

modeling approach in engineering contains two steps: model structure selection and parame-

ter identification. In this chapter, several selected modeling and identification techniques are

briefly reviewed. Two new frequency domain based methods, employing the relay feedback

approach, are developed and presented in subsections 3.3.3 and 3.3.2. Nonlinear FO system

identification is addressed in section 3.4, where the feedback linearization of fractional order

systems are proposed and investigated.
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3.2 Model structure selection for fractional order systems

The first physical system to be widely recognized that demonstrating “fractional” behavior

is probably the semi-infinite lossy (RC) transmission line, [139, 17]. Heaviside considered its

impedance using the operational calculus which is later on recognized as: V (s) = 1√
s
I(s). As

the time goes, more and more physical phenomenon are discovered to exhibit “fractional”

behavior, [279, 161].

3.2.1 Physics based model selection

Two fractional calculus related physical scenarios that are most commonly encountered in the

industrial processes are stated in the following subsections. Fractional order model selection

for similar engineering applications are recommended to refer to these model structures.

3.2.1.1 Thermal models

Thermal processes are most commonly seen in the conventional industries. In [280, 72],

Oustaloup and Malti et. al investigated the developing of a new device for heat flux

estimation in machining tools during severe machining or in high enthalpy plasma flow.

In [139], Das et. al explored the modeling problem of furnace wall encountered during the

development of a fuel-efficient nuclear plant control system. In [281, 34], Petras et. al studied

the heat transfer process on a PCT40 experimental platform, and in heterogeneous media

on a Peltier module based platform. All of these applications use the thermal model of the

ideal heating process on a semi-infinite beam described by the heat transfer equation with

no energy loss:

∂2

∂λ2
T (t, λ) = a

∂

∂t
T (t, λ), (3.1)

with the initial condition: T (0, λ) = T0 and boundary condition: T (t, 0) = T (t), where

T (t, λ) is the temperature of the beam at time t > 0 and 1-D spatial coordinate λ > 0; a

is the thermal diffusivity determined by the heat conduction coefficient k, the heat capacity

c and density ρ of the material. Let u(t, x) = T (t, λ) − T0 Applying the Laplace transform

gives,

∂2

∂λ2
U(s, λ) = asU(s, λ). (3.2)

Since the heat flux is defined as H(t, λ) = ∂T (t, λ)/∂λ, then, the above equation leads to a

fractional order transfer function relation between temperature and the heat flux at λ,

G(s) =
U(s, λ)

H(s, λ)
=

1√
as
, [281] or (3.3)

G(s) =
U(s, λ)

H(s, λ)
=

1√
as
exp(−λ

√
as), [72]. (3.4)

The relation between temperature and the heat flux at λ with energy loss is derived in [72]

as:

G(s) =
T (s, λ)

H(s, λ)
=

k√
as+ 1

. (3.5)
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An recent application of fractional order thermal models in the bituminous froth heater

control in the oil sands extraction industry can be found in [135].

3.2.1.2 Rheological models

Damping is the usually used artifice in the vibration control of mechanical systems. The

integer order Kelvin-Voigt model is used to depict the stress-strain relationship of Maxwell

materials composed of a purely viscous damper and purely elastic spring in parallel,

σ(t) = [E + η
d

dt
]ε(t), (3.6)

where σ is the stress, ε denotes the strain, and η is the viscosity. The strain response to a

suddenly applied stress, σ0, is,

ε(t) =
σ0

E
(1− e−

E
η
t
), (3.7)

which is exactly the time domain solution to the step response of a first order transfer

function. There are variations of this model, such as the 3-parameter Zener model [282].

More references can be found in [191].

When the Newtonian elements (dashpot) is replaced by a Scott-Blair element that reveals

viscoelastic behavior, the fractional Kelvin-Voigt model is proposed to describe the stress

relaxation and creep behavior, [283, 161],

σ(t) = [E + η
dα

dtα
]ε(t), (3.8)

where the order of the derivative depicts the material’s characteristic, α = 1 depicts vis-

cous liquid while α = 0 depicts elastic solid. Values in between depict materials that are

instantaneously elastic and long-term viscous [284, 285]. Variations of this model include the

fractional Zener model. This equation naturally leads to a fractional order TF model in the

following form,

G(s) =
k

τsα + 1
. (3.9)

When a mass is connected to such a fractional order damping structure, the displacement,

X(s), with regard to a driving force, F (s), can be derived. After normalization, it is expressed

as,

G(s) =
X(s)

F (s)
=

1

s2 + asα + 1
, (3.10)

which is called the spring-mass-viscodamped dynamics in [83]. Taking a step further, this

model is extended to the form that possesses a distributed order by Sheng, Chen et. al,

[286, 287],

G(s) =
X(s)

F (s)
=

1

s2 +
∫ b
a c(α)sαdα+ 1

. (3.11)

This type of FO models are not only used in mechanical engineering, but also in other

industries. For example, a recent application of using fractional derivatives to simulate

viscoelastic fluids in the computer animation industry can be found in [288] and [289]. With

this technique, computer animation is expected to deliver better user experiences.
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3.2.1.3 Fractional order plasma models

Plasma, sometimes called glow discharge, is often referred to as the fourth fundamental state

of matters. It is used in many emerging industries, such as surface treatment, aerospace

metallurgy, and bio-pharmaceuticals, [290, 291, 292]. As mentioned in section 1.2, this

research is originated from problems posed in the plasma etching industry, such as the plasma

DC bias modeling. Therefore, two plasma physics related models that utilize fractional

calculus are reviewed for later reference in section 5.7.

Ion energy distribution (IED) is one of the many crucial measures of plasma status.

Lieberman et al. proposed a computation method for ion energy distribution of multi-

frequency capacitive discharges [293], in which the following Fourier transfer function,

g(f) =
1

((cfτi)p + 1)1/p
, p > 0 (3.12)

is chosen to determine the ion response Vi(t) to the sheath voltage Vs(t). This model is in

the form of Gravrilyak-Negami function [294]. It fits a lot of experimental data well, and is

derived from the following relaxation equation,

∂Vi(x, t)

∂t
= −Vi(x, t)− Vs(x, t)

τi
. (3.13)

In [295], the electron heating in a capacitive radio frequency with non-Maxwellian distri-

butions is studied. Usually, the electron velocity distribution (EVD) in a bulk plasma is given

by f0(u, t) = g0(u− u0(t)), where g0(u) takes a single temperature Maxwellian distribution,

g0(u) = n0

(
me

2πeTe

) 1
2

exp(
−meu

2

2eTe
) (3.14)

where me, Te and u are the mass, temperature and velocity of electrons, respectively. Howev-

er, if the temperature is not uniform, the EVD needs to be approximated by a bi-Maxwellian

or even generalized Maxwellian distribution, in which the distribution function has a warmer

tail, i.e. it decreases as a power law of the velocity u rather than exponentially, [296].

g0(u) =
n0

(
√
πθ)3

Γ(κ+ 1)√
κ3Γ(κ− 1

2)
(1 +

u2

κθ2
)−(κ+1), (3.15)

where θ =
√

(2κ− 3)Te/κme and κ is the spectral index. This inverse power law distribution

has been confirmed by practical observation in many circumstances.

The modeling of plasma impedance is briefly described in section 5.7.

3.2.1.4 Relaxation models

The Cole-Cole model is used to describe dielectric relaxation in polymers [297], and has a

similar form to the above IED model in equation (3.12),

ε∗(ω)− ε∞ =
εs − ε∞

1 + (jωτ)1−α , 0 < α < 1, (3.16)
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where ε∗ is the complex dielectric constant, εs and ε∞ are the static and infinite frequency

dielectric constant. This is actually the equation (3.10) in the complex frequency domain.

When α = 0, the Cole-Cole model reduces to the Debye model,

ε∗(ω)− ε∞ =
εs − ε∞
1 + jωτ

. (3.17)

As another relaxation modeling example, Nigmatullin et al. proposed a Cole-Davidson model

for the dielectric relaxation in [298]. More relaxation models have been discussed in sub-

section 2.2.1.3 and can be found in the references therein, e.g. [284].

From these examples, it can be seen that fractional order dynamic model structures

indeed benefit industrial productions and hence, have their value of existence.

3.2.1.5 Time series models

The AR, ARX, ARMA, etc., models are often used in time series analysis. Control engineers

use them for system identification, [299]. For fractional order systems, the output has totally

different characteristics from that of the integer models in terms of correlation. Thus, these

models can no longer depict the time series generated by FO systems, and FARIMA is

created.

Definition 7 (AR model).

A process is auto-regressive of order p, AR(p), if there exist constant a1, . . . ap such that,

Xt =

p∑
k=1

akXt−k + εt (3.18)

εt is a Gaussian white noise, [40]. The AR(p) process is weakly stationary if and only if all

the roots of the polynomial P (z) = 1 − a1z − · · · − apzp lie outside the unit circle in the

complex plane.

The above process {Xt} is a moving average of order q, MA(q) if there exist constants

b1, . . . bq such that,

Xt =

q∑
k=0

bkεt−k. (3.19)

Definition 8 (ARX model).

The auto-regressive with external input (ARX) model has the following format,

a(d)y(t) = b(d)u(t) + e(t), or y(t) =
b(d)

a(d)
u(t) +

1

a(d)
e(t), (3.20)

where a and b are polynomials with regard to d. Linear regression can be used for model pa-

rameter estimation. The development of ARX models using fractional order and orthonormal

basis filter parametrization can be found in [300, 301].

Definition 9 (ARMAX model).
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The auto-regressive moving average with external input (ARMAX) model can be expressed

as,

a(d)y(t) = b(d)u(t) + e(t), or y(t) =
b(d)

a(d)
u(t) +

c(d)

a(d)
e(t). (3.21)

Model parameters cannot be estimated using linear regression.

Definition 10 (OE model).

The Output Error (OE) model has the form below:

a(d)y(t) = b(d)u(t) + a(d)e(t), or y(t) =
b(d)

a(d)
u(t) + e(t). (3.22)

In [302], Poinot and Trigeassou et al. identified a diffusion process using the OE model.

Definition 11 (ARMA model).

The autoregressive-moving average (ARMA) process Xt is defined as

Φ(d)Xt = Θ(d)εt, (3.23)

where d is the back-shift operator; or following the above format,

Xt =

p∑
i=1

aiXt−i +

q∑
j=1

bjεt−j + εt. (3.24)

It is known that an integer order LTI systems can be characterized by a linear difference

equation known as the ARMA model in the discrete case, [40]. However, the ARMA model

only characterizes short-range-dependant property of the time series. For fractional order

LTI systems, the outputs in fact possesses LRD characteristic. Thus, the fractional ARMA

and FARIMA models are proposed.

Definition 12 (BJ model).

The Box-Jenkins (BJ) model is a combination of the AR and MA models [303]. It assumes

that the time series is stationary. Otherwise, Box and Jenkins recommend differencing non-

stationary series one or more times to achieve stationarity, which produces an ARIMA model.

The block diagrams of the AR, ARX, BJ and OE models can be found in Ljung’s book

[299], chapter 4.

Definition 13 (ARIMA model).

The auto-regressive integrated moving average (ARIMA) model is a generalization of the

ARMA model, which can be viewed as a “cascade” of a non-stationary and a wide-sense

stationary model.

Definition 14 (FARIMA model).
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The fractional ARIMA (FARIMA) processes (sometimes called ARFIMA) are widely used

in modeling LRD time series. It is defined in [304] as,

Φp(d)Xt = Θq(d)(1− d)−αεt, (3.25)

where (1 − d)−α is the fractional differencing operator. When d = 0 the FARIMA(p, d, q)

process reduces to the usual ARMA(p, q) process.

Definition 15 (CARIMA model).

The controlled ARIMA model can be expressed using the z parameter in the following form

[305]:

A(z−1)y(k) = B(z−1)u(k − 1) +
C(z−1)

∆u(k)
e(k) (3.26)

One of the main use of the CARIMA model is in the generalized predictive control [306].

There are other generalized forms of the ARIMA model, such as the vector ARIMA

(VARIMA) for multiple time series [307], and the nonlinear ARIMA (NARIMA) for the

nonlinear dependent time series on the past values.

Definition 16 (Fractional ARMA model).

The fractional ARMA process X = (Xt)t∈R based on the Brownian motion W = (Ws)s∈R is

defined in [308] as,

Xt =

∫ t

−∞
f(t− s)dW (s). (3.27)

Its Laplace transform in the roots format is [308],

F (s) =
K∏
k

(s− ak)αk . (3.28)

These models belong to the whole family time series models, and they can be selected

accordingly for specific fractional order modeling scenarios.

3.2.2 Data based model selection

In the industry, physics modeling may not always be the primary preference considering

the cost-reward ratio in terms of time and labor. Moreover, it usually turns out that

physics models may not fit the data well due to un-modeled dynamics, assumptions and

simplifications based upon which they are built. Therefore, model structures are selected

according to empirical observation in many cases. For example, to the author’s experience, if

a system’s reaction curve has fast initial response but approaches the steady state very slowly

(usually called to have the Mittag-Leffler shape), then, a fractional order transfer function

will probably fit the data well regardless of its physical meaning.
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In [71], Malti et. al selected the following model structure to fit the data from resistor

heated aluminum rod experimental platform and was proven to be effective,

G(s) =
b0

a2sα2 + a1sα1 + 1
e−Ls. (3.29)

For the cases where fractional order non-minimum phase behavior occurs, the model structure

discussed in section 2.3.4 should be considered.

The most commonly used integer order model in the industry should count the first order

plus time delay (1OPTD). Without surprise, its fractional form sibling, fractional order plus

time delay (FOPTD) model, is frequently used in FO controls,

G(s) =
K

Tsα + 1
e−Ls, (0 < α < 2), (3.30)

where K, T , L are constants. This model is good enough to depict many linear dynamic sys-

tem responses including the aforementioned examples, and is also acceptable to approximate

relatively higher order models.

The above discussed model selection mainly focuses on single loop scenarios. For MIMO

cases where individual input-output can be measured, the overall model can be obtained by

choosing suitable structure for each individual loop and then, combine them into a transfer

function matrix or pseudo state equation expression. Model selection and identification of

nonlinear fractional order systems are discussed in section 3.4.

3.3 Parameter identification for fractional order models

Following the model structure selection discussed in the previous section, the next concern

nails down to the parameter identification, which is a big subject in the system identification

theory. Numerous methods for integer order models have been developed, see the books, [299,

309, 310]. Some of them have been attempted to identify fractional order systems, as reviewed

in section 1.4, others are briefly reviewed as follows. For example, Oukacine, Djamah et al.

identified fractional order models using pseudo-random binary sequence (PRBS). They also

extended the multi-model identification to fractional order nonlinear models, [311]. Victor

et al. developed a two-step algorithm for model order identification, [66]. Djouambi et al.

identified FO systems using a digital adjustable fractional order integrator [312]. Tavakoli et

al. presented methods to identify the order and parameters of fractional systems from noisy

step response data [313]. Liu et al. applied the modulating function method on FO systems

[314]. In [315] and [316], fractional order models are identified by curve fitting using the time

domain analytical solution given by the Mittag-Leffler function. Heuristic search algorithms

have also been employed to identify FO models, [317, 318].

There are still many methods not generalized for FO cases. This section reviews some of

the existing methods, and introduces two new methods in the frequency domain.

3.3.1 Order scanning by time domain data fitting

For model parameter estimation, the first method arising in minds of many control engineers

might be the least squares method. This method has been incorporated into algorithms and
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been used for fractional order system identification. For example, the srivcf -algorithm gives

the srivcf -based solution at each iteration by,

ρiter+1 = (ΦiterΦT )−1ΦiterY ∗ (3.31)

where y∗ is the noisy output and Φ is the regressor. For fractional order models, srivcf -

algorithm follows the same scheme, [71].

Pρ = σ̂2(ΦΦT )−1 (3.32)

where σ̂2 is the empirical estimation of the noise variance.

As a variant of the least squares fitting, the IAE, ITAE, etc, are also used to estimate the

parameters of an over-determined system, i.e. the data points are more than needed (usually

contradictory) for determining the unknown parameters. This gives rise of the question: to

what extent the model complexity impact the fitting results. For example, the model order

selection is discussed in [303]. The Akaike information criterion (AIC) answers this problem

quantitatively. AIC is a measure of the relative quality of a statistical model for a given set

of data, [319, 320]. It is usually used to judge if a data set is under-fitted or over-fitted by a

model.

Definition 17 (Akaike information criterion). For a supposed statistical model, let L be the

maximized value of the likelihood function; k be the number of estimated parameters in the

model. Then the AIC value of the model is

AIC = 2k − 2ln(L). (3.33)

Similar to this idea, when fitting a data set using a fractional order model, the number of

fractional orders and the value of each order need to be determined. One of the techniques is

to estimate the orders along with the other model parameters all together, [316, 315]; another

is to scan the orders with designed change of step size, during which other model parameters

are estimated while the fractional order is fixed at each step, [83]. There are other techniques

such as [321]. Among these techniques, the order scanning is a simple and straightforward

methods. Hence, a handy tool for performing this task is developed for repetitive use and is

available in [322]. The use of this technique for some quick order estimation is presented in

section 5.3.

3.3.2 Using the relay with an FO integrator for system identification

As the name implies, the relay feedback approach utilizes a relay shape nonlinearity in the

feedback loop of a system, which has generally two uses. One is for auto tuning the PID

controller parameters and the other is for model identification. This section and the next

section mainly address its use in identification.

The relay feedback approach is one of the most commonly used techniques in the industrial

automation because of its simple-to-implement feature and practical value. Two detailed

surveys on its development can be found in [323, 324]. More recent advances are available in

[325]. As this method receives so much research attention, more than ten types of its variants
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have been created in the past two decades. In this section, inspired by fractional calculus, a

new variant is proposed with unique advantages over other types of relay feedback experiment

schemes. In [326, 327], Lee and Sung et al. presented a seemingly similar approach in terms

of the title. The difference from the current work lies in the block diagram connection and

the profile of control signals. The FO integrator in their setup is connected behind the relay,

which consequently, generates control signals in the “power law” shape instead of the square

waveforms directly generated by relays. From this point of view, the proposed setup is more

loyal to the original relay feedback idea.

Before presenting the proposed relay feedback variant, five types of traditional relay

feedback identification methods are reviewed with comments given on some practical details.

The review uses the generalized pseudo frequency response (PFR) concept to obtain a unified

derivation scheme.

3.3.2.1 The pseudo frequency response concept

The notion of pseudo frequency response is introduced in this context for generalizing the

operation between describing functions (DF) and the actual frequency responses of a linear

element. This is feasible because after the approximation with regard to a particular input,

the nonlinearity has lost. Hence, the DF is essentially a complex number acting as a gain and

phase shift effect on the linear part remained in the system. The origin of this idea is inspired

by the pseudo transfer function concepts for some special scenarios in model identification,

[328, 329], and the illustration starts from the describing function method.

( ) 
( ) ( ) 

Nonlinearity

Figure 3.1: The block diagram representation of the static nonlinearity.

The DF method is the dominant approach for approximating a linear equivalence of relay

type nonlinearities. The DF of a memoryless static nonlinearity, ψ as shown in figure 3.1, is

defined to be the ratio of the first harmonic of its output to that of its input, [330].

Definition 18 (Describing function).

Let vn(t) and un(t) denote the Fourier series of the periodic input v(t), and output u(t),

respectively,

vn(t) = a0v +

∞∑
k=1

[akv cos (kωt) + bkvsin(kωt)], (3.34)

un(t) = a0u +
∞∑
k=1

[aku cos (kωt) + bkusin(kωt)], (3.35)
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where ak and bk are the triangular form Fourier coefficients, with the footnote u and v for

output and input respectively. Then, the describing function of ψ is:

Ψ =
c1u

c1v

, (3.36)

where c1u and c1v are the exponential form Fourier coefficients of the fundamental frequency

terms,

c1u =
a1u − jb1u

2
, c1v =

a1v − jb1v
2

.

Conventionally, the DF by default takes the assumption of a sine wave input. If v(t)

has significant difference from a sine wave, a re-derivation of the DF is usually required,

[331]. In this work, the notion of pseudo frequency response G(u(t)) is used to replace the

input dependant DF in approximating the frequency characteristic of the nonlinear elements,

regardless of whether or not the input is a sine wave.

As an example, for the typical relay nonlinearity depicted by the sign function,

u = ψ (v) = sgn(v)H =

{
H, v ≥ 0,

−H, v < 0,
(3.37)

the PFR to a cosine wave input is:

G(A cos(ωt)) =
4H
2π − 0j
A
2 − 0j

=
4H

πA
, (3.38)

which is the same with its PFR to a sine wave input. However, this equality is a coincidence

which doesn’t always hold true for complex nonlinearities such as non-symmetric ones.

From this generalization, the frequency response of a linear element can be treated as an

input independent PFR.

3.3.2.2 A brief review of the relay feedback identification and its variants

A. The ideal relay feedback

In 1984, Åström and Hägglund introduced the relay feedback technique for automatic

tuning PID controllers by bringing the system to a self-sustained oscillation [332]. This

method was then extended by Luyben to identify a transfer function of a distillation process

[333].

Assume the process to be identified is approximated by an LTI model G(s), as shown in

the block diagram in figure 3.2. Then, the ideal relay with an amplitude of H has a PFR

of Gideal(A sin(ωt)) = 4H
πA as derived in the previous section. Considering the negative unit

feedback, it pushes the process to the so-called critical oscillation, i.e. the (−1, 0) point on

the Nyquist curve shown in figure 3.3,

|Gideal(A sin(ωut))G(jωu)| = 1, (3.39)

where ωu is the so-called ultimate frequency which is reached at the critical oscillation point.

Thus, the process gain at the phase ϕp = −π is,

|G(jωu)| = πA

4H
. (3.40)
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Figure 3.2: The block diagram of the ideal relay feedback.

Depending on the LTI model structures, corresponding parameters can be calculated based

on this frequency information. For the first order plus time delay model,

G (s) =
K

Ts+ 1
e−Ls, (3.41)

the parameters K,L, T can be calculated by the following formulae,

K = G(0), (3.42)

T =

√
(KKu)2 − 1

ωu
, (3.43)

L =
1

ωu
(−ϕp − arctan

√
(KKu)2 − 1), (3.44)

where Ku = 1
|G(jωu)| is the ultimate gain, and K is the steady state gain that can be obtained

through varieties of methods, such as reading off from a step test or the ratio of the integration

of output to input, [334]. The equations for computing other model structures can be referred

to [335, 336].

B. The relay with hysteresis

The ideal relay setup is straightforward and simple to implement, but a concern lies in the

practical response of the processes with small delay or no delay. In this case, the frequency

response has hardly or even no intersection with the negative real axis on the Nyquist plot

until reaching very high frequency. Thus, the relay with hysteresis shown in figure 3.4(a) is

used to assure the appearance of the sustained oscillation within reasonable frequency ranges

of the industrial processes. The effect of the hysteresis on the input signal is like a delay,

as shown in figure 3.4(b). Hence, by evaluating the input and output, the PFR of the relay

with hysteresis can be obtained,

Ghyst(A sin(ωt)) =
4H

πA
e−jφ, (3.45)

where φ = arcsin( εA). Again, considering the negative unit feedback, it can be seen in figure

3.3 that the frequency response point identified by the relay with hysteresis is 4H
πA∠(−π+φ),

at which the gain and phase of the process are,

|G(jωφ)| = πA

4H
and ϕp = −π + φ, (3.46)
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Figure 3.3: The frequency response points on the Nyquist curve identified by different types
of relay feedback experiment schemes.

-H 

(a) (b)

Figure 3.4: The schematic of the relay with hysteresis. (a) The nonlinear characteristic; (b)
the input and output waveform.

respectively. Note that the hysteresis must satisfy 0<ε<A because otherwise, the relay will

output a constant zero. This condition limits the identifiable process phase within the range

of (−π
2 ,−π).

Again, for first order with time delay models, the same set of equations (3.42∼3.44) can

be used to compute the parameters by substituting the phase and oscillation frequency.

C. The relay with time delay

Similar to the relay with hysteresis, the relay with time delay presented in [337] has the

same effect of inserting a certain phase shift between the input and output, and it makes no

difference whether the delay is placed in front of or behind the relay. The PFR for this type

of relay when input is a sine wave is,

Gdelay(A sin(ωt)) =
4H

πA
e−jl, (3.47)

where l > 0 is the artificially inserted time delay as shown in figure 3.5. This PFR is the

same with equation (3.45) except that the delayed time is irrelevant to the amplitude of the
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Figure 3.5: The block diagram of the relay feedback setup with time delay.

input. Without this limitation, the time delay can provide a wider range of phase shift than

the hysteresis. The gain and phase of the process at the identified frequency point are,

|G(jωl)| =
πA

4H
and ϕp = −π + l. (3.48)

D. The relay with an integrator
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Figure 3.6: The block diagram and the signal transform of the relay with an integrator in
the front.

The relay feedback with an integrator is another way to identify a process at a frequency

response point other than the critical oscillation point [338]. When the integrator is connected

in front of the relay, the PFR can be obtained by multiplying the frequency response of the

integrator with the PFR of the ideal relay, as shown in figure 3.6,

Gint(A sin(ωt)) =
1

jω
Gideal(−

A

ω
cos(ωt))

= −4H

πA
j. (3.49)

Graphically, it appends an additional π
2 phase lag to the process output. Hence, the phase

of the process at the identified frequency response point is ϕp = −π
2 , which is also illustrated

in figure 3.3.

As another variant to this method, the integrator connected behind the relay can be found

in [339]. Theoretically, by connecting a differentiator, a point on the positive imaginary axis

in figure 3.3 can be identified, mentioned in [340]. However, this is not widely used in practice.
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E. The two channel relay feedback method

- ( )  
1

 
+ 

+ 

The TC relay

Figure 3.7: The block diagram of the TC relay controlled process.

The two channel (TC) relay feedback introduced by Waller et al. in 1997 suggests a

parallel connection of the ideal relay and the relay with an integrator, [340]. In the similar

manner of manipulating transfer functions, the PFR of the TC relay can be obtained by

adding up the PFR of the ideal relay in equation (3.38) and that of the relay with integrator

in equation (3.49),

GTC(A sin(ωt)) = Gideal(A sin(ωt)) + Gint(A sin(ωt))

=
4Hp

πA
− 4Hi

πA
j, (3.50)

where Hp and Hi are the amplitudes of the ideal relay and the integral relay, respectively,

as shown in figure 3.7. This can be verified by evaluating the Fourier series of the input and

output of the overall setup in the dashed lined box.

Following equation (3.50), the gain and phase of the process identified by the TC relay

feedback are,

|G(jωTC)| =
πA

4
√
H2
p +H2

i

, (3.51)

ϕp = −π + arctan(
Hi

Hp
). (3.52)

It is easy to see that by varying Hp and Hi, the frequency response point to be identified

can be arbitrarily selected within the third quadrant, yet, only in the third quadrant because

arctan(HiHp ) ∈ (0, π2 ).

A drawback of the TC relay is that when Hp = Hi, it cannot be used to identify processes

with little time delay, because the output of the two channels will cancel each other instead

of bringing the system to oscillation, as demonstrated in figure 3.8. That means it cannot

identify lots of processes at the phase of −3
4π in practice.

Besides the aforementioned setups, there are other variant relay feedback experiment

schemes, such as the biased relay [341] and the parasitic relay [342] which identifies multiple

frequency response points in a single relay test. Since they either use the time domain

transient information or the fast Fourier transforms, the derivation of their PFRs are not

enumerated here.
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Figure 3.8: A demonstration of the TC relay output cancelation.

3.3.2.3 The proposed relay feedback method

In the proposed relay feedback setup, a fractional order integrator is connected in front of

the relay to provide a competitive adjustable phase shift range to the processes, as shown in

figure 3.9.

1
 

   

( ) 
2

 

( )
 

1
 

2

( )
 

2
 

   

-H 

Figure 3.9: The block diagram and signal transform of the relay with an FO integrator.

In this context, the R-L definition for fractional order integral in equation (2.3) is used,

and the first block in figure 3.9 denotes the Laplace transform of the FO integral operator in

equation (2.18), For practical reasons such as stability concerns [343], α is set in (0, 2).

The PFR of the relay with an FO integrator

The FO integrator is a linear element, its PFR is just its frequency response,

1

(jω)α
=

1

ωα
e−

π
2
αj . (3.53)

Following the previously elaborated PFR concept, the PFR of the entire setup including the
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relay is,

GFOint(A sin(jω)) =
1

(jω)α
Gideal

(
A

ωα
sin
(
ωt− π

2
α
))

=
1

(jω)α
4Hωα

πA
=

4H

πA

1

(j)α
. (3.54)

Alternatively, this can be derived in the following procedure, as illustrated in figure 3.9.

Assume the input e(t) to this relay setup has a sinusoidal first harmonic. After the FO

integrator, the output is shifted in a phase angle corresponding to the fractional order α,

v(t) =
A

ωα
sin
(
ωt− π

2
α
)
, (3.55)

According to the properties of the Fourier series of FO operators, the Fourier series of an FO

integrated function equals to the FO integration of the Fourier series of the function, [35],

F {Iαx (t)} = IαF {x (t)} . (3.56)

Thus, the Fourier coefficient of the first harmonic of the signal after the FO integrator, v(t),

is

c1v =
1

(jω)α
A

2j
=

A

2ωα
e−

π
2

(1+α)j . (3.57)

When v(t) passes through the ideal relay, it becomes a shifted square wave expressed as,

u(t) =

{
−H , 0 < t < T

4 α and − T
4 α+ kT < t < T

4 α+ kT ,

H , T
4 α+ kT < t < 3T

4 α+ kT,
(3.58)

where T is the oscillation period and k = 0, 1, 2, . . .. The Fourier coefficient of its first

harmonic is,

c1u =
−4H

π sin
(
π
2α
)
− j 4H

π cos
(
π
2α
)

2

=
2H

π
e−

π
2

(1+α)j . (3.59)

To obtain the PFR of the overall setup, c1u is divided by c1e ,

GFOint(A sin(jω)) =
c1u

c1e

=
2H
π e
−π

2
(1+α)j

A
2j

=
4H

πA
e−

π
2
αj =

4H

πA

1

(j)α
, (3.60)

which matches the result in equation (3.54) perfectly. Thus, the gain and phase of the process

identified by the relay with an FO integrator are,

|G(jωFO)| = πA

4H
and ϕp = −π +

π

2
α. (3.61)
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Identifying LTI model parameters

When such a relay setup is connected to a process in a negative unit feedback loop, the

frequency response of the process at the investigated point can be obtained. Then, the first

order plus time delay model parameters T and L can be, again, calculated from the equations

(3.43 ∼ 3.44), with the corresponding ω and ϕp substituted.

The advantages and limitations of the proposed method

The major advantages of the proposed relay feedback setup over other variants are listed

below:

1. The relay with an FO integrator provides a wider selectable phase range for the process

to be identified. So, for processes of slow dynamics such as the temperature control in

chemical or bio engineering, it is more meaningful and realistic to approximate a model

based on the frequency response that is close to a nominal operational point.

2. Although the relay with time delay provides a even larger range of the identifiable

process phase, it worths a notice that the pure delay results in a zero output at the

beginning. By contrast, the FO integrator behaves rather a phase shift effect instead

of a pure delay, as illustrated in figure 3.10. Hence, a quarter of the oscillation period

can be saved for identifying ultra-slow processes.

3. The shifted phase of the FO integrator can be pre-determined. This is unlike using

the relay with hysteresis, where there is no way to do so without priori knowledge of

the process output. The reason lies in the dependency of the shifted phase on the

amplitude of the process output, as shown by equation (3.45).
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Figure 3.10: Comparison between the initial response of delay and FO integrator. Left: with
delay; Right: with FO integrator in the front.

On the other hand, the relay with an FO integrator cannot get rid of some of the common

limitations suffered by other relay feedback variants in that it is essentially an approach based

on the following assumptions:

1. The output of the process has a first harmonic close to the sine wave;

2. The higher order harmonics of the process output need to be small enough to be

neglected.
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Failure to satisfy either of the above conditions will result in big identification error. For

example, a first order process usually outputs a triangle shape waveform under the relay

test, and an identification error ranging from −18% ∼ 27% can be expected [344, 345].

Large measurement noise will also affect the identification.

Dedicated simulation examples for the demonstration of the proposed method are avail-

able in section 5.2.

3.3.3 Using the relay feedback approach for linear FO system identification

Although the relay feedback approach has been widely used to identify integer order pro-

cesses, fractional order model identification using relay has not been reported. Hence, the

research in this part extends the discussion in the previous section and fills this blank.

3.3.3.1 The frequency response of an FOPDT model

The system under investigation can be modeled by an LTI fractional order transfer function

with time delay, as expressed in equation (3.30) in section 3.2.2. To identify the model

parameters, i.e. K, T, L, α using the relay feedback method, the frequency response of the

model needs to be derived. By substituting the Laplace parameter s with jω, the transfer

function is converted to:

G (jω) =
K

T (jω)α + 1
e−Ljω. (3.62)

Applying Euler’s formula, jα = ej
π
2
α, equation (3.62) becomes:

G (jω) =
K

Tωαej
π
2
α + 1

e−Ljω

=
K

Tωα
[
cos
(
π
2α
)

+ jsin(π2α)
]

+ 1
e−Ljω. (3.63)

Thus, the gain of the system frequency response is:

|G (jω)| = |K|∣∣Tωα [cos
(
π
2α
)

+ jsin(π2α)
]

+ 1
∣∣

=
|K|√[

Tωα cos
(
π
2α
)

+ 1
]2

+ (Tωα)2sin2(π2α)

=
|K|√

(Tωα)2 + 2Tωα cos
(
π
2α
)

+ 1
. (3.64)

Accordingly, from equation (3.63) we have,

G (jω) =
K
[
Tωα cos

(
π
2α
)

+ 1− jTωα sin
(
π
2α
)][

Tωα cos
(
π
2α
)

+ 1
]2

+ T 2ω2αsin2
(
π
2α
)e−Ljω.

Then, the phase of the system is:

∠G = − arctan

(
Tωα sin

(
π
2α
)

Tωα cos
(
π
2α
)

+ 1

)
− Lω. (3.65)
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From equations (3.64) and (3.65) it can be observed that the modulus and phase of the

frequency response of an FO TF not only depend on the steady state gain K, the time

constant T , and the time delay L, but also depend on the fractional order, α.

3.3.3.2 The equations for computing FOPDT model parameters

By reorganizing equation (3.64), a quadratic equation with respect to T can be derived,

ω2αT 2 + 2ωαcos
(π

2
α
)
T + 1− K2

|G (jω)|2
= 0. (3.66)

Vieta’s formula can be used to obtain the solution,

T =
− cos

(
π
2α
)

+

√
cos2

(
π
2α
)

+
∣∣∣ K
G(jω)

∣∣∣2 − 1

ωα
, (3.67)

where the other solution is abandoned. To assure the physical meaning of the resulting time

constant, i.e. not negative or complex, the existence of a positive real solution to the above

equation needs to be evaluated. Let

∆ = cos2
(π

2
α
)

+

∣∣∣∣ K

G(jω)

∣∣∣∣2 − 1.

Since K is the DC gain, that is K = G(0), it must be greater than the system gain at

any other frequencies, which can be seen from equation (3.64). Thus,
∣∣∣ K
G(jω)

∣∣∣2 > 1 gives

∆ > 0, and the existence of a real solution is guaranteed. Meanwhile,
∣∣∣ K
G(jω)

∣∣∣2 > 1 derives
√

∆ > | cos2
(
π
2α
)
|. Hence, T = [

√
∆− cos(π2α)]/ωα > 0 and there always exists a physically

meaningful solution as the time constant.

Similarly, the time delay is computed in the following way through equation (3.65)

L = − 1

ω

[
∠G+ arctan

(
Tωα sin

(
π
2α
)

Tωα cos
(
π
2α
)

+ 1

)]
. (3.68)

For comparison, recall the equations for computing the time constant and time delay for

integer order systems via relay feedback tests in [333], as listed in equations (3.42∼3.44). It

can be seen that the equations for the first order with time delay model are special cases of

that for FOPDT models by setting α = 1 in equations (3.67) and (3.68). This verifies the

correctness of the proposed method.

3.3.3.3 Obtaining system information from the relay feedback test

The model in equation (3.30) has four unknown parameters which need at least four equations

to solve. While equations (3.67) and (3.68) serve as two, the other two equations can be

established in the following manner: 1) determine the system DC gain separately; 2) identify

two different frequency response points using different types of relays.

Multiple approaches for the purpose of determiningK have been proposed in the literature

[323]. Shen et. al suggested the use of the ratio between the integral of the output y and
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input u of the system via a biased relay test, [334],

K = G(0) =

∫ Pu
0 y(t)dt∫ Pu
0 u(t)dt

, (3.69)

where Pu is the period of the self-sustained oscillation during the relay test. Shen’s method

is adopted in this paper because it has been verified to be valid for fractional order models

through experiments. Mathematical proof follows the same format of that for integer orders.

The most critical part of the relay feedback approach is to determine the system gain

|G(jω)| at the ultimate frequency ωu via the describing function analysis [330]. Denote the

oscillation period, amplitude of the relay and the system output by Pu, H and A, respectively,

so, the system gain at such a point is,

|G(jωu)| = 1

Ku
, where Ku =

4H

πA
, ωu =

2π

Pu
. (3.70)

The system phase is ∠G(jωu) = −π.

With variants of relays, frequency response points other than the critical oscillation point

can be identified. For instance, the aforementioned relay variants reviewed in the previous

section are able to identify either a point on the negative imaginary axis or multiple points in

the third and forth quadrant, as shown in the sketch in figure 3.3. A selection of two different

relays from the reviewed variants can provide the oscillation information of two points on the

system frequency response curve. In this way, a duplicate of equation (3.67) with different

ω and |G(jω)| is produced,

ω1
2αT 2 + 2ω1

αcos
(π

2
α
)
T + 1− K2

|G (jω1)|2
= 0, (3.71)

ω2
2αT 2 + 2ω2

αcos
(π

2
α
)
T + 1− K2

|G (jω2)|2
= 0, (3.72)

from which T and α can be solved. Consequently, L can be solved using equation (3.68).

Thus, four equations are established sufficiently to solve the four model parameters.

3.3.3.4 Summary of the proposed method

The above proposed methods can be briefly summarized in the following three steps to handle

practical problems.

1. The system steady state gain K is determined through equation (3.69) using a biased

relay test;

2. Two frequency response points are identified from one or two relay tests, and equations

(3.71) and (3.72) are used to compute the time constant T and the fractional order α;

3. Equation (3.68) is used to compute the time delay.

Simulation and practical implementation of this proposed method are available in the simu-

lation and experiment sections 5.3.

79



3.4 Nonlinear fractional order system identification

The commonly used methods for nonlinear system analysis includes: 1.) the phase plane

analysis, 2.) the describing function method, and 3.) the Lyapunov’s second method, etc.

Some of them has been extended to analyzing fractional order dynamics with nonlinearities,

for example, the phase portrait in section 2.2 and the DF method in the previous section.

However, these analysis are based on the prerequisite of a model. So, a model needs to be

built prior to this. While some early efforts can be found in [346] and [347], a deep dig into

the literature will reveal the scarce in the related research. Thus, this section picks up the

thread and continues the investigation in nonlinear fractional order system identification.

Historically, nonlinear system identification can be roughly categorized into the following

four basic approaches, each defined by a model class, [348, 349, 350],

1. Volterra series models,

2. Block structured models,

3. Neural network models,

4. Nonlinear ARMAX models.

Let such categorization be kept for fractional order systems for now. For instance, non-

linearity is added into the model obtained in section 3.2 by using Volterra series, [72], in

order to capture the nonlinear behavior of the system; the fractional order ARMAX model is

mentioned in [351]. The following discussion starts with basic model structures and stretches

to more practical consideration for system identification. Two dedicated case studies of

identifying practical thermal processes are stated in sections 5.1 and 5.5 to better illustrate

the proposed concept.

3.4.1 Identification of fractional order Hammerstein and Wiener models

As a member in the block structured model category, the Hammerstein model refers to a

model with a static nonlinearity at the input, and the Wiener model refers to that with an

output nonlinearity. The combination of the two forms a Wiener-Hammerstein (W-H) model

which is also called the “sandwich” model. These model types, consisting of nonlinearity in

connection with integer order dynamics, are well studied in the literature, and are used in

many industrial fields due to their generality. However, those consisting of fractional order

dynamics are rarely addressed. Reviews of some relevant discussion are covered in this

section. A practical application scenario will be presented in section 5.5.

The block diagram of the integer order Hammerstein model is shown in figure 3.11, where

ϕ(·) denotes the nonlinearity and d(t) denotes the measurement noise. The internal signal

v(t) are usually assumed to be not measurable. In [352], Malti, Oustaloop et al., for the first

time, considered the linear fractional order dynamics for H as expressed in equation (2.26).

They also provided two error-optimization based algorithms for the parameter identifi-

cation of such models. One is the equation error algorithm using standard least squares

reviewed in section 3.3. The difference from integer order case is that the optimum, θ =

[a1, · · · , aL, α1, α1b2, · · · , α1bJ , · · · , αM , αMb2, · · · , αMbJ ]T , is estimated by:

θ̂ = (ΦTΦ)−1ΦY (t),
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Figure 3.11: The block diagram of a Hammerstein model.

where Φ = [Φ0 Φ1 · · · ΦM ];

Φ0 =

 −D
na1y(t) · · · −DnaLy(t)
...

. . .
...

−Dna1y(0) · · · −Dna1y(0)

 ;

Φk =

 −D
nb1uk(t) · · · −DnbLuk(t)

...
. . .

...

−Dna1uk(0) · · · −Dna1u(0)

 ; k = 1, . . . ,M,

and the minimization criterion is based on the quadratic predictive error,

J(θ) =

∫ K

0
(y(t)− ŷ(t|θ))2dt. (3.73)

The other algorithm is based on output error minimization, in which the criterion is,

J(θ) =

∫ K

0
(e(t))2dt =

∫ K

0
(y(t)− ŷ(t))2dt, (3.74)

where ŷ(t|θ) in equation (3.73) is replaced by,

ŷ(t) = L−1[
snb1 + b2s

nb2 + · · ·+ bJs
nbJ

1 + a1sna1 + · · ·+ aLsnaL
] ∗

M∑
k=1

αku
k(t), (3.75)

In [353, 354] Li, Chen et al. discusses the complete parametric identification of FO

Hammerstein systems. The nonlinearity under consideration has the polynomial form ϕ(u) =

Σn
i=0βiu

i, and the linear part of the model is in the form of commensurate fractional order

ARX or OE, as described in section 3.2.1.5,

G(p) =
B(p)

A(p)
=

m∑
i=0

bip
iα

1 +
n∑
j=0

ajpjα
. (3.76)

They proposed an identification algorithm that consists of three steps, i.e. to identify the

parameters of the nonlinear term, the fractional order linear term, and the fractional order,

respectively. For the order estimation, the iterative learning technique is employed.

In [355], Vanbeylen focused on the generation of initial estimations for the integer order

W-H models using a fractional approach. The initialization is one of the major difficulties
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Figure 3.12: The block diagram of the Wiener-Hammerstein model.

resides in the identification procedure, and is crucial to the avoidance of suboptimal local

minima in an iterative optimization procedure. There are two types of setup for the W-H

models, as shown in figure 3.12, and the latter is studied in the reference. The key part of

the approach is to represent the W-H dynamics by fractional order zero-pole models,

ĜW (z, α, β) =

mW∏
i=0

(1− zBLAk z−1)βk

nW∏
i=0

(1− pBLAk z−1)αk
, ĜH(z, α, β) =

mH∏
i=0

(1− zBLAk z−1)1−βk

nH∏
i=0

(1− pBLAk z−1)1−αk
. (3.77)

where BLA refers to the term “best linear approximation”, and α, β are the introduced

fractional order powers. Again, the parameters are estimated using the least squares with

optimization criteria as the following:

J(θ) = ||K(α, β, u)θNL − y||22,

where K(α, β, u) = ĜH(q, α, β)fm(ĜW (q, α, β)u(t)), and fm is the nonlinearity expressed by

a weighted sum of basis functions.

In [93], Liao, Wang et al. investigated the subspace identification of nonlinear fractional

order MIMO systems using the Hammerstein model, and this method is reviewed in section

3.5 through another publication of these authors. For more identification approaches related

to fractional order Hammerstein/Wiener models, refer to [351].

3.4.2 Selection of excitation

The selection of excitation is an art in system identification, which is like designing a quiz. For

ARMA models, it is well known that to obtain the system behavior on the full spectrum, the

persistent excitation (PE) condition needs to be met. The commonly used input that meets

the PE condition is the pseudo-random binary sequence (PRBS). In spite of the traditional

discussion in the spectrum sense, the following research concerns about the amplitude, which

is called the input shape design in this context.
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In sections 3.3.2 and 3.3.3, the responses of linear FO process models under the relay

shape excitation have been discussed. This subsection investigates the impacts of input

shapes on nonlinear systems.

The idea is originated from the scenario that deals with an nonlinear industrial process

with operational points across a wide range. In this case, local linearization fails and the

above Hammerstein model for input/output nonlinearity does not work either because the

nonlinearity not only relies on the input, but also relies on the initial condition of the states.

For this purpose, different shapes of inputs are designed. For example, figure 3.13 shows the

inputs for identifying the so-called absolute gain Ka, the relative gain Kr and the potential

gain Kp. This leads to the difficulty in linearization, though, because a single linearization

scheme is not able to handle the whole range. For example, the Jacobian type (tangential)

linearization does not cover the wide operational range; and the gain scheduling using lumped

parameter ignores the transient even if it models the steady state correctly. This prblem is

further studied in detail in the next section.
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Figure 3.13: The design of three different input types.

3.4.3 Linearization of nonlinear fractional order systems

In nonlinear system analysis, linearization is a frequently used means to obtain a linear

approximation of a nonlinear system that is usually valid in a small region around the

operating point. For nonlinear fractional order systems, it is also useful. Hence, the purpose

of this section is to provide theoretical foundation for the application discussed in the later

part of this thesis, where a very detailed study of the identification and linearization of a

practical industrial process using nonlinear fractional order models is provided, section 5.5.
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3.4.3.1 Extending existing linearization theorems to fractional order systems

In [356], Li et al. extended the linearization theorems for fractional dynamics. Consider the

following autonomous fractional differential equation in the Caputo sense,

C
0 D

α
t x(t) = f(x(t)), (3.78)

its linearization at a working point xw is Df(x)|x=xw .

Definition 19 (Equilibrium point). The point xe is an equilibrium point of system in

equation (3.78) if and only if f(xe) = 0.

Definition 20 (Hyperbolic equilibrium point). Suppose point xe is an equilibrium point of

system (3.78) and all the eigenvalues of the linearized matrix Df(xe) at the equilibrium point

xe satisfy: |λ| 6= 0 and |arg(λ)| 6= π
2α, then, it is a hyperbolic equilibrium point.

Theorem 3. If the origin O is a hyperbolic equilibrium point of equation (3.78), then,

vector field f(x) is topologically equivalent with its linearization vector field. Df(0)x in

the neighborhood δ(0) of the origin, O.

This theorem can be regarded as the fractional version of the Hartman theorem in [357].

3.4.4 Fractional order feedback linearization

This section addresses the feedback linearization of nonlinear fractional order (FO) systems.

We start from a practical problem posed from the temperature control of an industrial

process, in which the traditional Jacobian type local linearization is not applicable. This

consequently motivates the use of feedback linearization that could potentially linearize a

process over a larger scale. Then, the analysis is generalized to a class of nonlinear FO

systems. However, since feedback linearization has not been established for nonlinear FO

systems, we propose the basic definitions as well as necessary and sufficient conditions.

3.4.4.1 Problem description

This research is originated from the temperature control of the manufacturing equipment in

the silicon wafer processing industry introduced in chapter 1. The given task requires high

precision control of the reaction chamber temperature during both transient and steady-state.

Initially, conventional modeling and linearization techniques are attempted. A fractional

order transfer function with time delay is selected as the basic model structure to depict

the dynamics. An output dependent look-up table is created to characterize the static

nonlinearity.

As an illustrative example, in the particular scenario under investigation, the control

authority has a range between the lower and higher bound [ul, uh] due to the saturation

protection of the hardware. This control signal range actuates the temperature in a total

operational range of [Tl, Th]. Identification of the nonlinearity is performed under open-loop

control by sequentially increasing the control signal with a fixes step size, ∆u = (uh− ul)/N
where N ∈ N, as shown by the blue curve in figure 3.14. Then, the steady-state temperature
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Figure 3.14: The nonlinear gain versus input and output.

data Tn (n = 1, 2, . . . , N+1) is recorded to construct the nonlinearity look-up table,

Kr(Ti) =
∆Ti
∆ui

=
Ti+1 − Ti
ui+1 − ui

= tan(γ), i = 1, 2, . . . , N, (3.79)

which is referred to as the “relative” gain in the context, and the angle γ is illustrated in

figure 3.16. If ∆u is sufficiently small, Kr is just the derivative of the nonlinear curve,

Kr = lim
∆ui→0

∆Ti
∆ui

=
dy

du

∣∣∣∣
u=ui

, (3.80)

This model fits the raw data segments well at each local operational point, as shown by the

green curves in figure 3.15. However, the overall response cross the entire operational range

has big mis-match with the actual process, which is resulted by the non-zero initial conditions

cross the overall temperature range. To guarantee the model accuracy at steady-state, the

characterization of the nonlinearity is changed to be input dependent. Therefore, the look-up

table is re-built to reflect the absolute nonlinear relationship between the input and output,

Ka(ui) =
Ti − Tl
ui − ul

= tan(θ), i = 2, . . . , N+1. (3.81)

Combining this static nonlinearity with a dynamic linear FO model forms a fractional order

Hammerstein model shown in figure 3.11.

The model parameters can be identified through data fitting. This model is able to match

the overall dynamic of the process under open-loop control, especially at steady state, which

is shown by the in figure 3.14. Nevertheless, obvious mis-match can be observed if it is
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Figure 3.15: Fitting the data segments of the responses to the stair inputs using different
gains.

used to fit the raw data piecewise, as shown by the red curves in figure 3.15. Moreover,

when it is used to develop a model based feed-forward controller, even bigger mis-match

occurs compared with the actual process under closed-loop control. The model output under

closed-loop control with a PID controller is much different from the actual process output

under the same closed-loop control signal. It has been examined that the process outputs

are within acceptably small neighborhoods around the operational points Ti where the local

linearization is performed, i.e. (Ti−ε, Ti+ε), which does not violate the prerequisite of local

linearization. However, although the output stays within range, the control input reaches

saturation during transient. Hence, during the initial part of the transient, the process is

equivalent to running under open-loop, but with different operational condition, i.e. the

saturated control signal. This is shown by the green lines during 4.5 to 5.5 sec in figure 3.18.

The difference in the operational condition between the stair input and the saturated input

is the fundamental cause of the mismatch. To depict the nonlinear gain under saturated

control signal at different temperature levels, the “potential” gain is defined as the following,

Kp(Ti) =
Th − Ti
uh − ui

= tan(φ), i = 1, 2, . . . , N, (3.82)

which characterize the potential amount that the process could rise if the saturated control

signal is not removed. The three gains has the following relationship,

Ka(ul) = Kr(Tl), Kr(uh) = Kp(Th), Ka(uh) = Kp(Tl), (3.83)
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as illustrated in figure 3.17.
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Figure 3.16: The three calculation methods for the nonlinear gain at a particular point.
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Figure 3.17: The nonlinear gain versus input and output.

From the above reasoning, it can be seen that non of the three nonlinear gain relationship

can completely characterize the nonlinearity as a whole, considering the big operational range

and both transient and steady-state. Hence, it raises the need for feedback linearization of

fractional order systems.

3.4.4.2 Problem formulation

Let Ω ⊆ Rn be a neighborhood region of the origin. The nonlinear fractional order system

under consideration takes the following form,

C
0 D

α
t x(t) = f(x) +G(x, u),

y(t) = h(x) (3.84)

where x, y ∈ Rn, u ∈ Rp, f and h are sufficiently smooth real analytic functions on Ω ⊆ Rn.

To avoid the of infinite terms induced by the fractional differentiation and for the convenience
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of proceeding the derivation, it is assumed that the nonlinearity G(x, u) can be sufficiently

approximated by the product of p terms of a polynomial expansion and the input u,

G(x, u) =

p∑
i=1

gi(x)u. (3.85)

The research aim in this paper is to find a state feedback control

u = s(x) + σ(x)v

and a diffeomorphism

z = T (x)

such that the nonlinear model in equation (3.84) can be transformed into a equivalent linear

model,

C
0 D

α
t z(t) = Az(t) +Bv,

y(t) = h(T−1z). (3.86)

Then, traditional techniques for linear systems, such as pole placement, can be used to design

the control law v for the linearized process. The new state z is called the linearizing state

and the control law u is called the linearizing control law. In addition, in order to avoid

complications associated with the global problems induced by the fractional derivation, only

local feedback linearization is focused, where the coordinate transformation and control law

are only defined locally.
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3.4.4.3 Feedback linearization of fractional order systems

The feedback linearization can linearly represent the original nonlinear model over a larger

operating range. For integer order systems, the feedback linearization consists of two op-

erations: 1.) nonlinear mapping of coordinates; and 2.) nonlinear feedback. Generally,

the input-output linearization and the input-state linearization are the commonly used

approaches for these two steps, [358]. Respectively, the input-output linearization linearizes

the mapping between the transformed inputs (v) and the actual outputs (y); and the

input-state linearization linearizes the mapping between the transformed inputs and the

entire vector of transformed state variables. This subsection investigates whether the same

procedure can be used for fractional order systems. In [359], Valérie and Oustaloup et al.

considered the fractional rubout control of a specific nonlinearity and used the input-output

linearization. However, the control object with nonlinearity under discussion is of integer

order. The feedback linearization of fractional order systems has not been proposed. Even

definitions are not given. Hence, some definitions and lemmas are introduced in this section

under the same paradigm for integer order cases. This will consequently raise the problem of

Lie derivative of fractional orders, which is called the fractional Lie derivative in this context,

dαy(t)

dtα
=

∂αh

∂xα
[f(x) + g(x)u]

6= Lαfh(x) + Lαg h(x)u; (3.87)

but since the chain rule generally does not hold for fractional derivatives, same derivation

used for integer order cases can not be established. Relevant reference is hardly available

in the literature, [360]. Hence, to avoid this problem, the nonlinearity under investigation

is approximated by polynomials, and constraints are put during the derivation. For the

definitions that cannot be extended parallely, revision are made according to the conventional

FO techniques in [150, 361].

3.4.4.4 Feedback Linearization vs Jacobian Linearization

Before showing the main results, it is worth mentioning the advantage of feedback lineariza-

tion of the nonlinear FO system over the Jacobian Linearization approximation.

Consider the Jacobian linearization of the nonlinear fractional order system (3.84) at the

equilibrium point (x0, y0) with u0,

C
0 D

α
t x(t) =

[
df(x0)

dx
+
dg(x0)

dx
u0

]
(x− x0) +G(x0)(u− u0),

y(t) = y0 +
dh(x0)

dx
(x− x0) (3.88)

Then the Jacobian model can be rewritten as the following linear state-space system

C
0 D

α
t x(t) = Ax+Bu,

y(t) = Cx. (3.89)

It should be point out that the Jacobian model is an exact representation of the nonlinear

model (3.84) only at (x0, u0) and at other operating points, however, the linearized model

may yield unwelcome performance and robustness.
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Next, a class of nonlinear fractional order control techniques is presented which transforms

the original nonlinear model into a linear model. This differs from Jacobian linearization in

that feedback linearization is achieved by exact state transformations and feedback, rather

than by linear approximations of the dynamics.

3.4.4.5 Input-state Linearization

To introduce the idea of input-state linearisation, let us start with the problem of stabilizing

the origin of the following problem{
C
0 D

α
t x1 = −x2,

C
0 D

α
t x2 = x1 − 2 sin(x1 + x2 + 0.5) + x2

2 + u.
(3.90)

Choosing u = 2 sin(x1 + x2 + 0.5)− x2
2 + v to cancel the nonlinear term 2 sin(x1 + x2 + 0.5),

and consider the new set of state variables z1 = x1, z2 = x2, the following corresponding

linear system can be obtained, {
C
0 D

α
t z1 = −z2,

C
0 D

α
t z2 = z1 + v.

(3.91)

Then, a stabilizing state feedback control v = −k1z1− k2z2 need to be designed to place the

eigenvalue of the closed-loop system,{
C
0 D

α
t z1 = −z2,

C
0 D

α
t z2 = −(k1 − 1)z1 − k2z2.

(3.92)

For example, let v = 3z1 − 4z2. Then, the closed-loop dynamics become,{
C
0 D

α
t z1 = −z2,

C
0 D

α
t z2 = 4z1 − 4z2

(3.93)

is stable, whose poles are both placed at −2. In terms of the original state x1 and x2, one

has the original input,

u = 2 sin(x1 + x2 + 0.5)− x2
2 + 3x1 − 4x2

and since both zi (i = 1, 2) converge to zero, we see that the original state xi (i = 1, 2)

converges to zero.

Theorem 4 (Input-state Linearization).

The nonlinear fractional order control system in equation (3.84) is said to be input-state

feedback linearizable, if it can be transformed into the following equivalent linear system

C
0 D

α
t z(t) = Az(t) +Bv(t) (3.94)

via a state feedback control u = s(x) + σ(x)v and a change of variables z = T (x).
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3.4.4.6 Input-output linearization

By using a nonlinear transformation and introducing a new input variable v, the objective

of input-output linearisation is to establish a linear relationship between the output y and

the input v. This can be achieved without addition conditions on the internal dynamics of

the system apart from their stability.

To extend the input-output linearisation to fractional order systems, the stabilization of

the following problem at the origin can be used as a starting point,
C
0 D

α
t x1 = x1 − 4x2,

C
0 D

α
t x2 = x1 − 3x2 − 2 sin(x1 + x2 + 1) + u/(1 + x2

1 + x2
2),

y = x1 + x2.

(3.95)

Then,

C
0 D

α
t y(t) = C

0 D
α
t [x1(t) + x2(t)]

= 2x1(t)− 7x2(t)− 2 sin(x1 + x2 + 1) +
u

1 + x2
1 + x2

2

. (3.96)

Let (z1, z2) = (x1, x2)T ∈ R2, σ(x) = 1 + x2
1 + x2

2,

s(x) = σ(x) [2x1(t)− 7x2(t)− 2 sin(x1 + x2 + 1)] and the control law be u = s(x) + σ(x)v.

Then, the full system in equation (3.95) can also be described by
C
0 D

α
t z1 = z1 − 4z2,

C
0 D

α
t z2 = −z1 + 4z2 + v,

y = z1 + z2.

(3.97)

Moreover, since the new dynamics is linear and controllable, a stabilizing state feedback

control v = −k1z1 − k2z2 can be designed to place the eigenvalue of the closed-loop system,
C
0 D

α
t z1 = z1 − 4z2,

C
0 D

α
t z2 = −(k1 + 1)z1 − (k2 − 4)z2,

y = z1 + z2.

(3.98)

For example, let v = 2.5z1 − 8z2. Then, the closed-loop dynamics becoming
C
0 D

α
t z1 = z1 − 4z2,

C
0 D

α
t z2 = 1.5z1 − 4z2,

y = z1 + z2.

(3.99)

is stable, whose poles are placed at −1,−2. In terms of the original state x1 and x2, one has

u =
(
1 + x2

1 + x2
2

)
[2x1(t)− 7x2(t)− 2 sin(x1 + x2 + 1) + 2.5x1 − 8x2] .

Since both z1 and z2 converge to zero, the original states x1 and x2 converges to zero.

Now, the pavement is sufficient for introducing the following definition:

Definition 21 (Input-output Linearization).
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The nonlinear fractional order control system in equation (3.84) is said to be input-output

feedback linearizable, if it can be transformed into the following equivalent linear system

C
0 D

α
t z(t) = Az(t) +Bv(t),

y(t) = Cz(t) (3.100)

via a state feedback control u = s(x) + σ(x)v and a change of variables z = T (x).

Thus, the stabilization problem for the nonlinear system has been reduced to a stabiliza-

tion problem for a controllable linear system. Feedback linearization cancels the nonlinearities

in a nonlinear system so that the closed-loop dynamic is linear.

A general nonlinear fractional order control system,

C
0 D

α
t x = F (x, u) (3.101)

is (locally at (x0, u0)) feedback linearizable if it is (locally at (x0, u0)) feedback equivalent to

a control linear system of the form,

C
0 D

α
t x = Ax(t) +Bγ(x)(u− s(x)). (3.102)

Theorem 5 (Static state feedback linearizable).

An affine nonlinear fractional order control system

C
0 D

α
t x(t) = f(x) +G(x)u ≈ f(x) +

p∑
i=1

gi(x)u, x ∈ Rn (3.103)

y(t) = h(x) (3.104)

with f(0) = 0 and rankG(0) = p is said to be static state feedback linearizable, if it can be

transformed into an asymptotic Mittag-Leffler stability linear system

C
0 D

α
t z(t) = Az(t) +Bv(t),

y(t) = h(T−1z) (3.105)

via a state feedback control u = h(x) + l(x)v and a change of variables y = T (x).

3.4.4.7 State feedback control: M-L stabilization

Whether a system is controllable is a useful information, because it determines if a given

initial state x0 can be steered to the origin in finite time using the input u(t). Moreover,

if a system is not completely controllable, it can be decomposed into a controllable and a

uncontrollable subsystem. On the other hand, if the subspace of the system is stable, it

is said to be stabilizable, i.e., the uncontrollable states decays to origin by themselves. By

utilizing the definition of Mittag-Leffler stability in [54], a general framework of the state

feedback control for M-L stabilization of the fractional order system is given.

Theorem 6 (Asymptotically Mittag-Leffler stable).
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Let x(t) = 0 be the equilibrium point of the following fractional order system,

C
0 D

α
t x = F (t, x), (t, x) ∈ [0,∞)× Ω. (3.106)

Assume that there exists a Lyapunov function V (t, x(t)) : [0,∞)× Ω→ R and three class-κ

functions ki, i = 1, 2, 3 such that,

(i) k1(‖x‖) ≤ V (t, x(t)) ≤ k2(‖x‖), (3.107)

(ii) C
0 D

α
t V (t, x(t)) ≤ −k3(‖x‖). (3.108)

Then the equilibrium point of system (3.106) is asymptotically Mittag-Leffler stable, [54].

By utilizing Theorem 6, we then obtain that state feedback M-L stabilization of nonlinear

fractional order system is generalized to test whether the system with a state feedback control

u is M-L stabilizable.

Criterion 1 (Static state feedback linearizable).

The fractional order system

C
0 D

α
t x(t) = f(x) +G(x)u, (t, x) ∈ [0,∞)× Ω (3.109)

with the state feedback control u = s(x)+σ(x)v is said to be static state feedback linearizable,

if there exists a smooth function V (t, x(t)) : [0,∞) × Ω → R and three κ-class functions

ki, i = 1, 2, 3 such that,

(i) k1(‖x‖) ≤ V (t, x(t)) ≤ k2(‖x‖), (3.110)

(ii) C
0 D

α
t V (t, x(t)) ≤ −k3(‖x‖). (3.111)

Through the above proposed definitions and preliminary theorems, it is revealed that

the related derivation used for integer order systems, such as the Lie derivative, cannot be

used for FO systems due to the failure of chain rule and semi-group property on fractional

derivatives. Hence, a general solution is not easy to obtain. Nevertheless, particular solutions

is presented in chapter 5 through simulation and experiment for a case study.

3.4.4.8 Summary

The nonlinear system identification is indeed an interesting practical topic. More work

has been done on this direction during this research, such as the floating ball app for the

MESABox in section 6.2. However, since mathematically rigorous result was not obtained

for some of the efforts, they are arranged into the miscellaneous research results in chapter

6, and the future research opportunities on these topics are stated in chapter 7.

3.5 Fractional order multi-input-multi-output processes

Due to the existence of single-input-single-output (SISO) FO systems, multi-input-multi-

output (MIMO) fractional order systems naturally exist [40, 362]. Compared to SISO cases,

MIMO processes consisting of fractional order dynamics are relatively less addressed in the

FO control research field. Although there is theoretical study in the literature, exploration

93



does not go beyond simulation. This section briefly reviews some of the existing work on

MIMO FO modeling. Decoupling and control of MIMO FO systems will be discussed in

chapter 4. Furthermore, a realistic MIMO FO control problem will be presented in chapter

5. Note that the differences between a MIMO process and a multi-variable system lies in the

input and output. A multi-variable system is not necessarily MIMO.

In [95], Liao, Wang et al. extended the traditional subspace method in frequency domain

to identify MIMO FO systems with time delay in states. The m-input-l-output model under

consideration is of the following form:{
Dαx(t) = Ax(t− τ) +Bu(t)

y(t) = Cx(t) +Du(t)
(3.112)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, C ∈ Rl×m, τ is the time delay, and 0 < α < 2 is the

order of the FO derivative. Perform Laplace transform to equation (3.112), and define:

Xα(s) , (sαeτsIn×n −A)−1Beτs, B̃ , [B 0n×m],

D̃ , [0l×m D], Ũ(s) , [eτsIm×n Im×m]T .

Then, it is rewritten as: {
sαeτsXα(s) = AXα(s) + B̃Ũ(s)

H(s) = CXα(s) + D̃Ũ(s)
(3.113)

When the input and output data matrices, H and U, are acquired, the coefficient matrices

can be identified by using a generic algorithm to iterate the following procedure,

H = QqX + ΓqU, (3.114)

where Oq is the extended observability matrix and Γq is as follows:

Oq =


C

CA
...

CAq−1

 , Γq =


D̃ 0 · · · 0

CB̃ D̃ · · · 0
...

...
. . . 0

CAq−2B̃ CAq−2B̃ · · · D̃


Using singular value decomposition (SVD), a weighting function can be obtained,

W1
−1H/U =

[
U1 U2

] [ S1 0

0 0

][
V T

1

V T
2

]
. (3.115)

Then, Oq = W1U1S
1/2
1 can be calculated, and A and C can be estimated,

A = OqOq, C =
=
Oq (3.116)

where Oq denotes Qq without the last l rows, Oq denotes Qq without the first l rows, and
=
Oq denotes the first l rows of Oq. Finally, B and D can be calculated with the least squares

method.

In [363], Victor, Oustaloup et al. extended the flatness principle to linear fractional order

MIMO systems with an application in thermal processes, as shown in the following definition.

94



Definition 22 (Differentially flat). Let x(ν) denote Dν
t x in this context. A fractional order

system x(ν) = f(x, u), with m inputs and n outputs, is differentially flat if one can find a set

of independent variables z (co-called fractional flat output), such that each system variable,

including the inputs, is a function of the flat output and a finite number of its time derivatives,

z = h(x, u, u(ν), u(2ν), . . . , z(βν)), z ∈ Rm (3.117)

where β is a finite m-tuple of integers, and ν is the commensurable order, such that

x = A(z, z(ν), . . . , z(αν))

u = B(z, z(ν), . . . , z((α+1)ν)) (3.118)

make the following equivalent system equation:

A(ν)(z, z(ν), . . . , z(αν)) = f
(
A(z, z(ν), . . . , z(αν)) + B(z, z(ν), . . . , z((α+1)ν))

)
. (3.119)

After all, any method or combined methods for traditional integer order processes can

be used for modeling the fractional order MIMO processes, but with the formulas re-derived

for FODE, FO TF or FO S-S models. Some of the derivation are straightforward while some

are difficult, and some derivations are easy in theory but hard for practical implementation.

95



Chapter 4

Fractional Order Process Control

Don’t loaf and invite inspiration; light out after it with a club.

—Jack London

“Go West, young man.” – Horace Greeley. “Go fractional. There, you will find

inspiration.” –Prof. Yangquan Chen.

This chapter prepares a wide variety of flavors on fractional order process controls. While

some are gathered from the literature, the methods described in sections 4.2 and 4.4 are

newly developed. Then, in chapter 5, examples are given with regard to their simulation and

practical application.

4.1 Fractional order controllability and observability

This section briefly reviews the controllability and observability of fractional order systems

since they are the fundamental issues that need to be considered before performing controls.

The evaluation of controllability and observability of linear FO systems in the pseudo state-

space representation is straightforward, whereas for FO systems in other forms and nonlinear

FO systems, it is relatively harder.

Definition 23 (FO observability Gramian). The observability Gramian of a system with

fractional order α is the positive symmetric matrix in Mn×n(R), [364]:

Oα(t0, t1) ,
∫ t1

t0

Eα(AT τα)CTCEα(Aτα)dτ, (4.1)

where Eα(AT τα) is the fractional order state transition matrix introduced in equation (2.56).

Similar to the the theorem for integer order models, we have the following.

Theorem 7 (FO observability). The system in equation (2.55) is observable on [t0, t1] if
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and only if Oα(t0, t1) is positive definite, which is equivalent to,

O ,


C

CA
...

CAn−1

 has rank n. (4.2)

For the fractional differential equations in the polynomial form:

P (σ)ξ = Q(σ)u,

y = R(σ)ξ, (4.3)

where u ∈ Rm is the control, ξ is the partial state, and σ = sα; it is observable iff P and R

are right coprime.

Definition 24 (FO controllability Gramian). The controllability Gramian of a system with

fractional order α is the positive symmetric matrix in Mn×n(R):

Cα(t0, t1) ,
∫ t1

t0

(t1 − τ)(1−α)Eα(A, t1 − τ)BBTEα(AT , t1 − τ)dτ. (4.4)

Note that, the term (t1 − τ)(1−α)Eα(A, t1 − τ) is not the state transition matrix, which is

different from that for integer order systems.

In duality, the theorem for FO controllability is as the following:

Theorem 8 (FO controllability). The system in equation (2.55) is controllable on [t0, t1] if

and only if Cα(t0, t1) is positive definite, which is equivalent to,

C , [B AB · · · An−1B] has rank n. (4.5)

For fractional differential equations in the polynomial form in equation (4.3), it is con-

trollable iff P and Q are left coprime.

Other controllability and observability related discussion on FO systems can be found in

[365] and the paper collection in [23], such as the constrained controllability of h-difference

linear systems with two fractional orders, and the observability of positive fractional-order

discrete-time systems.

4.2 Decoupling linear fractional order MIMO processes

Decoupling the interactions among the inputs and outputs is a frequently encountered prob-

lem in industrial process control. For integer order MIMO processes, one of the methods is

to extend the input-output linearization approach to the so-called input-output decoupling,

[358]; other methods may involve the derivation of the inverse of interactions as a decoupling

intermedium among primary loops through singular value decomposition (SVD). An example

can be found in [366]. Yet, there has not been such studies for fractional order processes.

This section investigates the decoupling of linear fractional order MIMO processes. Without
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Figure 4.1: The block diagram of a TITO process.

loss of generality, TITO processes are investigated with emphasis. Some of the results were

published in [367].

The system under investigation is a process model abstracted from a temperature control

loop in the semiconductor manufacturing industry, as shown in figure 4.1. It is an LTI system

that can be depicted by the pseudo state equation (2.55) in chapter 2, where 0D
α
t x(t) denotes

the fractional differentiation with respect to time in the Caputo sense as in equation (2.6),

and the fractional orders are α = [α11, ..., α22] ∈ (0, 2). The state matrix A, input matrix B

and output matrix C are of the following forms respectively,

A =


− 1
T11

0 0 0

0 − 1
T12

0 0

0 0 − 1
T21

0

0 0 0 − 1
T22

 , B =


K11
T11

0

0 K12
T12

K21
T21

0

0 K22
T22


C =

[
1 1 0 0

0 0 1 1

]
.

Similar to the way of manipulating integer order differential equations, by taking Laplace

transforms, the pseudo-state-space representation of the above FO differential equations can

be derived, with zero initial condition assumed. Furthermore, the state-space representation

can be converted to a transfer function matrix in the same manner as is done for integer

order models [35],

Y (s) = P (s)U (s) , (4.6)

where

P (s) = C(sαI −A)−1B =

[
P11(s) P12(s)

P21(s) P22(s)

]
, (4.7)

and each element Pij is an FO transfer function,

Pij (s) =
Kij

Tijsαij + 1
, i, j = 1, 2. (4.8)

The off-diagonal elements P12 and P21 are the causes of the interaction between two primary

loops. For integer order processes, multiple approaches exist to decouple the interaction as
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mentioned earlier. No matter which method is used, the goal is to eliminate or minimize

the interaction. The same goal is pursued for fractional order processes. In the following

subsections, the decoupling of FO processes will be presented. The cases of zero time delay

will be discussed first. Then, the cases with time delay will be dealt with separately.

4.2.1 The ideal decoupling

With the ideal decoupling, the decoupled process is expected to have a diagonal transfer

function matrix in the form below:

G (s) = P (s)D (s) =

[
P11(s) 0

0 P22(s)

]
, (4.9)

where D(s) is the transfer function matrix of the decoupler,

D (s) =

[
D11(s) D12(s)

D21(s) D22(s)

]
. (4.10)

An illustration of the system connection with an ideal decoupler is shown in figure 4.2. Based

on the decoupling requirement in equation (4.9), four equations can be established:

P11 (s)D11 (s) + P12 (s)D21 (s) = P11 (s)

P11 (s)D12 (s) + P12 (s)D22 (s) = 0

P21 (s)D11 (s) + P22 (s)D21 (s) = P22 (s)

P21 (s)D12 (s) + P22 (s)D22 (s) = 0.

The decoupler elements are then given by the solution:

D11 (s) =
P11 (s)P22 (s)

P11 (s)P22 (s)− P12 (s)P21 (s)

D12 (s) =
−P12 (s)P22 (s)

P11 (s)P22 (s)− P12 (s)P21 (s)

D21 (s) =
−P11 (s)P21 (s)

P11 (s)P22 (s)− P12 (s)P21 (s)

D22 (s) =
P11 (s)P22 (s)

P11 (s)P22 (s)− P12 (s)P21 (s)
.

(4.11)

Plugging equation (4.8) into the solutions will give the fractional order ideal decoupler.

At this stage, the properness of such decoupling elements needs to be examined. When

the four channels have the same fractional order, the decoupler is obviously proper (i.e.

strictly proper or bi-proper), with the same highest order 2α on both the numerator and

the denominator. When the fractional orders are different, it can be seen that the resulting

decoupler is still proper. Taking the first element as an example:

D11 (s) =
A

A−B
, (4.12)
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Figure 4.2: The block diagram of the ideal decoupling.

where

A = K11K22 (T12s
α12 + 1) (T21s

α21 + 1)

B = K12K21 (T11s
α11 + 1) (T22s

α22 + 1) ,

the highest order of the denominator is max(α12α21, α11α22) while that of the numerator is

α12α21, and the relationship among the fractional orders does not affect the properness.

4.2.2 The simplified decoupling
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Figure 4.3: The block diagram of the simplified decoupling.

Compared with the ideal decoupling, the simplified decoupling has less stringent require-

ments on the diagonal elements of the process. In other words, it does not emphasize much

on what the primary loops become after decoupling. Instead, it assigns less task to the

decoupler by setting the diagonal elements to be 1, as shown in figure 4.3,

D (s) =

[
1 D12(s)

D21(s) 1

]
. (4.13)
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Thus, the following two equations are used to satisfy the decoupling condition, i.e. to

make the process diagonal,

P11 (s)D12 (s) + P12 (s)D22 (s) = 0,

P21 (s)D12 (s) + P22 (s)D22 (s) = 0,

with the solution being:

D12 (s) = −P12 (s)

P11 (s)
, and D21 (s) = −P21 (s)

P22 (s)
. (4.14)

This leads to a simpler decoupler transfer function but a relatively more complicated decou-

pled process,

G (s) =

[
P11 − P12P21

P22
0

0 P22 − P12P21
P11

]
. (4.15)

To evaluate the properness in this circumstance, different cases need to be considered.

When the fractional orders are same, i.e. α11 = α12 = α21 = α22, the decoupler will be in

a fractional order filter form [40]. If the fractional orders are different, it may result in an

improper decoupler that may not be realizable. Specifically, for example, when α11 > α12,

the second decoupler element is improper,

D12 (s) = −K12 (T11s
α11 + 1)

K11 (T12sα12 + 1)
.

Although the resulting process is proper,

G11 (s) =
A−B
C

,

where A and B are the same as in equation (4.12), and

C = K22 (T11s
α11 + 1) (T12s

α12 + 1) (T21s
α21 + 1) ,

it cannot be achieved in practice because a fractional order differentiator sα11−α12 will be

factorized from D12(s) by the means we use for integer order systems, such as long division

or partial fraction expansion. Similar to a pure differentiator in integer order control systems,

such a fractional order differentiator will also amplify noise and result in divergent or singular

solutions of system responses, which is not acceptable in practice. Some research on the

existence of decouplers for integer order singular systems can be referred to in [368, 369].

Thus, to guarantee the existence of a proper simplified decoupler, the FO TITO process

model needs to satisfy the following condition,

α11 ≤ α12 and α22 ≤ α21. (4.16)

Otherwise, the conventional decoupling techniques do not apply. In order to still utilize them,

a different model structure can be selected to approximate the process, such as FO transfer

functions with two poles, either commensurate or not. This is a topic for future exploration.
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4.2.3 The inverted decoupling

Briefly, the inverted decoupling method is to achieve the ideal-decoupled performance in

equation (4.9), using simplified decoupling elements in equation (4.13). This is accomplished

by subtly re-routing the decoupling block connections [370], as shown in figure 4.4. As an

extension to the FO case, the FO TITO processes can be treated in the same manner.
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Figure 4.4: The block diagram of the inverted decoupling.

Since the inverted decoupler uses the same decoupling elements as the simplified decou-

pler, the condition for the existence of a proper inverted decoupler is the same as equation

(4.16).

4.2.4 Decoupling fractional order processes with time delay

The aforementioned discussion considers the process models with no time delay, which is too

ideal to be true in practice. Nevertheless, it is not a problem when the models have dead

time because the techniques for dealing with time-delayed integer order models can also be

used for FO processes. Specifically, denoting the dead time by Lij , the model in equation

(4.8) becomes the following:

P̃ij (s) =
Kij

Tijsαij + 1
e−sLij . (4.17)

Consequently, the decoupler elements for the simplified, as well as the inverted decoupling

in equations (4.14) become the forms below,

D̃12 (s) = −K12 (T11s
α11 + 1)

K11 (T12sα12 + 1)
e−(L12−L11)s, (4.18)

D̃21 (s) = −K21 (T22s
α22 + 1)

K22 (T21sα21 + 1)
e−(L21−L22)s. (4.19)

When L12 < L11 and/or L21 < L22, the decoupler is non-causal, which is to be avoided

during the realization of transfer functions. This problem can be fixed by artificially adding

a time delay to the decoupler as described in the work of Wang et al. [371]. Thus, the refined
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decoupler D̃(s) becomes the following form:

D̃ (s)=

[
e−v(L22−L21)s D12 (s) e−v(L12−L11)s

D21(s)e−v(L21−L22)s e−v(L11−L12)s

]
, (4.20)

where the function v(L) is defined as:

v (L) =

{
L, if L > 0,

0, if L ≤ 0.
(4.21)

Remark: the definition of v(L) is inaccurate in the original proposed form. The value should

be L when L > 0. The inaccurate usage of this method in [372, 366] should be corrected.

4.2.5 The relative gain array for MIMO fractional order processes

The relative gain array (RGA) is a useful tool to characterize the loop interactions in MIMO

processes, from which the advise for suitable input-output pairing can be drawn [373]. While

the static RGA only evaluates the steady-state gains, the frequency dependent RGA evaluates

the process gains at the corresponding operational frequencies of interest. For the LTI model

with one FO pole, as in equation (4.8), the gain depends not only on the traditional model

parameters K, T and L, but also on the FO order α,

|G (jω) | =

∣∣∣∣ K

T (jω)α + 1
e−Ljω

∣∣∣∣
=

∣∣∣∣ K

Tωαej
π
2
α + 1

∣∣∣∣
=

|K|∣∣Tωα [cos
(
π
2α
)

+ jsin(π2α)
]

+ 1
∣∣

=
|K|√

(Tωα)2 + 2Tωαcos
(
π
2α
)

+ 1
. (4.22)

Hence, the frequency dependant RGA is:

RGA = G(jω) · (G(jω)−1)T , (4.23)

where G(jω) takes the form in equation (4.22). This will be illustrated through simulation

example 3 in Sec. 5.4.

Three examples on TITO decoupling and an industrial application of 4 × 4 decoupling

will be provided in chapter 5.

4.3 Model predictive control of fractional order MIMO pro-

cesses using RIOTS

A rough statistic approximates that more than 80% of the feedback control devices in the

industry use PID controllers [374]. For the rest percentage, model predictive control (MPC)

takes the dominant part [375]. As the second most popular industrial control algorithm, MPC
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has drawn lots of research attention ever since its emerging [376, 377, 378, 379]. However,

extending the MPC to FO processes is not yet mature in spite of some exploration efforts,

e.g. the application of MPC to fractional thermal systems [380, 381, 382] and two others

[300, 383]. For a survey on this topic, refer to [384]. Thus, extending MPC to FO processes is

investigated in this section, along with the implementation using RIOTS. Some preliminary

results is published in [385].

4.3.1 Fractional order model predictive control

MPC is a multivariable control algorithm developed by engineers in Shell Oil Cooperation in

the 1970s and found wide application in the industrial process control thereafter. In general,

it is a control concept of combining the optimal control with the use of digital control. It

computes a cost criteria for a finite-time horizon in the future based on a plant model sampled

at the current time. This strategy is performed on the fly repetitively by looking ahead of a

receding time horizon [386]. Therefore, the MPC is also called the receding horizon control

(RHC). One of the advantages of MPC is that the decoupling of loop interactions is already

taken into consideration [387], and there is no additional effort needed for the decoupling.

The disadvantage is the high reliance on model. If a process is hard to model or the model

contains too much uncertainty, it loses the precision of predicting.

In fact, the MPC can be broken down to an optimal control problem during each time

interval because its key step is the optimization. Thus, the main strategy in this section is

to utilize the foundation of fractional optimal control (FOC) for extending the use of MPC

to FO processes.

4.3.1.1 Fractional order optimal control

The optimal control of fractional order systems is studied relatively more than the MPC,

therefor, there are more resources for moving onto FO MPC from FOC. For example, a

general formulation and solution scheme for fractional optimal control problems (FOCP)

is presented by Agrawal et al [388]. In this formulation, the definition of FO derivatives

uses the left and right R-L form expressed in equations (2.4) and (2.5). Then, the FOCP

under consideration is to find the optimal control u(t) for an FO system that minimizes the

performance index,

J(u) =

∫ T

0
F (x, u, t)dt, (4.24)

subject to the system dynamic constraints:

0D
α
t x = G(x, u, t) (0 < α < 1), (4.25)

and the initial condition:

x(0) = x0, (4.26)

where x(t) is the state variable. Sometimes, additional terms containing x can be included

in equation (4.24) at the end point. As an example, the optimization of a linear FODE given
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the cost criteria of an integral of quadratic form can be stated as the following,

J(u) =
1

2

∫ 1

0
[q(t)x2(t) + r(t)u2]dt, (4.27)

subject to:

0D
α
t x = a(t)x+ b(t)u. (4.28)

Following the derivation in [388], the Euler-Lagrange equations for the above FOCP is

obtained,

0D
α
t x = G(x, u, t), (4.29)

tD
α
1 λ =

∂F

∂x
+ λ

G

∂x
, (4.30)

0 =
∂F

∂u
+ λ

G

∂u
, (4.31)

and x(0) = x0, λ(1) = 0. Regarding the solution to the fractional E-L equations and

furthermore FOCPs, numerous methodologies and results are available in the literature. In

[389], Tricaud and Chen et al formulated the fractional time-optimal control problem (TOCP)

and provided the solution to the TOCP of a fractional double integrator . In [268], the

solution of FOCP using SVD-based rational approximations is investigated. [390] presented

an approximation method for numerically solving FOCPs of the general form, and Sweilam

et al provided numerical solution for some types of FOCPs [391]. In [392, 393], Dzielińki et al

studied the FOCPs in the linear quadratic discrete-time case under the constraints of fixed

final time and free final state. A similar effort is also available in [394]. In [167], Vinagre

and Feliu et al did a case study using the Wiener-Hopf method on the optimal fractional

controllers for commensurate order systems.

In this context, following the paradigm in [268, 390] and [389], the FOCPs can be solved

using the Matlab toolbox RIOTS, which is an outstanding optimal control problem solver

over other similar softwares, such as SOCS [395], DIRCOL [396] and MISER3 [397], according

to the surveys [398, 399, 400, 401].

4.3.1.2 Introduction to RIOTS

The RIOTS (Recursive Integration Optimal Trajectory Solver) is a Matlab toolbox de-

signed to solve a broad class of optimal control problems, including trajectory and endpoint

constraints, control bounds, variable initial conditions with integral and/or endpoint cost

functions [402]. It utilizes multiple ingenious techniques to realize the critical routines in

the algorithm. For example, it uses LSODA [403] to perform the variable-step integration,

NPSOL [404] for the constrained optimization, and automatic differentiation (ADOL-C) [405]

for derivative and gradient checking. RIOTS is sufficiently capable of solving classic optimal

control problems of integer order systems [406, 407, 408], and has been extended to solve the

FOCPs by Tricaud and Chen et al [409, 268].

The optimal control problems to be solved by RIOTS can be formulated in the form

below :

min
(u,ξ)∈Lm∞×Rn

f(u, ξ) = go(ξ, x(b)) +

∫ b

a
lo(t, x, u)dt (4.32)
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subject to:

ẋ = h(t, x, u), x(a) = ξ, t ∈ [a b]

ujmin(t) < uj(t) < ujmax(t)

ξjmin(t) < ξj(t) < ξjmax(t)

lvti(t, x(t), u(t)) ≤ 0, v ∈ Qti
gvei(ξ, x(b)) ≤ 0, v ∈ Qei
gvee(ξ, x(b)) = 0, v ∈ Qee

(4.33)

where x(t) ∈ Rnx , u(t) ∈ Rnu , g : Rnx × Rnx → R, l : R × Rnx × Rnu → R, h : R ×
Rnx × Rnu → Rnx , Q = {1, ..., q}; and Lm∞[a, b] is the space of the Lebesgue measurable,

essentially bounded functions Lm∞[a, b] → Rnu . The subscripts o, ti, ei, ee on the function

g(·, ·) and l(·, ·, ·) are objective function, trajectory constraint, endpoint inequality constraint

and endpoint equality constraint, respectively. u is the control variable and ξ is the initial

state.

RIOTS uses the Matlab C MEX mechanism to integrate the functionality into the

Matlab environment. The detailed instructional manual and function explanation are well

documented in [410]. Up to now, RIOTS has experienced four generations of evolution as

listed in table 4.1.

Table 4.1: The version history of RIOTS

Year Contributor OS Compiler Matlab Ver MEX Ver Ref

1995 A Schwartz SunOS 4.1.4 Sun C compiler 4 v4 [402]

2002 Y Chen DOS & Windows Watcom C 4, 5.0 v4 [406]

2005 J Liang Windows & Linux VC++ & GNU gcc 6.5 v6 [236]

2014 T Zhao Windows 64bit MS Visual C++ 7.14∼8.2 winmex64 [385]

4.3.2 Using RIOTS for MPC in general settings

MPC can take different types of models for prediction [306], such as step response models,

discrete transfer functions, ARIMA models, state-space models, etc. To make it convenient

for multi-variable process control, the state-space model is used here. Thus, the general

settings of the predictive control problem using RIOTS are stated as the following.

Consider the system described by the S-S model below,{
x(i+ 1) = Ax(i) +Bu(i) + w(i)

y(i) = Cx(i) +Du(i) + v(i)
(4.34)

where the state is x(i) ∈ Rnx , the input is u(i) ∈ Rnu and the output is y(i) ∈ Rny . The

state noise is w(i) and the measurement noise is v(i).
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With equation (4.34) giving one-step estimate x̂(i + 1), the estimated system outputs

from time t+ 2 to t+Np can be derived as:{
x̂(i+ k + 1|i) = Ax̂(i+ k|i) +Bu(i+ k|i)
ŷ(i+ k|i) = Cx̂(i+ k|i) +Du(i+ k|i)

(4.35)

where x̂(i+ k+ 1|i) stands for the estimation of states at time i+ k+ 1, and ŷ(i+ k|i) is the

estimation of system output at time i+ k.

The cost function to be minimized is:

J =

Np∑
k=1

[ŷ(i+ k|i)− r(i+ k)]TWy[ŷ(i+ k|i)− r(i+ k)] (4.36)

where r(i + k) is reference input at instant i + k, and Wy is a positive definite matrix with

dimension ny × ny. Generally, index J can be used for both SISO and MIMO systems. In

MIMO systems, MPC can overcome coupling interactions implicitly.

An advantage of MPC over traditional control is the allowance of boundary constraints

on control input and output:

umin < u(i) < umax

ymin < y(i) < ymax.
(4.37)

At each interval, a control output sequence within control horizon Nu is calculated by

minimizing the cost function in equation (4.36) with constraints in equation (4.37), but only

the first control adjustment in the calculated sequence is implemented. Then the optimization

is repeated after new measurement gets updated.

4.3.3 Using RIOTS for fractional order MPC

Now, continued with the initial intention, the realization of FO MPC though piece-wise

FOCP can be performed. According to the principles behind MPC, RIOTS can be used to

fulfill the repeated online optimization through a single call during each optimization horizon.

Since RIOTS can deal with MIMO, nonlinear and time-varying problems with constraints,

RIOTS based MPC also has the ability to control these systems. RIOTS-based MPC was first

proposed in [408], but it was for linear or nonlinear integer order systems. A straightforward

application of RIOTS-based MPC on FO systems can be achieved by reformulating the

equation (4.32) to the discrete cost function in equation (4.36), and replacing the integer

order system dynamic constraints in equation (4.35) with the FO process model in equation

(4.25), through the Oustaloup recursive approximation method,

sα = C
N∏
n=1

1 + s/ωz,n
1 + s/ωp,n

, (4.38)

which is valid within a certain frequency range of the approximation interval.

To demonstrate this procedure in detail, an experiment will be presented in chapter 5.
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4.4 Fractional order sliding-model based extremum seeking

control

4.4.1 Fractional order sliding mode control

Sliding mode control (SMC) is a nonlinear control law that alters the dynamics of a system

by application of a discontinuous control signal that forces the system to “slide” along a

cross-section of the systems normal behavior. It is well known that SMC is a particular type

of Variable structure control system. The main feature of SMC is switching the control law

to force the states of the system from the initial states onto some predefined sliding surface.

SMC, as an effective robust control method, has been applied to a wide variety of complex

systems and engineering problems. On the other hand, fractional calculus introduced in

the early 17th century deals with integration and derivatives of arbitrary orders. Increasing

applications of FO calculus in almost all fields of science and engineering were witnessed

recently. In fact, FO controllers are obviously important to the practical world. The SMC

methodology has been designed for FO chaotic systems in many published results [411, 412].

Some applications of FO SMC has been investigated in [50, 49].

4.4.2 Fractional order extremum seeking control

The extremum seeking control (ESC) is a model-free online optimization control scheme that

addresses unknown performance functions with measurable input and output [413, 414]. It

is rated as the third popular controller in the industry, ranking after PID and MPC. It has

been extended to fractional order and found application in many areas such as the fractional

horse power dynamometer control in [415], the cognitive lighting control in [49], and the

photovoltaic max power point tracking [416], etc.

While being an effective control strategy, this technique has drawbacks such as the

sensitivity to parameter selection which makes it fragile. Failure to track the power extremum

has been observed in some particular cases. With the motivation of reducing the human

involvement in parameter tuning and improving the control performance, research is carried

out to explore the enhancement of the regular ESCs. For example, in [417], Yin et al.

developed a sliding-mode ESC law by replacing the conventionally used sign function with its

fractional order derivative, based on a new variable structure control involving the hyperbolic

tangential function, so as to reduce the chattering vicinity around the optimal point.

4.4.3 Combining the fractional order SM with ESC

In this section a fractional order SM-ESC is proposed to further improve both the perfor-

mance and robustness of the integer order SM-ESCs. The benefits of making such extra

efforts are demonstrated through a case study in section 5.7.

Denoting the adjustable capacitor as the control input u, and the load power as the

system output y, the plasma impedance matching using the ESC can be formulated to a

single-input-single-output (SISO) nonlinear model,

ẋ = f(x, t) + g(x, t)u,

y = h(x), (4.39)
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A schematic of FO SM-ESC approach is shown in Fig. 4.5.
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Figure 4.5: The block diagram of the proposed FO SM-ESC scheme.

Without loss of generality, the maximum seeking problem is addressed, with the inverse

case, minimum seeking, omitted. The knowledge of the performance function in equations

(5.27) or (4.39) is not assumed. All parameters of the uncertain system belong to a compact

set Ω.

Assumption 1.

There exists a positive constant g
¯

such that 0 < g
¯
≤ ||g(x, t)||, ∀t ∈ [0, tM ). Thus, the system

(4.39) has relative degree of one due to g(x, t) 6= 0, for all x.

Assumption 2.

There exists a unique point x∗ such that h′(x∗) = 0 and h′′(x∗) < 0. For any given ε > 0,

there exists ρ = ρ(ε) such that |h′(x)| > ε,∀x /∈ Dρ, where Dρ = {x : ||x − x∗|| < ρ/2} is

called ρ-vicinity of x∗.

According to (4.39), we have ẏ = h′f+kpu, where kp = h′g. Therefore, one has |kp| ≥ k
¯p

,

where 0 < k
¯p
≤ g

¯
ε when x /∈ Dρ.

Assumption 3.

There exist known functions h̄, and η1 ∈ K∞, with η1 locally Lipschitz, a known non-

negative function ψ1(x, t) continuous in x, piecewise continuous and upper-bounded in t

such that ||f(x, t)|| ≤ η1(||x||) + ψ1(x, t) and |h′| ≤ h̄(||x||).
As shown in figure 4.5, the FO SM-ESC is proposed as

u = %(t)tanh

(
sgn

(
π

γ0
τ

))
, (4.40)

τ(t) = γ1e(t) + γ2D
q−1sgn(e(t)), (4.41)

where 0 < q < 1, D is a Riemann-Liouville fractional operator, % is a designed modulation

function (continuous in t) to be specified later on, γi, (i = 0, 1, 2) are appropriate constants

and the error signal e(t) is defined as

e(t) = y(t)− yr(t), (4.42)

where

yr(t) = kr1t
3 + kr2t, yr(0) = yr0, (4.43)
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with kr1 ≥ 0, kr2 ≥ 0, and yr0 is the initial condition which will be chosen later on.

Remark 1. The purpose of utilizing yr(t) is to force y close to the neighborhood of the

maximum point y∗. If yr0 is greater than the optimal point, y can have a faster tracking

performance. y∗ may be constantly changing along with time, since the plasma temperature,

the electron-neutral collision frequency, the gas flow and the gap space are often changing.

However, an upper bound for y∗ exists and can be estimated. In order to have faster speed,

yr0 could be selected greater than the estimated upper bound. Thus, yr will guarantee that

y increases to the maximum point.

Remark 2. According to Remark 1, the error signal is negative. Hence,

Dqsgn(e) = − 1

Γ(1− q)
d

dt

∫ t

0

1

(t− s)q
ds

= − t−q

Γ(1− q)
, t > 0. (4.44)

Now, %(t) should be proposed such that y(t) tracks yr(t) as long as possible. y(t) is forced

to reach the vicinity of y∗ and stays close to y∗. To this end, the function is designed such

that τ̇(t) = 0. According to equation (4.41), one has

ė = −(γ2/γ1)Dqsgn(e). (4.45)

Hence, y tries to track yr when y stays away from a small vicinity of y∗, as long as kp is away

from zero. In contrast, once y reaches the vicinity of y∗, the controllability is lost since kp
tends to zero. Thus, yr will not be able to drag y. However, y reaches the neighborhood of

y∗ as expected. It will be shown that y remains close to y∗ in the proof of Theorem 2.

Remark 3. From the comparison between FO and IO SM-ESC for Plasma impedance

matching, the main difference lies in the use of Dq−1sgn(e) in the controller (4.44). Hence,

Dqsgn(e) instead of sgn(e) can affect the tracking performance of y. Actually, from equation

(4.44), |Dqsgn(e)| � 1 = |sgn(e)|) during the initial period. Thus, one can conclude that FO

SM-ESC with 0 < q < 1 achieves a faster tracking performance than IO SM-ESC does, even

when |Dqsgn(e)| is less than 1 during the next time interval.

On the other hand, the time derivative of τ(t) is obtained as

τ̇(t) = γ1kpu− γ1kr1t
2 + ξs, (4.46)

where ξs := γ1h
′f − γ1kr2 + γ2D

qsgn(e). Denoting k = γ1kp, one has

τ̇ = k(u+ ω),

in which ω := γ1kr1t
2/k + µ with µ = ξs/k. According to Assumption 3, one has |µ| ≤ µ̂ in

which µ̂ ≤ (γ1h̄f̃ + γ1h̄
2 + γ1kr2 + γ2$)/k

¯
with f̃ = η1(2||x||) + ψ1(x, t), k

¯
= γ1k

¯p
.

In the following theorem, one possible % implementation is proposed such that finite-time

escape is avoided and realization of the τ -sliding modes is guaranteed.

Theorem 9.
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Consider the system in equation (4.39) with the control law in equation (4.40). Outside the

δ-vicinity, if % satisfies

% tanh2[sin(πτ/γ0)] :=[(γ1h̄f̃ + γ1h̄
2 + γ1kr2 + γ2$) + ||yt||e−α1t]/k

¯
+ α, (4.47)

with α1 > 0, α > 0, then, while x /∈ Dρ, one has: (i) no finite-time escape occurs in the

system signals (tM → +∞) and (ii) a sliding mode on switching manifold τ(t) = lγ0 is

reached in finite time for some integer l.

Proof. Consider the following non-negative functions

W1(τ) =

∫ τ

0
tanh

(
sin

(
π

γ0
ε

))
dε, W2(τ) = γm −W1, (4.48)

where γm denotes the maximum value of W1(τ).

The time derivative of W1 and W2 are obtained

Ẇ1 = k

{
φ tanh2

(
sin

(
π

γ0
τ

))
+ µ tanh

(
sin

(
π

γ0
τ

))}
−γ1kr1t

2 tanh

(
sin

(
π

γ0
τ

))
Ẇ2 = −Ẇ1. (4.49)

Since | tanh(sin[(π/γ0)τ ]| ≤ 1, one has

Ẇ1 ≤ k{φ tanh2[sin[(π/γ0)τ ]}+ |k||µ|+ γ1kr1t
2,

Ẇ2 ≤ −k{φ tanh2[sin[(π/γ0)τ ]}+ |k||µ|+ γ1kr1t
2. (4.50)

Due to |k||µ| ≤ |k|µ̂, one can derive

Ẇ1 ≤ −|k|{φ tanh2[sin[(π/γ0)τ ]− µ̂}+ γ1kr1t
2, if sgn(k) < 0,

Ẇ2 ≤ −|k|{φ tanh2[sin[(π/γ0)τ ]− µ̂}+ γ1kr1t
2, if sgn(k) > 0. (4.51)

On the other hand, one has −|k| ≤ −k
¯
. Thus, it can be concluded that

Ẇ1 ≤ −||yt||e−α1t − k
¯
α+ γ1kr1t

2, if sgn(k) < 0, (4.52)

Ẇ2 ≤ −||yt||e−α1t − k
¯
α+ γ1kr1t

2, if sgn(k) > 0, (4.53)

holds everywhere, with α ≥ 0, α1 > 0. Then, it avoids finite-time escape in the system

signals.

Proposition 3.

First, assume that |τ(t)| escapes in some finite time t1 ∈ [0, tM ). From equation (4.41), it

can be known that e(t) and y(t) can also escape at t = t1. Hence, there exists t2 ∈ [0, t1)

such that

||yt|| ≥ eα1t[α2 − k
¯
α+ γ1kr1t

2
1],
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in which α2 ≥ 0. Moreover, from equations (4.52) and (4.53), one has

Ẇ1 ≤ −α2 − γ1kr1t
2
1 + γ1kr1t

2 ≤ −α2, ∀t ∈ [t2, t1), or

Ẇ2 ≤ −α2 − γ1kr1t
2
1 + γ1kr1t

2 ≤ −α2, ∀t ∈ [t2, t1), (4.54)

independently of sgn(k). Since τ(t) is absolute continuous and escapes in t = t1, there exists

te ∈ [t2, t1) and an integer lτ such that τ(te) = lτγ0. Therefore, W1(te) = 0 (if lτ is an even

number) or W2(te) = 0 (if lτ is an odd number). It is clear that W1(t) = 0, ∀t ∈ [te, t1) or

W2(t) = 0, ∀t ∈ [te, t1) from equation (4.54) in this interval. To avoid the abuse of notation,

Wi(τ(t)) is replaced by Wi(t), for i = 1, 2. Consequently, τ(t) = lτγ0 is uniformly bounded

∀t ∈ [te, t1), i.e., a contradiction. Thus, τ, e and y cannot escape in finite time. In addition,

one has that x, x̂ and all closed loop signals cannot escape in finite time (tM → +∞).

Proposition 4.

According to Property (i), there exists a finite time t̄ ≥ 0 such that Ẇi ≤ −αt̄,∀t ≥ t̄ and

0 < αt̄ < k
¯
α, for i = 1 or i = 2. Hence, Wi(t) ≤ −αt̄(t − t̄) + Wi(t̄),∀t ≥ t̄. Consequently,

there exists a finite time t∗ ≥ t̄ such that Wi(t) = 0,∀t ≥ t∗. Moreover, the corresponding

points τ = lγ0 for which W1(τ) = 0(W2(τ) = 0) occur only for even(odd) value of l. In the

neighborhood of the points τ = lγ0,

sgn(tanh(sin(πτ/γ0))) = sgn(tanh(τ − lγ0))

for l being an even number or

sgn(tanh(sin(πτ/γ0))) = sgn(− tanh(τ − lγ0))

for l being an odd number. Now, one can derive the following inequality for l being either an

even number (sgn(k) < 0) or an odd number (sgn(k) > 0). Selecting a Lyapunov candidate

V = 0.5(τ − lγ0)2 and taking its derivative with respect to time, one has

V̇ = (τ − lγ0)

·︷ ︸︸ ︷
(τ − lγ0) ≤ 0.

Hence, a sliding mode occurs in finite time on one of the manifolds τ = lγ0 , independently

of sgn(k). The proof is completed.

Next, it is shown that the FO SM-ESC in equation (4.40) and the modulation function

in equation (4.45) guarantee that x reaches Dρ of the unknown x∗. The oscillations around

y∗ can be made to high-order infinitesimal, O(γ0).

Theorem 10 (Global extremum-seeking control).

Consider the system in equation (4.39) under the control law in equations (4.40) and (4.41)

and the modulation function in equation (4.46). If assumptions (1-3) hold, then: (i) Dρ

is globally attractive and is obtained in finite time and (ii) for sufficiently small γ0, the

oscillations around y∗ can be made of order O(γ0).

Proof. The proof of the properties (i) and (ii) of Theorem 2 are given as follows:
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(i)Attractiveness of Dρ: It is assumed x /∈ Dρ, ∀t ∈ [0, tM ). Since τ = lγ0 can occur

in finite time, there exists a finite time tf such that τ̇ = 0. Therefore, one has that ė =

−(γ2/γ1)Dqsgn(e),∀t ≥ tf . According to the analysis of Remarks 1 and 2, the error e = y−yr
tends to zero. Moreover, one has yr > y∗ ≥ y and e < 0. Then, one assures that y increases

with

ẏ = kr1t
2 + kr2 − (γ2/γ1)Dqsgn(e) > 0.

Hence, x goes to ρ-vicinity of y∗, which is a contradiction. Thus, Dρ is attained in some

finite time. Consequently, x remains or oscillates around Dρ and similarly y stays in some

small vicinity of y∗, ∀t large enough. During these oscillations, τ can go from one sliding

manifold to another manifold τ = lγ0 for l being an odd number. Next, it will be shown that

these oscillations can be made ultimately of order O(γ0), with γ0 from (4.40).

(ii) Oscillations of order around O(γ0): According to Assumption 5, ρ can be made

arbitrarily small such that |y− y∗| = O(γ0) when x ∈ Dρ. Thus, if x remains in Dρ for all t,

the corresponding neighborhood of y∗ can be made of order O(γ0). Otherwise, if x oscillates

around Dρ, |y − y∗| = O(γ0) also holds when x leaves the set Dρ.

In fact, one has e(t) < 0, ∀t > 0. One has Dqsgn(e) < 0,∀t > 0. Assume that x reaches

Dρ from inside at some time t̃1 > 0 and τ(t) is not in sliding mode when t = t̃1. Note that

Dρ is invariant when τ(t) is in sliding mode. Define τ̃(t) := τ(t)− τ(t̃1), ỹ(t) := y(t)− y(t̃1),

one has

τ̃(t) = γ1ỹ(t)− γ1kr1(t3 − t̃31)− γ1kr2(t− t̃1)

+γ2(t̃1D
q−1
t sgn(e)), t ≥ t̃1, (4.55)

where ks1 = 0, ks2 = 0 if yr is saturated, and ks1 = kr1, ks2 = kr2 otherwise. From the above

equation, one can conclude that

|ỹ(t)| ≤ γ1|τ̃(t)|+ γ1ks1(t3 − t̃31) + γ1ks2(t− t̃1)

+
γ2

Γ(2− q)
(t− t̃1)1−q. (4.56)

Let t̃2 be the first time when τ(t) reaches the next sliding manifold τ(t) = τ(t̃2) (independent

to x being inside or outside Dρ) and t̃3 is the first time when x reaches the frontier of Dρ

again (from outside). It is obvious that t̃2 ≥ t̃1 > t̃, t̃3 ≥ t̃1 > t̃. Then, there are two cases:

(i) t̃3 > t̃2 and (ii) t̃3 ≤ t̃2.

For case (i), let t ∈ [t̃1, t̃2] and first consider t ∈ [t̃1, t̃2). τ(t) is not in sliding motion during

this time interval [t̃1, t̃2). Hence, there exists some integer l such that lγ0 < τ(t) < (l+ 1)γ0.

Moreover, 1 ≥ |tanh(sgn(πτ(t)/γ0))| > 0,∀t ∈ [t̃1, t̃2). Since lγ0 < τ(t) < (l + 1)γ0 and

tanh(sgn(πτ(t)/γ0)) 6= 0 for all t ∈ [t̃1, t̃2), they guarantee an appropriate positive constant

α so that |τ̇(t)| ≥ k
¯
|u + ω| ≥ k

¯
(α) ≥ α̃ in which α̃ = k

¯
α is a positive constant. Thus,

(t− t̃1) ≤ |τ̃ |/α̃,∀t ∈ [t̃1, t̃2) and it can be concluded that (t− t̃1) is of order O(γ0), ∀t ∈ [t̃1, t̃2).

Since t3 − t̃31 = (t − t1)(t2 + t21 + tt1) and t ∈ [t̃1, t̃2), one has (t2 + t21 + tt1) < ζ in which

ζ = t22 + t21 + t2t1. Therefore, one can conclude that t3 − t̃31 ≤ |τ̃ |ζ/α̃,∀t ∈ [t̃1, t̃2). Thus,

(t3 − t̃31) is of order O(γ0), ∀t ∈ [t̃1, t̃2). According to equation (4.56), one can also assure
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that y(t) − y(t̃1) is of order O(γ0),∀t ∈ [t̃1, t̃2). Moreover, by continuity, y(t) − y(t̃1) is also

of order O(γ0),∀t ∈ [t̃1, t̃2].

For case (ii), let t ∈ [t̃1, t̃3]. Then, following the first part of the proof of case (i), it can be

directly obtained that y(t) − y(t̃1) is of order O(γ0),∀t ∈ [t̃1, t̃2]. Then, consider t ∈ [t̃2, t̃3].

τ(t) is in sliding motion during this interval. Therefore, one has τ̇(t) = 0. From equation

(4.44), one has that ẏ = kr1t
2 + kr2 − (γ2/γ1)Dqsgn(e) > 0 which is strictly increasing,

∀t ∈ [t̃2, t̃3]. Hence, one can obtain that y(t)− y(t̃1) is also of order O(γ0),∀t ∈ [t̃2, t̃3]. Since

this is also valid for the interval, the proof is complete that the oscillation outside Dρ is of

order O(γ0) in case (i), ∀t ∈ [t̃1, t̃3].

4.5 Other control schemes for fractional order MIMO pro-

cesses

Besides the newly developed control schemes for FO MIMO processes in preceding sections,

other methods exist as alternatives for various scenarios. Some of them are reviewed briefly

in this section.

4.5.1 Fractional order PIλDµ controllers

To be a comprehensive study on process controls, the discussion on PID controllers can

not be omitted. In fractional order controls, the FO PID controller enjoys the same level

of popularity as in integer order controls. Due to the introduction of two extra tuning

parameters, more diversified combinations are generated, namely PIλ, [PI]λ, PDλ, [PD]λ, and

PIλDµ controllers. The transfer function of the the FO PIλDµ controller can be generally

expressed as the following:

C(s) = Kp +Kds
µ +Kp

1

sλ
. (4.57)

The parameter tuning of these controllers have been well discussed in the literature, to name

a few, tuning the FO PID using the Ziegler-Nichols (Z-N) type rules [418], an easy tuning

method of FO PI controllers for position servo systems using loop-shaping [419], etc. Besides

the conventionally used tuning criteria for classic integer order PIDs, novel tuning rules are

developed. For example, the “flat phase” tuning rules [420] get widely adopted, which is

based on the iso-damping property originated from Bode’s ideal cutoff characteristic.

GBode(s) =
k

[(s2 + 1)0.5 + s]q
. (4.58)

One of the reasons for this set of tuning rules not being used for integer order PIDs as common

as for FO PIDs is that the three equations usually result in no solution for integer PIDs due

to the lack of two tuning nobs. The study on the “flat phase” tuning rules is quite mature, for

example, the feasible regions for certain classes of LTI FO transfer functions are investigated

in [58]. Hence it is not addressed here. For more information, refer to [27, 421, 422, 423] and

[316].
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4.5.2 Fractional order robust control

In the industry, it is impossible to expect a perfect model due to the complexity of real world

problems. Therefore, robust control has much practical value because of the consideration

of uncertainties and the tolerance of model inaccuracy. For fractional order systems, robust

control also receives considerable research attention. For example, a dedicated monograph

on advances in robust fractional control can be found in [424], in which the H∞ control of

FO systems, dynamic inversion, and the robust tuning of fractional order PID controllers

are presented. In fact, the “flat phase” tuning rule mentioned in section 4.5.1 also contains

the robust thinking, because the phase margin of the compensated process has very slight

variance against process parameter variation.

In [425], Tavazoei et al. designed the robust control with invariant phase margin for FO

systems,

C(s) = (hsα + L)Ĝ−1(s), (4.59)

for the following FO system under unit feedback configuration,

G(s) =
1

Tsβ + 1
Ĝ(s), (4.60)

where β ∈ (0, 2) and T > 0. They summarize the relation between phase margins and gain

crossover frequencies in the designed control system for different values of parameter.

As mentioned in the literature review, section 1.4, and the tool evaluation, section 2.4,

the CRONE toolbox is dedicated for non-integer order robust control. Some solid results on

the FO robust control are obtained based on it, e.g. the centralized CRONE controller for

non-square multi-variable systems [230]. In [426], the robust fractional-order temperature

control of a steel slab reheating furnace with large time delay uncertainty is discussed, where

the model of the process is integer order while the design specifications of the FO controller

take the robustness into consideration.

4.5.3 Fractional order iterative learning control

The iterative learning control (ILC) is a batch procedure that operates on a given objective

system repeatedly on a fixed time interval so that the reference signal can be better and

better tracked as the operation repeats [427]. It was first published in 1978 by Uchiyama et

al. For fractional order processes, the ILC needs to deal with the fractional order dynamic

equations, {
x(α)(t) = f(t, x, u),

y(t) = g(t, x, u)
(4.61)

Briefly, the objective of FO ILC is to search the desired control input ud(t) using the recursive

algorithm,

uk+1(t) = R(uk(t), ei(t)) (k = 0, 1, 2, ...), (4.62)

where ei(t) = yd(t)−yi(t) is the difference between the current system output and the desired

system output. For fractional order processes that have online metrology difficulty, the FO

ILC is a good choice.
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Chapter 5

Software and Hardware in-the-Loop

Simulation and Implementation

Practice is the sole criterion for testing truth.

— Mao Zedong, the founding father of P. R. China

Make it work, and work better (under constraints). That is all about engineering.

As mentioned in previous chapters, fractional order modeling and control have found

application in many areas, such as the motion control of a horse power dynamometer in

[58] and the cruise control of unmanned arial vehicles in [428, 429] and [46]. Beyond

the applications reported in the literature, this chapter provides intensive simulation and

experimental results of the applications in process controls, with regard to the corresponding

topics discussed in the previous chapters. To supplement the forgoing theoretical study, this

chapter is data heavy.

5.1 Description of the experimental platform

Part of the research work in this dissertation is sponsored by Lam Research Corporation,

and some experiments are performed on the associated industrial equipment. However, since

the equipment is not always accessible, and due to confidential agreements, a hardware-in-

the-loop experimental platform is developed as an alternative.

5.1.1 Hardware configuration

As shown in figure 5.1, the platform consists of two Peltier modules mounted on a metal

plate. The working principle of the heat pumping of the internal transistors inside a Peltier

element is shown in the schematic diagram in figure 5.2. A similar setup can be referred to

in [430]. A fan is attached to the other side of each Peltier element, respectively, and the

fans are maintained at a constant blowing speed during operation. Two H-bridge circuits

are used as the power management units to actuate the Peltiers. Four non-contact infra-red

thermalmeters, MLX90614, are installed and aligned in parallel on a board facing to the

metal plate for real-time temperature gradient measurement, as shown in figure 5.3. Thus,
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the overall hardware setup is in a two-input-four-output configuration which can be further

extended to multi-input-multi-output if the fans are included into the control. An Arduino

Uno board, built upon the Atmega328p-pu microchip, is used as the bottom layer control

unit, and the upper layer control algorithms are programmed in Matlab/Simulink. The

Matlab Support Package For Arduino (MSPA) (also known as Arduino IO Package [431]), is

used as the communication interface between the PC and the Arduino.

Figure 5.1: The hardware configuration of the Peltier cold plate platform.

A simultaneous goal of building this platform is for low-cost laboratory education of

controls. This platform is built upon the foundation of the MESABox [432] and costs less than

$150. Additional description of the detailed “virtual machine type” firmware configuration

can be found in [210] and [432]. Through numerous experiments, the behavior of the platform

is abstracted, and measurable evidence for using fractional order models is summarized.

As a parallel review of this type of platforms, similar platforms for fractional order

modeling and control emulation can be found in the literature. Malti et al. developed

an aluminum heat transfer platform, [67], to investigate the parameter and order estimation
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(a) The schematic, figure from [433].

Load 

Peltier 

(b) The working principle.

Figure 5.2: The schematic and principle of Peltier heat pumping.

of FO models. Petras et al. developed a metal beam with Peltier elements [34], and a

heating-cooling experimental platform [281], to study the heat transfer in heterogeneous

media. Macias et al. studied the FO PID control on the same platform in [434]. Malek et

al. used the Quanser based heat flow experimental (HFE) platform to explore the modeling

and control of FO heat processes [316]. While each experimental platform has its unique

characteristics, the platform in this dissertation has some properties that are different from

any of the enumerated platform, such as the previously mentioned FO inverse response.

Hence, the discussion on this direction involves novel interests.

Figure 5.3: The thermal sensor array of the MIMO experimental platform.

5.1.2 Software support

The implementation of the Peltier element is not trivial because of the difference between

physical theory of the thermal-electrical characteristics and the engineering perspective of

the Peltier element. There are even contradictory operational instructions in the literature,
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e.g. [435, 433].

During the creation of this platform, technical contributions on implementation issues

were made to the society of Matlab/Simulink on Arduino. An I2C augmenting block for

MSPA is developed. The driving force of this effort is the fact that the Arduino Uno board

has limited analog and digital inputs/outputs (I/Os) that is insufficient for MIMO setups

requiring more than ten I/Os. Moreover, the sequential reading of the I/Os is very inefficient.

For these reasons, a Simulink block is developed for the I2C bus communication between the

Arduino and the thermometers, under the same paradigm as that of the MSPA. In fact, the

Arduino community provides the I2C bus communication library, but it is not compatible

with Simulink; on the other hand, the MSPA is Matlab/Simulink friendly but does not

feature the I2C capability. Hence, this side work provides users with the I2C function block

within the Simulink environment so that the sophisticated control algorithms involving more

I/Os in Matlab/Simulink can be utilized and implemented on the Arduino hardware. The

developed supplemental block is available for download in [436].
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Figure 5.4: Open loop power-on cooling and power-off heating.

5.1.3 Characterization of the basic dynamic behavior

Any good control starts from a well understanding of the controlled object. To grasp the

basic characteristic of the platform, four actuation modes are categorized, namely,

1. power on cooling;

2. power off cooling (natural dissipation);

3. power on heating (reverse powered);

4. power off heating (thermal cyclic).

The data acquired from the four thermalmeters for the four modes are plotted in figure

5.4 and 5.5, respectively, with the first channel marked in color. It can be observed that mode
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Figure 5.5: Open loop power-on heating and power-off cooling.

1 and 4 have similar dynamics which can be approximated by an FO transfer function model

with two poles, while the pair of 2 and 3 have similar dynamics that can be approximated

by an FO model with one pole.

The temperature reading of the thermal sensors are roughly calibrated at the normal

operational range, −10 ∼ 40◦C. A photo of the calibration is shown in figure 5.6;

Figure 5.6: A photo of calibrating the thermal sensors.

Example: computing the heat pumping capability of a Peltier element

Assume the ambient temperature is Ta = 20◦C. To bring the load temperature to Tl = 3◦C,

the Peltier cold side is required to stay at Tc = 0◦C. In order to maintain this temperature

difference, 25W of power needs to be pumped from the load. Given a Peltier element with the

ratings of: DC 12V, 3.6A, its hot side needs to dissipate heat at the power of P = 25 + 12×
3.6 = 68.2W. If a heat sink with thermal resistance R ≈ 0.15◦C/W is mounted to the hot side
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of the Peltier, then the hot side will stay at temperature Th = 68.2×0.15+Ta ≈ 30◦C. Hence,

the temperature difference generated by this Peltier in this circumstance is ∆Th−Tc = 33◦C.

Figure 5.7: The nonlinear behavior of the experimental platform under relay feedback test.
Top: relay signal; Bottom: the temperature.

5.1.4 The fractional order nonlinear behavior

The experiment purpose is to cool down the cold side of the metal plate to ambient temper-

ature from a higher temperature; notice the data trace after 150 seconds. If no control is

added, the plate naturally cools down following an inverse power law as shown by the blue

curve in the lower sub-figure in figure 5.8. When it is under PI control, the plate temperature

can decrease faster to the ambient temperature, as shown by the green curve in the lower

sub-figure in figure 5.8. However, contradictory to one’s intuition, the control signal is not

able to drop back to 0 after the temperature equals the ambient temperature, which is shown

by the green curve in the middle sub-figure in figure 5.8. The additionally cumulated heat
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Figure 5.8: The closed loop response under a PI control

caused by the pumping effort will maintain the control signal at a non-zero value, which

makes the plant very energy inefficient. Assume the control signal could drop to zero, but

recall mode IV (power off heating mode) in section 5.1, then, the temperature would bounce

back as soon as the cooling effort is removed, which prevents the removal of the control

signal.

Explicitly, the dissipated power on the hot side needs to satisfy the following equation to

balance the plate temperature at a constant value,

Qd = Qp +Qe +Q0. (5.1)

That means the heat to be dissipated on the hot side of the Peltier equals the sum of the

initial heat Q0, the pumped heat Qp and the heat transferred from external electricity Qe.

The transient follows the Fourier’s law,

q =
dQ

dt
= −k∇T. (5.2)

When no control is added, Qp = 0 andQe = 0, then the time needed for the plate temperature

to drop to ambient temperature can be solved from the above equation (5.2). Although this

takes relatively longer time, there is no energy consumption throughout this process. When

control is added, the cold side temperature drops faster because Qp 6= 0. However, if the

control is retrieved at this time, the temperature will rise again due to the thermal cyclic
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Figure 5.9: The severe nonlinear behavior of the peltier experimental platform under
particular operational condition.

shown in figure 2.14, which results in a non-zero Qe and thus, the system enters a dead loop.

The relay feedback data in figure 5.12 is another proof for the existence of such nonlinear

behavior. The yellow trace for channel 1 in the figure shows that the Peltier is becoming

more and more powerless to cool down the plate when the cumulated heat is not dissipated

in time, which eventually results in an “always on” control signal.

The severe nonlinear behavior under insufficient cooling capacity is shown in figure 5.9.

A nonlinear FO model with a limit cycle can be used to characterize this behavior. Smarter

control algorithms need to be employed to accomplish the control task. For example, a

nonlinear quadratic optimal control problem can be solved to generate a controller which

takes into consideration of both error and fuel in finite time,

J =
1

2
eTSe+

1

2

∫ tf

t0

(eTQe+ uTRu)dt, (5.3)

where e denotes the control error, u denotes the control efforts, and S,Q,R denote the

weighting matrices. By adjusting the weight of the error and energy requirements, different

123



performance can be achieved. The explicitly experimental results will be presented in future

research documentations.

5.2 Simulation results for the relay feedback with an FO in-

tegrator

Consider the first element in the transfer function matrix of the Wood-Berry process [437],

G (s) =
12.8

16.7s+ 1
e−s. (5.4)

Six types of relay feedbacks are simulated to obtain the frequency response information of

the process individually. A sample plot of a test run is shown in figure 5.10. The identified

model parameters are listed in table 5.1, where A and To are the amplitude and period of the

oscillation, respectively, and the err(%) = 1 − T̃ /T is the identification error for T . (Note:

Since A usually can be determined accurately and L is computed based on T , error is only

listed for T .) It can be seen that with the specified relay parameters, the TC relay gives the

least identification error while the relay with an integrator gives the most error.

Table 5.1: The frequency response information of the relay feedback test.

ϕp A To T̃ err(%) L

Ideal −180◦ 0.743 3.900 13.604 18.54 1.00

Hyst −104.4◦ 1.121 6.360 13.561 18.80 1.23

Delay −122.7◦ 1.444 7.580 13.561 18.79 0.79

Int −90◦ 4.909 26.51 13.358 20.01 1.29

TC −116.5◦ 3.995 11.40 16.451 1.49 1.04

FO int −108◦ 2.929 15.55 13.548 18.88 1.22

By adjusting the fractional order α from 0.1 to 1.9 with a set size of 0.2, a comprehensive

sweep of the process frequency response in the third and fourth quadrant can be performed.

The detailed values are listed in table 5.2. An undesired outcome is that due to computational

numerical errors, the parameter estimation when α > 1.3 fails to work, because the FO

integrator is realized by Oustaloup discretization in the bandwidth of 0.01 and 100. In this

case, a better numerical tool for FO integration is to be used.

5.3 Simulation and experiment of relay feedback identifica-

tion of fractional order models

This section describes the step-by-step usage of the proposed method in section 3.3.3.

5.3.1 Simulation

Consider the model below which is modified from the first element in the transfer function

matrix of the Wood-Berry distillation process [437],

G (s) =
12.8

16.7s0.5 + 1
e−s.
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Figure 5.10: A sample plot of the test run with 6 types of relay variants.

Table 5.2: The frequency response information with α changing.

α ϕp A To T̃ err(%) L

0.1 −171◦ 0.857 4.440 13.42 19.66 1.04

0.3 −153◦ 1.120 5.860 13.54 18.92 1.09

0.5 −135◦ 1.541 8.080 13.54 18.91 1.13

0.7 −117◦ 2.245 11.84 13.55 18.87 1.15

0.9 −99◦ 3.735 20.08 13.57 18.73 1.24

1.1 −81◦ 6.726 39.00 14.70 17.96 1.67

1.3 −63◦ 10.22 73.04 14.44 13.48 2.39

1.5 −45◦ 12.16 122.2 17.36 3.98 1.09

1.7 −27◦ 12.77 228.9 28.87 -72.85 -7.24

1.9 −18◦ 12.80 530.4 66.53 -298.4 -43.08

The unit step response of this model is plotted in figure 5.11. It can be seen that by changing

the order from 1 to 0.5, the rising time of the step response is increased significantly from

about 50 seconds to 500 seconds. This makes the identification procedure extremely time

consuming if the reaction curve method or data fitting method is used. In contrast, the relay

feedback test can settle down to sustaining oscillation after a few cycles within 50 seconds,

with any type of relay variant, as shown in figure 5.12. This reveals one of the advantages of
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Figure 5.11: The step responses of the original and modified first element in the Wood-Berry
model.

the proposed method.
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Figure 5.12: The data acquired from different types of relay test.

The oscillation information including the system gain, phase, the oscillating period and

amplitude are listed in table 5.3, where |G(jωu)| and ωu are computed from A and Pu through

equation (3.70).

Following the procedure in section 3.3.3.4, the steady state gain is computed from the

biased relay test data, K = 12.3. The time constant and the fractional order are calculated
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Table 5.3: The oscillation information for the relay test in figure 5.12.

Ideal Hyst ε = 0.1 Int Delay d = π
4

∠G −π arcsin( εA )− π −π2 d− π
H 1 1 1 1

A 0.6849 0.8802 1.2669 0.9277

|G(jωu)| 0.5536 0.7070 1.1246 0.9332

Pu 2.4520 4.1150 8.2500 4.6010

ωu 2.5625 1.5269 0.7616 1.4277

by plugging the information of the ideal relay and the relay with hysteresis into equations

(3.71) and (3.72), which gives:

T = 14.1, and α = 0.5.

Since the analytical solution to equations (3.71) and (3.72) is difficult to determine, the

numerical computation is performed with a step size of 0.1 for α, as shown in figure 5.13.

Finally, the dead time L = 0.9323 is obtained from equation (3.68). So, the identification is
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Figure 5.13: Numerically solving equations (3.71) and (3.72) using simulation data.

completed.

Alternatively, using the combination of the test information from relay with an integrator

and a time delay, i.e. the latter two columns in table 5.3, yields similar results,

T = 13.89, and α = 0.5.

The identification error compared to the true values of the model parameters are listed

in table 5.4. The error for T is as high as 16.2%. However, this is expected because the

describing function analysis is based on the assumption of a sinusoidal input to the relay

[335]. Since the system output shown in figure 5.12 is more triangle shape than a pure

sinusoidal, using the first harmonic to approximate it will reasonably introduce big error.

Similar amount of identification error ranging from 5% ∼ 27% has been reported for integer
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Table 5.4: The identification error.

K T L α

True value 12.8 16.7 1 0.5

Identification 1 12.3 14.1 0.93 0.5

Error (%) 3.9 15.57 7 0

Identification 2 12.3 13.89 0.93 0.5

Error (%) 3.9 16.83 7 0

order systems in the literature, see [327, 438, 344, 345]. Smaller identification error can be

achieved by implementing more complex relay setups, but it is not addressed here because the

main purpose is to show the capability. For systems with higher fractional order dynamics,

the output can be more close to sinusoidal. In such case, the identification error will be

smaller and a good FOPDT model approximation can be obtained. This is demonstrated

via an experiment in the next section.

5.3.2 Experiments

To investigate the practical feasibility of the proposed method, experiments are performed

on the Peltier based temperature control platform as shown in figure 5.1.

The first input-output channel is selected to do the experiments. The control signal is

the voltage applied to the Peltier unit through a MOSFET H-bridge. The value is the bi-

directional PWM signal having a resolution of 28 for 9V , representing 0 ∼ 100% duty cycle.

Two tests are performed respectively.

5.3.2.1 The step tests

A step test of heating is done under the ambient temperature of 21◦C. This is to identify a

model for the purpose of comparing with the later on identified model from relay tests. In

the step test, the actuator is set to run at a duty cycle of 25% in order to avoid the nonlinear

behavior of the Peltier unit. The data is plotted in figure 5.14, and an FOPDT model is

obtained by curve fitting as shown in figure 5.15,

G (s) =
0.1584

15.79s0.8 + 1
e−0.86s,

where the fractional order α is determined by order scanning with a step size of 0.05. The

fitting is based on the time domain analytical solution given by the Mittag-Leffler function

in equation (2.10). The tool for numerical computation is available in [259]. The integral of

time multiply by absolute error (ITAE) versus the fractional order is plotted in figure 5.16,

from which the optimal order of 0.8 can be read off. Since the temperature change is a heat

transfer process, it is reasonably enough to exhibit fractional order behavior, [439].

5.3.2.2 The relay feedback test

Firstly, a biased relay feedback test is performed. The block diagram is shown in figure 5.17.

Considering the nonlinear behavior of the Peltier, the bias H0 is selected to be 40% and the

amplitude H is selected to be 60%, so as to achieve a roughly symmetric performance in
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Figure 5.14: The step responses of the temperature control test platform.
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Figure 5.15: Fitting the step response data using Mittag-Leffler function.
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Figure 5.16: Scanning the best fitting fractional order.

heating and cooling. The hysteresis is set to be ε = ±3◦C around the ambient temperature.
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Figure 5.17: The block diagram of the biased relay feedback with hysteresis.

The data is plotted in the upper plot in figure 5.18, from which the steady state gain can be

calculated, i.e. K = 0.16, and the oscillation amplitude and period can be read off:

A1 = 3, and Pu1 = 11.9.
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Figure 5.18: The raw data of the relay experiment.

To obtain the information for another oscillation point, the relay with an integrator is

used to perform the second relay test, data of which is plotted in the bottom plot in figure

5.18. The oscillation amplitude and period are:

A2 = 5.67, and Pu2 = 27.48.

The time constant and the fractional order can be numerically calculated via equations

(3.71) and (3.72):

T = 16.19, and α = 0.8,

which is shown in figure 5.19. The dead time can be either estimated form the raw data

or calculated from the equation (3.68), L = 0.77. This result closely matches the model
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Figure 5.19: Numerically solving equations (3.71) and (3.72) using the experimental data.

obtained through curve fitting of the step test data, which takes about three times longer.

So, system identification of the test platform using the proposed method is successful and

efficient in terms of time and energy consumption.
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5.4 Simulation and implementation of the fractional order

auto-decoupling

5.4.1 Simulation examples

Example 1:

Consider the process below with FO transfer function elements, which is modified from the

model of the thermo-electric temperature control experimental platform described in section

5.1,

P (s) =

[
1.2

2s0.5+1
0.6

3s0.7+1
0.5

s0.8+1
1.5

3s0.6+1

]
.

An output noise is added to emulate the measurement noise with the signal-to-noise ratio

(SNR) of about 31dB. The step responses of the individual channels before and after de-

coupling are plotted in figure 5.20, from which it can be observed that the three decoupling

methods still apply to different fractional orders as long as the condition in equation (4.16)

is satisfied. The output signals from the inverted decoupler are plotted in figure 5.21 for

reference.
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Figure 5.20: The open-loop step responses of the system in Example 1, before and after
decoupling.

Example 2:

To illustrate the concept in section 4.2.4, consider the following FO process with dead time,

which is modified from the Wood-Berry distillation process in [437] by changing the integer
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Figure 5.21: The output signals of the inverted decoupler. Left: u1 step, u2 zero; right: u1

zero, u2 step. Top plots are from D12 and bottom are from D21.

order to half order and swapping the dead time of the primary and the interactive loops,

P (s) =

[
12.8e−3s

16.7s0.5+1
−18.9e−s

21.0s0.5+1
6.60e−s

10.9s0.5+1
−19.4e−7s

14.4s0.5+1

]
.

Since L12 < L11 and L21 < L22 in this example, the manipulation of dead time needs to be

included into the decoupler design. Following equation (4.20), the simulation result is shown

in figure 5.22. While the artificial time delays ensure the causality of the decoupler, the

advantage of being able to derive the input to decoupling element from the secondary-loop

actuator is lost, [370]. It can be seen that although both decouplers achieve “perfect control”

[373] at steady state, there are differences in the transients. The simplified decoupling with

the artificial time delay can completely eliminate the interaction, although it changes the

primary loop (this change can be compensated by controllers). By contrast, the inverted

decoupling keeps the primary loop unchanged, but the decoupling effect at the initial part is

a little off from expectation. In practical implementation, the selection of which decoupling

to be used can be determined by control performance specifications.

Example 3:

Consider again the process model in example 2, but change the input u2 to a periodic signal,

u (t) =

[
u1

u2

]
=

[
unitstep

0.5sin(10t)

]
.

Such input signal combinations are usually used in chemical reaction processes where one

reaction species is kept at a constant supply rate while the other is injected periodically. In
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Figure 5.22: The open-loop step responses of the system in Example 2, using different
decoupling methods.

this case, the frequency dependant RGA will play a more important role than the static RGA.

For comparison, the RGAs of the original and the modified Wood-Berry process are plotted

in figure 5.23 as an illustration of section 4.2.5. In this example, although the frequency
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Figure 5.23: The RGA of the original and modified Wood-Berry processes.

dependant RGA differs from the integer order model, the paring does not change. For some
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practical processes, the paring may even change across broad band.

The simulation result using unit feedback proportional control with inverted decoupling

is plotted in figure 5.24. The green line shows that the two primary loops interfere each

other significantly before decoupling, which appears in the form of fluctuations for channel

1 and a bias for channel 2. The blue line shows that the interaction is well decoupled by the

fractional order inverted decoupler.
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Figure 5.24: The closed-loop step response for Example 3, with both inputs on.

The simulation is performed in Matlab with the help of “Ninteger” toolbox [80] for solving

the fractional integration and differentiation. A sample Simulink block diagram implementing

the inverted decoupler is drawn in figure 5.25.

Figure 5.25: A sample Simulink block diagram of inverted decoupling.

135



5.4.2 Implementing the fractional order auto-decoupling on a 4×4 MIMO

thermal process

The decoupling procedure is applied on a temperature control problem in an industrial

process. (Note: due to confidential agreements, technical details are omitted and data are

scaled to dimensionless.)

Heaters Sensors 

(a) Side view.

1 

2 

4 

3 

(b) Top view.

Figure 5.26: The schematic of the annulus heater divided into four sectors.

Different from the scenario described in section 5.5, the control object under investigation

is a ring shape device divided into 4 sectors with a coil evenly attached to each sector as

the heat source, as shown in figure 5.26(a). To characterize the loop interactions, open-loop

step response data is acquired by sequentially turning on one heat source while keeping the

other three off. The steady state gain matrix computed from the data reveals asymmetric

interaction among the zones, i.e. each zone has higher influence on the next zone clockwise,

lower influence on the next zone counter-clockwise, and negligible influence on the diagonal

zone. The physical reason might be the sensor-heater misalignment during the mechanical

installation, which is assumed to be an uncorrectable fact.

Since this is a thermal process, a fractional order transfer function matrix is chosen as

the model structure,

G(s) =


g11 g12 0 g14

g21 g22 g23 0

0 g32 g33 g34

g41 0 g43 g44

 . (5.5)

In that the interaction between diagonal zones is negligible, the secondary off-diagonal

elements in the above matrix are set to zeros for simplicity. Model parameters are identified

using the relay feedback method described in section 3.3.3, because the relay feedback method

takes much shorter time than the step test for an FO model whose order is much smaller than

1. Figure 5.27 shows a cluster simulation of the model with parameter uncertainties added

in. The simplified decoupling is employed. The fractional orders of the transfer function

elements are examined to guarantee the properness of the resulting FO decoupler. The

parameter identification and the inversion of the TF matrix are programmed and executed

automatically to perform the task. Figure 5.28 shows the implementation diagram. Before
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Figure 5.27: The sample responses of the four loops with respect to one heater actuation.

the decoupling, the input signals to the heaters are [u1, u2, u3, u4]T from the PID controllers.

Now, these signals are fed to a computation unit and the control signals for decoupling,

[m1, m2, m3, m4]T , are generated,
m1

m2

m3

m4

 =


D̂11 D̂12 D̂13 D̂14

D̂21 D̂22 D̂23 D̂24

D̂31 D̂32 D̂33 D̂34

D̂41 D̂42 D̂43 D̂44



u1

u2

u3

u4

 (5.6)

where D̂ij are the discredited approximation of the resulting FO filters.
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Figure 5.28: The block diagram for implementation.

The data log of the “auto-decoupling” procedure, including the parameter identification

and the computation of the decoupling control signal, is shown in figure 5.29, in which
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the data during 0∼ 3500 sec shows the loop interaction before decoupling, the data during

3500∼7000 shows the auto-identification and the data during 7000∼10000 sec shows the loop

performance after decoupling. Through comparison, it can be seen that the loop interaction

after the auto-decoupling is significantly suppressed.

Figure 5.29: The data log of the auto-decoupling procedure.

As a quantitative evaluation of the decoupling performance with uncertainties, the nor-

malized loop interaction gain matrix before and after decoupling are listed below in equations

(5.7) and (5.7), respectively. By comparison, it can be seen that the original loop interaction

gets much attenuated, and a negligibly slight symmetric interaction is achieved.

Kcpb =


1.000 0.112 0.001 0.210

0.153 1.000 0.101 0.003

0.000 0.149 1.000 0.136

0.123 0.003 0.120 1.000

 , (5.7)
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Kcpa =


1.000 0.027 0.001 0.005

0.003 1.000 0.032 0.007

0.004 0.017 1.000 0.067

0.003 0.007 0.004 1.000

 . (5.8)

5.5 A practical case study of the identification and the feed-

back linearization of a nonlinear fractional order MIMO

process

The simulation presented in this section is to support the fractional order feedback lineariza-

tion discussed in section 3.4.4. The control object is a chucking substrate with heating capa-

bility, and a schematic sketch is shown in figure 5.30. Note: due to confidential agreements,

raw data are substituted by simulation data or re-scaled to dimensionless.

1 2 3 4 

Figure 5.30: The schematic of heating substrate divided into 4 annuli zones.

The following nonlinear fractional order dynamic equation is abstracted to depict the

heating of the device,

C
0 D

0.5
t x(t) = − 1

21
x(t) +

1

21
ϕ [(−0.016u(t) + 3.6)u(t)] (5.9)

y = x− 10, (5.10)

where ϕ(·) denotes the saturation protection nonlinearity used in the practical process.

The nonlinearity of the process gain is captured by exciting it with a stair input, as shown

by the blue curve in figure 3.14, and the nonlinear gain defined by three different calculation

types are plotted in figure 5.31.

For this particular case, since the output is linear to the state, the input-output lineariza-

tion is equivalent to the input-state linearization. According to criterion 1, the transformed

input can be expressed as the following:

v = C
∞∑
i=1

Eα,1(λit
α)x(0) + tα−1Eα,α(λit

α) ∗G(u, x), (5.11)
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Figure 5.31: The nonlinear gain versus input and output.

Where Eα,β(x) is the Mittag-Leffler function,

Eα,β(x) =
∞∑
k=0

xk

Γ(αk + β)
(α > 0, β > 0). (5.12)

The linearized system response is shown in figure 5.32, from which it can be seen that the

y − v relationship is linear, in contrast to the black curve in figure 5.33.
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Figure 5.32: The simulated overall response of the linearized system to the transformed
input.
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Figure 5.33: The linearized input/output relation using different compensation methods.

Eventually, a model based time-optimal feed-forward controller is developed based on this

nonlinear modeling and linearization.

5.6 Experiment of the fractional order MPC using RIOTS on

the Peltier platform

In this section, the FO MPC using RIOTS proposed in section 4.3 is implemented on the

2-input-2-output HIL experimental platform. As introduced in section 5.1, the experimental

platform is highly nonlinear. The dynamics of cooling and heating are asymmetric. There-

fore, two models are abstracted from raw data to represent the cooling and heating: y1

y2

 =

 −0.018
6.73s0.9+1

−0.008
6.91s0.9+1

−0.008
6.86s0.9+1

−0.019
6.68s0.9+1


 u1

u2

 . (5.13)

 y1

y2

 =

 −0.158
15.7s0.8+1

−0.035
15.9s0.8+1

−0.037
15.8s0.8+1

−0.16
16.0s0.8+1


 u1

u2

 . (5.14)

As a baseline visualization, figure 5.8 shows the system response to a step set-point

reference under no control and under a basic PI control. In order to use the RIOTS based

FO MPC (RMPC) to deal with the obtained FO MIMO system, a reformulation is performed

to convert the FO transfer function matrix into the pseudo state-space representation,
ẋ11

ẋ12

ẋ21

ẋ22

 =


a11 1 0 0

0 a12 0 0

0 0 a21 0

0 0 0 a22



x11

x12

x21

x22

+


b11 0

0 b12

b21 0

0 b22


[
u1

u2

]
(5.15)
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[
y1

y2

]
=

[
c11 c12 0 0

0 0 c21 c22

]
x11

x12

x21

x22

 (5.16)

where {aij , bij , cij}, (i, j = 1, 2) are the parameters in the system matrix, input matrix and

output matrix, respectively.
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Figure 5.34: The state and output of the system under MPC using RIOTS.

The experiment is carried out within a small temperature set-point range to avoid the

significant nonlinear behavior. The ambient temperature is at 24◦C. The RIOTS based FO

MPC is compared with the MPC in Matlab Toolbox (MMPC) to control the system. For

both control systems, the sample time is Ts = 0.2s. For the follwoing sample demonstration,

the reference inputs are

[
r1

r2

]
=

[
26

29

]
, for the left and right Peltiers, respectively. The

maximum control input is mapped within the limit range of u1 ∈ [−255 255], u2 ∈ [−255 255].

For MMPC, the predictive horizon isNp = 30 and the control horizon isNm = 20. Whereas in

RMPC, considering the computation speed, the predictive horizon and the control horizon

are Np = 40 and Nu = 10, and the weighting matrix is tuned as Wy =

[
1 0

0 0.5

]
. The

Simulink block diagrams of the experiment using MMPC and RMPC are shown in figures

5.35 and 5.36, respectively. The experimental results are shown in figures 5.39, 5.40, 5.37,

and 5.38, from which it can be seen that the RMPC outperforms the MMPC under this

severe nonlinear circumstance. (Note: the ambient temperature bias in the MMPC result is

removed during the running of Simulink due to some technical issues.)

142



Figure 5.35: Simulink block diagram of the MIMO system using Maltab built-in MPC

Figure 5.36: Simulink block diagram of the MIMO system using RIOTS based MPC
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Figure 5.37: System outputs of the MIMO system using RIOTS based MPC
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Figure 5.38: Control inputs of the MIMO system using RIOTS based MPC
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Figure 5.39: System outputs of the MIMO system using Maltab built-in MPC
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Figure 5.40: Control inputs of the MIMO system using Maltab built-in MPC
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5.7 Simulation of FO ESC for plasma impedance matching

The radio frequency (RF) power is the common power source for plasma ignition in the

industry. It is a common sense that wherever RF is used, the impedance matching needs to

be considered. Although the matching technology for static loads is mature, new challenges

emerge when loads with dynamic nonlinear impedance are dealt with, among which the

plasma impedance matching is a typical case.

The plasma is complex and its impedance is hard to model [440]. To briefly state the

complexity, some classic formulations are listed to explain why traditional controllers such

as the PID and MPC are not well applicable, which naturally leads to the use ESCs. Then,

simplified circuit models of the plasma impedance are reviewed for matching network design

and simulation.

5.7.1 Formulation of the plasma impedance

Using the ESC to match the RF powered plasma impedance in real time is a relatively novel

idea. Some work and results using the regular sinusoidal ESC were presented in [441] and

[442].

The plasma impedance matching concerns about determining the adjustable component

values in the matching network to steer the RF power delivery to the maximum point and

remain at such point thereafter. This perfectly fits in the logic flow of the ESC.

The impedance is a critical electric characteristic of plasma. One of the reasons that

makes it hard to model is the measurement. Although many approaches have been invented,

such as the VI or impedance probe [443, 444] and the Langmuir probe [445], the accurate

measurement of the industrial plasma during operation is still hard if not impossible. This

is because any contact sensing inside or around the plasma is so invasive that it affects the

plasma status. In other words, the values measured by the probes are no longer those when

the probes are not there. Hence, virtual metrology has been proposed and widely adopted,

[446, 447, 448].

The plasma impedance is closely related to the plasma status which is affected by

numerous factors. Therefore, it is essentially a nonlinear function of many parameters

including the plasma temperature T , density n0, the electron-neutral collision frequency

νm, the gas flow rate G, the gap space between electrodes d, the RF power Prf , frequency

ω, etc. It is usually expressed in a “black-box” form in control system design [441],

Zp = fp(T, νm, n0, P, ω, d,M) (5.17)

where fp is an unknown nonlinear function.

In plasma physics, different equations are deduced to calculate the impedance of different

types of plasma. Depending on the scale of the plasma and the demand of estimation

accuracy, corresponding approximations can be selected. For example, the space plasma

impedance can be derived from the Maxwell’s equations and the generalized Ohm’s Law

[449, 450],

E + v ×B = ηJ +
1

ne
(J×B−∇P) +

m2

ne2

∂J

∂t
(5.18)
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with E the electrical field, B the magnetic flux density, J the current density, ∇P the

pressure gradient and η the conductivity coefficient. On the other hand, for the small-

scale low-pressure industrial plasma, some variables play more dominant roles than others.

Thus, the calculation can be simplified. For instance, the reactance of the capacitive reactor

plasma can be approximately determined by the RF current I and the bulk plasma thickness

d, [451, 452],

Xp =
4ω

|I|2
∫(ωm − ωe)d3x, (5.19)

where ωm and ωe are the harmonic electric and magnetic energy densities, respectively. The

bulk plasma admittance is presented in [290] as follows,

Yp = jωεp
A

d
(5.20)

where A is the electrode area, and εp is the plasma dielectric constant determined by ω, νm
and the electron plasma frequency ωpe,

εp = ε0

[
1−

ω2
pe

ω(ω − jνm)

]
. (5.21)

Plugging εp into equation (5.20) will give us the plasma admittance in the form of a combi-

nation of inductance (L), resistance (R) and capacitance (C):

Yp = jωC0 +
1

jωLP +Rp
(5.22)

where C0 = ε0A/d is the vacuum capacitance determined by the electrodes’ gap distance

d and area A; LP = 1/(ω2
peC0) is the plasma inductance, and Rp = νmLP is the plasma

resistance.

These equations are insightful from physics point of view, but their practical value for

control engineers is limited. Real-time estimation or analytical solution of the plasma

impedance cannot be expected from these equations. Therefore, many control engineers

choose to bypass the tedious physics modeling and directly use simplified electrical models

consisting of LRC components instead. In [290, 3, 453], the plasma impedance is modeled

as an LRC circuit illustrated in figure 5.41. In [454], it is modeled with additional diodes to

capture the nonlinear behaviors under varying or multi-frequency RF sources, as shown in

figure 5.42. In the simulation section of this paper, an LRC model is employed as the nominal

plasma impedance. Fluctuations are added based on process data, empirical observation,

and the implication of equations (5.19)∼(5.22). For example, higher pressure results in

higher collision rate and consequently higher resistance, etc. Thus, the programmed plasma

impedance become a dynamic model that evolves with the environmental changes.

5.7.2 The RF impedance matching

Similar to the propagation of light and wave, the RF power will also be reflected when

transmitted from one dielectric to another. Thus, appropriate matching networks are needed

to minimize the power reflection from the load, or equivalently, to maximize the power
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Figure 5.41: The LRC circuit representation of the plasma impedance, [3].

Figure 5.42: Modeling the nonlinearity of the plasma impedance using LRC circuit with
diodes, [454].

transfer to the load. The load power is the remaining part of the forward power excluding

the reflected power, Pl = Pf − Pr. It can be calculated as:

Pl =
1

2
VlI
∗
l =

1

2
Vs

Rl
Zs + Zl

Vs
(Zs + Zl)∗

, (5.23)

where Vs and Vl are the source and load voltages, respectively; Zs = Rs+jXs, and Zl = Rl+

jXl are source and load impedance as shown in figure 5.43. According to the Maximum Power

Transfer theorem, the maximum power can be achieved when the impedance is matched, i.e.

when the load impedance is equal to the complex conjugate of the source impedance [455],

Zs = Z∗l . (5.24)

In such case, Pr = 0 and

Pl = Pf =
1

2
Vs

Rl
2Rl

Vs
2Rl

=
V 2
s

8Rl
. (5.25)
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Figure 5.43: The schematic of the matching network between an RF source and a load.

As a quantification of the matching outcome, the reflection coefficient from the source to the

load is defined as follows, [455],

Γ =
Zl − Zs
Zl + Zs

, (5.26)

with Γ = 0 representing that the impedance is matched.

Taking into consideration the matching network, the load impedance Zl in equations

(5.24)∼(5.26) are substituted by Zml = fz (Zm, Zl) where Zm = fm(C) is an abstract

representation of the tunable matching network impedance via the capacitor C, and fz is a

function of Zl and Zm. The exact expressions of fz and fm are determined by the type of

the matching network in use, and they can be calculated according to the Kirchhoff ′s law

and Thévenin′s theorem. However, this is not addressed in this paper because: 1) the FO

SM-ESC is a model independent controller which does not require the complete knowledge

of the relationship between the input and output; 2) even if fz is determined, fp in equation

(5.17) is still unknown by all means. Thus, the overall relationship between the input and

output is still not able to be determined:

Pl = h(C), (5.27)

where h is unknown and is usually called the performance function in ESCs. To illustrate

this concept, a control block diagram is drawn in figure 5.44.
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Figure 5.44: The control block diagram for the plasma impedance matching.
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5.7.3 Simulation

The impedance matching of a capacitively coupled plasma (CCP) using an “L” network is

simulated here as a case study. As the name implies, the industrial CCP has a capacitive

impedance affected by the reaction recipes including the applied RF power, reactor pressure,

temperature, and so on. The RF power source has a frequency of 13.56 MHz and a 50Ω

inner resistance which is an industrial convention. Let the RF forward power be 1000W .

(Remark: most RF generator equipment can provide forward power with a range larger than

the rated value so as to give the matching network some margin for possible performance

degradation. For simulation purposes, the forward power is set fixed in this context.) Assume

that the plasma impedance has a nominal value of Zp0 = 5− 30j Ω when the reactor recipe

is T = 110◦C, P = 300 mTorr and G = 45 sccm. A basic “L” shape matching network with

an adjustable motor-driven capacitor is used to perform the task. A schematic is shown in

figure 5.45.

~ 

50  

13.56 MHz 

 

 
 

Figure 5.45: The connection of the “L” shape matching network.

For the nominal plasma impedance, the inductance and capacitance of such a network

can be predetermined via some Smith Chart manipulation [456],

L = 528 nL, C = 778.5 pF.

This will make the nominal impedance “side-look” like 50Ω so that the power delivered to

the plasma is maximized.

A periodic fluctuation, a step change and white noise are added to the temperature,

pressure and gas flow, respectively, as shown in figure 5.46. These perturbations in the

recipe species produce a varying plasma impedance around Zp0, which furthermore results

in a drifting power peak. However, as long as it lies in the tuning space of the matching

network, the maximum power transfer can be achieved by adjusting the capacitor. A sweep

of the capacitor values is performed for several sets of recipes, as plotted in figure 5.47. This

is just to give a visual illustration of the peak power drifting. A sweep is not available in

real-time practice because the big power reflection and time consumption during the sweep

are impermissible. Moreover, the recipe hardly stays fixed for sweep.

To model the actuation time of the motor driven capacitor, a transfer function is identified

from real data, as shown in figure 5.48,

G (z) =
0.04(z + 0.72)

(z − 0.74)−2 , fPWM = 10Hz. (5.28)
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Figure 5.46: The simulated perturbations of the recipe species.
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Figure 5.47: The sweep of the capacitor values under different CCP reactor recipes, with a
step size of 10 pF.

The Simulink block diagram of this setup is shown in figure 5.49, and the implementation

of the fractional order integrator utilizes the Matlab toolbox introduced in [79]. Using the

proposed FO SM-ESC, the maximum load power is quickly detected and is tracked in real

time regardless of the power peak drifting. The control performance is plotted in figure 5.50

including the power output Pl and the capacitance input C. It can be seen that the proposed
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Figure 5.48: The PWM signal of the driving motor.

Figure 5.49: The Simulink block diagram for the CCP impedance matching using FO SM-
ESC.

method successfully detects the optimal capacitance that matches the plasma impedance

within 2 seconds including the motor driving time. In addition, the maximum power is

maintained within 2% error range against the severe recipe changes. In comparison, the IO

SM-ESC with the same set of controller parameters needs much longer time to detect the

optimal capacitance, which is also shown in figure 5.50.

For more comparison, the matching performance using the sinusoidal ESC under the same

recipe condition is plotted in figure 5.51, from which it can be seen that the performance is

not as good as that achieved by the proposed enhancement, in terms of both reaching time

and tracking error. Specifically, if the amplitude of the sine signal in the ESC is set big,

reaching time can become shorter, but a larger tracking error is resulted; on the other hand,

if it is set small, the tracking error is decreased, but the reaching time become longer. When

the parameters are selected improperly, this ESC may fail to lock the power peak even if
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Figure 5.50: Comparison of the matching outcome between fractional and integer order
SM-ESCs.

detects it, as shown in figure 5.52.
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Figure 5.51: Matching the CCP impedance with an “L” shape network using the sinusoidal
ESC.

The proposed control strategy has also been verified on other scenarios such as matching

the inductively coupled plasma (ICP) using “T” shape matching network. Other case studies

are available but are not enumerated here due to limited space.
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Figure 5.52: The failure of extremum tracking using sinusoidal ESC due to improper
parameter selection.
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Chapter 6

Beyond Fractional Order Process Control

History doesn’t repeat itself, but it does rhyme.

— Mark Twain

Murphy’s law states: anything that can go wrong, will go wrong. Psychological impli-

cations usually drive people to do unwilling things subconsciously, and hence, results in the

occurrence of rare events at a higher probability than they were expected. Eventual, It

appears to fulfill the common saying: the more you worry about one thing, the worse it gets.

This chapter serves as a cadenza part of this dissertation, so as to present some miscel-

laneous research efforts on fractional calculus related topics.

6.1 Lévy flight based random search

There are numerous approaches to perform the function minimization task, for example, the

gradient descending methods [457], meta-heuristic algorithms [458], dynamic programming

[459], linear programming (LP), etc [460]. As a particular example, the order scanning

procedure discussed in section 3.3.1 uses the Matlab built-in functions ’fminsearch’ or ’fmi-

nunc’ based on the simplex method which belongs to the gradient descending category. In

this dissertation, a practically useful search method is developed to further fulfill the data

fitting task during the order scanning procedure, and it turns out to be effective. The

Matlab script is available for download in [461]. This search method implants the Lévy

flight based randomization into the particle swarm optimization (PSO) algorithm [462] in

the meta-heuristic category.

Definition 25 (Lévy flight). A Lévy flight is a random walk in which the step-lengths

have a probability distribution that is heavy-tailed [463], such as the Lévy distribution whose

probability density function (pdf) is,

f(x;µ, c) =

√
c

2π

e−c/[2(x−µ)]

(x− µ)3/2
, (6.1)

where µ is the location parameter and c is the scale parameter. For example, when defined

as a walk in a 2-dimension plane, the steps are in isotropic random directions.
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The connection between Lévy flight and the fractional calculus can be found in the

fractional order partial differential equation (2.51) which is used to depict the random walks.

An important property of the Lévy flight is that its mean squared displacement (MSD) does

not converge because its θ moment is:〈
|x|θ
〉
∼ tθ/α. (6.2)

Thus, when θ = 2 and α < 2, it diverges. Having this feature, “long jumps” appears

occasionally in the walk, which is an obvious characteristic that distinguishes the Lévy flight

from the Brownian motion. Incorporating this feature in the PSO algorithm for the particle

velocity update is likely to provide better performance in terms of global randomization,

because the long jumps help particles with escaping the local minimum [464]. The Matlab

script is created based on such technique and is briefly described below.

[gbest, xb] = levyPSO(func, vars) is a function that searches for the global mini-

mum of an n-Dimensional function defined in ’func’ using the PSO algorithm based on Levy

distribution randomization. It returns the global (not guaranteed) minimal value and the

coordinate at which the function takes that value. The input to this function is designed in the

similar manner to the Matlab built-in function ”fminsearch()”. Sample syntax: [gbest, xb]

= levyPSO(func test, [0 0], [100 100], 100, 200) for 2-D optimization, and [gbest, xb]

= levyPSO(func test 3d, [0 0 0], [100 100 100], 100, 200) for 3-D function optimization.

The performance of this function is tested on the attached test functions within the

download file. It is competitive with fminsearch() and GOAT() in terms of the target hitting

rate (locating global minimum successfully), and it is better than the built-in particleswarm()

in Matlab 2014b. When adequate swam size (not too large) is used, it completes the search

faster than GOAT() and fminsearch(). Although fminsearch() is not in the same algorithm

category as the PSO, the comparison is made because the input and output of the levyPSO()

are designed in the same paradigm as fminsearch(). Moreover, both of them are used for the

aforementioned order scanning problems.

As a visual illustration, the minimum search on a 2-D function using the Lévy based PSO

is shown in figure 6.1, in which the left sub-figure shows the sample random walk trace of a

single particle.

More information on this research topic can be found in [465] and [466]. The PSO

algorithm is also used to approximate a fractional order system by an integer order model

[467].

6.2 The MESABox Apps for control tutorial

To fulfil the need of personalized portable lab modules for the mechatronics course teaching,

a Matlab Application (App) framework named MESABox is developed (MESA stands for

Mechatronics, Embedded Systems and Automation, and is the name of a laboratory in UC

Merced). A snapshot of the existing App gallery is shown in figure 6.2. Several typical Apps

are developed for the demonstration of feedback control concepts, such as the “Floating ball

App” in figure 6.3 and the “fan-plate App” in figure 6.4. They are used to illustrate the

height control of an floating ball inside a tube and the displacement control of a plate in the
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(a) A particle doing Levy flight. (b) Particles on the 2-D function surface.

Figure 6.1: The demonstration of Lévy flight based PSO for a single objective function
minimum search problem.

Figure 6.2: The snapshot of the MESABox Apps gallery.

gas flow, respectively. With the help of 3D printing technology, varieties of components are

fabricated for fast-prototyping of control systems. A detailed description can be found in

[432] and the associated workshop.

In order to demonstrate the use of typical sensors and actuators, dedicated Apps are

developed. For example, the “Stagger Chassis App” uses infra-red sensors and motors

driven by the Arduino motor shield board. The XBee bluetooth module is used for the
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(a) Hardware of the Floating Ball App. (b) GUI of the Floating Ball App.

Figure 6.3: The Floating Ball App in the MESABox.

(a) Hardware of the Fan-Plate App. (b) GUI of the Fan-Plate App.

Figure 6.4: The Fan-Plate App in the MESABox.

communication with PC so that wireless control can be performed through Matlab/Simulink

in real-time. This implementation has not been reported in the community. The hardware

configuration and the supporting software GUI is shown in figure 6.5. As another example,

the “Heating Box App” shown in figure 6.6 uses the resistance heating pads and thermal

couples for temperature controls.
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(a) Hardware. (b) GUI of the Stagger Chassis App.

Figure 6.5: The Stagger Chassis App in the MESABox.

Figure 6.6: The Heating Box App in the MESABox.
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6.3 EtherCAT timing jitter characterization

EtherCAT, (Ethernet for Control Automation Technology) is an Ethernet-based field-bus

system invented by the German company Beckhoff Automation, [468]. It is later on developed

into an international standard for the device communication in industrial controls. As a

network based protocol, the timing of the packet cyclic among the networked devices is

supposed to have jitter.

Jitter is the deviation from true periodicity of a presumed periodic signal in electronics

and telecommunications, often in relation to a reference clock source, [469]. There are

numerous types of jitter in electrical engineering, such as the sampling jitter in AD/DA

(analog-digital/digital-analog) conversion, the packet jitter in computer networks, and the

seek jitter in the audio disc extraction.

Figure 6.7: Hardware setup for the packets sniffing.

Jitter can be quantified in the same terms as all time-varying signals, e.g. root mean

square (RMS) or peak-to-peak displacement. It is known that jitter distribution of the

network communication is usually significantly non-Gaussian [470]. This can occur if the

jitter is caused by external sources such as power supply noise. In these cases, peak-to-peak

measurements might be more useful. Many efforts have been made to meaningfully quantify

distributions that are neither Gaussian nor have meaningful peaks. In the monograph

[469], the self-similar processes (defined below) in telecommunications are investigated. In

[471], contributions to networked control systems using FC is discussed. Inspired by this

research, the timing jitter analysis of an EtherCAT network in an industrial control system

is performed.

Description 1 (Self-similarity). If (Xat) and aH(Xt) have identical finite-dimensional dis-

tributions for all a > 0, then X is self-similar with parameter H [472].
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Figure 6.8: The Matlab based GUI for packets data parsing and analysis.

To capture the packets, an EtherCAT probe, ET2000 [473], is inserted into the network

through the EtherCAT junction slave, Omron GX-JC06-H. The schematic of the hardware

setup is shown in figure 6.7. The open-source network-sniffing software, Wireshark [474], is

used to capture and log the packets into a PC. EtherCAT packets are extracted by applying

some filters in Wireshark, such as “eth.type ==0x88a4” for specifying the Ethernet type,

and “esl.port==0 or esl.port ==2 and frame.len == 196” for specifying the port and

frame length.

A Matlab based GUI, as shown in figure 6.8, is developed to simplify the data parsing

and the jitter analysis. Time stamps parsed by this GUI are shown in figure 6.9. Since the

investigated network environment only contains 6 devices, which is relatively idle and pure,

the timing jitter fits a Gaussian distribution in this circumstance.

6.4 Fractional calculus and finance - a cadenza section

Most academic researches have the potential to be converted into productive forces or

economic benefits, and so does fractional calculus. The previous five chapters have shown the

benefits of applying FC on industrial process control. In this section, some novel attempts

of applying FC on financial market data analysis are discussed with theoretical hypotheses.

While there are innumerable research work in this field, e.g. [475, 476], the author would

just like to reveal some interesting attempts and discoveries, as some side work related to

fractional calculus along the main thread of the dissertation research. This section does

not serve as professional financial analysis or market prediction. It can be treated as either
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Figure 6.9: The distribution of the timing jitter.

hypothetical coincidence, or rhapsodic mindstorm. One of the original motivations of this

research lies in the long time debated propositions: whether or not the financial market has

long memory; whether or not it is predictable, etc. During the exploration, some tests with

uncertain conclusion are attempted and bold conjecture are promoted.

6.4.1 Price has memory

Whether the financial market has long memory is a hot debated topic. Various propositions

have been proposed in the literature. Some economists claim it has, while others are against

this opinion. For example, [477] illustrates the existence of long-term memory in stock market

prices; [226] proposes a new model for the long memory property of stock market returns; and

[478] discusses the long range dependence (LRD) and self-similarity in the financial markets.

Moreover, before investigating the long memory issue, in the first place, whether or not

the price movement in the financial market is a stochastic process is even questioned. The

following two sections express some of the author’s reasoning. The long memory and LRD are

closely related to the heavy-tailed distributions, which have been observed in many natural

phenomena including physical and sociological phenomena, etc. Mandelbrot established the

use of heavy-tailed distributions to model real-world fractal phenomena, e.g. Stock markets,

earthquakes, climate, etc. To proceed, basic definitions of these terms are briefly given as

the following.

Description 2 (Long range dependence). Long range dependence, also called long memory

or long-range persistence, is a phenomenon that arises in the analysis of spatial or time series

data. It relates to the rate of decay of statistical dependence, with the implication that this

decays more slowly than an exponential decay, typically a power-low decay.

The LRD phenomenon was first observed and documented by the British hydrologist

Harold Edwin Hurst in 1951, during his study of reservoirs along the Nile river [479]. LRD is
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often related to self-similar processes and has been used in various fields such as internet traffic

modeling, econometrics, hydrology, linguistics and the earth sciences. Different mathematical

definitions of LRD are used in different contexts and purposes. Some references can be found

in [480]. Generally, a time series is said to have long range dependence if its covariance tends

to zero as time goes, but so slowly that the sum of the covariance diverges,

lim
n→∞

Cov(x0, xn) = 0 (6.3)

∞∑
n=0

|Cov(x0, xn)| = ∞. (6.4)

Heavy-tailed distribution can be characterized by its pdf,

lim
x→∞

eλxP [X > x] =∞ for all λ > 0. (6.5)

The trend lines in technical analysis are the best application examples of price having

memory. In addition, due to the fractal property of the price charts, the trend line analysis

can be applied on any time scaled chart, indicating that prices have memory of both short

and long term. Due to participant’s psychological projection and their reaction, thereby,

technical analysis works well quite often [481]. This is also why skeptics say it is a self-

fulfilling prophecy.

6.4.2 Price has memory?

History can be extremely similar, but on the other hand, it doesn’t repeat. Imagine, if

history repeats, then the correlation, the trend of price charts and so on become so obviously

informative that all players become winners in a game, which is not true from statistics. The

fact is, although the financial market is not a zero-sum game, most participants lose [482],

even investment banks. One of the recent examples account the application of bankruptcy

protection by FXCM Inc. in January 2015 [483].

In the famous book ”A Random walk down wall street” [227], the Princeton Economist

Dr. Malkiel believes that stock prices are largely random. However, the randomness does not

have long memory as he states, “The stock market has little, if any, memory”. In the counter

book, “A Non-Random Walk Down Wall Street” [484] by the MIT Finance professor Lo and

the Wharton Finance professor MacKinla, a number of essays are collected offering empirical

evidence that valuable information can be extracted from security prices. Therefore, they

argue that the price movements are not completely random and predictable components do

exist. However, on the LRD issues, they draw the same conclusion with Malkiel as they do

not find long-term memory in stock market return data. Related research can also be found

in [485].

While this argument is still controversial, one may choose to adopt a bit from each faction

of the debate and agree that there are both random and non-random aspects in the financial

markets. The following discussion views the “memoryless” issue from another perspective

based on simple arithmetic. Leveraged exchange traded funds (ETFs) are a type of financial

products invented a decade ago for tracking the daily performance of an index or commodity

futures.
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Example 6.1: Consider the scenario shown in figure 6.10(a). Assume A is a 3x leveraged

ETF tracking the commodity B, and both of them worth $10 a share/contract initially on

day 1. On Day 2, B rises by 10% to $11. So, A surges 30% to $13 accordingly. On the

next day, B plunges to $9, which is a 1 − 9/11 = 18.18% decrease. Hence, A follows B

by 3x leverage, and drops by 54.54% to $5.91. On day 4, B goes back to $10, which is a

10/9 = 11.11% increase. A increases by 33.33% to $7.88.
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Figure 6.10: The chart demonstration of path dependence in example 6.1.

After all, B recovers to the original value as if there is no movement, but A ends up

at a price 21% lower than its origin. In spite of this property, the movement of A is

path dependent, as demonstrated in figure 6.10(b). These are the common characteristics

of leveraged ETFs. Moreover, the underlying futures/indices tracked by them suffer from

contango. By the same token, their counterparts perform poorly as well, which is resulted

by the beta-slippage [486] on top of the aforementioned reason. All these factors make these

type of financial products doom to have a bearish bias. Their prices decline perennially in

the big trend and have an extremely low possibility to return to the initial levels. There

are only few circumstances where an leveraged ETF outperforms the underlying index. For

instance, B increases gradually and smoothly. The above example can be formulated to a

conditionally convergence problem of the following series,

Ak(x,Bk) = Ak−1(x,Bk−1)[1 + x(
Bk
Bk−1

− 1)], (Bk ≥
2

3
Bk−1), (6.6)

where k = 2, 3, . . . denotes the number of day under investigation and x is the leveraged

multiple. For this kind of financial products, the long term trends are so obvious that they

cannot be characterized by random walk with Gaussian distributed step sizes. An initial

short position would generate 99% profit in three-year time scope. From this sense, prices of

this type of financial products has no memory.

One step further, this type of phenomenon can be treated as possessing path dependent

characteristics, which is in contrast to the fundamental analysis emphasizing more on asset

valuation. It is said that if the most general law of nature is to be chosen, then principle

of least action should be counted for. However, it appears that the financial markets often

decide to be heterogeneous from this law.This leads to the discussion in the next subsection.
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6.4.3 The market is gaining entropy

In [487], the idea of using entropy as a measure of stock market volatility is proposed. The

market trends to more disorder [488, 489]. In [490], a hypothesis that maximum entropy

production principle governs the stock returns was proposed. While the Shannon entropy

yields exponential equilibrium distributions, Tsallis entropy yields power-law distributions

which is related to fractional calculus. A truly large system tends to be complex [491, 492],

and disorder can be expected.

More intuitively, for the sake of the following reasons: 1) the increase in the amount of

participants, 2) convenient availability to information, and 3) the improvement of partici-

pants’ knowledge level, the conventional advantages of institutional traders become weak,

such as the timely accessibility to breaking news and the privilege of viewing the market

depth, etc. Hence, a single factor which could dominate the market is no longer as dominant

as before. The number of participants who do not follow conventional routines are increasing.

The system is gaining complexity and unpredictability, therefore, it is becoming more and

more disorder. Thus, anomalous events happen more and more often. For example, a good

earnings report and financial guidance of a company may drive a sell-off of its stock, e.g. Jakk

Pacific on Oct 23, 2014, or Foot Locker on Nov 21, 2014. More examples can be observed in

the commodity markets.

These evidence and reasoning imply that the market is gaining entropy. This does not

necessarily mean a bull or bear market, but may indicate a more volatile and unpredictable

market in which profiting becomes harder. This leads to the following discussion about

extreme events.

Description 3 (Extreme events). There is no officially precise definition of extreme events.

Often, it refers to the events with an occurrence of the most unusual percentage in human’s

historical records.

For instance, the flash mob, variant Jasmine Revolution, “occupy wall street” and the

recent “occupy center” in Hongkong are social extreme events; the well-known El Niño

phenomenon is an example of the extreme weathers. More extreme events can be found

in [493] and the “Book of extremes” [225]. In the PM Magazine, Dr. Linda Kiltz states:

“This sense of powerlessness is part of the motivation behind the Occupy Wall

Street protests that started in September 2011 in New York City and are spread-

ing across the nation to such cities as Boston, Chicago, Denver, Seattle, and

Washington D.C. While these groups are not flash mobs, they are using social

media to organize, communicate, and raise awareness on a number of issues. As

the use of social media increases, the potential for more flash mobs that are used

for political protest and for criminal purposes is likely to increase.”

For these types of unexpected events, the extent of randomness is controversial. From

outsiders’ point of view, they are thoroughly random. However, on the other hand, to the

organizers, these events are deterministic because they planned the events and knew those

would happen in advance, although they might not foresee the scale and influence. This
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brings us back to the original question about whether the market is predictable, which is

similar to the doubt: if there exists an prophet who can see the future. The answer to this

question can be referred to the principle of entropy increase. Murphy’s law is often cited as a

form of the second law of thermodynamics (the law of entropy) because both are predicting a

tendency to a more disorganized state [489]. This is one of the motivations to cite Murphy’s

law in the beginning of the chapter.

If there exists a Maxwell demon who could generate negative entropy such that the

disorder could be drained and the universe could be made deterministic, then, does this fall

into a kind of predictability. Or, if there exists a wise man like the Laplace demon [494], who

possesses the knowledge of the position, velocity, forces, etc, of all the atoms in the universe,

then, he/she could predict the future. Unfortunately, this has been proven impossible because

the data processing capability for such a demon exceeds the limit obtained from the max

entropy of the universe, light speed, and the elapse time of information transmitted through

a Planck length. Similarly in the stock market, if one knows every single participant’s current

action and the action plan for the next time period, then, he/she could predict the market.

However, the fact is that given today’s huge number of participants and high frequency of

trading, it is impossible. Any prediction turns out to be a form of gambling as in Nash’s

prisoner dilemma. Encouragingly, the coming of the big data era could partially realize this

“delusion” to a small extent. Benefited from this technology, novel trading indicators are

invented to analyze the market momentum, for example, the sentiment interpretation of

the employees of a company, the aggregated user sentiment on social media networks, etc.

Related research work can be found in [495, 496].

6.4.4 Burst, spikiness, and pump & dump

There is increasing evidence that the timing of many human activities is characterized by

bursts of rapidly occurring events separated by long periods of inactivity. In [497], it is

shown that the burst nature of human behavior is a consequence of a decision-based queuing

process: when individuals execute tasks based on some perceived priority, the timing of the

tasks will be heavy tailed.

Bursts and spikiness can be observed occasionally on the price charts of small-cap penny

stocks. Following a burst, there is usually a decay which appears like pumping-and-dumping

an inflammable balloon. Usually, analysts employ technical tools based on Fibonacci se-

quence to project the stabilization level of the price or the potential next spike. The Fibonacci

sequence has a wide application in chart analysis, for example, the Fibonacci projection, the

Fibonacci fan line and the Fibonacci retracement.

Description 4 (Fibonacci sequence). In mathematics, the Fibonacci sequence is the numbers

in the following integer sequence,

Fn = Fn−1 + Fn−2 (n > 2). (6.7)

It is well known that when n→∞, the ratio of the adjacent two numbers in the Fibonacci

sequence converges to the golden ratio, ϕ,

lim
n→∞

Fn−1

Fn
= ϕ = 0.61803 · · · , (6.8)

166



and it has a property that

lim
n→∞

Fn−m
Fn

= ϕm. (6.9)

By empirically viewing the shape, the decay can be often better fitted by inverse power

law rather than exponential law. Curiosity may rise the question that whether or not the

combination of the golden ratio with fractional calculus is useful in this case as a projection

tool. Hence, the fitting of some stock price burst data is attempted using the α-stable

distribution pdf curves, with α = ϕ and β, γ, δ fitted automatically. Note: there may or

may not be any principles in the background, and the legal issues are not addressed here.

Only the shapes in the charts are analyzed and a gallery of fitting is generated for research

documentation, as exhibited in figure 6.11.

6.4.5 A Hurst exponent based technical indicator

6.4.5.1 Self-similarity and Hurst estimates

It is commonly adopted that most technical indicators and candlestick patterns can be applied

on any time scale of an underlying security or index, because analysts believe that the stock

price charts are fractal and self-similar [498]. For example, the candlestick patterns can be

applied on 5-min chart, hourly chart, daily chart and monthly chart, etc. The Hurst exponent

is an effective measure of the long term memory and self-similarity of a time series, and is

usually used to analyze stock returns, rt = log(Pt)− log(Pt−1).

Description 5 (Hurst exponent). The Hurst exponent is used as a measure of long-term

memory of time series. It relates to the autocorrelations of the time series, and the rate at

which these decrease as the lag between pairs of values increases. [479]

The fractal dimension is sometimes used as another inspector of self-similarity. The major

definitions of fractal dimension use Hausdorff-Besicovitch Dimension or the box-counting.

Description 6 (Fractal Dimension). The fractal dimension, also referred to as capacity

dimension, is a ratio providing a statistical index of complexity comparing how detail in a

pattern (strictly speaking, a fractal pattern) changes with the scale at which it is measured

[499].

dcap = − lim
n→∞

lnNn

lnLn
, (6.10)

where Nn is the number of solid boxes and Ln is the length of a side of a hole.

It is well known that for the Menger Sponge, the capacity dimension is dcap = log3 20 ≈
2.727. In [500], Bayraktar et. al estimated the fractal dimension of the Standard & Pool 500

(S&P500) index using Wavelet Analysis. Using Matlab 1D, 2D and 3D Box-counting, the

fractal dimension of S&P 500 index from year 2010 to 2015 can be computed, as shown in

figure 6.12.

Many fundamental analysts criticize the technical analysis to be a self-fulfilling prophecy,

as many people’s pursuit of the analyzing rules makes the rules more robust. All technical
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traders adjust their positions by anchoring at the alleged critical price levels, which eventually

makes the levels given by technical analysis seemingly justified. This may be one of the factors

that makes the stock return data possess self-similarity.

6.4.5.2 The proposed technical indicator

Many studies can be found in the literature regarding the use of Hurst exponent for financial

market analysis [501]. In this subsection, a novel way of using the Hurst exponent in the

form of a technical indicator is presented.

Description 7 (Technical indicators). In technical analysis, a technical indicator is a math-

ematical calculation based on historic price, volume information, or open interest of futures

contracts, that aims to forecast financial market direction.

There are more than 100 types of technical indicators for chart analysis [502]. They are

generally classified into 4 categories:

1. Momentum, such as stochastic (%K,%D), Relative Strength Index (RSI), Aroon Index;

2. Trend, such as MACD, Average True Range (ATR);

3. Volume, such as VWAP;

4. Overlays, such as Bollinger Bands, Parabolic SAR, etc.

Inspired by the principle of the center oscillation type indicators, similar calculation tech-

nique is applied to the proposed Hurst exponent based indicator. Let one Hurst estimation

evaluate more points and the other evaluate less, then, a plot of two crossing curves can be

generated. The recommended default numbers of points are 200 and 50, which respectively,

are approximately the number of trading sessions per year, and the industrial convention for

checking moving-average crossovers. To demonstrate, the application of this indicator to the

VIX index and the S&P 500 index are shown below as examples.

Description 8 (VIX). Introduced in 1993, the Chicago Board Options Exchange’s S&P 500

volatility index (VIX) provides a snapshot of expectations about future stock market volatility.

VIX is usually used to gauge fear and greed in the market and is one of the market

breath. Hence, it is also known as the fear index, which generally moves in the opposite

direction to the overall stock market. The mathematical computation of VIX can be found

in [503]. Figure 6.13 shows the running Hurst estimation on the VIX derivative. To the

author’s knowledge, there has not been such discussion in the literature. It can be seen from

this figure that when the running Hurst exponent (blue curve) diverges far from the overall

value (red curve), there is a relatively larger spike following.

This indicator does not signal a buy/sell point, yet, it implies how far the current

performance of an underlying security resides from its normal behavior performance.
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Figure 6.11: A gallery of fitting the decay after bursts using power law decay curves.
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Chapter 7

Summary and Future Work

A lifetime of glory is worth a moment of pain.

— Laura Hillenbrand, Unbroken

A longer-term of benefits for system performance is worth a moment of fractional order

modeling and control.

7.1 Summary

As expressed throughout the forgoing chapters, the intention and passion of this dissertation

is to provide a turnkey solution for fractional order modeling and control of industrial

processes. To summarize, the overall workflow for dealing with a process using the proposed

FO modeling and control methodology is briefly listed below:

1. Obtain the historical data of the object process if available; review the behavior

and determine the control objective, I/O constraints and potential difficulties. If

no historical data is available, perform simple tests, such as ramping up the input

gradually, to grasp an initial impression of the process.

2. Depending on the extent of nonlinearity, design suitable input excitation in terms of

frequency, amplitude and shape. Section 3.4.2 can be refereed to for the design process.

3. After reviewing the process response to the designed inputs, determine the model

structure to be used. A selection from the “model pool” in sections 3.2 and 3.4 can be

made.

4. For MIMO processes, determine the number of inputs and outputs, and quantify the

input-output paring and loop interactions using the acquired data. Section 3.5 can be

used as a guide for this procedure.

5. With the selected model structure, model parameters can be identified using the listed

methods in section 3.3, such as least squares and relay feedbacks. If these two methods

are not enough, refer to the cited references therein.
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6. Now that the model is obtained, a validation can be performed by examining and

comparing the model output and actual output under the same input signals. If the

non-model-based control laws are to be used, e.g. the FO ESC in section 4.4 or the

FOPID in 4.5, then, modeling is not a necessary step and the above three steps can be

skipped.

7. Next, determine the applicable control type according to the performance requirements,

for example, time optimality, steady-state tracking accuracy, disturbance rejection,

least loop interaction or minimal overshoot, etc.

8. Finally, the controller can be designed by following the corresponding procedures in

section 4.5.1 to 4.5.

With the word “fractional order” appearing more than 100 times in this context, readers

might feel tired of hearing and talking about it. Don’t be terrified because this is just

the beginning. As claimed by many authors of the cited books, this is just the beginning

of a voyage to a vast ocean, just the beginning of a long road to a broad plane. Given

sufficient time, fractional order modeling techniques are destined to be the inevitable way of

characterizing the nature.

7.2 Future work

Fractional calculus opens up a whole new arena for modern controls. The topics covered in

this dissertation are just like a toe of a giant, and there is a much bigger portion of interesting

topics to be explored and many problems to be solved. Some potential research opportunities

have been identified in the main chapters. They are briefly stated here as a summary.

Fractional order Rayleigh differential equation

To the author’s knowledge, there is not yet deep investigation of the fractional order Rayleigh

differential equation available in the literature. While four possible forms are proposed in

section 2.2.1.2, questions are still open with regard to the following topics: whether there

are other possible forms; which form has physical meaning so that real data support can

be obtained, etc. Moreover, it is known that the classic integer order Van der Pol equation

can be derived from the integer order Rayleigh’s differential equation, while the fractional

order VDP cannot be derived from the corresponding FO Rayleigh’s differential equation.

However, what variant FODEs can be derived from the FO Rayleigh’s differential equation

is to be studied.

Fractional order feedback linearization

The discussion on the feedback linearization of nonlinear FO processes is very limited in

the literature. Even definitions are not given. Hence, definitions, preliminary theorems,

the design rules for control laws, and a particular case study are given in sections 3.4.3

and 5.5, under certain assumptions. Nevertheless, due to mathematical difficulty in dealing

with the nested fractional order derivatives, no generalized results are obtained. Hence,

the feedback linearization of more classes of FO nonlinear processes can be another further
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research opportunity. More experimental results or practical implementation evaluation are

also expected.

Embedded RIOTS for FOCP and FO MPC

As introduced in section 4.3, RIOTS is a powerful numerical tool for solving traditional

optimal control problems. Tricaud et. al extended the use of RIOTS to FOCPs. Zhao et.

al pushed the use of RIOTS to the model predictive control of a fractional order thermal

process simulation. Li et. al implemented the RIOTS based MPC on an hardware-in-the-loop

temperature control experimental platform which had fractional order dynamics. With this

step-by-step advancement, a good foundation is established for approaching the ultimate goal,

i.e. an embedded RIOTS for both integer and fractional order optimal and predictive controls.

The next move towards this goal is to implement the RIOTS on micro-controllers or DSPs or

FPGAs for stand-alone application. This is motivated by the sponsoring industrial project

of equipment temperature control. To realize this goal, the FPGA realization of FO models

reviewed in chapter 1 can be used. Besides, the conversion of the RIOTS algorithm onto DSPs

and the online model adjustment for fractional order MPC need to be accomplished, which

could expand this goal to a huge project involving tremendous development and debugging

efforts. However, once these are achieved, much more practical benefits to the industry can

be expected.

MESABox apps for fractional order control tutorial

Section 6.2 introduced the development of MESABox for mechatronics course teaching and

control system tutorial. In addition to the three MESABox apps shown in the app gallery,

students are encouraged to develop their own control apps and integrate them into the gallery

so that more apps can be demonstrated for the next year education. For example, a student

from the last year class created an Arduino-driven pond game board using the components

in the MESABox. Currently, the available three demonstrating apps are based on “black

box” models using PID feedback control. To better help students with understanding the

dynamics, mathematical models could be built. While existing work can be found in the

literature using conventional approaches, e.g. the modeling and control of a floating ball

inside a tube in [504], it is worth trying the discussed fractional order modeling techniques,

e.g. employing the fractional Bernoulli equation for modeling, etc. The modeling of the

existing hardware setups for the corresponding apps could also be designed as lab modules

for students to learn and practice the nonlinear fractional order system identification.

Optimal parameter tuning for FO SM ESC

Parameter tuning of many types of controllers is not an easy task, and it is sometimes tricky,

especially for the sliding mode based ESC. It is shown in section 5.7 that the parameters of

the SM ESC have big impact on the performance. Including the fractional order reaching law

will add more tuning nobs to be determined, which makes the tuning even harder. Therefore,

the problem of finding the optimal set of parameter values for the FO SM ESC arises. Some

researchers consider this problem as a multi-objective optimization problem. For example,

[505] presented the tuning of FO controllers using PSO for a four tank level process. In [506],
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Abdelhamid et. al also used the PSO algorithm to design the FO SM controller for a class of

nonlinear commensurate order systems. On the other hand, the way of solving this problem

is not unique, and the enumerated two methods do not claim “optimality”. There is still

work to be done on this research direction.

“Heavy-tailed” randomization based multi objective optimization

The above discussed topic promotes the demand of multi-objective optimization in the

fractional order controls field. Conventionally, meta-heuristic algorithms are often used to

fulfill the task. Most meta-heuristic algorithms rely on the random number generation based

on Gaussian or unform distributions. However, it has been evidenced by literature that

heavy-tailed distributions could provide better performance in many scenarios. The Lévy

flight based PSO described in section 6.1 is one such example. While some algorithms are

tested with the heavy-tailed distributions for particular cases, there has not been systematic

investigation to show how the randomness acts on different algorithms for different types

of problems. For example, for the multi-objective optimization of a class of non-smooth

functions, whether there is a unique combination of parameters for an α-stable distribution

based random search algorithm is uncertain. These questions may be NP (nondeterministic

polynomial time) or NP hard that can not be proven analytically.

Power efficient fractional order control

The power efficiency is always a big concern in control engineering, but the research on

fractional order control has not covered this topic intensively. One of the very few studies

is carried out by Tavazoei et. al [90], and another is the power efficiency of indoor lighting

control by Yin et. al [49], as mentioned in section 4.4. Nevertheless, the power and energy

considered in these research are in the mathematical point of view, e.g. the indicator of the

energy consumption takes a quadratic form of the voltage. This is similar to the thinking in

Lyapunov functions which usually use quadratic forms of the system states as the indicator

of the system energy and it is not necessarily the practical energy in the sense of physics.

Hence, the topic of power efficiency is planned to be further investigated in terms of the actual

product of voltage and current. Hardware, such as the non-invasive current sensor using

inductive coupler, is prepared to perform the experiment on the Peltier based temperature

control platform described in section 5.1. The results will be a valuable contribution to the

FO control research community.

Other control schemes to be extended to fractional order

Besides the control schemes discussed in chapter 4, there are many more that can be

implanted with “fractional order”, or be potentially used on fractional order systems, such

as the computed torque control, preview control, load balancing control, matrix fraction

description (MFD) [507], fractional order run-to-run control, fractional order adaptive control

[362], etc.

All in all, there are just so many opportunities in this exciting research field, which

provides infinite hope to the future industry.

175



Afterwords

“We were home.

How do you pick up the threads of an old life?

How do you go on,

when in your heart,

you begin to understand,

there is no going back?

There are somethings that time cannot mend

some hurts that go too deep...

that have taken hold”

— J.R.R Tolkien, (in The Lord of the Rings)
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[269] A. Dzieliński and D. Sierociuk, “Simulation and experimental tools for fractional order control
education,” in Proceedings IFAC World Congress, Seoul, Korea, 2008, pp. 11 654–11 659.

[270] C. F. Lorenzo and T. T. Hartley, “Variable order and distributed order fractional operators,”
Nonlinear Dynamics, vol. 29, no. 1, pp. 57–98, 2002.

[271] I. Podlubny, “Matrix approach to discretization of ODEs and PDEs of arbitrary real
order,” [Online] (Matlab Central) http://www.mathworks.com/matlabcentral/fileexchange/
22071, 2008.

[272] D. Sierociuk, “Fractional variable order derivative Simulink toolkit,” [Online] (Matlab Central)
http://www.mathworks.com/matlabcentral/fileexchange/38801, 2012.
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[368] V. Kučera, “Optimal decoupling controllers for singular systems,” in Proc. of the 2013 European
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